研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。学生の石川さんが平成29年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞

学生の石川 達也さん(博士前期課程1年、応用物理学領域・村田研究室)が平成29年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス,新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的としています。
■受賞年月日
平成29年12月9日
■講演題目
フレキシブル有機圧力センサの作製
■講演概要
有機圧力センサは人の体や曲面にフィットするようなフレキシブルセンサとして期待されています。その中で有機電界効果トランジスタ(OFET)を用いたアクティブ型有機圧力センサはヘルスケア分野などへの応用を目指して活発に研究が進められています。圧力センサでは低電圧駆動と大きな圧力応答の両立が実用化に向けた課題でしたが、我々はガラス基板上に低電圧駆動OFETを作製し、感圧部と組み合わせるDual-gate型有機圧力センサの開発を行い、低電圧駆動と大きな圧力応答の両立を達成しました。しかし、ガラス基板では期待されるようなフレキシブルな応用ができません。そこで本研究ではPEN基板を用いたDual-gate型フレキシブル有機圧力センサの作製に取り組み、動作を確認することができました。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。研究するにあたり、ご指導頂きました村田英幸教授、酒井平祐助教、ならびに研究室のメンバーに深く御礼申し上げます。受賞を励みに、これからも研究に精一杯取り組んでいきたいと思います。
平成29年12月21日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2017/12/21-3.htmlシリセン上へ分子を線状に集積 -分子の性質を損なわずに固定することに成功-

シリセン上へ分子を線状に集積
-分子の性質を損なわずに固定することに成功-
ポイント
- シリセンへ有機分子を蒸着した結果、分子の性質が保たれたまま、シリセン上の特定の活性な場所に固定されることが分かった。
- 有機分子とシリセンのつくる界面を実験と理論計算の両面から詳細に調べた例はなく、世界で初めての成果。
北陸先端科学技術大学院大学(JAIST)(学長・浅野 哲夫、石川県能美市)の先端科学技術研究科応用物理学領域の高村 由起子准教授、アントワーヌ・フロランス助教らは、ユニバーシティ・カレッジ・ロンドン、ユーリッヒ総合研究機構、東京大学物性研究所と共同でシリセン上にヘモグロビン様の有機分子がその性質を保持した状態で固定されることを発見しました。 |
Image courtesy of Tobias G. Gill, Vasile Caciuc, Nicolae Atodiresei, Ben Warner, and Cyrus Hirjibehedin.
<今後の展開>
シリセン上に磁性を持つ分子を固定できると、シリセンの分子スピントロ二クス分野への応用が期待されます。また、今後は、分子を蒸着したシリセンの電子状態の測定などを通して、シリセンの性質が分子吸着によりどう制御できるのかを調べていきたいと考えています。
<論文>
"Guided molecular assembly on a locally reactive two-dimensional material"(局所的に活性な二次元材料上への誘導分子集積)
DOI: 10.1002/adma.201703929
Ben Warner, Tobias G. Gill, Vasile Caciuc, Nicolae Atodiresei, Antoine Fleurence, Yasuo Yoshida, Yukio Hasegawa, Stefan Blügel, Yukiko Yamada-Takamura, and Cyrus F. Hirjibehedin
Advanced Materials 2017, 1703929.
http://onlinelibrary.wiley.com/doi/10.1002/adma.201703929/abstract
(オープンアクセス論文なので、どなたでもダウンロードできます。)
<共同研究先へのリンク>
Hirjibehedin Research Group, London Centre for Nanotechnology, University College London
https://www.ucl.ac.uk/hirjibehedin
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA
http://www.fz-juelich.de/pgi/pgi-1/EN/Home/home_node.html
長谷川幸雄研究室、東京大学物性研究所
http://hasegawa.issp.u-tokyo.ac.jp/hasegawa/Welcome/Welcome.html
平成29年10月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/10/12-1.htmlシリセン上へのケイ素の蒸着により金属的な二次元状ケイ素を形成

シリセン上へのケイ素の蒸着により金属的な二次元状ケイ素を形成
-シリセンと良好な界面をもつ金属的な新コンタクト材料として期待-
ポイント
- シリセンはグラフェンのケイ素版と言える原子層物質。このシリセンにケイ素を蒸着した結果、構造と電子状態の異なる層が新たに形成された。
- 新たに形成された二次元状ケイ素は、シリセンとは異なる金属的な性質をもつ。
北陸先端科学技術大学院大学(JAIST)(学長・浅野 哲夫、石川県能美市)の先端科学技術研究科応用物理学領域の高村 由起子准教授、アントワーヌ・フロランス助教らは、UCL-JAIST協働研究指導プログラムの修了生であるトバイアス・ギル博士とともに、ユニバーシティ・カレッジ・ロンドン(UCL)、ブルックヘヴン国立研究所と共同で、二ホウ化物上のシリセンにケイ素を蒸着することで金属的な電子状態をもつ新しい二次元状のケイ素の同素体が形成されることを発見しました。 |
<今後の展開>
シリセンにケイ素を付与することで形成された金属的な新しい二次元状ケイ素は、隣接するシリセンの電子状態に影響を与えることなく、原子レベルで急峻な界面を形成しており、シリセンをデバイス化する際のコンタクト材料として期待されます。今後は、伝導特性の測定などを通して実際にどのような電気的コンタクトが形成されているのかを調べたいと考えています。
<論文>
"Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2"( 二ホウ化ジルコニウム上シリセンの上にエピタキシャル成長された金属的なケイ素の原子層物質)
DOI: http://iopscience.iop.org/article/10.1088/2053-1583/aa5a80
Tobias G Gill, Antoine Fleurence, Ben Warner, Henning Prüser, Rainer Friedlein, Jerzy T Sadowski, Cyrus F Hirjibehedin, and Yukiko Yamada-Takamura
2D Materials 4, 021015 (2017).
LCN(London Centre for Nanotechnology)ニュース
https://www.london-nano.com/research-and-facilities/highlight/metallic-atomically-thin-layered-silicon
平成29年2月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/02/21-1.html環境・エネルギー領域の江東林教授が日本化学会において学術賞を受賞
環境・エネルギー領域の江東林教授が日本化学会において学術賞を受賞しました。
学術賞は、化学の基礎または応用のそれぞれの分野において先導的・開拓的な研究業績をあげた者で、優れた業績をあげた日本化学会会員に授与されるものです。今回は「2次元共有接合によって形成される有機骨格構造材料の設計と機能開拓」の業績が評価されての受賞となります。江教授の研究は、独創性が極めて高く、その業績は国際的にも高く評価されています。
表彰式は、日本化学会の第97春季年会会期中の3月17日、慶應義塾大学日吉キャンパスで行われます。また、江教授による受賞講演が年会中の3月18日に行われます。
■受賞年月日
平成29年1月17日
■タイトル
「2次元共有接合によって形成される有機骨格構造材料の設計と機能開拓」
■概要
2次元有機高分子は、共有結合で有機ユニットを連結し、結晶性原子層を生成し、積層して共有結合性有機骨格構造を形成します。2次元共有結合性有機骨格構造は、これまでに困難であった合成高分子の高次構造制御を可能とする新型高分子として、また、規則正しく並んだナノ細孔が内蔵されているため、設計可能な多孔材料としても大いに注目されています。江教授は、世界に先駆けて設計原理を確立するとともに、合成反応の開拓と材料の創製を通じて、この分野の基礎を築き上げました。周期的な骨格配列および規則正しい1次元多孔構造を持ち合わせているという構造特徴を明らかにし、骨格および細孔構造を精密制御できる手法を開拓しました。特異な分子空間における光子、エキシトン、電子、ホール、スピン、イオンおよび分子との相互作用をいち早く解明し、それらに基づいた機能開拓を行い、世界で分野の発展を先導しました。これまでに、半導体や発光、光電導、光誘起子移動、電荷分離、光電変換、エネルギー貯蔵、不斉触媒、二酸化炭素吸着など2次元ならではの様々な優れた機能を開拓しました。これらの成果は、2次元共有結合性有機骨格構造が環境・エネルギー問題に挑戦できる次世代革新材料としての高い潜在能を示唆しております。
参考: http://www.jaist.ac.jp/ms/labs/jiang/
■受賞にあたって一言
長年にわたる基礎研究の斬新さ、重要さが評価されてうれしい。私一人の研究でなく、日々一緒に頑張ってくれた院生や共同研究者に深く感謝を伝えたい。これからも学生とともに2次元物質に秘められている世界を開拓していきたい。
平成29年1月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2017/01/25-1.html学生の乾さんが第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞
学生の乾京介さん(博士前期課程1年、環境・エネルギー領域・下田研究室)が第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けております。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的としています。
■受賞年月日
平成28年12月10日
■講演題目
「感光型シルセスキオキサンを用いたTFT用ゲート絶縁膜の低温形成」
■講演概要
二段階UV照射という方法を考案し、優れた絶縁膜として知られる熱酸化SiO2膜に相当する絶縁性を持つ膜の低温形成に成功した。さらに、その絶縁膜をTFTの絶縁膜に用いることで低リーク特性の低温酸化物TFTの作製にも成功した。この成果により高絶縁性膜の低温形成が可能となり、フレキシブルな基板への高絶縁膜の応用が可能となった。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。本研究を進めるにあたり材料を提供いただきましたメルク株式会社様に深く感謝いたします。また、ご指導頂きました下田達也教授、井上特任教授、ならびに研究室のメンバー及びスタッフの方々にも深く感謝いたします。
平成28年12月19日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2016/12/19-1.html学生の重松さんが第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞

学生の重松沙樹さん(博士前期課程1年、応用物理学領域・村田研究室)が第21回(2016年度)応用物理学会 北陸・信越支部において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス,新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けております。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的としています。
■受賞年月日
平成28年12月10日
■講演題目
「有機EL材料のフーリエ変換イオンサイクロトロン質量分析」
■講演概要
有機EL素子は、励起状態やラジカルカチオンに起因した発光層中での化学反応の進行によって劣化すると考えられています。しかし、劣化反応による生成物の量が極めて微量であるため具体的な劣化反応の特定には至っていないのが現状です。本研究では、超高分解能の質量分析が可能なフーリエ変換イオンサイクロトロン共鳴質量計(FT-ICR-MS)を有機EL素子の劣化解析に初めて適用することで劣化反応の推定を試みました。有機EL材料を異なるイオン化方法(LDI法及びESI法)を用いて質量分析を行ったところ、異なった質量スペクトルが得られました。このイオン化方法の違いによる生成物の違いを利用することで素子中で生じる劣化反応の推定が可能になることを明らかにしました。
■受賞にあたって一言
応用物理学会・信越支部 発表奨励賞を頂けたことを大変光栄に思います。研究するにあたり、ご指導頂きました村田英幸教授、技術サービス部 技術職員 宮里朗夫様、酒井平祐助教、ならびに研究室のメンバーに深く御礼申し上げます。受賞を励みに、これからも研究に精一杯取り組んでいきたいと思います。
平成28年12月14日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2016/12/14-2.html平成28年度 ナノテクノロジープラットフォーム公開講座「材料の微細加工のためのイオンビーム技術の基礎と実習」開催
本学では、地域社会へ開かれた大学を目指す一環として、下記のとおり公開講座を開講いたします。
日 時 | 平成29年1月19日(木) 10:00~17:00 |
場 所 | 北陸先端科学技術大学院大学 JAISTイノベーションプラザ |
テーマ | 「材料の微細加工のためのイオンビーム技術の基礎と実習」 |
講 師 | 応用物理学領域 教授 富取 正彦 株式会社日立ハイテクノロジーズ、本学客員教授 八坂 行人 ナノマテリアルテクノロジーセンター 准教授 赤堀 誠志 技術サービス部 技術専門職員 宇野 宗則 水田研究室研究員 マレク シュミット |
内 容 | Gaに代表される液体金属イオン源を用いた集束イオンビーム(FIB)技術は、透過型電子顕微鏡用試料の作製や半導体製造用フォトマスクの修正など、様々な材料の微細加工に広く利用されている。また近年さらなる微細化に向け、電界電離ガスイオン源(GFIS)を用いたFIB技術が進展しており、本学にもH25年度に装置が導入され、H27年度からナノテクノロジープラットフォーム事業の登録装置として外部公開されている。 本講座では、材料の微細加工に有用なFIB技術を広く良く知っていただくことを目的として、FIBおよび関連要素技術の一つである電界イオン顕微鏡(FIM)の基礎を講義するとともに、GFIS-FIB(もしくはGa-FIB)装置を用いてビーム調整や微細加工の実習を行う。 |
対 象 | 企業・他大学等に所属する方で、FIB、GFIS-FIBについて学びたい、 あるいは本学のこれらの装置の利用を希望される方 |
定 員 | 5~7名程度 (先着順 定員に達し次第締切) |
受講料 | 6,200円(税込) |
申込方法 | 受講希望の方は、 ①氏名(ふりがな) ②勤務先等・職名 ③受講の目的 ④本講座に期待すること ⑤書類送付先 ⑥電話番号 ⑦メールアドレス を明記の上、E-mail またはFAXでお申し込みください。 ● 申込書はこちらから |
申込締切 | 平成29年1月10日(火)必着 |
お申込・ 問合わせ先 |
北陸先端科学技術大学院大学 研究国際部 研究推進課 総括・企画係 TEL:0761-51-1896・1902 FAX:0761-51-1919 E-mail:r-soukatsu@jaist.ac.jp |
非正多角形細孔を持つ多孔高分子材料の開拓に成功
非正多角形細孔を持つ多孔高分子材料の開拓に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の江 東林教授らの研究グループは、非正多角形細孔を有する高分子材料の開拓に成功した。 |
1. 研究の成果 | |||
今回研究開発された新種の多孔性高分子は2次元高分子注1) である。2次元高分子は、規則正しい分子骨格構造を有し、無数の細孔が並んでいるため、二酸化炭素吸着、触媒、エネルギー変換、半導体、エネルギー貯蔵など様々な分野で活躍され、新しい機能性材料として大いに注目されている。江教授らは、世界に先駆けて基礎から応用まで幅広い研究を展開し、この分野を先導してきた。
これまでの2次元高分子は、他の多孔性材料と同様に、正多角形を有する細孔だった(図1の1)。例えば、正六角形や正方形、正三角形などを有する2次元高分子が開発され、その細孔サイズや環境を制御することで、様々な機能が発現されている。しかし、規則正しい構造を有し、かつ非正多角形細孔を作り出す2次元高分子は皆無だった。非正多角形を有する細孔は、形が合った特定の分子だけに対して吸着能を示し、また、特定の基質だけに対して触媒するなど特異な形状に基づいた機能の発現が期待されているが、その開発が困難であった。 ![]() 図1.1)従来の正多角形細孔を有する高分子の設計。2)今回開発した非正六角形細孔を有する多孔材料の設計。3)今回開発した非正方形細孔を有する多孔材料の設計。 また、六角形の場合、3組の対辺を長さの異なる2種類の成分で構築することに成功した(図1の2)。この場合、対辺の比率を1:2あるいは2:1に合わせ ることが重要なポイントとなる。いずれの場合も、規則正しい配列構造を有し、サイズの異なる非正六角形細孔を設計してつくることができるようになった。 さらに、本研究では、六角形に加え、四角形にも適用できることを実証した(図1の3)。四角形の場合、対辺が2組になるため、長さの異なる2種類の成分と分岐点の1成分からなる3成分で重合することで、非正方形細孔を有する多孔材料の合成に成功した。 以上の設計原理は、長さの異なる成分に限られることがなく、機能の異なる成分にも適用できることを実証した。例えば、電子ドナーとアクセプターを組み合わせて、特異な電子配列構造を作り出せる。この場合、正多角形材料に比べて、非正多角形材料の電気伝導が1800倍も高くなったことが分かった。これらの多孔性高分子は1グラムで、2000平米という巨大な表面積を持っており、ガス吸着と分離への応用が期待されている。 多成分から構成された多孔性材料は、構造に複雑性をもたらしている。また、材料の多様性にも大きく寄与する。例えば、六角形の場合、従来の正六角形では、分岐点1成分と辺10成分の組み合わせでは、最大10種類の異なる多孔材料が合成できる。これに対して、多成分設計原理を用いれば、何と210種類の異なる多孔材料を作ることが可能となった。 |
|||
2. 今後の展開 |
|||
今回の研究成果は、2次元高分子分野に新たな設計原理を確立し、これまでになかった新種の多孔材料の誕生に繋がった。今後、これらの特異な多孔構造をベースに、ガス吸着や分離、触媒、光・電子などの機能に関して、様々な革新的な材料の開発がより一層促進される。
|
|||
3. 用語解説 |
|||
注1) 2次元高分子:共有結合で有機ユニットを連結し、2次元に規定して成長した多孔性高分子シートの結晶化による積層される共有結合性有機構造体。
|
|||
4. 論文情報 |
|||
掲載誌:Nature Communications
論文タイトル:Multiple-component covalent organic frameworks(多成分共有結合性有機骨格構造体) 著者:Ning Huang(北陸先端科学技術大学院大学博士研究員), Lipeng Zhai(北陸先端科学技術大学院大学特別研究学生), Matthew Addicoat (ドイツ ライプツィヒ大学博士研究員), Thomas Heine (ドイツ ライプツィヒ大学教授), Donglin Jiang(北陸先端科学技術大学院大学教授) 掲載予定日:7月27日18時にオンライン掲載 DOI: 10.1038/NCOMMS12325 |
平成28年7月27日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/07/27-1.html蛍光を放つ2次元高分子の開拓に成功
蛍光を放つ2次元高分子の開拓に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の江 東林教授らの研究グループは、蛍光を放つ2次元高分子材料の開拓に成功した。蛍光材料は、有害な化学物質、生体分子の検出やイメージングなどの分野に幅広く応用される。これまでに開発された2次元高分子は、積層構造のため光励起エネルギーが熱として散逸してしまい、蛍光を出すことが困難であった。これに対して、本研究は、2次元高分子の構築に新しい蛍光発光機構を導入し、積層した構造でも強く光ることが可能となった。 本研究は、米国化学会誌 J. Am. Chem. Soc.に平成28年4月24日に公開された。 |
1. 研究の成果 | |||
|
|||
2. 今後の展開 |
|||
今回の研究成果は、蛍光性2次元高分子設計の原理が確立され、これまでになかった新種の蛍光性物質が誕生したというもので、新しい光物性の開拓が期待される。今後、様々な蛍光性2次元高分子が開発されると同時に、化学センサーや生体分子センサー、イメージング、励起エネルギー移動、光捕集、レーザー発振、光デバイスなどの応用が期待される。 |
|||
3. 用語解説 |
|||
注1)2次元高分子:共有結合で有機ユニットを連結し、2次元に規定して成長した多孔性高分子シートの結晶化による積層される有機構造体。 |
|||
4. 論文情報 |
|||
掲載誌:J. Am. Chem. Soc.(米国化学会誌) |
平成28年4月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/04/28-1.html