研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。生命機能工学領域の藤本研究室の論文がWiley社刊行Chemistry an Asian Journal誌の表紙に採択
生命機能工学領域の藤本 健造教授、中村 重孝助教らの論文がWiley社刊行Chemistry an Asian Journal誌の表紙に採択されました。
■掲載誌
Chemistry an Asian Journal (IF=3.692) volume 14, Issue 11, 2019
■著者
Kenzo Fujimoto(教授)、Hung Yang-Chun(2017.3修了)、Shigetaka Nakamura(助教)
■論文タイトル
Strong Inhibitory Effects of Antisense Probes on Gene Expression through Ultrafast RNA Photocrosslinking
■論文概要
今回藤本研究室のグループは、乳癌由来の培養細胞であるHeLa細胞を用い、モデル系である標的遺伝子の発現を、超高速光架橋型人工核酸(CNVD)を組み込んだDNAプローブを用いることによりほぼ完全に抑制することに成功しました。光照射の場所やタイミングにより遺伝子発現を制御することができるため、疾患部位のみに薬効を発揮させることができます。また、光照射エネルギーにより遺伝子発現量を制御することができるため、細胞内遺伝子発現を最適な量に調節することが可能となりました。これにより従来は困難であった発現量の調節も可能となります。
今後、遺伝子の異常発現を伴う細胞の癌化に対し、有用な治療法となると期待できます。また、超高速光架橋核酸(CNVD)は日華化学株式会社より販売されており、本研究成果の普及に大きく寄与することが期待されます。
論文詳細:https://onlinelibrary.wiley.com/doi/full/10.1002/asia.201801917

平成31年6月11日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2019/06/11-2.html「光で細胞内遺伝子発現を制御することに成功」-核酸医薬への応用に期待-
「光で細胞内遺伝子発現を制御することに成功」
-核酸医薬への応用に期待-
ポイント
- 超高速光架橋型人工核酸(CNVD)を用いることで遺伝発現を制御可能
- 悪性遺伝子の発現抑制にも応用可能
|
北陸先端科学技術大学院大学(JAIST)(学長・浅野哲夫、石川県能美市)の先端科学技術研究科生命機能工学領域の藤本健造教授は、超高速光架橋型人工核酸(CNVD)を用いることにより細胞内の標的遺伝子の発現を制御することに成功した。
遺伝子の過剰発現*1は細胞の異常増殖などを引き起こし、細胞の癌化と深く関係している。核酸医薬*2は標的遺伝子に直接作用し、発現量を抑制することができるため、癌の治療薬として注目されているとともに、高い選択性を有するため副作用の低減も期待できる。しかし、これまで様々な人工核酸を用い、遺伝子の過剰発現を抑制する試みが行われてきたが、いまだ完全に抑制することはできていない。 今回藤本研究室のグループは、乳癌由来の培養細胞であるHeLa細胞を用い、モデル系である標的遺伝子の発現を、超高速光架橋型人工核酸*3(CNVD)を組み込んだDNAプローブ*4を用いることによりほぼ完全に抑制することに成功した。光照射の場所やタイミングにより遺伝子発現を制御することができるため、疾患部位のみに薬効を発揮させることができる。また、光照射エネルギーにより遺伝子発現量を制御することができるため、細胞内遺伝子発現を最適な量に調節することが可能となった。これにより従来は困難であった発現量の調節も可能となる。 今後、遺伝子の異常発現を伴う細胞の癌化に対し、有用な治療法となると期待できる。また、超高速光架橋核酸(CNVD)は日華化学株式会社より販売されており、本研究成果の普及に大きく寄与することが期待される。 本成果はWiley誌Chemistry-an Asian Journal(インパクトファクター 3.69)に表紙掲載論文として6月1日に公開される。 |
![]() |
細胞内での様子を表したイメージ図、光照射により超高速光架橋型人工核酸を含むDNAがターゲットmRNAに光架橋する様子 |
| 図1.光照射による細胞内遺伝子発現の光制御しているイメージ図 光応答性人工核酸を組み込んだDNAプローブを細胞内に導入し、光照射により細胞内遺伝子発現を抑制することに成功している。特に照射エネルギーを調節(リモコン)することにより発現量を制御することができ、リモートでも遺伝子発現量の調節に成功した。 |
|

図2. 光架橋型人工核酸を組み込んだDNAプローブによる遺伝子発現の抑制
光架橋型人工核酸を組み込んだDNAプローブを細胞内に導入し、光照射を行うと、標的のメッセンジャーRNA(mRNA)と光架橋する。それにより翻訳を阻害するため、遺伝子発現を抑制することが可能となる。

図3. 超高速光架橋型人工核酸(CNVシリーズ)
超高速光架橋型人工核酸(CNVシリーズ)は数秒の光照射でDNAやRNA間をつなげることができる。世界最高速を誇るCNVシリーズは藤本研究室オリジナルな分子であり、日華化学株式会社より販売が開始されている。
<今後の展開>
細胞の癌化の多くは遺伝子が傷つき、遺伝子の発現パターンが変化したことを原因とする。今回、光照射による発現量の制御は、遺伝子の過剰発現を伴う細胞の癌化に対し、その発現量を適切な範囲内に調節できる可能性を有しており、近年注目されている核酸医薬としての展開が期待される。
<用語解説>
*1 遺伝子の過剰発現
DNAにコードされた多くの情報はRNAへと転写された後、たんぱく質へ翻訳される。通常、この一連の流れは精密に制御されているが、何らかの原因でストッパーが外れたかのようにこのサイクルが回り続けることがある。これを遺伝子の過剰発現と呼び、細胞の癌化の一つの原因でもある。
*2 核酸医薬
医薬品の一つの種類であり、DNAやRNAなどを直接医薬品として用いる薬剤の総称。核酸類の高い配列認識能を利用し、標的とする分子のみに作用する分子標的薬の一種。これまで主流とされてきた抗体医薬とは異なり、副作用の低減が期待できる。近年、新たな医薬品として注目されており、すでに市販されているものもいくつかある。
*3 超高速光架橋型人工核酸
DNAやRNAなどの核酸同士を連結することができる人工核酸であり、有機化学的に合成される。特に、藤本研究室が報告しているCNVシリーズは数秒の光照射により反応する世界最高速の光架橋型人工核酸である。
*4 DNAプローブ
短鎖の合成DNAであり、今回の実験ではGFPのmRNAのアンチセンス核酸として機能する。配列を自由に設計することができるため悪性遺伝子に対し、設計することでその遺伝子発現を抑制することができる。
<論文>
| 掲載誌 | Chemistry an Asian Journal |
| 論文題目 | Strong Inhibitory effects of antisense probes on gene expression through ultrafast RNA photo-crosslinking |
| 著者 | Kenzo Fujimoto, Hung Yang-Chun, Shigetaka Nakamura |
| DOI | 10.1002/asia.201801917 |
令和元年6月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/06/01-1.htmlモデル動物が群れをつくるメカニズムを解明
![]() |
![]() |
![]() |
モデル動物が群れをつくるメカニズムを解明
滋賀医科大学神経難病研究センターの杉 拓磨助教、西村 正樹教授、九州大学の伊藤 浩史准教授、北陸先端科学技術大学院大学先端科学技術研究科/生命機能工学領域の永井 健講師は、動物集団が群れをつくる際のメカニズムを解明しました。これにより将来的に渋滞時や災害時の群衆の効率的な流動制御や、ロボットの群知能制御などへつながることが期待されます。この研究成果は、平成31年2月18日に英国科学誌「Nature Communications(ネイチャー・コミュニケーションズ)」に掲載されました。
<ポイント>
- 生物学でよく使われる線虫という動物がたくさん集まるとネットワーク状に群れることを発見。
- 線虫の群れと、人、鳥、魚の群れは共通するメカニズムで形成されることを強く示唆。
<概要>
- 半世紀近く世界中で研究されているモデル動物の線虫C. エレガンスが、集団でネットワーク状の群れをつくることを発見。世界で初めてモデル動物の集団行動の実験システムを開発。
- 人、鳥、魚の群れ形成メカニズムの理論的研究で用いられてきた数理モデルをもとに数値シミュレーションを行った。
- その結果、①ぶつかった線虫が移動方向をそろえることと②線虫1個体が弧を描くように動くことが、線虫の不思議なネットワークをつくる鍵であることを明らかにした。
- 渋滞時や災害時の人の集団行動の解析やロボットの群知能の効率的制御につながることが期待できる。
<内容詳細>
【研究背景と経緯】
夕暮れどきに浮かぶ鳥の群れや水族館のイワシの群れなど、大量の動物による組織的な行動は多くの人を魅了します。また駅などの混雑時や渋滞時の人の群衆を効率的に流動させることは重要な問題です。これまで、群れ形成について理論研究が盛んに行われ、様々な群れに共通する形成メカニズムの存在が予言される一方、実験的な証明はほとんどありませんでした。これは、野外の鳥や魚の大規模な群れを実験室に再現することが不可能という、ある意味、当然の理由によるものでした。
土壌に生息する線虫C. エレガンス(図1a)は、モデル動物として半世紀近く研究され、細胞死機構の発見や緑色蛍光タンパク質の動物応用などで数々のノーベル賞の対象となりました。われわれは、線虫の体長はわずか1 mm弱であるため、仮に一度に大量飼育できれば、コンパクトな群れ形成の解析システムを作れるのではないかと考えました。さらにモデル動物としての利点である変異体を用いた解析ができることから、過去の理論的研究で提案されたメカニズムを実験的に検証できると考えました。
滋賀医科大学の杉 拓磨助教、西村 正樹教授、九州大学の伊藤 浩史准教授、北陸先端科学技術大学院大学の永井 健講師は、線虫C. エレガンスを大量飼育する方法を確立し、集団によりネットワーク状に群れをつくることを発見しました(図1)。実験と数理シミュレーションを組み合わせた解析の結果、①隣接する線虫同士が相互作用し移動方向をそろえることと②線虫1個体が弧を描くように動くことがこの群れの形成条件であることを明らかにしました(図2)。このメカニズムは人や鳥、魚の群れ形成の理論的研究から提唱されてきたものと類似していることから、本研究は、群れ形成の根底に共通のメカニズムがあることを実験で強く示唆した初めての例となります。
【研究内容】
線虫の飼育では通常、寒天培地上に塗布した大腸菌を餌として与えますが、この従来法では餌が枯渇すると線虫の増殖は止まってしまい、大量の線虫を得ることはできません。そこで本研究では、技術的ブレークスルーの1つとして、栄養に富む「ドッグフード」を線虫の餌として利用することにより、餌の枯渇なく、大量の線虫C. エレガンスを飼育することが可能になりました。そして驚くべきことに線虫集団はガラス表面(図1b)、プラスチック表面(図1c)、寒天培地表面(図1d)でネットワーク状に群れることを発見しました。この群れ形成の意味は、1個体では乾燥状態で干からびてしまう線虫が集団で群れることにより、表面張力により水を保持し、乾燥への耐性を獲得することにあると考えられます。
次に、1個体レベルと集団レベルの線虫の観察から、図2に記載の①と②が特徴的な線虫の運動であると示されました。この単純な物理的条件は過去の人や鳥、魚の群れの理論的研究から予想されたメカニズムと類似していることから、過去のこれらの研究をもとに数理モデルを作成しました。このモデルはシミュレーションにおいて線虫のネットワーク状の群れを再現しました。
つづいて、実験とシミュレーションで数理モデルのパラメータを変えた場合のそれぞれの結果の整合性を確認し、モデルの正確性を検証しました。まず上述①と②の条件(図2)に焦点をあて、線虫周囲の湿度を変えることにより相互作用の強さを変えることや(図3)、描く弧の大きさが小さい線虫変異体を用いた実験を行いました(図3)。その結果、数理モデルのシミュレーションと実験結果はよく一致しました。さらに神経科学分野の最先端テクノロジーであるオプトジェネティクス(p4参照)を用いた実験結果も再現されました。以上の実験とシミュレーションを用いた検証から、上述2条件(図2)が線虫集団による群れ形成の基本メカニズムであると結論づけました。
【今後の展開】
本研究は、人や鳥、魚などの動物集団の群れ形成に共通するメカニズムの存在を初めて実験的に示しました。今後、まずこの独自のモデル動物を用いた実験システムを用いて、さらに数理モデルの正確性を高める予定です。このようなモデルは、避難時や渋滞時の人の動きの解析につながります。実際、国内においても企業と大学が連携して、魚の群れが協調して行動する仕組みを自動運転技術に応用し、渋滞緩和に活かすための共同研究を実施しています。また、災害時や祭典での群衆の渋滞における圧死を避けるための緊急避難方法の解析は類似のモデルを用いて行われており、今後、本研究により数理モデルによる予測精度が向上すれば、効率的な避難方法の提案などにつながります。人間以外にも羊や魚の群れの効率的な制御を行うことにより、畜産や漁業などにも有用な知見を与えることも期待できます。
また、世界中で盛んなロボット開発では、ロボット単体では困難な作業を集団で行わせるため、群知能と呼ばれるアルゴリズムの開発が進められています。例えば、スイスの会社は超小型群ロボットKilobotを開発し、群制御を通して、がれき中の生存者探索や汚染物質除去などを実現しようとしています。本研究は、これらの研究分野とも密接に関連していくことが期待されます。
【参考図】



【論文情報】
| 論文名 | C. elegans collectively forms dynamical networks |
| 著者名 | Takuma Sugi*, Hiroshi Ito*, Masaki Nishimura, Ken H. Nagai* (*は責任著者) |
| 雑誌名,巻号,DOI | Nature Communications (2019年2月18日 (日本時間) 付 電子版), doi:10.1038/s41467-019-08537-y |
【研究資金情報】
- 科学研究費補助金 基盤研究(B)、若手研究(B)、新学術領域研究
- 科学技術振興機構 戦略的創造研究推進事業「さきがけ」
- 持田記念医学薬学振興財団
【用語説明】
- 線虫C. エレガンス
土壌に生息する非寄生性の線虫で、正式名称はセノハブダイディス・エレガンス。分子遺伝学的な解析の可能なモデル動物の1つ。半世紀近く前にシドニー・ブレナーにより利用され始め、細胞死の発見、RNA干渉の発見、緑色蛍光タンパク質の個体レベルでの応用により2002年と2006年のノーベル医学生理学賞、2008年のノーベル化学賞の対象となった。1998年には多細胞生物で初めて全ゲノム配列の解読が終了した。ヒトの遺伝子数と同程度の約2万個の遺伝子を持ち、それらの中にはヒトの遺伝子と類似したものが40%弱も含まれる。また体が透明なため、体外から体を傷つけずに蛍光観察できる。 - オプトジェネティクス
光遺伝学と呼ばれる、最先端のテクノロジー。光感受性のイオンチャネル分子を標的の神経細胞に発現させ、光刺激によりそのイオンチャネルを活性化させることで標的の神経細胞を活性化できる。線虫の場合、体が透明で光透過性が高いので、体を傷つけずに標的の神経細胞のみを活性化させることができる。本研究では、前進と後進を駆動する神経細胞にイオンチャネル分子を発現し、活性化した。
平成31年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/02/19-1.html多糖が自らパーティション -光合成産物の多糖が乾燥下、センチメートルスケールの3次元空間を認識-
多糖が自らパーティション
-光合成産物の多糖が乾燥下、センチメートルスケールの3次元空間を認識-
PRポイント
- 「多糖が乾燥環境下、3次元空間を認識することを世界で初めて発見」
- 「乾燥によって析出した多糖の薄膜はナノメーターから階層的に整った構造で、新たなバイオマテリアルの設計手法が期待」
- 「天然高分子への展開」:今回、淡水性シアノバクテリア由来の多糖類を使用したin vitro実験によって新現象が確認されており、今後、他の多糖や天然高分子などでも展開を検討
|
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、環境・エネルギー領域の桶葭興資助教、金子達雄教授らは、シアノバクテリア由来の多糖が自ら乾燥環境でセンチメートルスケールのパターンを形成することを発見した。多糖と乾燥環境は自然界で密接な関係にあり、今回のin vitro実験で「多糖が空間を認識する能力」が実証されただけでなく、簡便な乾燥によってバイオマテリアルの新たな設計手法が見出されると期待される。 自然界では熱帯魚の縞模様や巻貝のらせんなど様々な幾何学模様がセンチメートル以上のスケールで存在し、パターン発生原理の議論は歴史的研究の一つである。例えば、人工的に化学物質を選択してチューリングパターンやベローソフ・ジャボチンスキー反応など、パターン発生原理の研究が世界的に何世紀にも渡ってなされてきた。しかし、「自然界にある物理化学的な条件を再現して人工的にパターンを制御すること」はこれまで困難を極めていた。 これに対して研究チームは今回、シアノバクテリア由来の多糖が乾燥環境下、センチメートルスケールで空間分割パターンを形成することを発見した。多糖の水溶液を狭い間隙の制限空間から乾燥させると、1つの空間を複数の空間に分けるように多糖が析出する(図)。蒸発時、多糖は気液界面を増加させようとして界面を分割して薄膜として析出した。このように空間がパーティション化される現象はin vitro実験で確認されたもので、自然環境の多糖が乾燥と常に対面していることと密接に関係する。特に、今回使用した多糖は、シアノバクテリアが光合成によって生み出したサクランという生体適合性に優れた物質を用いているため、再生医療用材料としても有望である。
本成果は、英国科学雑誌「Scientific Reports」誌に7/21午前10時(英国時間)オンライン版で公開された。 |
<論文情報>
掲載誌:Scientific Reports
論文題目:Emergence of polysaccharide membrane walls through macro-space partitioning via interfacial instability.
著者:Kosuke Okeyoshi, Maiko K. Okajima, Tatsuo Kaneko
DOI: 10.1038/s41598-017-05883-z
掲載日:7月21日午前10時(英国時間)にオンライン掲載
|
本研究成果は、以下の事業・開発課題によって得られました。 |
<背景と経緯>
建築学で駆使されている3次元的な幾何構造は、自然対数を利用した橋の設計など自然界と調和した形状である。材料学においても自然界と調和する幾何形状や規則性の制御によって新しい材料設計方法が期待され続けている。しかし、「自然界にある物理化学的な条件下を再現して人工的に幾何学パターンを制御すること」はこれまで困難を極めていた。
自然界では熱帯魚の縞模様や巻貝のらせんなど様々な幾何学模様がセンチメートル以上のスケールで存在し、パターン発生の議論は歴史的研究の一つである。例えば、人工的に化学物質を選択してチューリングパターン注1)やベローソフ・ジャボチンスキー反応注2)など、パターン発生原理の研究が世界的になされてきた。さて、生物の体表などのパターンはなぜできるのか?遺伝子?天気?それとも..?果たして「人工的な実験」で、「ビーカーの中」で、科学によって再現できるのか?
<今回の成果>
1.乾燥環境下で多糖が3次元空間を認識することを発見(図1)
乾燥環境下、シアノバクテリア注3)由来の多糖注4)がセンチメートルスケールの3次元空間を認識して、自らパーティションとなるように析出膜を形成することを発見した。この現象はin vitro注5)実験で確認されたもので、高粘性の多糖「サクラン」注6)の水溶液を2枚のガラス板に挟まれた間隙の制限空間から乾燥させると、1つの空間を複数の空間に分けるように多糖が析出する。
初期状態:間隙1 mmの上面開放型セルに多糖の水溶液を満たす。セルの幅をセンチメートルスケールで様々に変えて乾燥実験を行った。
乾燥過程:セルの幅が0.7 cm 程度であると、2枚のガラス板を橋掛けするような析出膜は形成されず、底に析出するだけであった。これに対して、1.5 cm 容器の幅を広げると、2枚のガラス板を橋掛けするような析出膜が形成された。高分子のサイズからすれば、1 mm の間隙は著しく大きいにもかかわらず、橋掛けできることは驚異に値する。これは、多糖が自己集合的に20 µm以上の長さのファイバー状となっていることが関係する。さらにセルの幅を広げると垂直に析出する膜の数は増え、3次元空間が複数に分けられた。幅が10 cmの場合でもこの現象は確認され、多糖が乾燥時に自らパーティションとなる析出膜を形成し、センチメートル空間を認識可能であることを裏付けている。
2.垂直に析出した膜は、高分子がナノメータースケールから3次元的に揃っている(図2)
さらに、この析出膜を偏光顕微鏡や電子顕微鏡で観察すると、2枚のガラス板を結ぶ方向に、高分子が整然と揃っていることが判明した。多糖の水溶液を乾燥するだけで高分子が3次元的に方向制御されることは極めて驚異である。
この析出膜に架橋構造を導入したあと水に再び戻すと、遮光用ブラインドのように一方向に大きく伸びる。図2中の青いまま伸びている様子は、高分子の3次元的な整列を保ったまま一方向に伸びていることを示す。
なお、研究チームはこれまでにも、層状構造を持つ膜から一次元膨潤するゲルの作製に成功している。今回の新たな膜作製技術と合わせてバイオマテリアルへの応用が期待できる。
<今後の展開>
パーティション現象を他の天然高分子へ展開
物理化学的な条件と幾何学的な条件を整えることで、他の多糖や高分子へ展開可能である。特に「乾燥環境」に注目して、パターンの形成法則を系統的に解明することで、陸上進出する多糖の進化を紐解けるかもしれない。
パターンが多糖で構成されているため、新たなバイオマテリアル設計手法が期待される
センチメートル以上の空間パターンを自発的に形成する構造には、リーゼガング現象やチューリング現象など自己組織化による「散逸構造」が挙げられる。しかしこれらの現象は、生体が存在し得る自然界の物理化学条件から遠く離れた環境でのみ可能で、材料分野への適用は困難を極めていた。
一般に、多糖、DNAおよび骨格タンパク質などの剛直な生体高分子はナノメートルやマイクロメートルスケールのパターンを形成することが知られている。ポリペプチドのαヘリックスやβシート、DNAの螺旋構造はその代表例である。これに対して研究チームが発見したパーティション現象は、光合成産物の多糖を使って発見したセンチメートルスケールの空間パターンであり、散逸構造を用いた材料学の道が一気に開かれる。さらに、DDSなど医療用材料に期待の大きい多糖を使用していることから、臓器の再生医療などに向けた新たな材料設計手法として有望である。

図1. 多糖の乾燥実験とパーティション現象
A. 上面開放型セルから多糖の水溶液を乾燥させる実験の概念図。
B. 様々な幅からの乾燥過程を2枚の偏光子を介して観察した画像。白色部分は高分子が配向している(揃っている)。
C. 幅10 cmの上面開放型セルから乾燥させたあとに現れる空間分割パターン。

図2. 析出した垂直膜の顕微鏡観察と瞬時に一方向へ膨らむゲル
乾燥実験後に析出した垂直膜を特殊な光学フィルターが入った偏光顕微鏡で観察すると、2枚のガラス板を結ぶ方向に高分子が整然と配向していることが分かる。さらにこの乾燥した膜を水にもどすと、「窓のブラインド」のように瞬時に一方向へ膨らむことが分かった。
<用語解説>(Wikipedia より)
注1)チューリングパターン:
イギリスの数学者アラン・チューリングによって1952年に理論的存在が示された自発的に生じる空間的パターンである。
注2)ベローソフ・ジャボチンスキー反応:
系内に存在するいくつかの物質の濃度が周期的に変化する非線型的振動反応の代表的な例として知られている。この反応などの振動反応は平衡熱力学の理論が成り立たない非平衡熱力学分野の代表例である。
注3)シアノバクテリア:
ラン藻細菌のこと。光合成によって酸素と多糖を生み出す。
注4)多糖:
グリコシド結合によって単糖分子が多数重合した物質の総称である。デンプンなどのように構成単位となる単糖とは異なる性質を示すようになる。広義としては、単糖に対し、複数個(2分子以上)の単糖が結合した糖も含むこともある。
注5)in vitro:
"試験管内で"という意味で、試験管や培養器などの中でヒトや動物の組織を用いて、体内と同様の環境を人工的に作り、薬物の反応を検出する試験のことを指す。in vitroの語源はラテン語で「ガラスの中で」という意味。
注6)サクラン:
硫酸化多糖類の一つで、シアノバクテリア日本固有種のスイゼンジノリ (学名:Aphanothece sacrum) から抽出され、重量平均分子量は2.0 x 107g/mol とみつもられている。
平成29年7月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/07/21-1.html学生のSana AhmedさんとPunnida Nonsuwanさんが9th International Conference on Fiber and Polymer Biotechnology (IFPB2016)においてBest Poster Awardを受賞
学生のSana Ahmedさん(博士後期課程3年)とPunnida Nonsuwanさん(博士後期課程1年)(物質化学領域・松村研究室)が、9th International Conference on Fiber and Polymer Biotechnology (IFPB2016)においてBest Poster Awardを受賞しました。
■受賞年月日
平成28年9月9日
【Sana Ahmedさん】
■論文タイトル
「Accelerated Gene delivery using Self-Assembled Polyampholyte Nanoparticles based on Freeze Concentration Mechanism(凍結濃縮メカニズムによる自己組織化両性電解質高分子ナノ粒子をもちいた遺伝子導入の効率化)」
■論文概要
両性電解質高分子ナノ粒子に複合化させた遺伝子を、細胞とともに凍結することで、凍結濃縮作用により細胞周囲に濃縮させ、細胞内への遺伝子導入効率の向上に成功した。
■受賞にあたって一言
I am deeply honored and appreciative for receiving this poster award in "9th International Conference on Fiber and Polymer Biotechnology" held in Osaka, Japan. I am very grateful to my supervisor Prof. Kazuaki Matsumura for all his support and guidance. This award encourages and motivates me to contribute more in development of society and research field. Lastly, I would like to acknowledge my institute JAIST for supporting my research.
【Punnid Nonsuwanさん】
■論文タイトル
「Degradation control of multiple crosslinked dextran based hydrogel(複合架橋デキストランハイドロゲルの分解制御)」
■論文概要
アルデヒドとメタクリル基を導入したデキストランに、ヂチオスレイトールを添加することでマイケル付加反応によりハイドロゲルを形成した。このハイドロゲルはアミノ酸を添加することで分解させることが可能で有り、ドラッグデリバリーシステムや細胞治療用途への応用が期待できる。
■受賞にあたって一言
It is my honor to get the IFPB2016 Poster Award. I am really grateful to Prof. Kazuaki Matsumura for this opportunity and the valuable advice for my work. I would like to express my appreciation to JAIST for the support in studying and researching. Attendance in international conference is the good chance to distribute our knowledge and gain the new knowledge to boost up ourselves as well.
左:Sana Ahmedさん、右:Punnida Nonsuwanさん
平成28年9月21日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2016/09/21-1.html物質化学領域の松村准教授らの研究成果が英国王立化学会発刊Nanoscale誌のback coverに採択
物質化学領域の松村和明准教授らの研究成果が英国王立化学会発刊Nanoscale誌のback coverに採択されました。
■掲載誌
英国王立化学会(Royal Society of Chemistry) Nanoscale(インパクトファクター7.76) 2016, 8, 15888-15901
■著者
Sana Ahmed (D3), Satoshi Fujita (福井大学), Kazuaki Matsumura*
■論文タイトル
Enhanced protein internalization and efficient endosomal escape using polyampholyte-modified liposomes and freeze concentration
■論文概要
細胞質に物質を導入する技術は、ドラッグデリバリーシステムの効率化において重要な技術である。一般的には細胞膜を容易に通過出来ないため、様々な手法が検討されてきている。本論文では、細胞懸濁液を凍結することによって起こる凍結濃縮現象を利用し、細胞周囲に、細胞内へ導入したいタンパク質を濃縮させ、取り込み向上を図ったものである。その際、タンパク質のナノキャリアとして両性電解質高分子で修飾されたリポソームを用いることで、取り込み後の細胞質内への効率的移動も確認出来た。この技術により、抗原を細胞質内へ高効率で送達することで免疫細胞を活性化する免疫療法に応用できるだけでなく、遺伝子を核内に導入する遺伝子治療への応用も期待出来る。
本研究は科研費挑戦的萌芽研究(15K12538、 16K1289)および本学のソフトメゾマター研究拠点(代表濱田勉准教授)の成果です。
論文詳細: http://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr03940e#!divAbstract

平成28年9月5日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2016/09/05-1.html環境・エネルギー領域の桶葭助教が三谷研究開発支援財団の研究開発助成に採択
環境・エネルギー領域の桶葭興資助教が三谷研究開発支援財団の研究開発助成に採択されました。
三谷研究開発支援財団は、財団法人三谷育英会の姉妹財団として、平成17年3月10日に設立され、今年で11年目を迎えました。三谷育英会は、三谷産業株式会社を創業した故 三谷進三氏の個人資産を基に、1960年設立され、以来、高等学校並びに大学に学ぶ学生に対し奨学金による支援が続けられております。2005年、三谷育英 会の設立45周年に際し、当時、三谷育英会の二代目理事長であった三谷美智子氏は「三谷育英会の奨学生が学ぶ大学の研究室で進められる研究開発に対しても、何か支援することが出来ないか」と思い、自身の持つ三谷産業株式会社株式200万株等を基に当財団を設立いたしました。当財団は、将来を担う研究者の 方に更に研究に邁進していただくため、石川県内の大学および大学院で行われている有益な研究に対し援助することを目的としています。なお、平成24年4 月より当財団は石川県の認定を受け、財団法人から公益財団法人へ移行し、新たな第一歩を踏み出しました。当財団は、石川県地域に立地する研究機関、すなわ ち大学及び大学院で行われている研究開発に対し、支援、表彰等を行い、もって地域の研究開発と産業の発展に寄与することを目的とします。
■採択期間
平成28年度
■テーマ
「乾燥誘起による超高分子多糖類の一軸配向膜作製技術の開拓」(天然高分子機能創発チーム)
■テーマ概要
自然界の生命が常に対面している乾燥現象を利用して、自然法則に基づいた高分子配向制御法の新機軸を構築する。特に、シアノ バクテリア由来高分子多糖類の水溶液の乾燥過程に着目し、高秩序化された高分子膜の作製技術を開拓する。乾燥による一軸配向膜作製の新たな技術を確立することで、細胞足場材料など医療分野や分子認識材料など環境分野への応用が期待できる。産業界においても高秩序化されたバイオ分子修飾基板の作製は、IPS 細胞培養用はじめ早急に解決すべき問題である。
■採択にあたって一言
本研究課題について採択頂き大変嬉しく存じます。三谷研究開発支援財団、および本助成の選考委員会の皆様に深く感謝申し上げます。また、金子達雄教授はじめ、共同研究者の皆様、ご助言頂いた研究室の皆様にこの場をお借りして深く御礼申し上げます。科学と技術の発展に貢献できる様誠心誠意励んで参ります。
平成28年6月6日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2016/06/06-1.html物質化学フロンティア研究領域の都准教授らの論文がNano Today誌の表紙に採択
物質化学フロンティア研究領域の都 英次郎准教授らの「化学修飾細菌を利用するがん光免疫療法の開発に成功」に係る論文が、Nano Today誌の表紙に採択されました。
なお、本研究は、科研費基盤研究(A)(23H00551)、科研費挑戦的研究(開拓)(22K18440)、科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Nano Today, October, 2023, Volume 52
掲載日:2023年10月
■著者
Sheethal Reghu, Seigo Iwata, Satoru Komatsu, Takafumi Nakajo, Eijiro Miyako*
■論文タイトル
Cancer immunotheranostics using bioactive nanocoated photosynthetic bacterial complexes
■論文概要
本研究では、低酸素状態の腫瘍環境内で高選択的に集積・生育・増殖が可能で、かつ生体透過性の高い近赤外レーザー光によって様々な機能を発現する非病原性かつ天然の紅色光合成細菌の表面化学修飾法を開発しました。また、当該化学修飾細菌の特性を活用することで体内の腫瘍を高選択的に検出し、効果的な免疫細胞(特にT細胞)の賦活化、ならびに標的部位のみを効果的に排除することが可能ながん光免疫療法を開発することに成功しました。
論文詳細:https://www.sciencedirect.com/science/article/pii/S1748013223002153

令和5年10月11日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/10/11-1.htmlダイヤモンド中に10兆分の1秒で瞬く磁化を観測 ~超高速時間分解磁気センシング実現に期待~
![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド中に10兆分の1秒で瞬く磁化を観測
~超高速時間分解磁気センシング実現に期待~
| 磁石や電流が発する磁気の大きさと向きを検出するデバイスや装置を磁気センサーと呼びます。現在では、生体中における微弱な磁気から電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの応用分野が広がりつつあります。磁気センサーの中で最も高感度を誇るのが、超伝導量子干渉素子(SQUID)で、1 nT(ナノテスラ、ナノは10億分の1)以下まで検出可能です。また、ダイヤモンドの点欠陥である窒素−空孔(NV)センターと走査型プローブ顕微鏡(SPM)技術を組み合わせることで、数十nm(ナノメートル)の空間分解能を持つ量子センシングが可能になると期待されています。 このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきましたが、時間分解能はマイクロ秒(マイクロは100万分の1)の範囲にとどまっています。このため、磁場を高い時間分解能で測定できる新しい磁気センシング技術の開発が望まれていました。 本研究では、表面近傍にNVセンターを導入したダイヤモンド単結晶に超短光パルスを照射し、それにより10兆分の1秒で瞬く結晶中の磁化を検出することに成功しました。検出感度を見積もると、約35 mT(ミリテスラ、ミリは1000分の1)となりました。また、計測の時間分解能は、超短光パルスにより磁化を発生させたことにより、約100フェムト秒(フェムトは1000兆分の1)となりました。 本研究成果により、NVセンターでは従来困難だった高速に時間変化する磁気のセンシングも可能であることが示され、高い時間分解能と空間分解能を兼ね備えた新たな磁気センシングの開拓につながることが期待されます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀准教授
【研究の背景】
磁石や電流が発する磁気の大きさと向きを検出するのが磁気センサーです。現在では、生体中における微弱な磁気から、電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの研究開発が進んでいます。磁気センサーには、比較的簡便なトンネル磁気抵抗素子注1)によるものや、超伝導体のリングを貫く磁束の変化を電流で読み取る超伝導量子干渉素子(SQUID)注2)などがあります。その中でも最高感度を誇るのがSQUIDで、1 nT(ナノテスラ)以下の磁場をも検出できるほどです。しかし、超伝導体を用いるSQUIDは電気回路や極低温などの高度な取扱いを要します。このため、近年では、ダイヤモンドの点欠陥である窒素−空孔(NV)センター注3)を用いた磁気センサーの開発が進んでいます。特に、負に帯電したNVスピン状態を利用した全光読み出しシステムが、室温でも動作する量子磁力計として注目されています。また、NVセンターの利用と、走査型プローブ顕微鏡(SPM)注4)技術を組み合わせることで、数十nmの空間分解能注5)で量子センシング注6)を行うことが可能になります。
このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきました。その一方で、時間分解能注7)はマイクロ秒の範囲にとどまっています。このため、磁場をより高い時間分解能で測定できる新しい量子センシング技術の開発が望まれていました。
そうした中、NVセンターを高濃度に含むダイヤモンド単結晶膜において、入射された連続発振レーザーの直線偏光が回転することが分かり、ダイヤモンドにおける磁気光学効果が実証されました。NVセンターに関連する集団的な電子スピンが磁化として機能することが示唆されていますが、この手法では時間分解能を高めることができません。他方、逆磁気光学効果、すなわち光パルスで磁気を作り出すという光磁気効果に対するダイヤモンドNVセンターの研究については、行われてきませんでした。しかし、この光磁気効果を開拓することは、ダイヤモンドの非線形フォトニクスの新しい機能性を追求する上で非常に重要です。また、ダイヤモンドNVセンターのスピンを用いた非接触かつ室温動作の量子センシング技術を、高い時間分解能という観点でさらに発展させるためにも、光磁気効果の開拓が必要だと考えられます。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注8)を円偏光にして、NVセンターを導入した高純度ダイヤモンド単結晶に照射し、結晶中に発生した超高速で生成・消滅する磁化を検出することに成功しました。
実験ではまず、波長800nmの近赤外パルスレーザー光をλ/4波長板により円偏光に変換し、NVセンターを導入した高純度ダイヤモンド単結晶に励起光として照射しました。その結果、磁気光学効果の逆過程(光磁気効果)である逆ファラデー効果注9)により、ダイヤモンド中に磁化を発生できることを見いだしました(参考図1挿入図)。この磁化が生じている極短時間の間に直線偏光のプローブ光を照射すると、磁化の大きさに比例してプローブ光の偏光ベクトルが回転します。これを磁気光学カー回転と呼びます。磁気光学カー回転の時間変化はポンプープローブ分光法で測定しました(図1)。測定の結果、逆ファラデー効果で生じるダイヤモンド中の磁化は、約100フェムト秒の応答として誘起されることが確かめられました(図2左)。NVセンターを導入していないダイヤモンドでも磁化は発生しますが、導入すると、発生する磁化が増幅されることも明らかになりました(図2右)。
次に、励起レーザーの偏光状態を直線偏光から右回り円偏光、そして直線偏光に戻り、次に左回り円偏光と逐次変化させることで、波長板の角度とカー回転角(θ )の関係を調べました。すると、NVセンターを導入する前の高純度ダイヤモンド単結晶では、逆ファラデー効果を示すsin 2θ 成分および非線形屈折率変化である光カー効果を示す sin 4θ 成分のみが観測されました。一方、NVセンターを導入したダイヤモンドでは、それらの成分に加えて、新規にsin 6θ の成分を持つことが明らかになりました(図3a)。さらに、励起光強度を変化させながら各成分を解析したところ、sin 2θ 成分およびsin 4θ 成分は励起光強度に対して一乗で増加しますが(図3b,c)、新規のsin 6θ の成分の大きさは励起光強度に対して二乗で変化することが分かりました(図3d)。これらのことから、 sin 6θ の成分は、NVセンターが有するスピンが駆動力となり、ダイヤモンド結晶中に発生した非線形な磁化(逆コットン・ムートン効果注10))であることが示唆されました。また、この付加的で非線形な磁化により、図2で観測された磁化の増幅が説明できました。この非線形な磁化による磁場検出感度を見積もると、約35 mT(ミリテスラ)となりました。SQUIDの検出感度には及びませんが、本手法では約100フェムト秒という高い時間分解能が得られることが示されたといえます。
【今後の展開】
本研究チームは、今回観測に成功した光磁気効果を用いた量子センシング技術をさらに高感度化し、ダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングに深化させることを目指して研究を進めていきます。今後は、ダイヤモンドNVセンターが駆動力となった逆コットン・ムートン効果を磁気センシングに応用することで、先端材料の局所磁場やスピン流を高空間・高時間分解能で測定することが可能となります。さらに、パワーデバイス、トポロジカル材料・回路、ナノバイオ材料など実際のデバイスの動作条件下で、例えば磁壁のダイナミクスや磁化反転などデバイス中に生じるダイナミックな変化を、フェムト秒の時間分解能で観察できることになり、先端デバイスの高速化や高性能化への貢献が期待されます。
【参考図】

| 図1 本研究に用いた実験手法 パルスレーザーから出たフェムト秒レーザー光はビームスプリッタでポンプ光とプローブ光に分割され、それぞれ波長板と偏光子を通過した後、ポンプ光は光学遅延回路を経由した後レンズで試料に照射される。プローブ光も同様に試料に照射された後、偏光ビームスプリッタにより分割されて二つの検出器で光電流に変換される。その後、電流増幅された後、デジタルオシロスコープで信号積算される。右上の挿入図は、逆ファラデー効果の模式図を示し、右回り(σ+)または左回り(σ-)の円偏光励起パルスによりダイヤモンド結晶中に上向き(H+)または下向きの磁化(H-)が生じる。なおデジタルオシロスコープでは、下向きの磁化が観測されている。 |

| 図2 高純度ダイヤモンド(NVなし)およびNVセンターを導入したダイヤモンド(NVあり)における時間分解カー回転測定の結果。赤色および青色の実線はそれぞれ、右回り円偏光、左回り円偏光により励起した実験結果を示す。 |

| 図3 NVセンターを導入したダイヤモンドにおけるカー回転の解析結果 (a) 下図(青丸)はカー回転角の波長板の角度(θ )に対するプロットである。黒い実線はCsin 2θ + Lsin 4θ による最小二乗回帰曲線(フィット)を示す。上図(赤丸)は下図の最小二乗回帰の残差を示す。太い実線はFsin 6θ による最小二乗回帰曲線(フィット)を示す。また最上部は偏光状態の変化(直線偏光→右回り円偏光→直線偏光→左回り円偏光→直線偏光)を表す。(b) Csin 2θ の振幅Cを励起フルエンスに対してプロットした図。 (c) Lsin 4θ の振幅Lを励起フルエンスに対してプロットした図。(d) Fsin 6θ の振幅Fを励起フルエンスに対してプロットした図。(b)と(c)の実線は一次関数によるフィットを示し、(d) の実線は二次関数によるフィットを示す。 |
【用語解説】
注1)トンネル磁気抵抗素子
2枚の磁性体の間に非常に薄い絶縁体を挟んだ構造(磁性体/絶縁体/磁性体)からなる素子。磁性体は金属であり、電圧を加えると、薄いポテンシャル障壁を通り抜けるという量子力学的なトンネル効果により絶縁体を介したトンネル電流が流れる。各磁性体の磁化の向きが平行な場合と反平行な場合で、素子の電気抵抗が大きく変化する。これをトンネル磁気抵抗効果という。よって、この効果を原理とした素子をトンネル磁気抵抗素子と呼ぶ。
注2)超伝導量子干渉素子(QUID)
超伝導体のリングにジョセフソン接合(二つの超伝導体間にトンネル効果によって超伝導電流が流れるようにした接合のこと)を含む素子を、超伝導量子干渉素子(SQUID)と呼ぶ。リングを貫く磁束が変化すると、ジョセフソン接合を流れるトンネル電流が変化するため、高感度の磁気センサーとして用いられる。
注3)窒素−空孔(NV)センター
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)センター」はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となる。NVセンターには、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。
注4)走査型プローブ顕微鏡(SPM)
微小な探針(プローブ)で試料表面をなぞることにより、試料の凹凸を観察する顕微鏡の総称である。細胞やデバイスなどにおいて、分子や原子などナノメートルの構造を観察するのに用いられる。代表的なものに原子間力顕微鏡(AFM)などがある。
注5)空間分解能
近い距離にある2つの物体を区別できる最小の距離である。この距離が小さいほど空間分解能が高く、微細な画像データの測定が可能になる。
注6)量子センシング
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
注7)時間分解能
観測するデータに識別可能な変化を生じさせる最小の時間変化量である。最小時間変化量が小さいほど時間分解能が高く、高速で変化する画像などのデータ識別が可能となる。
注8)超短パルスレーザー
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注9)逆ファラデー効果
ファラデー効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは平行である。逆ファラデー効果はこれとは逆に、円偏光したレーザー光を物質に入射することで、入射した方向に平行に磁化が生じる現象のことをいう。磁性体に限らず、あらゆる物質で生じる非線形光学過程である。
注10)逆コットン・ムートン効果
コットン・ムートン効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に、光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは垂直である。逆コットン・ムートン効果は、逆に、磁界が印可された物質に直線偏光のレーザー光を入射した際に、入射した方向に垂直に磁化が生じる現象であり、磁性体などで生じる高次の非線形光学過程である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング(JPMJCR1875)」(研究代表者:長谷 宗明)、および独立行政法人 日本学術振興会 科学研究費補助金「サブサイクル時間分解走査トンネル顕微鏡法の開発と応用」(研究代表者:重川 秀実)による支援を受けて実施されました。
【掲載論文】
| 題 目 | Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals. (ダイヤモンド結晶中の窒素空孔センターが誘起する超高速光磁気効果) |
| 著者名 | Ryosuke Sakurai, Yuta Kainuma, Toshu An, Hidemi Shigekawa, and Muneaki Hase |
| 掲載誌 | APL Photonics |
| 掲載日 | 2022年6月15日(現地時間) |
| DOI | 10.1063/5.0081507 |
令和4年6月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/06/16-1.htmlダイヤモンドのNV中心を用いた温度計測に成功 ~非線形光学による新しい量子センシングの可能性~
![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 |
ダイヤモンドのNV中心を用いた温度計測に成功
~非線形光学による新しい量子センシングの可能性~
| 温度センサーは接触型と非接触型に大別されます。接触型の温度センサーには抵抗温度計、サーミスタや熱電対などが、非接触型の温度センサーには量子準位の変化で温度を読み取る量子センサーが主に用いられています。非接触型量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心と呼ばれる格子欠陥を用いたセンサーは、高空間分解能・高感度を必要とする細胞内計測やデバイス評価装置のセンサーへの応用が期待されています。 高純度のダイヤモンドは結晶学的に対称性が高く、対象点を中心に結晶を反転させると結晶構造が重なる空間反転対称性を持っています。結晶の対称性は、結晶の光学的性質を決定する上で重要な役割を担っており、空間反転対称性の有無は、非線形光学効果の発現を左右します。本研究チームは近年、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)が発現することを報告しました。このSHGは、結晶にレーザー光を照射した際に、そのレーザー周波数の2倍の周波数の光が発生する現象です。 この成果を基に、本研究では、20℃から300℃の温度範囲において、SHG強度の変化を調べ、高温では屈折率変化による光の位相不整合によりSHG強度が大きく減少することを発見しました。 本研究成果は、ダイヤモンドベースの非線形光学による温度センシングの実現に向けた効率的かつ新しい方法を提示するものと言えます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 応用物理学領域
安 東秀准教授
【研究の背景】
温度センサーは、エアコン、冷蔵庫、自動車エンジン、パソコンなどさまざまな電子機器に使用されており、温度管理や機器の性能維持に重要な役割を果たしています。温度センサーにはさまざまな種類がありますが、大きくは接触型と非接触型に分類されます。接触型の温度センサーには抵抗温度計、サーミスタ、熱電対などが用いられ、一方、非接触型の温度センサーには量子センサー注1)が主に使われています。
特に、ダイヤモンド中の窒素−空孔(NV)中心注2)を用いた非接触型量子センサーは、NV中心における量子準位間発光の共振マイクロ波周波数が温度によって変化することを原理とし、高空間分解能・高感度を必要とする細胞内計測や、デバイス評価装置のセンサーへの応用などが期待されています。ダイヤモンドのNV中心は、置換型窒素原子と炭素原子の隣の空孔からなる原子状欠陥(図1挿入図)です。
表面近傍(深さ数十ナノメートル)にNV中心を導入するには、一般に窒素イオン注入と高温アニールの組み合わせがよく用いられます。近年、ダイヤモンドのNV中心は、発光など豊かな光物性から、量子計算のためのフォトニックデバイス技術、単一光子源などへの応用が期待され、高い注目を集めています。さらに、ダイヤモンドのNV中心を用いた量子センシングが注目され、電場(電流)、磁場(スピン)の計測や、温度センサーに利用されています。一方、結晶の対称性、中でも空間反転対称性注3)の有無は、物質の光学的性質を決定する上で重要な役割を担っています。本研究チームは近年、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)注4)を発現することを報告しましたa)。
今回、本研究チームは、NV含有ダイヤモンド結晶に赤外域の超短パルスレーザーを照射することで、第二高調波、および第三高調波の発光強度の温度依存性について研究し、非線形光学効果に基づいた温度センサーとしての可能性を探りました。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ波長800nmで瞬く超短パルスレーザー注5)を波長1350nmの赤外パルス光に変換し、NV中心を導入した高純度ダイヤモンド単結晶に励起光として照射しました。これにより、ダイヤモンドの表面近傍から発生したカスケード型第三高調波(cTHG)と第二高調波の強度変化を、20℃~300℃の温度範囲で調べました。図2は、20℃(室温)から240℃までのさまざまな温度でNV含有ダイヤモンド結晶から得られた典型的な発光スペクトルを示します。室温の20℃においては、複屈折性を有するNV含有ダイヤモンド試料の角度を調整することにより、ほぼ完全な位相整合注6)が精巧に行われました。この時、SHGについては約4.7 × 10-5、cTHGについては約3.0 × 10-5の光変換効率が得られています。しかし、温度上昇に伴い、SHG および cTHG の強度は急激に減少することが分かります。
また、20℃から300℃までの非線形発光の温度同調曲線を、さらに光学調整を行わずに20℃の間隔で記録したところ、SHGとcTHGの積分強度は、低温領域(100℃以下)では、ほとんど温度変化しないことが分かりました。しかし、高温領域(150℃から300℃)では、SHG強度、cTHG強度ともに温度の上昇とともに急激に低下し、室温で得られる信号強度に比べてほぼ1桁低い信号強度が観測されました。一方、NV中心を導入する前の純粋なダイヤモンド結晶のTHG強度は、温度の上昇とともにゆっくり減少することが分かりました。ダイヤモンド結晶では、屈折率の温度変化による位相不整合により、格子温度の上昇に伴ってSHG強度が減少したと考えられます(図3)。このように、NV含有ダイヤモンドのSHGから得られる温度センサーとしての感度(dI/dT=0.81%/℃)は、高純度ダイヤモンドのTHGから得られる温度感度(dI/dT=0.25%/℃)よりも3倍以上大きく、非線形光学効果に基づいた温度センシング技術開発への大きな可能性を示すものでした。
【今後の展開】
本研究チームは、2次の非線形光学効果である第二高調波発生や電気−光学効果を用いた量子センシング技術を深化させ、最終的にダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングの研究を進めています。NV含有ダイヤモンドにおいては、NV中心の配向をそろえることでSHGの変換効率が高まると期待されます。また、NV含有ダイヤモンドは、チップ状に加工することで、走査型プローブ顕微鏡のプローブとしての役割も果たし、さまざまな先端材料に対して有効なナノメートル分解能をもつ温度センサーを実現できる可能性を秘めています。今後は、フェムト秒(1000兆分の1)パルスレーザー技術が持つ高い時間分解能と、走査型プローブ顕微鏡注7)が持つ高い空間分解能とを組み合わせ、ダイヤモンドのNV中心から引き出したSHGなどの2次の非線形光学効果が、電場や温度のセンシングに幅広く応用できることを示していきます。
【参考図】

| 図1.本研究に用いた実験装置の概略 挿入図は、ダイヤモンド結晶中の窒素―空孔(NV)中心の原子構造を示している。 |

図2.実験結果
第二高調波発生(SHG)とカスケード型第三高調波発生(cTHG)スペクトルの結晶温度依存性。五つの値:20℃(室温)、90℃、160℃、200℃、240℃に、黒、濃い赤、オレンジ、緑、紫の線が対応する。

| 図3.ダイヤモンド結晶における位相整合 NVダイヤモンド結晶における温度、屈折率(赤線)、およびSHG強度の関係を示す。 |
【用語解説】
注1)量子センサー
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測するセンサーのこと。
注2)窒素−空孔(NV)中心
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」は、ダイヤモンドの着色にも寄与する色中心(カラーセンター)と呼ばれる格子欠陥となる。NV中心には、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
注3)空間反転対称性
三次元空間の直交座標系(x, y, z)において、結晶中の全ての原子を(x, y, z) → (-x, -y, -z)と反転操作しても元の結晶と完全に一致すること。
注4)第二高調波発生
同じ周波数(波長)を持つ二つの光子が非線形光学結晶に入射すると、入射した光子の2倍の周波数(半分の波長)の光が発生する現象のこと。2次の非線形光学効果(電場振幅の二乗に比例する効果)の一種である。同様に、第三高調波発生は三つの光子から入射した光子の3倍の周波数の光が発生する3次の非線形光学効果である。
注5)超短パルスレーザー
パルスレーザーの中でも、特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注6)位相整合
基本波レーザー光とそれから発生する第二高調波(或いは第三高調波)の位相速度が一致することである。位相整合を満たす方法として、複屈折性を有する結晶の角度を回転させることで二つの異なる波長に対する屈折率を位相整合条件に一致させることができる。位相不整合が起こると第二高調波の強度が減少することが知られている。
注7)走査型プローブ顕微鏡
小さいプローブ(探針)を試料表面に近接させ、探針を表面に沿って動かす(走査する)ことで、試料の原子レベルの表面構造のみならず、温度や磁性などの物理量も画像化できる顕微鏡である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング」(グラント番号:JPMJCR1875)(研究代表者:長谷 宗明)による支援を受けて実施されました。
【参考文献】
a) Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase, 2021, Second-harmonic generation in bulk diamond based on inversion symmetry breaking by color centers. ACS Photonics 8, 988-993 (doi:1021/acsphotonics.0c01806).
【掲載論文】
| 題 目 | Temperature-dependent second-harmonic generation from color centers in diamond. (ダイヤモンドの色中心からの温度依存的な第二高調波発生) |
| 著者名 | Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase |
| 掲載誌 | Optics Letters |
| 掲載日 | 2022年3月1日(著者版先行公開) |
| DOI | 10.1364/OL.455437 |
令和4年3月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/03/09-1.html生命機能工学領域の藤本教授らの論文がJournal of Chemical Technology and Biotechnology誌の表紙に採択
生命機能工学領域の藤本 健造教授らの論文がWiley社刊行の Journal of Chemical Technology and Biotechnology誌の表紙(Front cover)に採択されました。
■掲載誌
Journal of Chemical Technology and Biotechnology
掲載日2021年12月2日
■著者
Kenzo Fujimoto*, Masakatsu Ichikawa, Shigetaka Nakamura
■論文タイトル
Photoinduced aggregation of liposome modified with DNA containing ultrafast DNA photo-cross-linker
■論文概要
脂質二分子膜により構成されるリポソームは細胞膜のモデル系及びドラッグデリバリーのキャリアーとして魅力的なバイオ高分子である。本研究では、光に応答するDNAをリポソーム膜に修飾させることで、リポソーム同士を光照射エネルギー依存的に会合させることに成功した。さらに、この会合したリポソーム群を別の波長で光照射することで解離させることも可能となった。リポソームの会合状態を光制御するという今までにない独自のリポソーム操作性を実現することに成功した。本成果は細胞間相互作用解析やリポソームを基盤としたドラッグデリバリー開発に役立つものと期待される。
論文詳細:https://onlinelibrary.wiley.com/doi/10.1002/jctb.6941
表紙詳細:https://onlinelibrary.wiley.com/toc/10974660/2022/97/1

令和3年12月13日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/12/13-2.html物質化学領域の都准教授の論文がAccounts of Materials Research誌の表紙に採択
物質化学領域の都 英次郎准教授の論文が米国化学会(ACS)刊行のAccounts of Materials Research誌の表紙(Front cover)に採択されました。本研究成果は日本学術振興会科学研究費補助金(基盤研究A)の支援のもと実施されました。
■掲載誌
Acc. Mater. Res. 2021, 2, 10, 858-862
掲載日2021年9月9日
■著者
Eijiro Miyako
■論文タイトル
Convergence of Liquid Metal Biotechnologies for Our Health
■論文概要
都研究室では、高い生体適合性と優れた物理化学的特性を有するガリウム・インジウム合金からなる室温で液体の金属(液体金属)の表面化学修飾法の開拓と細胞・生体組織との相互作用に関する研究を進めています(例えば、Nature Commun. 8, 15432, (2017).、Angew. Chem. Int. Ed. 56, 13606, (2017).)。本論文では、高機能性液体金属を用いたヘルスケアデバイスならびに医薬への応用と、それらを統合したバイオテクノロジーの将来展望について述べています。
論文詳細:https://pubs.acs.org/doi/10.1021/accountsmr.1c00126
表紙詳細:https://pubs.acs.org/toc/amrcda/2/10

令和3年10月26日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/10/26-2.html物質化学領域の松村教授が高分子学会三菱ケミカル賞を受賞
物質化学領域の松村 和明教授が公益社団法人高分子学会三菱ケミカル賞を受賞しました。
高分子学会は、高分子科学の基礎ならびに高性能材料などの応用分野に関する幅広い研究分野を対象とした会員数10,000を超える学術団体です。
三菱ケミカル賞は、高分子科学に基礎をおき、技術、産業に寄与する独創的かつ優れた研究業績を挙げた研究者に授与される賞です。
*参考:高分子学会三菱ケミカル賞受賞者
■受賞年月日
令和3年9月7日
■研究題目
両性電解質高分子の凍結保護効果の解明と生体材料応用
■研究内容
細胞の凍結保存技術は古くから開発されており、保護物質であるジメチルスルホキシド(DMSO)などを添加する必要がありました。松村教授らは、DMSOに比べて毒性が低く、しかも活性の高い高分子系の新規凍結保護物質を新たに見いだしました。その機序が既存の物質と異なることをNMRを用いた独自の手法で明らかとし、この機序を用いた再生医療用組織の凍結保存にも挑戦しています。さらに、和牛の受精卵や精子の凍結保護剤として産業応用もされています。また、凍結濃縮という凍結現象を用いた細胞内への物質送達手法を開発するなど、高分子化学と低温生物工学双方向の異分野融合型研究を進めています。
以上、基礎から産業応用に至るまで独創的かつ優れた研究成果であると国内外から高く評価されています。
■受賞にあたって一言
高分子学会よりこの度、三菱ケミカル賞を頂くことができ誠に光栄に思います。さらに高分子化学の発展に尽力して参ります。共同研究者や研究室の学生さんならびに研究費をご支援いただいた関係各所に厚くお礼申し上げます。


令和3年9月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/09/17-1.html学生の石野さんと篠崎さんが2020年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞
学生の石野 佳奈子さん(博士前期課程2年、生命機能工学領域、藤本研究室)と、篠崎 一世さん(博士前期課程1年、生命機能工学領域、藤本研究室)が2020年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞しました。
日本化学会北陸地区講演会と研究発表会は、毎年秋に、金沢大学、福井大学、富山大学、本学のいずれかの大学にて開催しています。特別講演のほか、ポスター発表があり、200~300名が参加しています。
今回、2020年度日本化学会北陸地区講演会と研究発表会は、11月20日にオンラインで開催されました。
■受賞年月日
令和2年11月26日
■発表題目・発表者・研究概要
- 【石野 佳奈子さん】
発表題目:
光クロスリンクオリゴDNAによるピンポイント核酸塩基編集
発表者名:
石野佳奈子、中野雅元、中村重孝、藤本健造
研究概要:
本研究では、DNA鎖中でのシトシンをピンポイントでウラシルに変換する際の周辺塩基の影響を評価した。従来、光化学的にシトシンをウラシルへの変換する際には90°Cの加熱を必要としており、遺伝子疾患の治療法としての細胞内応用は困難であった。本研究ではリン酸の付与により、細胞内にも適応可能な条件での脱アミノ化に成功し、リン酸基の導入位置による違いを詳細に評価した。以上の成果は今後のウラシルからシトシンへの変異に基づく遺伝子疾患の治療法として期待される。 - 【篠崎 一世さん】
発表題目:
DNA鎖中のメチルシトシン定量解析に向けた核酸類光架橋反応の開発
発表者名:
篠崎一世、中島涼、中村重孝、藤本健造
研究概要:
本研究では、DNA鎖中でのシトシンとメチルシトシンを定量解析に向けた光架橋反応開発を行った。メチルシトシンはエピジェネティクな遺伝子発現制御に関わる重要な核酸であるが、ピンポイントでシトシンとメチルシトシンを定量的に解析することは困難であった。そこで、シトシン、メチルシトシンそれぞれに異なる反応性を示す光架橋型人工核酸を設計・合成し、反応性を評価した。また、反応性の違いを利用したチップ上でのメチルシトシンの定量検出も可能であることを見出した。今後、生体試料中でのメチルシトシン定量解析への応用が期待される。
■受賞にあたって一言
(石野さん、篠崎さん)
この度は、2020年度日本化学会北陸地区講演会と研究発表会におきまして、このような賞を頂けたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導いただいている藤本健造教授にこの場をお借りして心より御礼申し上げます。さらに、多くのご助言やディスカッションに乗って頂いた藤本研究室の皆様に深く感謝いたします。

石野さん

篠崎さん
令和2年12月11日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/12/11-1.html物質化学領域の松村研究室の論文がBiomacromolecules誌の表紙に採択
物質化学領域の松村研究室の論文がアメリカ化学会(ACS)刊行のBiomacromolecules誌の表紙に採択されました。
なお、本研究成果は日本学術振興会科研費(基盤研究A、B)、キヤノン財団産業基盤の創生、大学連携バイオバックアッププロジェクトによる支援を受け行われたものであり、また澁谷工業株式会社、農業食品産業技術総合研究機構、鹿児島大学との共同研究によるものです。
■掲載誌
Biomacromolecules, Vol. 21, No. 8 , 2020 掲載日2020年8月10日
■著者
Kazuaki Matsumura*, Sho Hatakeyama(松村研修了生), Toshiaki Naka, Hiroshi Ueda, Robin Rajan(松村研助教), Daisuke Tanaka, Suong-Hyu Hyon
■論文タイトル
Molecular Design of Polyampholytes for Vitrification-Induced Preservation of Three-Dimensional Cell Constructs without Using Liquid Nitrogen
■論文概要
本研究では、疎水性を付与することで両性電解質高分子による水の低温でのガラス状態安定化効果を向上させることに成功し、その効果を用いて三次元細胞塊であるスフェロイドを、液体窒素を用いずに冷凍庫にてガラス化保存することに成功しました。この手法により、再生組織のビルディングブロックとして注目されている幹細胞スフェロイドを安定的に簡便に長期間保存することが可能となり、組織再生のオートメーション化の第一歩として重要な技術となります。
表紙詳細:https://pubs.acs.org/toc/bomaf6/21/8
論文詳細:https://pubs.acs.org/doi/10.1021/acs.biomac.0c00293

令和2年8月11日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/08/11-1.html多糖膜が超らせん構造によって湿度変化に瞬間応答 -ナノスケールから再組織化-
多糖膜が超らせん構造によって湿度変化に瞬間応答
-ナノスケールから再組織化-
PRポイント
- ナノメートルスケールから階層的に再組織化されたマイクロファイバー
- 湿度変化に瞬間応答して曲がる天然高分子のフィルム
|
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)の先端科学技術研究科、環境・エネルギー領域の、博士後期課程大学院生ブッドプッド クリサラ、桶葭 興資准教授、岡島麻衣子研究員、金子 達雄教授らは、シアノバクテリア由来の多糖サクランを用いて、水中で自ら形成するマイクロファイバーが乾燥時に2次元蛇行構造、3次元らせん構造など高秩序化することを見出した。さらにこの構造を利用して、水蒸気をミリ秒レベルで瞬間感知して屈曲運動を示すフィルムの作製に成功した。天然由来の代表物質でもある多糖をナノメートルスケールから再組織化材料としたこととしても意義深い。光合成産物の多糖を先端材料化する試みは、持続可能な社会の構築に重要である。
多糖は分子認識や水分保持など、乾燥環境下で重要な役割を果たす。しかし、天然から抽出された多糖が潜在的に持つ自己組織化を活用することはこれまで困難であった。特に、セルロースナノファイバーなど分子構造を制御した透明素材などはできても、外界変化への応答材料には利用されてこなかった。一方で、我々の研究グループはこれまでに、シアノバクテリア由来の多糖サクランに関する研究を進め、超高分子量の物性やレアメタル回収能など様々な特性を持つ多糖であることを明らかにしてきた。本研究では、1)分子・ナノメートルスケールからマイクロファイバー形成の階層化、2)界面移動による秩序立った変形、3)その多糖膜の水蒸気駆動の運動について報告した。 用いた多糖サクランのユニークな特徴として、直径約1 µm、長さ 800 µm以上と他には類を見ない大きなマイクロファイバーを水中で自己集合的に形成する。今回、これが乾燥界面の移動によって蛇行構造やらせん構造に変形することを解明した。乾燥した多糖フィルムの内部では、このねじれた構造がバネ様運動を引き起こす。このメカニズムを利用して、水滴が接近した際、瞬時に屈曲する運動素子の開発に成功した(図)。 本成果は、科学雑誌「Small」誌に6/9(米国時間)オンライン版で公開された。なお、本研究は文部科学省科研費はじめ、旭硝子財団、積水化学工業、澁谷工業の支援のもと行われた。 |
<背景と経緯>
天然高分子など生体組織が水と共生して高効率なエネルギー変換を達成している事実に鑑みれば、持続可能な社会への移行に向けて学ぶべき構造と機能である。例えば、ソフトでウエットな高分子ハイドロゲルは人工軟骨や細胞足場など医用材料をはじめ、生体機能の超越が有望視されている。同時に、刺激応答性高分子を用いたケモメカニカルゲルや湿度応答する合成高分子フィルムなど、しなやかに運動するアクチュエータの研究も注目されてきた。これに対し、天然物質の多糖を再組織化させて先端材料とする研究は発展途上にある。
我々はこれまでに、シアノバクテリア由来の多糖サクランに関する研究を進め、超高分子量、レアメタル回収能など様々な特性を持つ天然高分子であることを明らかにしてきた。さらに直近の研究では、サクラン繊維が水中から乾燥される際に、空気と水の界面にならび一軸配向膜を形成することも見出している。
<今回の成果>
1.多糖サクランのマイクロファイバーの微細構造(図1)
用いた多糖サクランは、直径約1 µm、長さ 800 µm以上と他には類を見ない大きなマイクロファイバーを水中で自己集合的に形成する。このマイクロファイバーを電子顕微鏡で観察すると、直径約50 nmのナノファイバーが束となり、ねじれた構造をとっていることが分かった。これは、人工的に形を作ったわけではなく、多糖が潜在的に持つ自己集合によるものである。他の多糖やDNAやタンパク質の自己集合体と比較しても、驚異的に大きなサイズである。
2.乾燥界面の移動によってファイバーがしなやかに蛇行・らせんを描いて変形(図2)
今回、これが乾燥界面の移動によって蛇行構造やらせん構造に変形することを解明した。界面移動がゆっくりの場合、マイクロファイバーが一軸配向構造、もしくは蛇行構造を形成する。一方、界面移動が早い場合、3次元的な超らせん構造を形成する。1本のマイクロファイバーが蛇行構造をとった後に超らせん構造をとることから、界面がマイクロファイバーの変形に強く寄与していると考えられる。
3.多糖膜の水滴接近に伴う瞬間応答(図3)
乾燥した多糖膜の内部では、このねじれた構造がバネ様運動を引き起こす。このメカニズムを利用して、水滴が接近した際、瞬時に屈曲する運動素子の開発に成功した。時空間解析から、水滴が接近/離隔した際、曲った状態とフラットな状態を可逆的にミリ秒レベルで屈曲運動を示すことが分かる。このような瞬間応答は、湿度変化を膜中のねじれた構造が瞬時に水和/脱水和を大きな変化に増幅したためと考えられる。
<今後の展開>
天然多糖を再組織化することで、水蒸気駆動型の運動素子をはじめ、光、熱など外界からのエネルギーを変換するマテリアルの構築が期待される。多糖ファイバーに機能性分子を導入しておくことで、湿度だけでなく、光や温度の外部環境変化に応答するソフトアクチュエーターである。本研究の成果は、天然由来の代表物質でもある多糖をナノメートルスケールから再組織化材料としたこととしても意義深い。光合成産物の多糖を先端材料化する試みは、持続可能な社会に非常に重要である。
![]() マイクロファイバーはナノファイバーが束になってねじれた状態。 |
A![]() |
B![]() |
C 図2. 乾燥界面の移動によってまっすぐなファイバーが蛇行構造やらせん構造に変形A. 蛇行構造をとったマイクロファイバー。B. 界面移動による高次構造化。C. 1本のマイクロファイバーが蛇行構造やらせん構造をとった様子の顕微鏡画像。 |
|
A ![]() |
B ![]() |
| 図3. 多糖膜の水滴接近に伴う瞬間応答 A. 多糖フィルムに水滴を接近させた際に示す屈曲運動と時空間解析。水滴が接近した際、ミリ秒レベルで屈曲運動を示す。 B. 屈曲変形の概念図。乾燥した多糖フィルムの内部にあるファイバーのねじれた構造がバネ様運動を引き起こし、高速な屈曲変形を示す。 |
【用語説明】(Wikipedia より)
※1自己組織化:
物質や個体が、系全体を俯瞰する能力を持たないのにも関わらず、個々の自律的な振る舞いの結果として、秩序を持つ大きな構造を作り出す現象のことである。自発的秩序形成とも言う。
※2シアノバクテリア:
ラン藻細菌のこと。光合成によって酸素と多糖を生み出す。
※3多糖:
グリコシド結合によって単糖分子が多数重合した物質の総称である。デンプンなどのように構成単位となる単糖とは異なる性質を示すようになる。広義としては、単糖に対し、複数個(2分子以上)の単糖が結合した糖も含むこともある。
※4サクラン:
硫酸化多糖の一つで、シアノバクテリア日本固有種のスイゼンジノリ (学名:Aphanothece sacrum) から抽出され、重量平均分子量は2.0 x 107g/mol とみつもられている。
※5界面:
ある均一な液体や固体の相が他の均一な相と接している境界のことである。
【論文情報】
| 掲載誌 | Small (WILEY) |
| Vapor-sensitive materials from polysaccharide fibers with self-assembling twisted microstructures | |
| 著者 | Kulisara Budpud, Kosuke Okeyoshi, Maiko K. Okajima, Tatsuo Kaneko DOI: 10.1002/smll.202001993 |
| 掲載日 | 2020年6月9日(米国時間)にオンライン掲載 |
令和2年6月11日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/06/11-1.html








図2. 乾燥界面の移動によってまっすぐなファイバーが蛇行構造やらせん構造に変形

