研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。機械学習を用いた太陽電池用シリコン薄膜堆積条件の新たな最適化手法を開発

![]() ![]() |
国立大学法人 国立研究開発法人理化学研究所 |
機械学習を用いた太陽電池用シリコン薄膜堆積条件の
新たな最適化手法を開発
ポイント
- 実用で頻出する制約(膜厚制限や実現不可能な実験条件排除)を考慮した「制約付きベイズ最適化」を開発
- 制約内の実験条件範囲でキャリア再結合抑止能力が最良となる薄膜堆積を少ない実験回数で実現
- 太陽電池製造や薄膜堆積に限らず広く応用可能な手法として期待
北陸先端科学技術大学院大学 (JAIST)(学長・寺野稔、石川県能美市)の大橋亮太大学院生(博士前期課程)、Huynh, Thi Cam Tu特任助教(サスティナブルイノベーション研究領域)、東嶺孝一技術専門員(ナノマテリアルテクノロジーセンター)、大平圭介教授(サスティナブルイノベーション研究領域)と、理化学研究所革新知能統合研究センターの沓掛健太朗研究員は、結晶シリコン太陽電池に用いられる薄膜のシリコン堆積条件を最適化する新たな手法を開発した。 |
本研究グループではこれまで、触媒化学気相堆積(Cat-CVD)法*1を用いた太陽電池用薄膜形成に取り組んできた。特に、非晶質シリコン膜と結晶シリコン基板との接合からなるシリコンヘテロ接合太陽電池*2は、低損傷での膜堆積が可能なCat-CVDの優位性が生かせることから、有用な応用先として注力している。この製膜においては、多数の製膜パラメータが存在するため、太陽電池出力を最大化する最適製膜条件の発見には、一般に膨大な実験回数(試行錯誤)を要する。
このような実験条件の最適化問題に対して、「ベイズ最適化」*3と呼ばれる、機械学習を応用した逐次最適化法が、最近よく使用されている。しかし、太陽電池出力の最大化のみを目的とした単純なベイズ最適化では、次の実験条件で得られる膜の厚さを規定する機能は無く、デバイス動作上問題が生じるような厚膜が形成されうる。また、ベイズ最適化によって提示される実験条件が、実現不可能な組み合わせ(例えばガス流量と製膜装置のポンプの排気能力の不整合)となる可能性がある。
本研究では、これらのベイズ最適化における実践的な問題を解決するための、「制約付きベイズ最適化」を開発した。この手法では、未実施の実験条件のうち、製膜装置の仕様上実現が困難な実験条件を機械学習による予測に基づいてあらかじめ排除し、残りの条件の中からキャリア再結合抑止性能を最良化する可能性のある実験条件を提示させるよう工夫した。さらに、一定の製膜時間における予測膜厚を提示させる機能を持たせ、所望の膜厚を得るための製膜時間を逆算できるよう設計した。これらの制約を組み込むことで、製膜装置が実現可能な条件の範囲内でかつ一定の膜厚を有し、キャリア再結合抑止性能を最良化するベイズ最適化の手順を進行させることが可能となった。開発した「制約付きベイズ最適化」を用いることで、わずか8回のサイクルにより最適な製膜条件に到達し、20回のサイクルでベイズ最適化工程が完了した。また、本ベイズ最適化の提示に従って複数の製膜パラメータを広い範囲で変化させた結果、高いキャリア再結合抑止性能の実現には、製膜時の基板温度と原料ガスであるSiH4の流量の組み合わせが重要であることも見出した。
本研究で得られた手法は、太陽電池製造や薄膜堆積に限らず、幅広い分野や試料作製に適用可能な手法として期待される。
「制限付きベイズ最適化」の流れ
【論文情報】
雑誌名 | ACS Applied Materials and Interfaces(米国化学会) |
題目 | High Passivation Performance of Cat-CVD i‑a-Si:H Derived from Bayesian Optimization with Practical Constraints |
著者 | Ryota Ohashi, Kentaro Kutsukake, Huynh Thi Cam Tu, Koichi Higashimine, and Keisuke Ohdaira |
掲載日 | 2024年2月8日 |
DOI | 10.1021/acsami.3c16202 |
【用語説明】
加熱触媒体線により原料ガスを分解し、薄膜を堆積する手法。原料ガスの分解時にイオンが生成されないため、イオンの衝突による結晶シリコン表面への損傷が起こらず、良好な薄膜/基板界面が得られる。
結晶シリコンウェハと非晶質シリコン膜の接合を基本構造とする太陽電池。非晶質シリコン膜により、結晶シリコン表面に存在する結晶欠陥が有効に不活性化され、キャリア再結合が抑えられる結果、汎用の結晶シリコン太陽電池と比べて高い電圧が得られる特長がある。
形状が不明な関数の最大値や最小値を得るための手法の一種。既知である実験条件(入力)とその結果(出力)のデータセットから、未実施の実験条件における結果の予測値を、不確かさ(標準偏差)とともに推定し、不確かさも含めて予測値が最良となる条件で次の実験を行う。その実験で得られた結果を含めて予測値を推定し直す。これを繰り返し、少ない実験回数で最適な実験条件を得る。
令和6年2月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/02/19-1.html非対称な二次元シートを利用したナノサイズの巻物構造の実現 〜高性能な触媒や発電デバイスへの応用に期待〜

![]() |
東京都公立大学法人 国立大学法人筑波大学 国立大学法人東北大学 国立大学法人東海国立大学機構 国立大学法人金沢大学 国立大学法人 |
![]() |
東京都公立大学法人 国立大学法人筑波大学 国立大学法人東北大学 国立大学法人東海国立大学機構 国立大学法人金沢大学 国立大学法人 |
非対称な二次元シートを利用したナノサイズの巻物構造の実現
~高性能な触媒や発電デバイスへの応用に期待~
【概要】
東京都立大学、産業技術総合研究所、筑波大学、東北大学、名古屋大学、金沢大学、北陸先端科学技術大学院大学らの研究チーム(構成員及びその所属は以下「研究チーム構成員」のとおり)は、次世代の半導体材料として注目されている遷移金属ダイカルコゲナイド(TMD)(注1)の単層シートを利用し、最小内径5 nm程度のナノサイズの巻物(スクロール)状構造の作製に成功しました。TMDは遷移金属原子がカルコゲン原子に挟まれた3原子厚のシート状物質であり、その機能や応用が近年注目を集めています。一般に、TMDは平坦な構造が安定であり、円筒などの曲がった構造は不安定な状態となります。本研究では、上部と下部のカルコゲン原子の種類を変えたヤヌス構造と呼ばれるTMDを作製し、この非対称な構造がスクロール化を促進することを見出しました。理論計算との比較より、最小内径が5 nm程度まで安定な構造となることを確認しました。また、スクロール構造に由来して軸に平行な偏光を持つ光を照射したときに発光や光散乱の強度が増大すること、表面の電気的な特性がセレン側と硫黄側で異なること、及びスクロール構造が水素発生特性を有するなどの基礎的性質を明らかにしました。
今回得られた研究成果は、平坦な二次元シート材料を円筒状の巻物構造に変形する新たな手法を提案するものであり、ナノ構造と物性の相関関係の解明、そしてTMDの触媒特性や光電変換特性などの機能の高性能化に向けた基盤技術となることが期待されます。
本研究成果は、2024年1月17日(米国東部時間)付けでアメリカ化学会が発行する英文誌『ACS Nano』にて発表されました。
【研究チーム構成員】
【ポイント】
- 遷移金属ダイカルコゲナイド(TMD)のシートを安定した構造で巻物(スクロール)にする新たな手法を開発。
- TMDの上部と下部の組成を変えた「ヤヌス構造」が、スクロール化を促進することを発見。
- TMDの曲率や結晶の対称性などの制御を通じた触媒や光電変換機能の高性能化が期待。
【研究の背景】
近年、ナノチューブと呼ばれるナノサイズの円筒状物質は、その特徴的な構造に由来する物性、そして触媒や太陽電池等の光電変換デバイス等への応用について世界中で盛んに研究が行われています。一般に、ナノチューブは、厚みが1原子から数原子程度の極薄の二次元的なシート構造を円筒状に丸めた構造を持つナノ物質であり、代表的な物質として、炭素の単原子層であるグラフェンを丸めたカーボンナノチューブが知られています。また、遷移金属原子がカルコゲン原子に挟まれた構造を持つ遷移金属ダイカルコゲナイド(TMD)についても、二次元シートやナノチューブ構造が存在します。最近では、TMDのナノチューブが同軸状に重なった多層TMDナノチューブにおいて、その巻き方に起因する超伝導や光起電力効果を示すことが報告されました。一方、このような多層TMDナノチューブは、様々な直径や巻き方などを持つナノチューブが同軸状に重なっているため、その結晶構造の同定は困難となります。その電気的・光学的性質と構造の相関を明らかにするには、ナノチューブの巻き方を制御することが重要な課題となっていました。
このような課題の解決に向け、これまで主に二つのアプローチが報告されてきました。一つは、多層TMDナノチューブとは別に、構造の同定が容易な単層TMDナノチューブに着目したものです。特に、カーボンナノチューブ等をテンプレートに用いた同軸成長により、単層TMDナノチューブを成長させることができます。本研究チームの中西勇介助教、宮田耕充准教授らは、これまで絶縁体のBNナノチューブの外壁をテンプレートに用いたMoS2(二硫化モリブデン)の単層ナノチューブ(https://www.tmu.ac.jp/news/topics/35021.html)や、様々な組成のTMDナノチューブ(https://www.tmu.ac.jp/news/topics/36072.html)の合成に成功してきました。しかし、同軸成長法では、得られるTMDナノチューブの長さが多くの場合は100 nm以下と短く、物性や応用研究には更なる合成法の改善が必要となっています。もう一つのアプローチとして、単結晶性の単層のTMDシートを巻き取り、各層の結晶方位が揃ったスクロール構造にする手法も知られていました。一般にマイクロメートルサイズの長尺な構造が得られますが、TMDシートを曲げた場合、遷移金属原子を挟むカルコゲン原子の距離が伸び縮みするため、構造的には不安定となります。そのため、得られるスクロール構造も内径が大きくなり、また円筒構造ではなく平坦な構造になりやすいなどの課題がありました。
【研究の詳細】
本研究では、長尺かつ微小な内径を持つスクロール構造の作製に向け、上部と下部のカルコゲン原子の種類を変えたヤヌス構造と呼ばれるTMDに着目しました。このヤヌスTMDでは、上下のカルコゲン原子と遷移金属原子の距離が変わることで、曲がった構造が安定化することが期待できます。このようなヤヌスTMDを作製するために、研究チームは、最初に化学気相成長法(CVD法)(注2)を利用し、二セレン化モリブデン(MoSe2)および二セレン化タングステン(WSe2)の単結晶性の単層シートをシリコン基板上に合成しました。この単層シートに対し、水素雰囲気でのプラズマ処理により、単層TMDの上部のセレン原子を硫黄原子に置換し、単層ヤヌスTMDを作製できます。次に、有機溶媒をこの単層ヤヌスTMDに滴下することで、シートの端が基板から剥がれ、マイクロメートル長のスクロール構造を形成しました(図1)。
図1 単層ヤヌスMoSSeを利用したナノスクロールの作製手法。(a)単層MoSe2の構造モデル。(b)熱CVDシステムの概略図。(c)単層ヤヌスMoSSeの構造モデル。(d)水素プラズマによる硫化プロセスの概略図。(e)ヤヌスナノスクロールの構造モデル。(f)有機溶媒の滴下によるナノスクロールの作製方法の概略図。 ※原論文「Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides」の図を引用・改変したものを使用しています。 |
この試料を電子顕微鏡で詳細に観察し、実際にスクロール構造を形成したこと(図2)、全ての層が同一の方位を持つこと、そして最小内径で5 nm程度まで細くなることなどを確認しました。観察された内径に関しては、ヤヌスTMDのナノチューブでは最小で直径が5 nm程度までは、フラットなシート構造よりも安定化するという理論計算とも一致します。また、このスクロール構造に由来し、軸に平行な偏光を持つ光を照射したときに発光や光散乱の強度が増大すること、表面の電気的な特性がセレン原子側と硫黄原子側で異なること、およびスクロール構造が水素発生特性を有することも明らかにしました。
図2 ナノスクロールの電子顕微鏡写真。
※原論文「Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides」の図を引用・改変したものを使用しています。 |
【研究の意義と波及効果】
今回得られた研究成果は、平坦な二次元シート材料を円筒状のスクロール構造に変形する新たな手法を提案するものです。特に、非対称なヤヌス構造の利用は、様々な二次元シート材料のスクロール化に適用することができます。また、単結晶のTMDを原料に利用することで、スクロール内部の層の結晶方位を光学顕微鏡による観察で容易に同定すること、そして様々な巻き方を持つスクロールの作製が可能になりました。今後、本研究成果より、様々な組成や構造を持つスクロールの実現、電気伝導や光学応答と巻き方の関係の解明、触媒やデバイス応用など、幅広い分野での研究の展開が期待されます。
【用語解説】
タングステンやモリブデンなどの遷移金属原子と、硫黄やセレンなどのカルコゲン原子で構成される層状物質。遷移金属とカルコゲンが1:2の比率で含まれ、組成はMX2と表される。単層は図1aのように遷移金属とカルコゲン原子が共有結合で結ばれ、3原子厚のシート構造を持つ。近年、TMDが持つ優れた半導体特性により大きな注目を集めている。
原料となる材料を気化させて基板上に供給することにより、薄膜や細線を成長させる合成技術。
【発表論文】
タイトル | Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides |
著者名 | Masahiko Kaneda, Wenjin Zhang, Zheng Liu, Yanlin Gao, Mina Maruyama, Yusuke Nakanishi, Hiroshi Nakajo, Soma Aoki, Kota Honda, Tomoya Ogawa, Kazuki Hashimoto, Takahiko Endo, Kohei Aso, Tongmin Chen, Yoshifumi Oshima, Yukiko Yamada-Takamura, Yasufumi Takahashi, Susumu Okada, Toshiaki Kato*, and Yasumitsu Miyata* *Corresponding author |
雑誌名 | ACS Nano |
DOI | https://doi.org/10.1021/acsnano.3c05681 |
本研究の一部は、日本学術振興会 科学研究費助成事業「JP21H05232, JP21H05233, JP21H05234, JP21H05236, JP21H05237, JP22H00283, JP22H00280, JP22H04957, JP21K14484, JP20K22323, JP20H00316, JP20H02080, JP20K05253, JP20H05664, JP21K14498, JP21K04826, JP21H02037, JP22H05459, JP22KJ2561, JP22H05445, JP23K13635, JP22H05441, JP23H00097, JP23K17756, JP23H01087」、文部科学省マテリアル先端リサーチインフラ事業「JPMXP1222JI0015」、創発的研究支援事業FOREST「JPMJFR213X and JPMJFR223H」、戦略的創造研究推進事業さきがけ「JPMJPR23H5」、矢崎科学技術振興記念財団、三菱財団、村田学術振興財団および東北大学電気通信研究所共同プロジェクト研究の支援を受けて行われました。
令和6年1月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/01/18-1.htmlがん治療のための多機能性アミノ酸ナノ粒子の開発に成功

![]() ![]() |
国立大学法人 フランス国立科学研究センター |
がん治療のための多機能性アミノ酸ナノ粒子の開発に成功
【ポイント】
- 3種類のペプチドと光開始剤が溶解した水溶液に紫外線を照射すると球状のナノ粒子が生成することを発見
- 合成したアミノ酸ナノ粒子に抗がん剤が封入可能であり、タンニン酸-鉄複合体をナノ粒子表面にコーティングできることを発見
- 多機能性アミノ酸ナノ粒子の複合的な分子設計によって生体内外の効果的ながん細胞死を誘導することに成功
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の都英次郎准教授らはフランス国立科学研究センター(所長・アントワーヌ・プチ、フランス・パリ)のアルベルト・ビアンコ博士ら(同センター細胞分子生物学研究所、フランス・ストラスブール)と共同で、多機能性のアミノ酸*1から構成されるナノ粒子を活用した新しいがん治療技術の開発に成功した(図1)。
ペプチドやタンパク質の構成要素であるアミノ酸は、高い生体適合性を有するため、とりわけナノ粒子化したアミノ酸をバイオメディカル分野に応用する研究に大きな注目が集まっている。都准教授の研究チームでも、光を使った簡便な手法によりアミノ酸ナノ粒子を合成できれば、新しいがん治療技術が実現できるのではないかと考え、研究をスタートさせた。
研究チームは、N末端*2を9-フルオレニルメチルオキシカルボニル基(Fmoc)*3で保護した3種類のペプチド*4(Fmoc保護トリプトファン- Fmoc保護トリプトファン、Fmoc保護チロシン-Fmoc保護トリプトファン、Fmoc保護チロシン- Fmoc保護チロシン)と光開始剤(リボフラビン*5)が溶解した水溶液に紫外線*6を照射するとアミノ酸分子間における共有結合*7を介した光架橋*8と非共有結合*9を介した自己組織化現象*10が誘起され、約100 nmの直径の球状ナノ粒子が形成されることを見出した(図1)。また、合成したアミノ酸ナノ粒子は、抗がん剤(ドキソルビシン*11)が容易に封入可能であり、生体透過性の高い近赤外レーザー*12に応答して発熱するタンニン酸-鉄複合体*13をナノ粒子表面にコーティングできることも明らかとなった。さらに、研究チームは、細胞やマウスを用いた実験によって、これらの複合的な分子設計に基づいた多機能性アミノ酸ナノ粒子が効果的ながん光治療技術に応用可能であることを示した。
本成果は、2023年12月28日にWiley-VCH発行「Small」のオンライン版に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
図1. 多機能性アミノ酸ナノ粒子の構造
【論文情報】
掲載誌 | Small (Wiley-VCH) |
論文題目 | Photocrosslinked co-assembled amino acid nanoparticles for controlled chemo/photothermal combined anticancer therapy |
著者 | Tengfei Wang, Yun Qi, Eijiro Miyako,* Alberto Bianco,* Cécilia Ménard-Moyon* |
掲載日 | 2023年12月28日にオンライン版に掲載 |
DOI | 10.1002/smll.202307337 |
【用語説明】
アミノ基(-NH2)とカルボキシ基(-COOH)の両方を持つ有機化合物の総称。天然には約500種類のアミノ酸が見つかっており、そのうち22種類が、鎖状に多数連結(重合)して高分子を形成しタンパク質となる。ヒトのタンパク質は約20種類のアミノ酸から構成されている。
タンパク質またはペプチドにおいてフリーなアミノ基で終端している側の末端のこと。
有機合成で用いられる、アミノ基の保護基の1つ。Fmoc(エフモック)基と略される。
アミノ酸が結合したもの。アミノ酸とアミノ酸がペプチド結合(-CONH-)して、2個以上つながった構造のものをペプチドという。
光開始剤とは主に可視光や紫外光を吸収し、この光エネルギーをフリーラジカルに変換する化学物質のこと。リボフラビンは、紫外線の存在下、光還元反応によりフリーラジカルを生成する。この性質を利用して、分子間の架橋が可能となり、光開始剤として合成反応によく利用される。
波長が可視光よりも短い10nm~400nmの光。
原子同士の間で電子を共有することで生じる化学結合で、結合力が強い。
光で化学結合を形成することにより、分子中の特定原子間にできる三次元的な化学結合のこと。
共有結合以外の原子同士を結びつける力を表し、水素結合やπ-π(パイ-パイ)相互作用などが知られている。共有結合に比べて結合力は弱いが、複数の力が協同的に働くことで原子・分子はあたかも共有結合のように連結される。
分子や原子などの物質が自発的に秩序を持つ大きな構造を作り出す現象。
抗ガン剤の一種である。腫瘍細胞の核内の遺伝子に結合することで、DNAやRNAを合成する酵素の働きを阻害することで抗腫瘍効果を示す。
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
タンニン酸はタンパク質を変性させることにより組織や血管を縮める作用を有する渋味を示す化学物質。鉄イオンと反応し強く結合して難溶性の塩(タンニン酸-鉄複合体)を形成することが知られている。
令和6年1月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/01/09-1.html物質化学フロンティア研究領域の都准教授らの論文がNano Today誌の表紙に採択

物質化学フロンティア研究領域の都 英次郎准教授らの「化学修飾細菌を利用するがん光免疫療法の開発に成功」に係る論文が、Nano Today誌の表紙に採択されました。
なお、本研究は、科研費基盤研究(A)(23H00551)、科研費挑戦的研究(開拓)(22K18440)、科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Nano Today, October, 2023, Volume 52
掲載日:2023年10月
■著者
Sheethal Reghu, Seigo Iwata, Satoru Komatsu, Takafumi Nakajo, Eijiro Miyako*
■論文タイトル
Cancer immunotheranostics using bioactive nanocoated photosynthetic bacterial complexes
■論文概要
本研究では、低酸素状態の腫瘍環境内で高選択的に集積・生育・増殖が可能で、かつ生体透過性の高い近赤外レーザー光によって様々な機能を発現する非病原性かつ天然の紅色光合成細菌の表面化学修飾法を開発しました。また、当該化学修飾細菌の特性を活用することで体内の腫瘍を高選択的に検出し、効果的な免疫細胞(特にT細胞)の賦活化、ならびに標的部位のみを効果的に排除することが可能ながん光免疫療法を開発することに成功しました。
論文詳細:https://www.sciencedirect.com/science/article/pii/S1748013223002153
令和5年10月11日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/10/11-1.html液体金属ナノ粒子を活用するがん光免疫療法の開発に成功

液体金属ナノ粒子を活用するがん光免疫療法の開発に成功
ポイント
- 免疫賦活化作用を有する多機能性の液体金属ナノ粒子の開発に成功
- 当該液体金属ナノ粒子がEPR効果により腫瘍に集積し、マウスに移植したがんの可視化と、免疫賦活化ならびに光熱変換によるがん治療が可能であることを実証
- 当該ナノ粒子と近赤外光を組み合わせた新たながん診断・治療技術の創出に期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 物質化学フロンティア研究領域の都 英次郎准教授の研究グループは、液体金属ナノ粒子*1を活用した新しいがん光免疫療法の開発に成功した(図1)。 |
ガリウム・インジウム(Ga/In)合金からなる室温で液体の金属(液体金属)は、高い生体適合性と優れた物理化学的特性を有することが知られており、とりわけナノ粒子化した液体金属をバイオメディカル分野に応用する研究に大きな注目が集まっている。都准教授の研究チームでも、免疫賦活化作用のある物質を液体金属に組み合わせ、がん患部に選択的に送り込むことができれば、免疫による高い抗腫瘍作用の発現が期待できるだけでなく、生体透過性の高い近赤外光*2を用いることで、患部の可視化や光熱変換を利用した、新たながんの診断や治療が実現できるのではないかと考え、研究をスタートさせた。
図1. 近赤外光が液体金属ナノ粒子に当たり、免疫細胞
(T細胞と樹状細胞)を活性化している様子(イメージ)
研究チームは、液体金属をがん患部まで送り、免疫細胞を賦活化させるために、液体金属表面に免疫チェックポイント阻害薬(抗PD-L1抗体*3)、免疫調整薬(イミキミド*4)、蛍光試薬(インドシアニングリーン*5)、ポリエチレングリコール-リン脂質複合体*6を吸着させたナノ粒子の作製を試みた。Ga/In液体金属、イミキミド、インドシアニングリーン、ポリエチレングリコール-リン脂質複合体の混合物に超音波照射後、抗PD-L1抗体を添加し、一晩培養するだけで、球状ナノ粒子の構造を水中で安定的に維持可能な簡便なナノ粒子を形成できることを見出した。この方法で調製した液体金属ナノ粒子は、10日以上の粒径安定性を有していること、細胞に対し高い膜浸透性を有し毒性が無いこと、近赤外光照射により発熱が起こることが確認できたため、がん患部の可視化と治療効果について試験を行った。
大腸がんを移植して1週間後のマウスに、液体金属ナノ粒子を投与し、24時間後に740~790 nmの近赤外光を当てたところ、がん患部だけが蛍光を発している画像が得られ、当該ナノ粒子がEPR効果*7によりがん組織に取り込まれていることが分かった(図2A)。そこで、当該ナノ粒子が集積した患部に対して808 nmの近赤外光を照射したところ、免疫賦活化と光熱変換による効果で14日後には、がんを完全に消失させることに成功した(図2B)。
図2.(A) 液体金属ナノ粒子の標的腫瘍内における蛍光特性
(B) 液体金属ナノ粒子による抗腫瘍効果(腫瘍は完全消失) |
さらに、液体金属ナノ粒子の細胞毒性と生体適合性を評価した。2種類の細胞[マウス大腸がん由来細胞(Colon-26)、ヒト胎児肺由来正常線維芽細胞(MRC5)]を培養する培養液中に、液体金属ナノ粒子を、添加量を変えて投与・分散させ、24時間後に細胞内小器官であるミトコンドリアの活性を指標として細胞生存率を測定した結果、細胞生存率の低下は見られず、細胞毒性はなかった。また、液体金属ナノ粒子をマウスの静脈から投与し、生体適合性を血液検査(1週間調査)と体重測定(約1ヵ月調査)により評価したが、いずれの項目でも液体金属ナノ粒子が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発した液体金属ナノ粒子が、がん診断・免疫療法の基礎に成り得ることを示すだけでなく、ナノテクノロジー、光学、免疫学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、ドイツの化学・生物系トップジャーナル「Advanced Functional Materials」誌(Wiley社発行)に7月28日(現地時間)に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
【論文情報】
掲載誌 | Advanced Functional Materials(Wiley社発行) |
論文題目 | Light-Activatable Liquid Metal Immunostimulants for Cancer Nanotheranostics |
著者 | Yun Qi, Mikako Miyahara, Seigo Iwata, Eijiro Miyako* |
掲載日 | 2023年7月28日 |
DOI | 10.1002/adfm.202305886 |
【用語解説】
室温以下あるいは室温付近で液体状態を示す金属のこと。例えば、水銀(融点マイナス約39℃)、ガリウム(融点約30℃)、ガリウム-インジウム合金(融点約15℃)がある。
800~2500 nmの波長の光。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
免疫チェックポイント阻害剤の一つ。がん細胞や抗原提示細胞が発現するPD-L1に結合することによりT細胞上のPD-1との相互作用を阻害する。この結果、T細胞への抑制シグナル伝達が阻害され、T細胞の活性化が維持され、抗腫瘍作用が発現される。
樹状細胞を活性化させることが知られており、早期の基底細胞皮膚がんや特定の皮膚疾患の治療に用いられる薬物。
肝機能検査に用いられる緑色色素のこと。近赤外光を照射すると近赤外蛍光を発することができる。
ポリエチレングリコールとリンを含有する脂質(脂肪)が結合した化学物質。脂溶性の薬剤を可溶化させる効果があり、ドラッグデリバリーシステムによく利用される化合物の一つ。
100nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみがん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
令和5年8月4日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/08/04-1.html固体電解質薄膜トランジスタを用いたバイオセンサの製品化に着手 ~短時間で複数の核酸・病原体を同時に検出~

![]() ![]() |
三菱マテリアル株式会社 国立大学法人北陸先端科学技術大学院大学 |
固体電解質薄膜トランジスタを用いたバイオセンサの製品化に着手
~短時間で複数の核酸・病原体を同時に検出~
三菱マテリアル株式会社と北陸先端科学技術大学院大学(石川県能美市) バイオ機能医工学研究領域の高村禅教授、廣瀬大亮助教は、共同で新規の固体電解質薄膜トランジスタを用いたバイオセンサを開発し、実用化に向けた製品開発に着手しました。
医療の分野における遺伝子検査では、一般的にPCR(Polymerase Chain Reaction)法など核酸を増幅して検査する方法が用いられていますが、検査機器が高価であり、また、大型のため用途が限定されています。
三菱マテリアルでは、従来より金属や酸化物など様々な材料に薄膜を形成するための研究開発を行っており、湿式成膜による薄膜材料開発に関する高い技術力を有しています。このたびの共同開発ではその技術を応用し、検知部に独自に開発した固体電解質薄膜トランジスタを用いた新たなバイオセンサを開発しました(模式図参照)。
本バイオセンサでは、微小な電荷による電圧変化を検出することでPCRなどの増幅法に比べて短時間で検査結果を得ることができます。また、微細加工技術を利用してセンサ素子を並列に複数個配列することができるため、複数の核酸・病原体の同時検出が可能となります。さらに、固体電解質薄膜トランジスタ自体が小さいため、バイオセンサの小型化が可能であり今後も用途の拡大が見込めます。
今後は測定可能な核酸の種類を拡張するとともに、複数の種類を含む病原体を同時に検出可能なセンサの製品化に取り組み、実用化に向けた製品開発を推進します。
三菱マテリアルグループは、「人と社会と地球のために」という企業理念のもと、これからも非鉄金属素材およびライフヘルスケア分野に付加価値の高い製品の開発・提供を通じて、豊かな社会の構築に貢献してまいります。
新開発のバイオセンサ
【性能】
固体電解質薄膜トランジスタの表面に負の電荷を有する核酸が特異的に吸着した場合、表面電荷の変化が生じ、変化に対応した電圧変化を大きなシグナルとして読み取ることが可能です。(図1参照)
図1 新規開発品によるシグナル増強について
固体電解質薄膜トランジスタを用いて、大腸菌に含まれる稀薄な核酸について、増幅することなく検出できることを確認しました。(図2参照)。
図2 大腸菌検出結果
【関連情報】
本リリースで紹介している固体電解質薄膜トランジスタは、以下のJournalに掲載されています。
Journal of Applied Physics 127, 064504 (2020)
令和5年5月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/05/19-1.html微生物合成したバイオマス由来化合物の添加によるリチウムイオン2次電池用正極の安定化

![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 国立大学法人筑波大学 |
微生物合成したバイオマス由来化合物の添加による
リチウムイオン2次電池用正極の安定化
ポイント
- リチウムイオン2次電池の正極材料としての活用が活発に検討されているLiNMC系正極は、その安定化のために、有効な添加剤を活用するアプローチが重要である。
- 微生物合成により得られたバイオマス由来のピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))がリチウムイオン2次電池のLiNi1/3Mn1/3Co1/3O2正極の安定化に有効な添加剤であることを見出した。
- 微生物合成を採用することにより、比較的複雑な構造を有する添加剤を簡易かつ低コストに、また低環境負荷な手法で合成することが可能となる。
- DMBAPは汎用の電解液よりも最高被占軌道(HOMO)が高く酸化されやすいため、電解液に先立ち正極表面で酸化され、好ましい界面を形成しつつ、電解液の過度な分解を抑制した。その結果、界面抵抗を顕著に低下させるに至った。SEM(走査型電子顕微鏡)像においてもDMBAPがLiNi1/3Mn1/3Co1/3O2正極の形態の変性を抑制することが示された。
- カソード型ハーフセル (3.0 V-4.5 V)において、DMBAP 2 mg/mlを電解液(EC/DEC/LiPF6)に添加した系においては、1Cの電流密度における100サイクル後の放電容量は83.3 mAhg-1であり、DMBAP非添加系における放電容量の42.6 mAhg-1を大幅に上回った。さらにDMBAPによる電池系の安定化効果はフルセルにおいても顕著であった。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の物質化学フロンティア研究領域 松見紀佳教授、ラージャシェーカル バダム元講師、アグマン グプタ研究員、高森紀行大学院生(博士後期課程2年)、筑波大学生命環境系 高谷直樹教授、桝尾俊介助教、皆川一元大学院生は、微生物合成したピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))がリチウムイオン2次電池のLiNi1/3Mn1/3Co1/3O2正極の安定化に有効な添加剤であることを見出した。 |
【研究の内容と背景】
近年、リチウムイオン2次電池[用語解説1]開発において、高電圧化に有効なLiNMC系正極(LiNixMnyCozO2; x+y+z = 1)の活用が活発に検討されている。一方、正極材料としては比較的不安定なLiNMC系正極を安定化するためには有効な添加剤を活用するなどのアプローチが重要である。北陸先端科学技術大学院大学の松見教授らの研究グループでは、この添加剤の活用について、正極添加剤BIANODAの合理的な設計法[参考文献1,2]について報告したが、有機合成化学的な添加剤の合成においては材料の精製等がやや煩雑であった。
そこで今回は微生物合成によってピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))を合成し、LiNMC系正極用添加剤として検討した。本化合物もBIANODAと同様にHOMOが高く、重合性官能基を持つこと、正極活物質の劣化因子であるフッ化水素(HF)をトラップ可能な構造であること、遷移金属への配位子構造等を併せ持つなど、LiNMC系正極の安定化剤として理想的な構造を有している(図1)。この微生物合成を採用することにより、比較的複雑な構造を有する添加剤を簡易かつ低コストに、また低環境負荷な手法で合成することが可能となる。
また、筑波大学の高谷教授らのグループでは、Pseudomonas fluorescens SBW25の遺伝子クラスターがDMBAPの微生物合成に有用であることを見出しており[参考文献3]、さらにグルコースを原料としてDMBAPを発酵生産する組換え細菌も見出している[参考文献3]。
このような系の積極的活用は、新たなカテゴリーの電池用添加剤ライブラリーを見出すとともに電池材料のバイオマス代替を促進する上で大変魅力的である。
本研究では、まずLiNi1/3Mn1/3Co1/3O2/電解液(エチレンカーボネート(EC)/ジエチレンカーボネート(DEC)/ヘキサフルオロリン酸リチウム(LiPF6))/Li型ハーフセルにおいて、電解液に2 mg/mlのDMBAPを添加し、正極安定化剤としての性能を評価した。カソード型ハーフセルのサイクリックボルタモグラム (3.0 V- 4.5 V)の第一サイクルにおいては、DMBAP添加系においては非添加系には見られない酸化ピークが観測され、添加剤に基づいた被膜形成挙動が示唆された。
添加剤DMBAPの量を変化させつつ充放電特性評価を行うと、電解液への添加量が 2 mg/mlの系において最善の性能が観測された。DMBAP 2 mg/mlを電解液(EC/DEC/LiPF6)に添加した系においては1Cの電流密度における100サイクル後の放電容量は83.3 mAhg-1であり、DMBAP非添加系における放電容量の42.6 mAhg-1を大幅に上回った(図2(b))。また、DMBAP添加系においては、リチウム挿入・脱離反応のオーバーポテンシャルの低下も観測された(図2(d))。さらにDMBAPによる電池系の安定化効果はフルセルにおいても顕著であった。
次に、カソード型ハーフセル[用語解説2]における界面形成挙動の解析のため動的インピーダンス(DEIS)測定を行った。各電圧下におけるそれぞれのインピーダンススペクトルに関する等価回路フィッティングを行い、カソード側の界面抵抗(CEI)を算出したところ、DMBAP添加系においてはすべての測定条件下において非添加系よりも抵抗が低く、DMBAPの界面抵抗低減効果が顕著であることが明らかとなった。
また、LiNi1/3Mn1/3Co1/3O2正極を電解液(EC/DEC/LiPF6)中で保管した系においては、SEM(走査型電子顕微鏡)像において形態の変性が観測されるが、DMBAPを共存させた系においては形態変化は抑制され(図3)、DMBAPによる安定化効果が再び示された。
本成果は、ネイチャー・リサーチ社刊行のScientific Reportのオンライン版に11月25日に掲載された。
本研究は、内閣府の戦略的イノベーション創出プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
【今後の展開】
リチウムイオン2次電池の開発においては、作用機構が異なる他の添加剤との併用により、さらなる相乗効果につながることが期待される。
さらに、遷移金属組成の異なる様々なLiNMC 系正極(LiNixMnyCozO2; x+y+z = 1)を効果的に安定化することが期待できる。
既に国内において特許出願済みであり、今後は、企業との共同研究を通して将来的な社会実装を目指す。特に、電池セルの高電圧化技術の普及と電池材料のバイオマス代替を促進することを通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | Scientific Reports(Springer-Nature) |
題目 | Microbial pyrazine diamine is a novel electrolyte additive that shields high-voltage LiNi1/3Co1/3Mn1/3O2 cathodes |
著者 | Agman Gupta, Rajashekar Badam, Noriyuki Takamori, Hajime Minakawa, Shunsuke Masuo, Naoki Takaya and Noriyoshi Matsumi* |
WEB掲載日 | 2022年11月25日(英国時間) |
DOI | 10.1038/s41598-022-22018-1 |
図1.DMBAPによるLiNMC系正極安定化の概念図
重合性官能基(-NH2)を持つこと、フッ化水素(HF)をトラップ可能な構造であること、遷移金属への配位子構造(C₄H₄N₂)等を併せ持つことなど、安定化剤として理想的な構造を有する。 |
図2.(a)様々な電流密度におけるカソード型ハーフセル(DMBAP添加物存在下及び非添加系)の充放電挙動
(b) 1Cにおけるカソード型ハーフセル(DMBAP添加物存在下及び非添加系)の充放電挙動 (c) DMBAP添加物存在下及び非添加系の容量維持率の比較 (d) 1CにおけるDMBAP添加物存在下及び非添加系のオーバーポテンシャルの比較 |
図3.(a) LiNMC 系正極
(b) 電解液(エチレンカーボネート(EC)/ジエチレンカーボネート(DEC)/ヘキサフルオロリン酸リチウム(LiPF6))処理後のLiNMC系正極 (c) DMBAPを添加した電解液で処理後のLiNMC系正極のSEM像 |
【参考文献】
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、カソード極/電解質/Liの構成からなる半電池を意味する。
令和4年11月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/11/30-1.html物質化学フロンティア研究領域の松村教授らの論文がBiomacromolecules誌の表紙に採択
物質化学フロンティア研究領域の松村研究室による論文が、米国化学会(American Chemical Society :ACS)刊行のBiomacromolecules誌の表紙(Supplementary cover)に採択されました。本研究成果は、物質・材料研究機構および産業技術総合研究所との共同研究によるものです。
■掲載誌
ACS Biomacromolecules, 2022Volume 23, Issue 8
表紙掲載日2022年8月8日
■著者
Chiaki Yoshikawa, Keita Sakakibara, Punnida Nonsuwan(松村研究室修了生), Miwako Shobo, Xida Yuan(松村研究室修了生), Kazuaki Matsumura
■論文タイトル
Cellular Flocculation Driven by Concentrated Polymer Brush-Modified Cellulose Nanofibers with Different Surface Charges
■論文概要
今回の論文は、濃厚ポリマーブラシを表面グラフトしたセルロースナノファイバーが細胞と相互作用して凝集体を形成する際の表面電荷の影響について詳細に議論したものです。その結果、アニオン性のポリマーブラシをグラフトすることで良好な細胞凝集塊の形成がみられました。
本研究結果は、再生医療用三次元細胞足場材料への応用が期待できます。
本発表は、物質・材料研究機構、産業技術総合研究所との共同研究による成果です。
表紙詳細:https://pubs.acs.org/toc/bomaf6/23/8
論文詳細:https://pubs.acs.org/doi/full/10.1021/acs.biomac.2c00294
令和4年8月9日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/08/09-1.html超高強度シェルを有する高度安定化マイクロサイズシリコンの新規負極活物質の開発とリチウムイオン2次電池への応用

超高強度シェルを有する高度安定化マイクロサイズシリコンの
新規負極活物質の開発合成とリチウムイオン2二次電池への応用
ポイント
- 低コストながら、ナノサイズシリコンと比較して充放電に伴う体積膨張・収縮制御がより難しいマイクロサイズシリコンを用いた負極活物質に関して、シリコンオキシカーバイドの超高強度シェルを付与することにより課題の解決に成功した。
- 内部のマイクロサイズシリコンに一定の体積変化の余地を与えるために中間層としてカーボン層をスペーサーとして導入した。また、外殻層の電導性を確保するためにシリコンオキシカーバイド層にアセチレンブラック粒子を導入した。
- 本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であり、優れたレート特性を有することも明らかとなった。
- 高容量放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 松見 紀佳教授(物質化学フロンティア研究領域)、バダム ラージャシェーカル講師(物質化学フロンティア研究領域)、東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程2年)らのグループは、リチウムイオン2次電池*1の安定な高容量充放電を低コストで可能にする新規負極活物質(Si/C/ABG)の開発に成功した。 |
【研究内容と背景】
リチウムイオン2次電池の負極材開発において、高容量の発現の観点から関心を集めているシリコンは充放電に伴う体積膨張・収縮制御の困難さに対応するためナノサイズシリコン粒子が広く用いられてきたが、汎用性やコスト性の観点からマイクロサイズシリコンを用いた高容量2次電池の実現が切望されている。体積膨張・収縮制御においては、マイクロサイズシリコンの適用によりさらなる困難が伴うが、新たなアプローチによる課題の克服への要求が高まっている。
本研究においては、ナノサイズシリコン粒子に代わってマイクロサイズシリコン粒子を適用しつつ、充放電に伴う大きな体積膨張・収縮を抑制するために特殊な材料設計を行った。本負極活物質の外殻には、超高強度を有することが知られるシリコンオキシカーバイド層をコーティングした。また、シリコンオキシカーバイドの不十分な電導性を補う目的でシリコンオキシカーバイド層にアセチレンブラック粒子を共存させた。また、内部のマイクロサイズシリコンに一定の体積変化の余地を与えるためにスペーサーとしてあらかじめマイクロサイズシリコン表面にカーボン層のコーティングを行い、中間層とした。
合成手順としては、マイクロサイズシリコン(~1μm)表面にpH8.5においてポリドーパミン形成させ、乾燥後焼成し、カーボンコーティングを行った。その後、アミノプロピルトリエトキシシラン(APTES; シリコンオキシカーバイドの前駆体)にアセチレンブラックを混合した懸濁液で処理し、乾燥後焼成した(図1)。得られた材料をTEM、HAADF-STEM、EDSマッピング、XPS等の各測定によりキャラクタライズした(図2)。マイクロサイズシリコン上のカーボン層及び外殻層のシリコンオキシカーバイド(ブラックグラス)層が観測され、外殻層にはアセチレンブラック粒子が埋め込まれている様子が見受けられた。XPS測定からは、シリコンオキシガーバイド(ブラックグラス)層にはSi、SiC4、SiC3O、SiC2O2、SiCO3、SiO4が混在している様子が観測された。
このようなシリコンオキシカーバイドは、7.1 GPaの弾性率、13 MPaの曲げ強さ、11 MPaの圧縮強度を有することがShellemanら*2により報告されており、本負極活物質においても外殻部分に著しい力学的強度をもたらすと期待できる。
合成した負極活物質(Si/C/ABG)の評価に先立って、マイクロサイズシリコンとシリコンオキシカーバイド層との間にカーボン中間層を有さない材料に関しても合成し、これを負極活物質としたアノード型ハーフセル*3を構築して評価した。この系においては、マイクロサイズシリコンの体積変化が大幅に抑制された結果、セルの充放電能は大幅に減少した。一方、中間カーボン層を有するマイクロサイズシリコン/カーボン/シリコンオキシカーバイド型の負極活物質(Si/C/ABG)を70 wt%(アセチレンブラック15 wt%; CMC 7.5 wt%; PAA 7.5 wt%)用いた系では、750 mA/gの充放電速度において775サイクル後に1017 mAhg-1の放電容量を維持し、優れたレート特性を有することが明らかとなった (図3)。また、正極をNCA(ニッケル酸リチウム)とした場合のフルセルも良好に動作した(詳細は原著論文参照)。
さらに、充放電サイクル(65サイクル)後の負極のSEM像(断面像)より、充放電後にもクラック形成や活物質層の崩壊、層の剥離などは認められず、本負極活物質が極めて高い安定性を示していることも明らかとなった(図3)。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に7月18日に掲載された。
なお、本研究は、科学技術振興機構(JST) 未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
マイクロサイズシリコンの外殻層に超高強度シリコンオキシカーバイドを導入した特異的な負極活物質デザインにより、次世代型リチウムイオン2次電池へのマイクロサイズシリコン活用に道が拓かれると期待される。
さらに活物質の面積あたりの担持量を向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | Journal of Materials Chemistry A (英国王立化学会) |
題目 | Black glasses grafted micron silicon: a resilient anode material for high-performance lithium-ion batteries |
著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
掲載日 | 2022年7月18日 |
DOI | 10.1039/D2TA03068C |
図1.マイクロシリコンへのシリコンオキシカーバイド層導入の手順
図2.(a-c) Si/C/ABGのTEM像
(d-h) Si/C/ABGのHAADF-STEM 像及び EDS マッピング
図3.充放電後のSEM像
(a,b) マイクロシリコン 負極(断面像)、(c) Si/C/ABG 負極top view、 (d) Si/C/ABG 負極(断面像)、 (e)シリコンオキシカーバイドをコートしたマイクロシリコン(Si/C/ABG)を負極としたハーフセルの充放電サイクル特性
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和4年7月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/07/28-1.htmlダイヤモンド中に10兆分の1秒で瞬く磁化を観測 ~超高速時間分解磁気センシング実現に期待~

![]() ![]() ![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド中に10兆分の1秒で瞬く磁化を観測
~超高速時間分解磁気センシング実現に期待~
磁石や電流が発する磁気の大きさと向きを検出するデバイスや装置を磁気センサーと呼びます。現在では、生体中における微弱な磁気から電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの応用分野が広がりつつあります。磁気センサーの中で最も高感度を誇るのが、超伝導量子干渉素子(SQUID)で、1 nT(ナノテスラ、ナノは10億分の1)以下まで検出可能です。また、ダイヤモンドの点欠陥である窒素−空孔(NV)センターと走査型プローブ顕微鏡(SPM)技術を組み合わせることで、数十nm(ナノメートル)の空間分解能を持つ量子センシングが可能になると期待されています。 このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきましたが、時間分解能はマイクロ秒(マイクロは100万分の1)の範囲にとどまっています。このため、磁場を高い時間分解能で測定できる新しい磁気センシング技術の開発が望まれていました。 本研究では、表面近傍にNVセンターを導入したダイヤモンド単結晶に超短光パルスを照射し、それにより10兆分の1秒で瞬く結晶中の磁化を検出することに成功しました。検出感度を見積もると、約35 mT(ミリテスラ、ミリは1000分の1)となりました。また、計測の時間分解能は、超短光パルスにより磁化を発生させたことにより、約100フェムト秒(フェムトは1000兆分の1)となりました。 本研究成果により、NVセンターでは従来困難だった高速に時間変化する磁気のセンシングも可能であることが示され、高い時間分解能と空間分解能を兼ね備えた新たな磁気センシングの開拓につながることが期待されます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀准教授
【研究の背景】
磁石や電流が発する磁気の大きさと向きを検出するのが磁気センサーです。現在では、生体中における微弱な磁気から、電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの研究開発が進んでいます。磁気センサーには、比較的簡便なトンネル磁気抵抗素子注1)によるものや、超伝導体のリングを貫く磁束の変化を電流で読み取る超伝導量子干渉素子(SQUID)注2)などがあります。その中でも最高感度を誇るのがSQUIDで、1 nT(ナノテスラ)以下の磁場をも検出できるほどです。しかし、超伝導体を用いるSQUIDは電気回路や極低温などの高度な取扱いを要します。このため、近年では、ダイヤモンドの点欠陥である窒素−空孔(NV)センター注3)を用いた磁気センサーの開発が進んでいます。特に、負に帯電したNVスピン状態を利用した全光読み出しシステムが、室温でも動作する量子磁力計として注目されています。また、NVセンターの利用と、走査型プローブ顕微鏡(SPM)注4)技術を組み合わせることで、数十nmの空間分解能注5)で量子センシング注6)を行うことが可能になります。
このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきました。その一方で、時間分解能注7)はマイクロ秒の範囲にとどまっています。このため、磁場をより高い時間分解能で測定できる新しい量子センシング技術の開発が望まれていました。
そうした中、NVセンターを高濃度に含むダイヤモンド単結晶膜において、入射された連続発振レーザーの直線偏光が回転することが分かり、ダイヤモンドにおける磁気光学効果が実証されました。NVセンターに関連する集団的な電子スピンが磁化として機能することが示唆されていますが、この手法では時間分解能を高めることができません。他方、逆磁気光学効果、すなわち光パルスで磁気を作り出すという光磁気効果に対するダイヤモンドNVセンターの研究については、行われてきませんでした。しかし、この光磁気効果を開拓することは、ダイヤモンドの非線形フォトニクスの新しい機能性を追求する上で非常に重要です。また、ダイヤモンドNVセンターのスピンを用いた非接触かつ室温動作の量子センシング技術を、高い時間分解能という観点でさらに発展させるためにも、光磁気効果の開拓が必要だと考えられます。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注8)を円偏光にして、NVセンターを導入した高純度ダイヤモンド単結晶に照射し、結晶中に発生した超高速で生成・消滅する磁化を検出することに成功しました。
実験ではまず、波長800nmの近赤外パルスレーザー光をλ/4波長板により円偏光に変換し、NVセンターを導入した高純度ダイヤモンド単結晶に励起光として照射しました。その結果、磁気光学効果の逆過程(光磁気効果)である逆ファラデー効果注9)により、ダイヤモンド中に磁化を発生できることを見いだしました(参考図1挿入図)。この磁化が生じている極短時間の間に直線偏光のプローブ光を照射すると、磁化の大きさに比例してプローブ光の偏光ベクトルが回転します。これを磁気光学カー回転と呼びます。磁気光学カー回転の時間変化はポンプープローブ分光法で測定しました(図1)。測定の結果、逆ファラデー効果で生じるダイヤモンド中の磁化は、約100フェムト秒の応答として誘起されることが確かめられました(図2左)。NVセンターを導入していないダイヤモンドでも磁化は発生しますが、導入すると、発生する磁化が増幅されることも明らかになりました(図2右)。
次に、励起レーザーの偏光状態を直線偏光から右回り円偏光、そして直線偏光に戻り、次に左回り円偏光と逐次変化させることで、波長板の角度とカー回転角(θ )の関係を調べました。すると、NVセンターを導入する前の高純度ダイヤモンド単結晶では、逆ファラデー効果を示すsin 2θ 成分および非線形屈折率変化である光カー効果を示す sin 4θ 成分のみが観測されました。一方、NVセンターを導入したダイヤモンドでは、それらの成分に加えて、新規にsin 6θ の成分を持つことが明らかになりました(図3a)。さらに、励起光強度を変化させながら各成分を解析したところ、sin 2θ 成分およびsin 4θ 成分は励起光強度に対して一乗で増加しますが(図3b,c)、新規のsin 6θ の成分の大きさは励起光強度に対して二乗で変化することが分かりました(図3d)。これらのことから、 sin 6θ の成分は、NVセンターが有するスピンが駆動力となり、ダイヤモンド結晶中に発生した非線形な磁化(逆コットン・ムートン効果注10))であることが示唆されました。また、この付加的で非線形な磁化により、図2で観測された磁化の増幅が説明できました。この非線形な磁化による磁場検出感度を見積もると、約35 mT(ミリテスラ)となりました。SQUIDの検出感度には及びませんが、本手法では約100フェムト秒という高い時間分解能が得られることが示されたといえます。
【今後の展開】
本研究チームは、今回観測に成功した光磁気効果を用いた量子センシング技術をさらに高感度化し、ダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングに深化させることを目指して研究を進めていきます。今後は、ダイヤモンドNVセンターが駆動力となった逆コットン・ムートン効果を磁気センシングに応用することで、先端材料の局所磁場やスピン流を高空間・高時間分解能で測定することが可能となります。さらに、パワーデバイス、トポロジカル材料・回路、ナノバイオ材料など実際のデバイスの動作条件下で、例えば磁壁のダイナミクスや磁化反転などデバイス中に生じるダイナミックな変化を、フェムト秒の時間分解能で観察できることになり、先端デバイスの高速化や高性能化への貢献が期待されます。
【参考図】
図1 本研究に用いた実験手法 パルスレーザーから出たフェムト秒レーザー光はビームスプリッタでポンプ光とプローブ光に分割され、それぞれ波長板と偏光子を通過した後、ポンプ光は光学遅延回路を経由した後レンズで試料に照射される。プローブ光も同様に試料に照射された後、偏光ビームスプリッタにより分割されて二つの検出器で光電流に変換される。その後、電流増幅された後、デジタルオシロスコープで信号積算される。右上の挿入図は、逆ファラデー効果の模式図を示し、右回り(σ+)または左回り(σ-)の円偏光励起パルスによりダイヤモンド結晶中に上向き(H+)または下向きの磁化(H-)が生じる。なおデジタルオシロスコープでは、下向きの磁化が観測されている。 |
図2 高純度ダイヤモンド(NVなし)およびNVセンターを導入したダイヤモンド(NVあり)における時間分解カー回転測定の結果。赤色および青色の実線はそれぞれ、右回り円偏光、左回り円偏光により励起した実験結果を示す。 |
図3 NVセンターを導入したダイヤモンドにおけるカー回転の解析結果 (a) 下図(青丸)はカー回転角の波長板の角度(θ )に対するプロットである。黒い実線はCsin 2θ + Lsin 4θ による最小二乗回帰曲線(フィット)を示す。上図(赤丸)は下図の最小二乗回帰の残差を示す。太い実線はFsin 6θ による最小二乗回帰曲線(フィット)を示す。また最上部は偏光状態の変化(直線偏光→右回り円偏光→直線偏光→左回り円偏光→直線偏光)を表す。(b) Csin 2θ の振幅Cを励起フルエンスに対してプロットした図。 (c) Lsin 4θ の振幅Lを励起フルエンスに対してプロットした図。(d) Fsin 6θ の振幅Fを励起フルエンスに対してプロットした図。(b)と(c)の実線は一次関数によるフィットを示し、(d) の実線は二次関数によるフィットを示す。 |
【用語解説】
注1)トンネル磁気抵抗素子
2枚の磁性体の間に非常に薄い絶縁体を挟んだ構造(磁性体/絶縁体/磁性体)からなる素子。磁性体は金属であり、電圧を加えると、薄いポテンシャル障壁を通り抜けるという量子力学的なトンネル効果により絶縁体を介したトンネル電流が流れる。各磁性体の磁化の向きが平行な場合と反平行な場合で、素子の電気抵抗が大きく変化する。これをトンネル磁気抵抗効果という。よって、この効果を原理とした素子をトンネル磁気抵抗素子と呼ぶ。
注2)超伝導量子干渉素子(QUID)
超伝導体のリングにジョセフソン接合(二つの超伝導体間にトンネル効果によって超伝導電流が流れるようにした接合のこと)を含む素子を、超伝導量子干渉素子(SQUID)と呼ぶ。リングを貫く磁束が変化すると、ジョセフソン接合を流れるトンネル電流が変化するため、高感度の磁気センサーとして用いられる。
注3)窒素−空孔(NV)センター
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)センター」はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となる。NVセンターには、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。
注4)走査型プローブ顕微鏡(SPM)
微小な探針(プローブ)で試料表面をなぞることにより、試料の凹凸を観察する顕微鏡の総称である。細胞やデバイスなどにおいて、分子や原子などナノメートルの構造を観察するのに用いられる。代表的なものに原子間力顕微鏡(AFM)などがある。
注5)空間分解能
近い距離にある2つの物体を区別できる最小の距離である。この距離が小さいほど空間分解能が高く、微細な画像データの測定が可能になる。
注6)量子センシング
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
注7)時間分解能
観測するデータに識別可能な変化を生じさせる最小の時間変化量である。最小時間変化量が小さいほど時間分解能が高く、高速で変化する画像などのデータ識別が可能となる。
注8)超短パルスレーザー
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注9)逆ファラデー効果
ファラデー効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは平行である。逆ファラデー効果はこれとは逆に、円偏光したレーザー光を物質に入射することで、入射した方向に平行に磁化が生じる現象のことをいう。磁性体に限らず、あらゆる物質で生じる非線形光学過程である。
注10)逆コットン・ムートン効果
コットン・ムートン効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に、光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは垂直である。逆コットン・ムートン効果は、逆に、磁界が印可された物質に直線偏光のレーザー光を入射した際に、入射した方向に垂直に磁化が生じる現象であり、磁性体などで生じる高次の非線形光学過程である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング(JPMJCR1875)」(研究代表者:長谷 宗明)、および独立行政法人 日本学術振興会 科学研究費補助金「サブサイクル時間分解走査トンネル顕微鏡法の開発と応用」(研究代表者:重川 秀実)による支援を受けて実施されました。
【掲載論文】
題 目 | Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals. (ダイヤモンド結晶中の窒素空孔センターが誘起する超高速光磁気効果) |
著者名 | Ryosuke Sakurai, Yuta Kainuma, Toshu An, Hidemi Shigekawa, and Muneaki Hase |
掲載誌 | APL Photonics |
掲載日 | 2022年6月15日(現地時間) |
DOI | 10.1063/5.0081507 |
令和4年6月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/06/16-1.htmlサスティナブルイノベーション研究領域の金子研究室の論文がLangmuir誌の表紙に採択
サスティナブルイノベーション研究領域の金子 達雄教授、高田 健司助教、学生の舟橋 靖芳さん(博士後期課程3年、金子研究室)らの論文が、米国化学会(American Chemical Society :ACS)刊行のLangmuir誌の表紙(Supplementary Cover)に採択されました。
■掲載誌
Langmuir 2022, 38, 17, 5128-5134
掲載日2022年5月3日
■著者
Yasuyoshi Funahashi, Yohei Yoshinaka, Kenji Takada*, and Tatsuo Kaneko*
■論文タイトル
Self-Standing Nanomembranes of Super-Tough Plastics
■論文概要
本研究では、高いタフネスを有するバイオベースプラスチックを用いて自己支持性ナノ薄膜の作製に成功しました。
ナノ薄膜は材料の表面保護からナノデバイスなど幅広い応用が期待されている機能性材料の一つです。特にこれらナノ薄膜を膜として単離するには、タフネス(強度、伸び率の関係)に優れた材料特性が要求されます。本研究では、著者らが従来から研究を進めてきた、高強度、高耐熱バイオベースポリアミドがこれらナノ薄膜作製に適した材料であると着目して、高分子構造の設計と強度の評価、そしてナノ薄膜の作製を試みました。その結果、当該バイオポリアミドは脂肪族ジカルボン酸と共重合化させることで、耐熱性を維持したまま非常に高いタフネスを発揮し、その数値は高強度バイオ繊維として知られるクモの糸にも匹敵するものでした。さらにこの高タフネス性によって、自己支持性のナノ薄膜を単離することができ、これらがナノデバイスやナノロボットへの応用の可能性を広げるものであることが提案されました。
本論文の表紙では、本研究によって得られたポリアミド薄膜の写真が採択され、光の干渉により虹色に見えるほどの薄膜が得られていることが分かります。
論文詳細:https://pubs.acs.org/doi/10.1021/acs.langmuir.1c02193
表紙詳細:https://pubs.acs.org/toc/langd5/38/17
令和4年5月13日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/05/13-2.htmlリチウムイオン2次電池用シリコン負極を大幅に安定化する自己修復型ポリマーコンポジットバインダーを開発

リチウムイオン2次電池用シリコン負極を大幅に安定化する
自己修復型ポリマーコンポジットバインダーを開発
ポイント
- リチウムイオン2次電池の高容量化のため、シリコン負極が注目されているが、シリコン粒子の大きな体積変化等の問題によって安定した充放電が困難となっている。
- リチウムイオン2次電池用シリコン負極を安定化する目的で、BIAN(ビスイミノアセナフテン)構造を有する共役系高分子とポリアクリル酸との水素結合ネットワークから成るコンポジットバインダーを開発した。
- アノード型ハーフセルを構築し充放電特性を評価したところ、600サイクル後に2100 mAhg-1を維持し、極めて高い安定性を示した。
- 充放電後における界面抵抗が極めて低いことや、充放電後の負極の構造的耐久性も高く、劣化は極めて軽微であることが分かった。
- 高容量放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 物質化学フロンティア研究領域の松見 紀佳教授、バダム ラージャシェーカル講師、アグマン グプタ研究員らのグループは、リチウムイオン2次電池*1用シリコン系負極を大幅に安定化するポリマーコンポジットバインダーの開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、EV車の更なる普及を見据えたエネルギー密度の向上を目的として、従来型負極であるグラファイトの理論放電容量を大幅に上回るシリコンの活用に関心が高まっており、カーボンニュートラルの見地からも高容量蓄電池の早期実用化が望まれている。また、シリコンは地殻に豊富に含まれる元素でありコスト面の利点が明白で、元素戦略の観点からも活用が期待される。
一方、シリコン負極においては、充放電時における大幅なシリコン粒子の体積変化が問題となっており、シリコン粒子の大幅な体積膨張による破断などの問題がある。また、充放電によってシリコン上に形成された界面被膜の破壊、集電体からの剥離、シリコン上に生成するクラック上の新たなシリコン面からの電解液の分解による厚いSEI被膜形成などの諸問題による大幅な内部抵抗の上昇によって、電池性能の劣化にも至っている。
【研究の内容】
本研究においては、負極の環境で還元され伝導性を発現するn型共役系高分子バインダー(ビスイミノアセナフテン骨格を有する共役系高分子、P-BIAN)と、この高分子(ポリマー)と水素結合性ネットワークを形成するポリアクリル酸(PAA)を組み合わせることにより、内部抵抗の低減と自己修復機能との相乗的な効果によりシリコン系負極を大幅に安定化できるコンポジットバインダーを開発した(図1)。両ポリマー間の水素結合形成はXPS測定(N1s)から確認された。
また、本コンポジットバインダーを用いてアノード型ハーフセル*2[アノード:Si/C/(P-BIAN/PAA)/AB =25/30/25/20 by wt%]を構築し、充放電特性を評価したところ、600サイクル後に2100 mAhg-1を維持し、極めて高い安定性を示した(図2)。さらに、サイクリックボルタンメトリー*3からは、可逆的で明瞭なリチウム脱挿入挙動や、電解液の分解抑制が示された。
次に、動的インピーダンス測定(DEIS)を行ったところ、本系における充放電後のSEI抵抗は、比較対象のポリアクリル酸バインダー系の場合の約1/6程度となった。
充放電試験後に電池セルを分解し負極を分析したところ、XPSにおいて負極内部の諸元素の環境に由来するピークが明瞭に観測されたことから、表面に形成したSEIは非常に薄いことが分かった。加えて、SEM観測においては400サイクル後においてもクラック形成は極めて軽微であり、比較対象(ポリアクリル酸)と対照的であったことから、本系においては充放電後の界面抵抗が極めて低いことが明らかとなった。また、充放電後の負極のSEMによる分析結果においても構造的耐久性が高く、有意な劣化が見られないことが分かった。
本成果は、ACS Applied Energy Materials (米国化学会)のオンライン版に4月29日に掲載された。なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する。(国内特許出願済み)
今後は、企業との共同研究を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | ACS Applied Energy Materials |
題目 | Heavy-Duty Performance from Silicon Anodes Using Poly(BIAN)/Poly(acrylic acid)-Based Self-Healing Composite Binder in Lithium-Ion Secondary Batteries |
著者 | Agman Gupta, Rajashekar Badam, Noriyoshi Matsumi* |
掲載日 | 2022年4月29日 |
DOI | 10.1021/acsaem.2c00278 |
図1.(a) 高分子化BIAN(P-BIAN)及びポリアクリル酸(PAA)の構造式
(b) P-BIAN/PAAコンポジットバインダーの設計戦略 (c)P-BIAN/PAAのコンポジット生成に伴う強靭さ及び自己修復能による力学的特性の向上のイメージ図 |
図2.(a) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルのサイクリックボルタモグラム
(b) P-BIAN/PAA系バインダーとPAAバインダーを有するSi系負極を用いたアノード型ハーフセルとの500 mAg-1における充放電サイクル特性の比較 (c) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルの充放電曲線(500 mAg-1) (d) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルと比較系(PAAバインダー系)との容量維持率の推移の比較 |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*3 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年5月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/05/12-1.html研究員のZHANGさんが国際会議ISSS-9においてYoung Researchers' Awardを受賞

研究員のZHANG, Jiaqiさん(応用物理学領域、大島研究室)が国際会議The 9th International Symposium on Surface Science(ISSS-9)においてYoung Researchers' Awardを受賞しました。
ISSSは、日本表面真空学会が主催で3年ごとに開催しています。同会議には国内外の表面科学・ナノサイエンス分野の研究者約500名が参加し、ハインリッヒ・ローラー賞(ハインリッヒ・ローラー博士‐1986年に走査型トンネル顕微鏡の設計でノーベル賞を受賞)の受賞式が行われることでも国際的に知られています。
今回、ISSS-9は、令和3年11月28日から12月1日にかけてオンラインにて開催されました。
■受賞年月日
令和3年12月1日
■研究題目、論文タイトル等
Mechanical properties of Pt atomic chains measured by TEM coupled with a quartz resonator
■研究者、著者
〇Jiaqi Zhang1, Masahiko Tomitori1, Toyoko Arai2, Kenta Hongo1, Ryo Maezono1 and Yoshifumi Oshima1
1) 本学
2) 金沢大学
■受賞対象となった研究の内容
Monatomic chains have shown unique physical and chemical properties, which draws a different picture from their bulk counterparts. It has been reported that the electrical or magnetic properties can be tuned by controlling the length of the atomic chains, which indicate that the mechanical properties is very important for their applications. However, the mechanical properties of atomic chains have not been clarified experimentally. To solve this problem, we developed an in-situ TEM holder equipped with a quartz resonator as force sensor to measure the mechanical properties of atomic chains when observing their atomic configurations.
A quartz length-extension resonator (LER) was used to measure the stiffness of platinum (Pt) monatomic chains from its frequency shift. Because the stiffness of the atomic chain suspended between the edge of LER and the fixed counter base can be measure precisely with very small oscillation amplitude (about 30 pm). The atomic resolution TEM images and videos were captured simultaneously with measuring the conductance and stiffness by our developed TEM holder.
The stiffness of atomic chains with 2-5 atoms were obtained. By subtracting the stiffness of the electrodes supporting the monatomic chain from the measured stiffness, we found that the stiffness of a Pt monatomic chain varied with the number of the constitute atoms in the chain. We investigated the stiffness of about 150 Pt monatomic chains for reproducibility and confirmed that the middle bond stiffness (25N/m) in the chain was slightly higher than that of the bond connect to the suspending tip (23N/m). In addition, the maximum elastic strain of individual bond in the chain was as large as 24%. These values were obviously different from the bulk counterpart. Such peculiar values could be briefly explained by the concept of "string tension".
■受賞にあたって一言
I'm incredibly honored with Young Researchers' Award in ISSS-9. First, I would express my appreciation to the organizer of this symposium for providing us the opportunity to share and discuss our researches. Importantly, I would describe my gratitude to Prof. Oshima, Prof. Tomitori, Prof. Arai, for their precious support. And I am also grateful to Oshima-LAB members for their kind encouragement. This award is an essential motivation for me to further research and contribute to nanoscience community.
令和4年1月12日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2022/01/12-2.htmlダイヤモンド量子イメージングプローブの新規作製法を開発 -ナノ量子イメージングに道-

ダイヤモンド量子イメージングプローブの新規作製法を開発
-ナノ量子イメージングに道-
ポイント
- レーザー加工と集束イオンビーム加工を用いた走査ダイヤモンド量子イメージングプローブの作製法の開発に成功
- 高性能化へ向けた加工自由度の高いナノ量子センシング・イメージングプローブ作製法として期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 応用物理学領域の貝沼 雄太大学院生(博士後期課程)、安 東秀准教授らは、京都大学、産業技術総合研究所と共同で、レーザー加工と集束イオンビーム加工注1)によりダイヤモンド中の窒素-空孔複合体中心(NV中心(図1[右]))注2)と呼ばれる極小な量子センサーをプローブ先端に含有するナノ量子イメージングプローブ(図1[左])の新規作製法の開発に成功しました。 |
【背景と経緯】
近年、新しいデバイスやセンサーの創出による環境・エネルギー問題の解決、安心安全な社会の実現、これらによる人類社会の持続的繁栄への貢献が求められています。この中で量子計測・センシング技術は、量子力学を原理とした従来とは異なる革新的な技術を提供する分野であり、将来の社会基盤を支えるしくみを一新すると期待されています(量子技術イノベーション)。その中でも、ダイヤモンド中の欠陥構造であるNV中心を用いた量子計測技術は、室温・大気中で動作可能なこと、センサーサイズがナノスケールであることより注目を集めており、特に、NV中心を走査プローブとして用いた際にはナノスケールの量子イメージングの実現が期待されています。
従来、走査NV中心プローブの作製にはフォトリソグラフィーと電子線リソグラフィーを用いたリソグラフィー法が用いられていましたが、この方法ではプロセスが複雑であること、再加工ができないという課題がありました。今回の研究では、レーザー加工と集束イオンビーム加工(FIB)による加工自由度の高い走査NV中心プローブの作製法を開発し、さらに磁気イメージングの動作を実証しました。
【研究の内容】
図2に示すように、まず、表面下約40ナノメートルにNV中心を有するダイヤモンド結晶の板を、レーザー加工によりロッド状の小片に加工した上で、水晶振動子型の原子間力顕微鏡の先端に取り付けました。続いて、FIB加工においてドーナツ型の加工形状を用いることで、当該小片の中心位置に存在するNV中心の加工ダメージを回避して走査ダイヤモンドNV中心プローブを作製しました。このNV中心プローブを走査しながら磁気テープ上に記録された磁気構造からの漏洩磁場を光学的磁気共鳴検出法(ODMR)注3)により計測し、磁気構造のイメージングに成功しました(図3)。
本研究成果は、2021年12月28日(米国東部標準時間)に米国物理学協会の学術誌「Journal of Applied Physics」のオンライン版に掲載されました。
【今後の展開】
本研究では、レーザー加工とFIB加工による加工自由度の高い走査NV中心プローブの作製法の開発に成功しました。今後、プローブの形状や表面状態を最適化することで、より高性能な走査ダイヤモンドNV中心プローブを作製し量子イメージング分野に貢献することが期待されます。
図1 ダイヤモンド中の窒素(N)-空孔(V)複合体中心(NV中心)[右]と、
走査ダイヤモンドNV中心プローブ[左]
図2 レーザー加工とFIB加工による走査ダイヤモンドNV中心プローブの作製
図3 走査ダイヤモンドNV中心プローブによる磁気テープの磁気構造イメージング
【論文情報】
掲載誌 | Journal of Applied Physics |
論文題目 | Scanning diamond NV center magnetometor probe fabricated by laser cutting and focused ion beam milling |
著者 | Yuta Kainuma, Kunitaka Hayashi, Chiyaka Tachioka, Mayumi Ito, Toshiharu Makino, Norikazu Mizuochi, and Toshu An |
掲載日 | 2021年12月28日(米国東部標準時間) |
DOI | 10.1063/5.0072973 |
【研究助成費】
本研究の一部は、次の事業の支援を受けて実施されました。
・科学技術振興機構(JST)戦略的創造研究推進事業CREST (JPMJCR1875)、
次世代研究者挑戦的研究プログラム(未来創造イノベーション研究者支援プログラム)(JPMJSP2102)
・澁谷学術文化スポーツ振興財団
・日本学術振興会(JSPS)科研費 基盤研究(C) (21K04878)
・文部科学省 光・量子飛躍フラッグシッププログラム(Q-LEAP, JPMXS0118067395)
【用語解説】
注1)集束イオンビーム加工(Focused Ion Beam, FIB)
イオンビームにより材料をナノスケールで加工する加工法。本研究では、ガリウム(Ga)イオンを用いてダイヤモンド片をプローブ形状に加工した。
注2)NV中心
ダイヤモンド中の窒素(N)不純物と空孔(V)が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定的にスピン量子状態が存在する。
注3)光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
令和4年1月5日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/01/05-1.html学生のZHOUさんが第29回日本ポリイミド・芳香族系高分子会議において優秀ポスター賞を受賞
学生のZHOU, Jiabeiさん(博士前期課程2年、環境・エネルギー領域、金子研究室)が第29回日本ポリイミド・芳香族系高分子会議において優秀ポスター賞を受賞しました。
日本ポリイミド・芳香族系高分子系会議では、芳香族系高分子を中心に幅広い分野における合成、材料分野を基軸として研究を展開する研究者・学生らの学術交流として、毎年、研究発表会を開催しています。今年はコロナ禍の影響で対面&オンラインのハイブリッド型で、令和3年12月10日に開催されました。
優秀ポスター賞は、発表会ポスターセッションにおいて優秀な研究発表を行った学生に授与されます。
*参考:第29回日本ポリイミド・芳香族系高分子会議
■受賞年月日
令和3年12月10日
■発表者名
Zhou Jiabei、Zhong Xianzhu、Nag Aniruddha、高田健司、金子達雄
■発表題目
Toughening of Ultrahigh Thermoresistant Biopolybenzimidazoles by Forming Porous Structure
■研究概要
本研究では、スーパーエンジニアリングプラスチックの中でも特に高レベルの力学的・熱的安定性を有するポリベンズイミダゾールの多孔質化による高タフネス化に成功しました。シリカ粒子の分散・除去によるハードテンプレート法で多孔質ポリベンズイミダゾールフィルムを作製したところ、フィルムの力学物性が大きく向上する性質を見出しました。走査型プローブ顕微鏡によりポリベンズイミダゾール表面の力学強度を観測したところ、シリカ分散により生じた空孔周辺の靭性が著しく向上し、その空孔率が増えるごとに高靭性を示すことが分かりました。従来、ポリベンズイミダゾールは高い化学的安定性から物性の改質は困難でしたが、本研究で確立した方法を用いれば複雑な工程無しで、成型物の物性を改良することができ、材料開発における重要な手法となることが期待されます。
■受賞にあたって一言
この度は、第29回日本ポリイミド・芳香族系高分子会議におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている金子達雄教授、高田健司助教にこの場をお借りして心より御礼を申し上げます。さらに、VISTECのNag Aniruddha様、株式会社島津製作所の長野浩一様、および多くのご助言をいただきました研究室のメンバーに深く感謝いたします。


令和3年12月28日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/12/28-1.html物質化学領域の都准教授の論文がAccounts of Materials Research誌の表紙に採択

物質化学領域の都 英次郎准教授の論文が米国化学会(ACS)刊行のAccounts of Materials Research誌の表紙(Front cover)に採択されました。本研究成果は日本学術振興会科学研究費補助金(基盤研究A)の支援のもと実施されました。
■掲載誌
Acc. Mater. Res. 2021, 2, 10, 858-862
掲載日2021年9月9日
■著者
Eijiro Miyako
■論文タイトル
Convergence of Liquid Metal Biotechnologies for Our Health
■論文概要
都研究室では、高い生体適合性と優れた物理化学的特性を有するガリウム・インジウム合金からなる室温で液体の金属(液体金属)の表面化学修飾法の開拓と細胞・生体組織との相互作用に関する研究を進めています(例えば、Nature Commun. 8, 15432, (2017).、Angew. Chem. Int. Ed. 56, 13606, (2017).)。本論文では、高機能性液体金属を用いたヘルスケアデバイスならびに医薬への応用と、それらを統合したバイオテクノロジーの将来展望について述べています。
論文詳細:https://pubs.acs.org/doi/10.1021/accountsmr.1c00126
表紙詳細:https://pubs.acs.org/toc/amrcda/2/10
令和3年10月26日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/10/26-2.html