研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。物質化学領域の松村教授が高分子学会三菱ケミカル賞を受賞
物質化学領域の松村 和明教授が公益社団法人高分子学会三菱ケミカル賞を受賞しました。
高分子学会は、高分子科学の基礎ならびに高性能材料などの応用分野に関する幅広い研究分野を対象とした会員数10,000を超える学術団体です。
三菱ケミカル賞は、高分子科学に基礎をおき、技術、産業に寄与する独創的かつ優れた研究業績を挙げた研究者に授与される賞です。
*参考:高分子学会三菱ケミカル賞受賞者
■受賞年月日
令和3年9月7日
■研究題目
両性電解質高分子の凍結保護効果の解明と生体材料応用
■研究内容
細胞の凍結保存技術は古くから開発されており、保護物質であるジメチルスルホキシド(DMSO)などを添加する必要がありました。松村教授らは、DMSOに比べて毒性が低く、しかも活性の高い高分子系の新規凍結保護物質を新たに見いだしました。その機序が既存の物質と異なることをNMRを用いた独自の手法で明らかとし、この機序を用いた再生医療用組織の凍結保存にも挑戦しています。さらに、和牛の受精卵や精子の凍結保護剤として産業応用もされています。また、凍結濃縮という凍結現象を用いた細胞内への物質送達手法を開発するなど、高分子化学と低温生物工学双方向の異分野融合型研究を進めています。
以上、基礎から産業応用に至るまで独創的かつ優れた研究成果であると国内外から高く評価されています。
■受賞にあたって一言
高分子学会よりこの度、三菱ケミカル賞を頂くことができ誠に光栄に思います。さらに高分子化学の発展に尽力して参ります。共同研究者や研究室の学生さんならびに研究費をご支援いただいた関係各所に厚くお礼申し上げます。


令和3年9月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/09/17-1.html高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功 ~高度な機器不要でPCR品質の検査を15~30分で可能に~

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 BioSeeds株式会社 |
高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功
~高度な機器不要でPCR品質の検査を15~30分で可能に~
ポイント
- 41℃でのワンポット等温RNAおよびDNA増幅反応(器具不要)
- 迅速かつ高感度(RT-PCRと同じように検出)
- シンプルで瞬時の検出(ラテラルフローストリップ)
- 非常に費用対効果が高い(テストあたりの推定コスト500円未満)
【概要】
北陸先端科学技術大学院大学(JAIST)とJAIST発のベンチャー企業であるBioSeeds(バイオシーズ)株式会社(石川県能美市)、および複数の研究機関からなる研究者チームは、唾液から直接、極めて微量のSARS-CoV-2を検出できる高度な等温核酸増幅法(RICCAテスト)を開発しました。この方法は、シンプルなワンポット(一つの容器だけを用いる)方式のRNAウイルスの等温核酸増幅検出法で、高度な機器や、特別な実験室・検査室を必要としません。そのため、検査室にサンプルを送る必要が無く、総測定時間15~30分で、その場で即時に検出結果を得られます。これまでに、唾液中の低コピー数のSARS-CoV-2の直接検出に成功しております。研究者チームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。 |
【背景・研究成果】
COVID-19の感染を食い止めるための最も効果的な方法は、症状のあるなしにかかわらず、感染の疑いのある人を特定して隔離することです。SARS-CoV-2のアルファからデルタまでの4種の懸念される変異株(VOC:variant of concern)およびイータからミューまでの5種の注目すべき変異株(VOI:variant of interest)が数カ月のうちに世界中に広まったように、新しい感染性ウイルス株が急速に出現しているため、COVID-19の迅速かつ高感度で信頼性の高い検査法の利用は、病気、さらにはパンデミックの制御に不可欠です。現在、世界的に流行しているCOVID-19では、主にRT-PCRによる検査が行われています。しかし、この検査室を必要とする方法は、サンプルの前処理が必要であることや、高価な装置(蛍光光度計付きサーマルサイクラー)が必要なことから、現場での検査は難しく、また短時間での大量検査にも課題があります。PCRに類似した分子検査を行う方法として、LAMP (Loop-mediated Isothermal Amplification) やSDA (Strand Displacement Amplification) などの様々な等温核酸増幅法が現在使用されています。しかし、これらの方法は、PCRと比較して特異性や感度が低いことが報告されています。また、これらの方法の多くは、実験室でのウイルスRNAの分離、溶解、精製、増幅など、面倒な前処理を必要とします。
この問題を解決するために、JAISTのマニッシュ ビヤニ特任教授率いるチームは、ウイルスRNAの標的配列を、特別な装置を必要とせず、現場で正確に検出できる高感度かつ超高速な方法を開発し、この検出法をRICCA(RNA Isothermal Co-assisted and Coupled Amplification)と名付けました。
現在、RICCAを使用して、既にSARS-CoV-2のアルファ株とデルタ株の2つの変異株を検出しており、他の変異株にも適応可能と考えられます。RICCAアッセイに必要なものは、ヒートブロック(恒温槽)と、25種類の試薬を含む混合液があらかじめ入ったチューブだけであり、RNA特異的増幅とDNA特異的増幅を同時に行うことができます。RICCAのコストは現在のRT-PCR法等と比較しても安価であり、より広範囲な用途に適用可能と考えられます。したがって、RICCAにより、COVID-19分子診断の「ラボフリー、ラボクオリティー」のメガテストプラットフォーム(医療検査室レベルの集団検診に向けた基本的な方法)も実現できる可能性があります。また、将来的には、このプラットフォームを使って他の感染性ウイルスを検査することも可能です。
RICCAは、COVID-19の検査に必要な設備を簡単に調達できない発展途上国では特に有用です。ビヤニ特任教授のチームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。また、RICCAのロボット化およびモバイルプラットフォームの設計を行っています(卓上プロトタイプはBioSeeds株式会社で開発中)。このプラットフォームが実現すれば、サンプル輸送の負担を軽減し、COVID-19診断を消費者が直接実施することも可能となり、遠隔地や資源の乏しい環境で大規模な集団検査を行うことが可能となります。
この最新の研究成果の一部は、国際的な科学誌(Scientific Reports)において、京都大学(保川清教授)、大阪母子医療センター(柳原格部長)、関西学院大学(藤原伸介教授)、東北大学(児玉栄一教授)、JAIST(ビヤニ特任教授、高木昌宏教授、高村禅教授)の研究者チームと共同で行った研究成果として紹介されています。
図:SARS-CoV-2ウイルスを、直接その場で検査する新規な方法(RICCA)(A)とそれによる熱不活化SARS-CoV-2ウイルスの検出結果(A')。 閉鎖的なサンプル保持容器(B)とそれを用いた、10%ヒト唾液中での熱不活性化SARS-CoV-2ウイルスの検出例 (B')。
【謝辞】
本研究成果の一部は、AMED(日本医療研究開発機構)新興・再興感染症に対する革新的医薬品等開発推進研究事業 JP20fk0108143、AMEDウイルス等感染症対策技術開発事業 JP20he0622020、JST(科学技術振興機構) 研究成果展開事業研究成果最適展開支援プログラム A-STEP 産学共同 (育成型)JPMJTR20UU の支援を受けたものです。
【参考文献】
論文名 | Development of robust isothermal RNA amplification assay for lab-free testing of RNA viruses |
雑誌名 | Scientific Reports |
著者名 | Radhika Biyani, Kirti Sharma, Kenji Kojima, Madhu Biyani, Vishnu Sharma, Tarun Kumawat, Kevin Maafu Juma, Itaru Yanagihara, Shinsuke Fujiwara, Eiichi Kodama, Yuzuru Takamura, Masahiro Takagi, Kiyoshi Yasukawa and Manish Biyani |
掲載日 | 2021年8月6日 |
DOI | https://doi.org/10.1038/s41598-021-95411-x |
令和3年9月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/08-1.htmlメムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発
![]() ![]() ![]() |
学校法人 龍谷大学 国立大学法人 奈良先端科学技術大学院大学 国立大学法人 北陸先端科学技術大学院大学 |
メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発
超コンパクト・低電力消費の人工知能への応用を期待
ポイント
- メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発した。従来の人工知能と比べると、劇的なコンパクト化・低電力消費が期待できる。
- メムキャパシタとして、強誘電体キャパシタを用いることで、構造を単純なものとし、薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となる。DC電流が無く、過渡電流も減り、電力消費が大幅に減る。
- 自律局所学習として、メムキャパシタのヒステリシス特性を上手く利用することにより、結合強度の制御回路など無しに、ニューロモーフィックシステムに学習させることができ、やはり将来の高集積化が容易となる。
- 研究の成果は、「IEEE Transactions on Neural Networks and Learning Systems」(Impact Factor=10.451)に掲載。
【概要】
龍谷大学 先端理工学部電子情報通信課程の木村睦研究室は、奈良先端科学技術大学院大学 先端科学技術研究科 中島 康彦教授、北陸先端科学技術大学院大学 先端科学技術研究科 徳光 永輔教授(応用物理学領域)らと共同で、メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発しました。 メムキャパシタは、印加電圧の履歴によりキャパシタンスが変化する回路素子で、本研究では、強誘電体キャパシタを用いることで、構造を単純なものとし、Bi3.25La0.75Ti3O12 (BLT)の薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となります。従来の大規模な模倣回路やメモリスタ(可変抵抗素子)の代わりに、メムキャパシタ(可変容量素子)を用いるため、DC電流が無く、過渡電流も減り、電力消費が大幅に減ります。 また、自律局所学習は、単一素子が自分自身の駆動条件のみで特性を変化させる学習方式であり、やはり将来の高集積化が容易となります。従来のシナプス素子の結合強度の制御回路など無しに、メムキャパシタの電圧履歴のキャパシタンス特性を上手く利用することにより、メムキャパシタだけで、ニューロモーフィックシステムに学習させることができます。 従来の人工知能と比べると、劇的なコンパクト化・低電力消費が期待できます。 |
【研究の背景】
「人工知能」は、現在、さまざまな用途に用いられ、将来、SDGs・Society 5.0・IoTといった未来社会に不可欠な情報インフラです。人工知能のための代表的な技術が、生物の脳の機能を模倣することで、自己組織化・自己学習・並列分散処理・障害耐性などの特長をもつ「ニューラルネットワーク」です。しかしながら、従来のものは、ハイスペックなハードウェアで実行される複雑・長大なソフトウェアで、人工知能のために最適化されておらず、コンピュータのサイズは巨大で、電力消費は膨大であり、また、並列分散処理・障害耐性などの特長は限定的でした。ニューラルネットワークを基本的なハードウェアのレベルから生体の脳の構造で模倣し、ニューロン素子やシナプス素子を実装するのが、「ニューロモーフィックシステム」です。しかしながら、従来のものは、人工知能としての最適化が不十分で、上記の特長は完全には得られていませんでした。この原因は、(1) 大規模な模倣回路やメモリスタ(可変抵抗素子)を使うため、DC電流・過渡電流が大きく、電力消費が大きい (2) 大規模なシナプス素子の結合強度の制御回路を使うため、サイズが大きいということによります。
【研究の目的】
そこで、本研究では、ニューロモーフィックシステムにおいて、(1) 模倣回路やメモリスタ(可変抵抗素子)の代わりに、メムキャパシタ(可変容量素子)を用いるため、DC電流が無く、過渡電流も減り、電力消費が大幅に減る (2) シナプス素子の結合強度の制御回路の代わりに、自律局所学習を用いるため、サイズが小さいということを目的とします。
【メムキャパシタ】
メムキャパシタは、印加電圧の履歴によりキャパシタンスが変化する回路素子です。本研究では、強誘電体キャパシタを用いることで、構造を単純なものとし、Bi3.25La0.75Ti3O12(BLT)の薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となります。ここでは、クロスバー型でメムキャパシタを作製し、印加電圧の履歴により強誘電体キャパシタの自発分極が変化することで、キャパシタンスが変化する回路素子を実現しています。
メムキャパシタ
【自律局所学習】
自律局所学習は、単一素子が自分自身の駆動条件のみで特性を変化させる学習方式であり、やはり将来の高集積化が容易となります。メムキャパシタの電圧履歴のキャパシタンス特性を上手く利用することにより、シナプス素子の結合強度の制御回路など無しに、メムキャパシタだけで、ニューロモーフィックシステムに学習させることができます。学習フェーズでは、シンプルに、クロスバー型の横電極と縦電極に電圧を印加するだけで、必要なキャパシタンスの変化が誘起されます。推論フェーズでも、シンプルに、横電極に電圧印加し、縦電極の電圧を読み取るだけです。
自律局所学習
【ニューロモーフィックシステム】
メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを、実際に組み立てました。アルファベットの「T」と「L」を記憶させ、わずかに異なるパターンを入力するとき、記憶した「T」または「L」のより近いほうが出力されることを確認しました。この動作は「連想記憶」というもので、文字認識や画像認識に直接に応用できるものであると同時に、問題設定により、さまざまな人工知能の取り扱う課題に応用できるものです。
ニューロモーフィックシステム
連想記憶の実験結果
【研究の意義と今後の展開】
従来の人工知能では、たとえば、いま最も有名なコグニティブシステムは、サイズは冷蔵庫10台ほど、電力消費は数百kWと言われています。本研究の基本的な成果をもとに、同様の機能のシステムを構築することを想定すると、サイズはLSI 1チップ、電力消費は20W程度と、劇的なコンパクト化・低電力消費が期待できます。SDGs・Society 5.0において、世界的なエネルギ危機を回避し、IoTにおいて、各々の機器へ搭載することが可能となります。なお、先行研究として、メモリスタと外部学習を用いるニューロモーフィックシステム(M. Prezioso, Nature, 521, 61, 2015)と比較すると、本研究で同様の機能が、低電力消費のメムキャパシタと、外部学習なしの局所自律学習で、実現できています。
【論文情報】
論文名 | Neuromorphic System using Memcapacitors and Autonomous Local Learning (メムキャパシタと自律局所学習を用いるニューロモーフィックシステム) |
掲載誌 | IEEE Transactions on Neural Networks and Learning Systems (TNNLS) |
著者 | 木村 睦(龍谷大学・奈良先端科学技術大学院大学)、石崎 勇真、宮部 雄太、吉田 誉、 小川 功人、横山 朋陽(龍谷大学)、羽賀 健一、徳光 永輔(北陸先端科学技術大学院大学)、 中島 康彦(奈良先端科学技術大学院大学) |
DOI | 10.1109/TNNLS.2021.3106566 |
掲載日 | 2021年9月1日にオンライン版に掲載 |
令和3年9月3日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/03-1.html物質化学領域の木田助教の研究課題が服部報公会の研究助成に採択
公益財団法人 服部報公会の研究助成「工学研究奨励援助金」に物質化学領域の木田 拓充助教の研究課題が採択されました。
服部報公会では、工学に関する研究を奨励援助し、もって学術及び科学技術の振興と進歩発展に寄与することを目的とした事業が行われています。工学研究奨励援助金は、工学の発展に寄与する基礎的研究で、単なる調査ではなく理論的あるいは実験的研究を行い、1年間に一応の進展が期待される研究に贈呈されます。
*詳しくは、服部報公会ホームページをご覧ください。
■研究者名
物質化学領域 木田 拓充助教
■採択期間
令和3年10月~令和4年9月
■研究課題名
構造不均一性の導入による高強度・高延伸性熱可塑性エラストマーの開発
■研究概要
熱可塑性エラストマーは、結晶化して架橋構造として振る舞うハードセグメントと、柔軟で屈曲性に優れたソフトセグメントで構成された高分子材料であり、各セグメントの長さや分率を調製することで材料の性質を柔軟的なものから剛直的なものまで幅広く制御することが可能です。従来の研究では、熱可塑性エラストマーは精密合成法で合成されることが多く、各セグメントの長さや分率、分布が高度に制御された、均一な構造を有する熱可塑性エラストマーが開発されてきました。本研究では、異なる構造状態を有する熱可塑性エラストマーをブレンドすることで、わざと構造状態に不均一性を導入します。我々の有する世界最先端の構造解析技術と物性評価技術を駆使することで、物性向上のための最適な不均一構造の導入法を突き止め、従来の熱可塑性エラストマーと比べて劇的に物性を改善することを目指します。
令和3年8月30日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/08/30-3.html生命機能工学領域の高木研究室の論文がLangmuir誌の表紙に採択
生命機能工学領域のGuo, Jingyuさん(博士後期課程3年)、下川 直史講師、高木 昌宏教授らの論文が米国化学会(ACS)刊行のLangmuir誌の表紙に採択されました。
■掲載誌
Langmuir 2021, 37, 32, 9683-9693
掲載日2021年7月21日
■著者
Jingyu Guo, Hiroaki Ito, Yuji Higuchi, Klemen Bohinc, Naofumi Shimokawa*, Masahiro Takagi
■論文タイトル
Three-Phase Coexistence in Binary Charged Lipid Membranes in a Hypotonic Solution
■論文概要
電気的に中性なリン脂質DPPCと負電荷を有したリン脂質DOPSから成る脂質二重膜での相分離現象を低張液中で観察しました。脂質膜が二成分から構成されているにも関わらず、三相に分離する条件があることを見出しました。通常、相分離は脂質疎水基間の相互作用で起こると考えられてきましたが、この三相分離構造はDOPSの電離状態に依存して形成されていることを示しました。また、三相分離構造の安定性を粗視化分子動力学シミュレーションによっても明らかにしました。
論文詳細:https://doi.org/10.1021/acs.langmuir.1c00967
表紙詳細:https://pubs.acs.org/toc/langd5/37/32
令和3年8月30日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/08/30-2.html学生のHASANさんの論文が、Altmetricによるスコアで上位5%に入る最も議論された論文の1つとして認定

学生のHASAN, Md. Mahmudulさん(博士後期課程3年、物質化学領域、長尾研究室)による、John Wiley & Sons社刊行のChemistrySelect誌に掲載された論文 "Christmas-Tree-Shaped Palladium Nanostructures Decorated on Glassy Carbon Electrode for Ascorbic Acid Oxidation in Alkaline Condition" が、Altmetricによるスコアで上位5%に入る最も議論された論文の1つとして雑誌編集部から認定されました。
■認定年月日
令和3年7月13日
■論文タイトル
Christmas‐Tree‐Shaped Palladium Nanostructures Decorated on Glassy Carbon Electrode for Ascorbic Acid Oxidation in Alkaline Condition
■研究者、著者
Md. Mahmudul Hasan, Yuki Nagao
■対象となった研究の内容
Christmas-tree-shaped Pd nanostructures were synthesized using a simple one-step electrodeposition method with no additives on a glassy carbon electrode (GCE) surface. Growth of the hierarchical nanostructures was optimized through the applied potential, deposition time, and precursor concentration. Comprehensive characterization techniques such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), and cyclic voltammetry (CV) were used to characterize structural features of the Christmas-tree-shaped Pd nanostructures. Our Christmas-tree-shaped Pd nanostructures showed excellent catalytic activity for ascorbic acid (AA) electro-oxidation in the alkaline condition. The modified electrode exhibited current density of 4.5 mA cm-2: much higher than that of unmodified GCE (0.6 mA cm-2). This simple electrodeposition technique with well-defined hierarchical Pd nanostructures is expected to offer new perspectives using Pd-based nanostructured surfaces in different research areas.
■認定にあたって一言
We are pleased to receive the award for one of the most-discussed articles in "ChemistrySelect". First and foremost, I want to thank Associate Professor Yuki Nagao for his valuable comments, guidelines, and advice. I am also grateful for the support of Nagao LAB members. Our study will hopefully aid in the development of hierarchical metal catalysts for electrocatalysis and energy conversion applications.


令和3年8月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/08/20-1.html触媒遺伝子「触媒シークエンシング」を発見 ~触媒インフォマティクスを駆使した新しい触媒開発に成功~
![]() ![]() ![]() |
国立大学法人 北海道大学 国立大学法人 北陸先端科学技術大学院大学 国立研究開発法人 科学技術振興機構 |
触媒遺伝子「触媒シークエンシング」を発見
~触媒インフォマティクスを駆使した新しい触媒開発に成功~
ポイント
- 触媒遺伝子「触媒シークエンシング」を触媒ビッグデータから発見。
- 触媒組成を従来の周期表の元素記号ではなく、ゲノム配列のように記号で表現。
- 触媒遺伝子を用いた触媒設計を提案し、実験実証に成功。
【概要】
北海道大学大学院理学研究院の髙橋 啓介准教授、髙橋 ローレン学術研究員、藤間 淳特任准教授、宮里 一旗特任助教らの研究グループは、北陸先端科学技術大学院大学先端科学技術研究科物質化学領域の谷池 俊明教授らと共同で、触媒遺伝子「触媒シークエンシング」を触媒ビッグデータから発見しました。 これまで触媒組成は周期表の元素記号で表現されてきましたが、反応場での真の触媒の状態は複雑なため、触媒組成を記述する真の触媒記述子*1の決定が困難を極めています。そのため機械学習などを用いる触媒インフォマティクス*2において、触媒物性を記述する上で情報的制約がありました。 そこで本研究では、独自に開発したハイスループット実験装置で得られたメタン酸化カップリング反応の触媒ビッグデータに対して、触媒インフォマティクス・信号処理*3・パターン認識*4・自然言語処理*5を駆使し、新たな触媒の記述方法である「触媒の遺伝子」を定義し提案しました。この「触媒の遺伝子」を用いることで、触媒組成の情報を、生物の塩基配列のように記号で表現することが可能となります。この触媒特有の配列を「触媒シークエンシング」と名付けました。この「触媒シークエンシング」を用いると、従来の元素記号での表記では全く異なる触媒組成であっても、同じ機能を持つ触媒は同じ「触媒の遺伝子」として表現することが可能となります。触媒組成は周期表の元素記号で表現されるのが一般的でしたが、本研究により提案された「触媒遺伝子」により、今後触媒は「触媒シークエンシング」で記述することが可能となります。 この「触媒遺伝子」の有効性を確認するため、同じ「触媒遺伝子」を持つ触媒群の元素を再編成することにより、同じ触媒遺伝子を持つ触媒の設計を行い、実験実証にも成功しました。結果、高いC2収率を達成する新規触媒が発見でき、「触媒遺伝子」が触媒設計に大変有用であることが証明されました。また発見された触媒が既知の触媒と似た遺伝子を持っているのか、もしくは全く新種の触媒遺伝子なのかなど、バイオインフォマティクスで見られる遺伝子解析のような、全く新しい視点での触媒情報の解析が可能となり、より発展的かつ実用的な適用が期待できます。 本研究成果は、米国東部時間2021年7月30日(金)午前6時公開のThe Journal of Physical Chemistry Letters誌にてオンライン版が掲載されました。 |
【背景】
マテリアルズインフォマティクス・触媒インフォマティクスの登場により材料・触媒科学は大きな転換期を迎えています。マテリアルズインフォマティクス・触媒インフォマティクスでは、第4の科学であるデータ科学を用い、材料・触媒データのパターンから材料・触媒設計を行います。そのような中、触媒組成は周期表の元素記号で表現されてきましたが、反応場での真の触媒の状態は複雑なため、触媒組成を記述する真の触媒記述子の決定が困難を極めています。そのため機械学習などの触媒インフォマティクスにおいて、触媒組成の記述方法が大きな障壁となっています。周期表の元素記号に頼らず、触媒の特徴を反映した触媒組成の記述方法を決定する必要があります。
【研究手法】
独自開発したハイスループット実験装置で得られたメタン酸化カップリング反応の触媒ビッグデータを用い、触媒インフォマティクス・信号処理・パターン認識・自然言語処理を駆使し、触媒ビッグデータに隠されているパターンから「触媒の遺伝子」を提案しました。
【研究成果】
発見された「触媒の遺伝子」は生物の塩基配列のように記号で表現することができます。この触媒特有の配列を「触媒シークエンシング」と名付けました(図1)。この「触媒シークエンシング」を用いると、従来の元素記号での表記では全く異なる触媒組成であっても、同じ機能を持つ触媒は同じ「触媒の遺伝子」として表現することが可能となります。「触媒遺伝子」を持つ触媒群の元素を再編成することにより、同じ触媒遺伝子を持つ触媒の設計を行い、実験実証にも成功しました。
【今後への期待】
今回提案した「触媒遺伝子」は、様々な触媒データに適用することにより、発見された触媒が既知の触媒と似た遺伝子を持っているのか、もしくは全く新種の触媒遺伝子なのかなど、バイオインフォマティクスで見られる遺伝子解析のような、全く新しい視点での触媒情報の解析が可能となります。したがって、触媒インフォマティクスにおける触媒データの取り扱い手法の基盤技術として、より発展的かつ実用的な適用が期待できます。
【謝辞】
なお、本研究は、科学技術振興機構(JST)戦略的創造研究推進事業CREST研究領域「多様な天然炭素資源の活用に資する革新的触媒と創出技術」(研究総括:上田 渉)における「実験・計算・データ科学の統合によるメタン変換触媒の探索・発見と反応機構の解明・制御」(研究代表者:髙橋 啓介)の支援を受けて行われました。
【参考図】
図1 発見された触媒遺伝子-触媒シークエンシング
【論文情報】
論文名 | Catalysis Gene Expression Profiling: Sequencing and Designing Catalysts(触媒遺伝子発現プロファイリング:触媒シークエンシングと設計) |
著者名 | 髙橋 啓介1 、藤間 淳1、宮里 一旗1、中野渡 淳2、藤原 綾2、Thanh Nhat Nguyen2、谷池 俊明2、 髙橋 ローレン1(1北海道大学大学院理学研究院、2北陸先端科学技術大学院大学) |
雑誌名 | The Journal of Physical Chemistry Letters(物理化学の専門誌) |
DOI | 10.1021/acs.jpclett.1c02111 |
公表日 | 日本時間2021年7月30日(金)午後8時(米国東部時間2021年7月30日(金)午前6時)(オンライン公開) |
【用語解説】
*1 触媒記述子...触媒の特徴を数値化して表現したもの。
*2 触媒インフォマティクス...データ科学手法を用いて触媒設計・触媒解析を行う学問。
*3 信号処理...信号を数理処理によって解析・処理する技術。
*4 パターン認識...データの中から規則性を取り出す技術。
*5 自然言語処理...言語や記号をコンピューターで処理する技術。
令和3年8月2日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/08/02-1.html学生のSUWANSOONTORNさんの論文が公益社団法人電気化学会刊行のElectrochemistry 誌で最も多くダウンロードされた論文として選出

学生のSUWANSOONTORN, Athchayaさん(博士後期課程3年、物質化学領域、長尾研究室)による、公益社団法人電気化学会刊行のElectrochemistry 誌に掲載された論文 "Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations" が、2021年5・6月の間に同誌に掲載された論文の中で、最も多くダウンロードされた論文として選出されました。
この論文で発表した研究成果については、令和3年5月28日に本学から「高分子薄膜における水素イオンの界面輸送で新知見」としてプレスリリースしています。
電気化学会は、電気化学の基礎と応用に関する研究の推進と、それを基礎とする産業技術の進歩を図り、学術文化の進展と社会の発展に寄与することを目的として、1933年に設立されました。
■受賞年月日
令和3年7月20日
■選出された論文のタイトル
Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations
■著者
Athchaya Suwansoontorn, Katsuhiro Yamamoto, Shusaku Nagano, Jun Matsui, Yuki Nagao
■対象となった研究の内容
Investigation of interfacial proton transport is necessary to elucidate biological systems. As commonly found in biomaterials, the carboxylic acid group was proven to act as a proton conducting group. This study investigated the influence of carboxylic acid concentration on both interfacial and internal proton transport. Several styrene-based polymers containing the carboxylic acid group were synthesized. The amount of carboxylic acid group in the polymer chain was varied to explore the effects of weak acid concentration on polymer thin films' electrical properties. The IR p-polarized multiple-angle incidence resolution spectrometry (pMAIR) spectra show the higher ratio of the free carboxylic acid groups rather than cyclic dimers in polymers with a higher concentration of carboxylic acid group, facilitating the more hydrogen bonding networks in films. The water uptake results reveal the similar number of adsorbed water molecules per carboxylic acid group in all thin films. Remarkably, polymer thin films with high carboxylic acid concentration provide internal proton conduction because of the relative increase in the amount of the free carboxylic acid group. In contrast, interfacial proton conduction was found in low carboxylic acid concentration polymers because of the relatively large amount of cyclic dimer carboxylic acid group and poor amount of free carboxylic acid group. This study provides insight into interfacial proton transport behavior according to the weak acid concentration, which might explain proton transport in biological systems.
■選出にあたって一言
We are greatly honored to receive the award for Most Downloaded Papers for "Electrochemistry". First, I want to express my appreciation to Assoc. Prof. Katsuhiro Yamamoto, Prof. Shusaku Nagano, Prof. Jun Matsui, and Assoc. Prof. Yuki Nagao for their valuable comments and guidance. And I am also grateful to Nagao LAB members for their support. We expect that our research can contribute to developing bio-conductive materials for eco-friendly devices.


令和3年7月27日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/07/27-4.html「e-messe kanazawa 2021(第36回いしかわ情報システムフェア)」に出展

7月16日(金)~17日(土)の2日間、石川県産業展示館3号館で、日本海側最大規模のICTビジネスショーである「e-messe kanazawa 2021(第36回いしかわ情報システムフェア)」が開催され、本学からリサーチコア「協生AI×デザイン拠点」のホ アン ヴァン准教授(知能ロボティクス領域)が出展しました。
ホ准教授はソフトロボティクス(柔らかいロボットを扱う研究)の紹介として、柔らかいドローンのプロペラ、柔らかいロボットアーム、コンタクトレンズをつまみ上げるようなソフトハンドの3点を展示しました。
本学ブースには、企業関係者、大学・研究関係者、大学生・高専生、一般の方など2日間で延べ240名もの方々が来訪され、活発な情報交換の場となりました。
![]() ![]() |
本学出展ブースにおける展示の様子 |
令和3年7月20日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/07/20-1.htmlナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発 ―電子顕微鏡とデータ科学による究極の精密測定―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 九州大学 |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発
―電子顕微鏡とデータ科学による究極の精密測定―
ポイント
- 電子顕微鏡とデータ科学を組み合わせることで、局所ひずみを高精度に測定
- 0.2%というわずかな局所ひずみをも検出できる精密さを達成
- 棒状ナノ粒子には表面形状の曲率変化に起因する約0.5%の局所膨張ひずみが生じることを発見
北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の麻生 浩平助教、大島 義文教授と、九州大学・大学院工学研究院のJens Maebe大学院生 (修士課程、当時)、Xuan Quy Tran研究員、山本 知一助教、松村 晶教授は、原子分解能電子顕微鏡法とデータ科学的手法であるガウス過程回帰を組み合わせることによって、ナノメートルサイズの粒子の中のわずか0.2%という局所ひずみを測定できる解析手法の開発に成功しました。開発した手法によって金のナノ粒子を解析したところ、棒状の粒子の内部では、先端付近で長さ方向に0.5%膨張したひずみを見出しました。この膨張ひずみは、粒子の先端部分で表面の形状(曲率)が変化しているために生じたこともわかりました。ナノ粒子の形状に由来して内部に局所ひずみが生じるという新たな発見と、ひずみを精密に捉える新規な手法は、ナノ物質内での原子配列と機能の理解に役立つと期待されます。 本研究成果は、2021年7月7日(米国東部標準時間)に科学雑誌「ACS Nano」誌のオンライン版で公開されました。 本研究は、日本学術振興会(JSPS)科研費基盤研究(B) (25289221、18H01830)と科学技術振興機構(JST)戦略的創造研究推進事業 ACCEL「元素間融合を基軸とする物質開発と応用展開」(研究代表者:北川 宏、研究分担者:松村 晶、プログラムマネージャー:岡部 晃博、研究開発期間:2015年8月~2021年3月、(JPMJAC1501))の支援を受けて行われました。 |
【研究背景と内容】
わずかな原子間距離の局所変化 (局所ひずみ) によって、磁性や触媒特性などといった様々な材料物性が左右されます。そのため、材料の局所ひずみを精密に測定する手法が求められてきました。ここ20年間で走査透過電子顕微鏡(STEM)の空間分解能が大きく向上して、原子状態の観察と解析が可能になりました。ナノメートルサイズの金の粒子をSTEMで観察したのが図1aです。ナノ粒子の内部に原子位置に対応した明るい点が整列して現れて見えます。原子は一見すると結晶構造を作って規則正しく周期的に配列しています。
しかし、図1aのSTEM像から原子の位置を特定して詳しく解析すると、場所によって原子は周期配列からわずかにずれて変位していることがわかりました。それをマップにしたのが図1bです。紙面左方向に大きく変位する原子が暗い青、紙面右方向に大きく変位する原子が明るい黄色でそれぞれ表されています。マップを遠目から見てみると、左から右手に向かって滑らかに、青色から黄色へと変化しているように見えます。しかし局所的には波のような細かい変化が全体を覆っています。この細かな変化は、像から原子位置を正しく特定できなかったために含まれる揺らぎノイズで、変位の変化率に相当するひずみを求めるうえで大きな障害になります。このノイズ成分を低減するには、長い時間 (カメラの露光時間に相当) をかけて計測して像質を改善するのがこれまでの一般的方法でしたが、計測時間が長くなるとその間の装置の機械的・電気的な状態のわずかな乱れの影響で像がゆがんでしまうという問題がありました。
そこで研究グループは、様々な分野で活用されているデータ科学手法のガウス過程回帰に着目しました。ガウス過程回帰では、データの真の姿は滑らかに変化すると仮定して、観測データにはこの真の姿に細かな揺らぎノイズが付加されていると考え、この順序をさかのぼることでデータの真の姿を予測します。ガウス過程回帰を図1bのマップに適用したところ、滑らかに変化する主要な成分だけを取り出すことに成功しました (図1c)。得られた変位の棒の長さ方向の変化率を求めて、局所的なひずみの分布をマップしたのが図1dです。開発した手法の精度を確かめるために、元データから直に、およびガウス過程回帰を適用して求めた場合のひずみ値の分布を比較したのが図1eです。元データでは標準偏差で1.1%の広がりがあるのに対して、ガウス過程回帰を用いることでその広がりが0.2 %に狭くなっており、ノイズ成分の除去によって有意に観測されるひずみ量の下限が大きく改善しました。
図1dに戻って見ると、棒の胴体部分と先端の半球部分の境目付近が明るい黄色になっており、この部分では棒の長さ方向に約0.5%膨張した局所ひずみが生じています。ナノ粒子では、表面積を小さくしようとして表面から内部に向かって力が作用するために、収縮ひずみが生じていると考えられていました。しかし、円筒状の胴体部と半球状の先端部からなる棒状の粒子では、2つの部分の表面曲率が異なることから内部にかかる力の向きと大きさに違いが生まれて、局所的に膨張するひずみ場が生ずることがわかりました。このように、原子位置の精密な解析が可能になって、ナノ粒子の局所形状によって内部のひずみの状態が変化することが発見できました。この新たな発見と、本成果で生み出された精密な解析手法は、ナノ構造材料の原子配置とそれによって引き起こされる機能に関する理解を深めることにつながると期待されます。
(b) 元データから得た原子変位マップ。紙面左方向への大きい変位が暗い青、紙面右方向への大きい変位が明るい黄色で表示される。細かく変化するノイズ成分が目立っている。
(c) ガウス過程回帰によって予測された真の変位。ノイズ成分の除去に成功している。
(d) 紙面横方向の変位の変化率(局所ひずみ)マップ。明るい黄色になっている両端部分では膨張ひずみが生じている。
(e) 元データとガウス過程回帰後のひずみ分布。ガウス過程回帰を用いることで、分布の広がりが1.1%から0.2%にまで狭まっており、微小な局所ひずみの検出が可能になった。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(B)(25289221、18H01830)
・科学技術振興機構(JST)戦略的創造研究推進事業ACCEL (JPMJAC1501)
【論文情報】
雑誌名 | ACS Nano |
題名 | Subpercent Local Strains Due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis |
著者名 | Kohei Aso*, Jens Maebe, Xuan Quy Tran, Tomokazu Yamamoto, Yoshifumi Oshima,Syo Matsumura |
掲載日 | 2021年7月7日(米国東部標準時間)にオンラインで掲載 |
DOI | 10.1021/acsnano.1c03413 |
令和3年7月13日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/07/13-1.html物質化学領域の長尾准教授の研究課題が村田学術振興財団の研究助成に採択
公益財団法人 村田学術振興財団の研究助成に物質化学領域 長尾 祐樹准教授の研究課題が採択されました。
村田学術振興財団では、エレクトロニクスを中心とする自然科学の研究及び国際化にともなう法律、経済、社会、文化等に係る諸問題に関する人文・社会科学の研究に対して研究助成が行われています。
*詳しくは、村田学術振興財団ホームページをご覧ください。
■研究者名
物質化学領域 長尾 祐樹准教授
■採択期間
令和3年7月~令和4年6月
■研究課題名
分子配向制御による全固体電池の界面デザイン
■研究概要
高分子は柔軟さや自己修復性が付与可能なため、将来的には、折り曲げ可能な固体電池の開発が期待されています。この実現には、電解質に対する電極および活物質の界面設計が不可欠です。界面の特徴の1つに、高分子特有の主鎖や官能基の分子配向等の構造変化がイオン伝導性に強い影響を与えるケースが報告され始めています。長尾准教授の研究グループでは、燃料電池に応用可能なプロトン伝導性高分子薄膜の界面におけるプロトン伝導性と分子配向の相関について研究を行ってきました。例えば、高プロトン伝導性高分子であるNafionは、界面の影響を受けた薄膜では配向構造を示すことが明らかにされています。さらに、酸化物界面と金属界面ではその配向構造が異なります。その構造の違いによってプロトン伝導度も異なります。これらの研究はまだ体系的に実施されておらず、特にデバイスや電池において重要な知見となる金属系材料や炭素系材料などの導電性表面における、高プロトン伝導性高分子界面のプロトン伝導性は十分に明かにされていない状況です。
本研究では、全固体蓄電界面のイオン伝導性や分子配向を同定することで、全固体電池の性能向上と共に課題となるイオンの拡散律速を抑制する次世代蓄電池の界面をデザインすることを目指します。
令和3年7月12日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/07/12-1.html学生のGUPTAさんとPATNAIKさんが第70回高分子学会年次大会において優秀ポスター賞を受賞
学生のGUPTA, Agmanさん(博士後期課程3年、物質化学領域、松見研究室)とPATNAIK, Kottisa Sumalaさん(博士前期課程1年、物質化学領域、松見研究室)が第70回高分子学会年次大会において優秀ポスター賞を受賞しました。
高分子学会は、高分子科学と技術及びこれらに関連する諸分野の情報を交換・吸収する、さまざまな場を提供しています。会員はこれらの場を通じ、学術的向上や研究の新展開のみならず会員相互の人間的な触れ合いや国際的な交流を深めています。
優秀ポスター賞は、高分子学会年次大会において、優れたポスター発表を行った発表者に授与されるもので、もって発表を奨励し、高分子科学ならびに同会の発展に資することを目的としています。
第70回高分子学会年次大会は、5月26日~28日にかけてオンラインで開催されました。
■受賞年月日
令和3年5月28日
【GUPTA, Agmanさん】
■発表題目
リチウムイオン二次電池のシリコン系アノードを安定化する架橋型BIAN系共役系高分子
Crosslinked BIAN Polymer Matrices to Stabilize Silicon Anode in Lithium Ion Secondary Batteries
■研究者、著者
〇Agman Gupta, Rajashekar Badam, and Noriyoshi Matsumi
■受賞対象となった研究の内容
従来型のグラファイトの約10倍の理論放電容量を有しているシリコンは次世代リチウムイオン二次電池用の負極として多大な注目を集めており、活発な研究が展開されている。一方、充放電におけるシリコン粒子の大幅な体積膨張・収縮により粒子の破壊や表面被膜の破壊、集電体からの剥離が問題となり、実用に適した系の創出には至っていない。本研究ではBIAN型共役系高分子を1,6-ジブロモヘキサンとの四級化反応により架橋した高分子材料を負極バインダーとして検討した。その結果、1000サイクル以上にわたって約2500 mAhg-1(Si)の放電容量を維持し、卓越した特性を発現した。
■受賞にあたって一言
I am full of gratitude towards my Prof. Noriyoshi Matsumi for providing me with his immense support, encouragement, and guidance throughout my studies. Also, I am thankful to Senior lecturer Dr. Rajashekar Badam for his motivation and worthy insights that always encouraged me to work hard. I would like to thank MEXT and JST-Mirai (Grant Number: JP18077239) for providing financial support. I am thankful to all JAIST staff (teaching and non-teaching) for providing a healthy scientific environment with good facilities so that students like me can comfortably conduct quality research work. I am deeply motivated from within to pursue my passion for science and contribute to society by using my scientific endeavors for public benefit. In this regard, I have been studying and conducting research that is aimed towards developing Li-ion batteries with high energy density for future applications in portable electronic devices, electric vehicles (EVs), hybrid electric vehicles (HEVs), etc.


【PATNAIK, Kottisa Sumalaさん】
■発表題目
高速充放電能と長期耐久性を併せ持つバイオベース型リチウムイオン二次電池負極活物質
Bio-derived Lithium-ion Battery Anode Material for Fast Charging and Long-cycle Life
■研究者、著者
〇Kottisa Sumala Patnaik, Yueying Peng, Rajashekar Badam, Tatsuo Kaneko, and Noriyoshi Matsumi
■受賞対象となった研究の内容
今日、リチウムイオン二次電池研究において急速充放電技術の開発は最も重要な側面の一つとなっています。ガソリンスタンドでの数分の停車で給油可能なガソリン車と比較して、EV車の充電に要する長い充電時間は消費者心理に多大に影響し、技術の広範な普及への足かせとなっています。本研究では耐熱性のバイオベースポリマーであるポリベンズイミダゾールを焼成することにより得られた高濃度窒素ドープハードカーボンをリチウムイオン二次電池の負極活物質として用いることにより9分間での充電と1000サイクル以上のサイクル耐久性を同時に実現できることが見出されました。見出された知見を活かしつつさらなる系の発展が期待されます。
■受賞にあたって一言
At the outset, I want to express my heartfelt gratitude to Prof. Noriyoshi Matsumi for his invaluable guidance in my research work. I thank Prof. Tatsuo Kaneko for opportunity of collaboration under SIP project. I also want to thank Senior lecturer Dr. Rajashekar Badam for incessantly providing me with his suggestions at every step of my research work. I believe research has been very interesting for me especially because of extremely supportive lab mates. I am very grateful to every member of Matsumi Lab for helping me in many small and big ways to carry out my research work smoothly. Lithium ion batteries have brought a lot of convenience and comfort into our everyday life. Any research in this field adds a significant impact at large. I believe lithium-ion batteries have the potential to impact human life at even greater scale than they currently do. Fast charging batteries with long cycle life is one of the fields in maximum demand owing to their applicability in electric vehicles. The prospect of using a vehicle not powered by fossil fuel but delivering equivalent capability to a fossil fuel powered vehicle inspired me to carry out my research in this field of 'Fast Charging Lithium-ion Batteries". I intend to dedicate my future research endeavors in this field.


令和3年7月6日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/07/06-1.html物質化学領域の長尾准教授らの論文が国際学術誌ChemSusChem誌のThe Cover Featureに採択

物質化学領域の長尾 祐樹准教授、学生のWang, Fangfangさん(博士後期課程2年)、修了生のWang, Dongjinさん(令和2年9月博士前期課程修了)らの論文が国際学術誌ChemSusChemのThe Cover Featureに採択されました。
この論文は、令和3年5月7日に本学からプレスリリースしました、次世代燃料電池のアニオン交換薄膜において水酸化物イオン伝導度の評価法を確立した内容になります。
■掲載誌
ChemSusChem
■著者
Fangfang Wang, Dongjin Wang, Yuki Nagao
■論文タイトル
OH− Conductive Properties and Water Uptake of Anion Exchange Thin Films
■論文概要
本研究では、次世代燃料電池で注目されるアニオン交換薄膜において、空気中の二酸化炭素の影響を受けない状態で、水酸化物イオン伝導度と含有水分子量の評価法を確立することに成功しました。長年求められてきたこの評価法の確立は、当該分野において世界初の成果になります。本成果により、次世代燃料電池の性能向上に関する研究の加速が期待されます。
論文詳細:https://doi.org/10.1002/cssc.202100711
The Cover Feature詳細: https://doi.org/10.1002/cssc.202101142
令和3年6月22日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/06/22.html新型コロナウイルスの重症化に関与するタンパク質ORF8の特異な性質を発見

![]() ![]() |
石川県公立大学法人 石川県立大学 国立大学法人 北陸先端科学技術大学院大学 |
新型コロナウイルスの重症化に関与するタンパク質ORF8の特異な性質を発見
新型コロナウイルスの重症化に関与するタンパク質ORF8は、過酷な環境下でも高い安定性、復元力を保つという特異な性質を持つことを発見しました。ORF8は、70度においても天然状態を保持し、70度以上で変性させても、温度が下がると天然状態に戻ること、酸性条件で変性するが、弱アルカリ条件にすると天然状態に戻ることを明らかにしました。 |
【概要】
石川県立大学 森正之准教授が中心となり、今村智弘講師、東村泰希准教授、松本健司教授および北陸先端科学技術大学院大学 生命機能工学領域の大木進野教授と共同で、新型コロナウイルス(SARS-CoV-2)の重症化関与タンパク質ORF8の特異な性質を発見しました。本研究成果は、速報誌「Biochemical and Biophysical Research Communications」に公開されました。
SARS-CoV-2が引き起こす新型コロナウイルス感染症(COVID-19)は、基礎疾患や肥満の罹患者が重篤化しやすく、全世界で大問題となっています。新型コロナウイルスが持つORF8タンパク質は、SARS-CoV-2において特徴的なタンパク質です。これまでの解析により、ORF8は、免疫機能に重要な役割を持つMHCクラスIタンパク質の働きを抑え、細胞障害性T細胞を介した免疫応答を損なう働きがあることが報告されております。さらに、ORF8遺伝子領域が欠失したSARS-CoV-2株や1つのアミノ酸残基が変異したORF8(L84S)を持つウイルス株では、重症化しにくいことが報告されています。このことから、ORF8タンパク質は、COVID-19の重症化に関与することが示唆されています。
ORF8タンパク質は分子内に3か所のジスルフィド結合(S-S結合)を持ち、さらにS-S結合で二量体になる複雑なタンパク質です。そのため大腸菌での均一なORF8の合成は極めて困難です。しかし、我々は、タバコ培養細胞(タバコBY-2細胞)を用いて均一なORF8タンパク質の大量合成に成功しました(図1)。
タンパク質は一般的に、熱や酸、アルカリの影響を受けると、ひもが絡まったような変性という状態になって沈殿します。通常は、生卵が加熱されるとタンパク質が変性しゆで卵になるように、いったん変性したタンパク質は元の状態に戻りません。ORF8タンパク質がどのような条件で変性するかはその機能を知るうえで重要です。そこで、本研究では、タバコBY-2細胞で合成した野性型ORF8と変異型ORF8(L84S)の温度およびpHを変化させORF8の状態変化を核磁気共鳴(NMR)装置で解析しました。その結果、ORF8は耐熱性がとても高く70度付近まで天然状態を保持し、70度以上で変性しました。しかし、一般的なタンパク質と異なり、温度を下げると天然状態に戻ることがわかりました(図2)。またORF8は、弱酸性条件で変性してしまうこと、中性条件に戻すと元の天然状態に戻ることがわかりました。これらの結果は、ORF8が特別安定なタンパク質であることを意味します。また、興味深いことに、変異型ORF8(L84S)はORF8に比べて熱および酸への耐性がより高いことがわかりました(図2)。これらの特異な性質は、OFR8の機能と関係していることが予想されます。今後、この知見をもとにした解析を行うことにより、COVID-19の重症化をおさえる治療法が確立する可能性が期待されます。
【発表論文】
論文タイトル | Similarities and differences in the conformational stability and reversibility of ORF8, an accessory protein of SARS-CoV-2, and its L84S variant |
論文著者 | Shinya Ohki; Tomohiro Imamura; Yasuki Higashimura; Kenji Matsumoto; Masashi Mori |
雑誌 | Biochemical and Biophysical Research Communications |
図1 タバコ培養細胞を用いたORF8タンパク質の大量生産
タバコBY-2細胞で生産したORF8タンパク質は全て二量体を形成する。(A) ORF8タンパク質を合成するタバコBY-2細胞 (B)タバコBY-2細胞の大量培養 (C)培養液中に放出されたORF8タンパク質 (D)精製しNMR解析に用いたORF8タンパク質。WT:野生型ORF8タンパク質、L84S: 変異型ORF8タンパク質、矢じり:ORF8タンパク質、M:分子量マーカー
図2 ORF8 (wild type)とその変異体L84Sの各温度での1H-NMRスペクトルのメチル基領域の拡大図 *印は、昇温後に再びその温度に戻したことを表す。
ORF8、L84Sともに70度くらいまではスペクトルに大きな変化が見られない。これは、立体構造が保持されていることを示している。ORF8では70度、L84Sでは75度のときにピークが広幅化し、特に0 ppm付近ではピークが消失しかかっている。これは、試料が多量体化もしくは会合により熱変性状態になったことを示している。ところが、両試料ともに温度を下げたときのスペクトルは実験開始時のスペクトルと一致している。これは、変性状態の試料が天然状態に戻ったことを示している。
【用語説明】
細胞傷害性T細胞:リンパ球T細胞の一種。異物となる異常細胞(ウイルス感染細胞、がん細胞など)を認識し、それらを攻撃して破壊する細胞。
MHCクラスIタンパク質:免疫応答に関わるタンパク質。細胞内のタンパク質に由来するペプチド断片を細胞表面に輸送し、細胞障害性T細胞に提示するタンパク質。
ジスルフィド結合(S-S結合):2つのシステインによって形成される共有結合で、タンパク質の立体構造形成に重要な役割をはたす。
二量体:2個のタンパク質が、物理的・化学的な力によって形成した分子。
核磁気共鳴(NMR)装置:強力な磁場中に置いた試料に電磁波を照射して応答信号を得る装置。信号を解析することで、試料の構造や運動性を知ることができる。
令和3年6月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/06/09-1.html高分子薄膜における水素イオンの界面輸送で新知見

![]() ![]() ![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 名古屋工業大学 学校法人立教学院 立教大学 国立大学法人 山形大学 |
高分子薄膜における水素イオンの界面輸送で新知見
ポイント
- カルボン酸基の濃度を制御した弱酸性高分子を合成し、水素イオンの輸送を薄膜状で評価
- カルボン酸基は、少なくとも二種類の状態で存在
- カルボン酸基が低濃度になると、カルボン酸基が薄膜界面により多く存在
- カルボン酸基の濃度の低下に伴い水素イオンの輸送経路は内部輸送から界面輸送が支配的
北陸先端科学技術大学院大学・先端科学技術研究科 物質化学領域の長尾 祐樹 准教授、スワンスントン アトチャヤ氏(大学院博士後期課程在籍)は、名古屋工業大学・大学院工学研究科 生命・応用化学専攻の山本 勝宏 准教授、立教大学・理学部の永野 修作 教授、山形大学・学術研究院(理学部主担当)の松井 淳 教授との共同研究で、燃料電池や生体活動等で重要となる水素イオンの輸送において、モデル高分子薄膜のカルボン酸基の濃度を制御することで、水素イオンの輸送経路が薄膜内部と界面で切り替わる現象を発見しました。本成果により、エネルギー変換システムの高度化やイオンを能動的に制御するための界面分子設計に関する研究の加速が期待されます。 本研究成果は、2021年5月21日(英国時間)に電気化学会刊行のElectrochemistry誌のオンライン版で公開されました。なお、本研究は日本学術振興会(JSPS)科研費基盤研究(C)、科研費基盤研究(B)、科研費 新学術領域研究「ハイドロジェノミクス」の支援を受けて行われました。 |
【研究背景と内容】
生体系ではタンパク質等の高次構造が、イオン輸送チャネルの制御を行い、イオン輸送の外場刺激応答を実現しています。また、生体材料界面でのイオン輸送は1960年代から議論が続いています。この機能を人工的に設計・構築することは未だ容易ではありません。長尾准教授らは、イオンの中でも水素イオンに着目し、水素イオンを人工的かつ能動的に制御するための要素技術に関して研究を推進してきました。
酸の素である水素イオンは、材料中を輸送されることで燃料電池や生体活動等のエネルギー変換システムで重要な役割を果たします。この水素イオンは、材料内部の非常に小さなスケールの通り道に沿って輸送されると考えられてきました。近年、エネルギー変換システムの高度化に伴い、高性能化のために材料の内部だけでなく端(エッジ)である界面の分子設計も重要視されています。しかし、材料界面における水素イオンの輸送に関する基礎研究は十分に行われていません。今回長尾准教授らは、生体材料ではなく、酸の素の一種であるカルボン酸基の濃度を制御した合成高分子を用いて、薄膜中の水素イオンの通り道について研究を実施しました。その結果、水素イオンが薄膜内部を通る道が不足すると、水素イオンは薄膜の表側と裏側に相当する薄膜界面に沿って輸送されることを明らかにしました。
本研究では、ポリスチレンと呼ばれる高分子の側鎖にカルボン酸基が化学修飾された高分子を合成しました(図1)。比較のためにカルボン酸基の濃度を高いものから低いものまで四種類合成しました。高分子を薄膜化し、赤外線を用いて分子構造を調べた結果、酸の素となるカルボン酸基の状態が少なくとも二種類あることがわかりました。一つはカルボン酸基が単体で存在する状態(フリーな状態)、もう一つは二つのカルボン酸基がお互いに向き合った二量体で存在する状態(ダイマー状態)でした。ダイマー状態は、二つの水素イオンが二つのカルボン酸基に挟まれた状態となり、水素結合と呼ばれる結合で安定化されています。研究グループは、カルボン酸基の濃度を高くすると、フリーな状態のカルボン酸基の量が相対的に増加し、ダイマー状態のカルボン酸基の量が減少する傾向を見出しました。さらに、カルボン酸基の濃度が低い場合には、フリーなカルボン酸基が薄膜の内部ではなく界面により多く存在することも明らかにしました。高分子薄膜中ではカルボン酸基は均一に存在しておらず、その濃度によって存在状態が異なることもわかりました。
この結果から研究グループは、カルボン酸基の濃度を低くすると、薄膜界面にフリーなカルボン酸基が集合し、水素イオンが薄膜内部ではなく界面に沿って輸送される仮説を検討しました。具体的には、水素イオン輸送の性能指標の一つにあたる水素イオン伝導度の評価を、インピーダンス法と呼ばれる手法を用いて実施しました。結果は仮説を裏付けるものであり、カルボン酸基の濃度が高い薄膜では、水素イオンが薄膜内部で輸送されることが支配的であるのに対して、カルボン酸基の濃度が低い薄膜では、水素イオンは薄膜内部ではなく薄膜界面に沿って輸送されることがわかりました(図2)。これはフリーなカルボン酸基が薄膜の内部ではなく界面により多く存在することと、薄膜内部には水素イオンの輸送にあまり寄与しないと思われるダイマー状態のカルボン酸基が多いためであると考えられます。この結果から、水素イオンは材料内部を必ずしも通らずに、通りやすい道があれば材料の端である界面に沿って輸送されることもあることが示されました。
図1 本研究に用いた高分子材料
図2 高分子薄膜における水素イオンが輸送されるイメージ。内部輸送(上)と界面輸送(下)
【今後の展開】
高分子材料中の水素イオンの輸送は、材料内部の通り道に沿って輸送されると考えられてきました。しかし本研究では、酸の素や構造の状況によっては、水素イオンは材料内部ではなく界面に沿った輸送が支配的になることがわかりました。このイオンの界面輸送は無機材料では既に知られていましたが、高分子材料においても界面輸送が可能であることから、界面の分子設計に活かせる可能性があります。また、これまで説明できなかった水素イオンの輸送現象の理解にアプローチすることもできるかもしれません。特にカルボン酸基は生体活動で重要な役割を担っています。今後長尾准教授らは、エネルギー変換システムの高度化に加え、イオン輸送の人工的かつ能動的な制御を目指して、得られた知見を活かしていきます。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(C)(JP18K05257)
・日本学術振興会(JSPS)科研費 基盤研究(B)(JP21H01997)
・日本学術振興会(JSPS)科研費 新学術領域研究「ハイドロジェノミクス」(JP21H00020)
【論文情報】
雑誌名 | Electrochemistry |
題名 | "Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations" |
著者名 | Athchaya Suwansoontorn, Katsuhiro Yamamoto, Shusaku Nagano, Jun Matsui, Yuki Nagao* |
掲載日 | 2021年5月21日(英国時間)に著者原稿版がオンラインで掲載 |
DOI | 10.5796/electrochemistry.21-00042 |
令和3年5月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/05/28-1.html物質化学領域のBADAM講師が田中貴金属記念財団 萌芽賞を受賞

物質化学領域のBADAM, Rajashekar講師(松見研究室)が一般財団法人田中貴金属記念財団 萌芽賞を受賞しました。
田中貴金属記念財団は、貴金属に関する研究への助成を行い、貴金属の新分野を開拓醸成し、学術、技術ならびに社会経済の発展に寄与することを目的としています。
本助成金制度は、「貴金属が拓く新しい世界」へのさまざまなチャレンジを支援するため、1999年度から毎年実施されています。第22回目となる今回は、貴金属が貢献できる新しい技術や研究・開発に対して、あらゆる分野から研究を募集し、その結果、合計171件の応募があり、この中から合計26件の研究に対し、総額1,610万円の研究助成金を授与しています。
■受賞年月日
令和3年3月31日
■研究題目
水分解に適した効率的酸素発生触媒活性を有する強い金属―基盤相互作用を伴うIrO2系有機・無機ハイブリッド触媒
■受賞対象となった研究の内容
Dr Rajashekar Badam, has been working on various energy materials especially electrocatalysts for oxygen redox reactions for fuel cell and electrolyser applications to name a few. His passion to mitigate environmental issues lead to the research in green hydrogen production using water electrolysis. Water electrolysis is one of the cleanest ways to produce hydrogen. Oxygen evolution reaction (OER) at anode being kinetically and thermodynamically more demanding, need an efficient catalyst. IrO2 is the best-known catalyst which is stable in acidic medium but with high overpotential (~330 mV). Changing the morphology and electronic structure of IrO2 by alloying with other metals was found to reduce the overpotential but poor stability due to agglomeration of nanoparticles and leaching of alloying metal are the key problems to be answered. In this regard, they are working on a novel strategy of anchoring IrO2 nanopartlcles to electrochemically stable conducting polymer with coordination sites. The strong metal substrate interaction between IrO2 nanoparticles and high heteroatom content in the polymer lead to high durability and reduced overpotential making water electrolyser a viable method for green hydrogen production.
ラージャシェーカル バダム博士は様々なエネルギー関連材料、とりわけ電気化学触媒(燃料電池用の酸素還元触媒や水分解反応触媒)に注力した研究を行っています。グリーンな水分解反応など、環境問題の解決を指向した研究を進めています。水分解反応は水素を得るための最もクリーンな反応であり、アノード電極側での酸素発生反応が速度論的にも熱力学的にも技術課題になっています。IrO2は酸性条件でも安定ですが、高い過電圧を有しています。IrO2を他の金属と組み合わせることでモルフォロジーや電子構造を改変でき、過電圧を低下させることができますが、同時にナノ粒子の凝集や、合金触媒からの脱離が問題となります。この点に関して、彼らはIrO2を電気化学的に安定な導電性高分子中の配位子に配位させることに取り組んでいます。強い金属―基板相互作用がIrO2と高ヘテロ元素濃度を有するポリマー間で起こることは高い触媒の安定性と過電圧の低下につながり、水分解反応をグリーンな水素製造法として実現可能なものにすることにつながると期待しています。
■受賞にあたって一言
I would like to thank Tanaka Kikinzoku Memorial Foundation and the selection committee for bestowing me with this prestigious award. I would like to thank Professor Matsumi for all the guidance, Matsumi lab members and my family for the support. I take this opportunity to dedicate this award to the almighty God.
令和3年5月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/05/25-1.html