研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。ダイヤモンド結晶中の色中心から飛び出す準粒子を発見

![]() ![]() ![]() ![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 慶應義塾大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド結晶中の色中心から飛び出す準粒子を発見
電子と結晶格子の振動をまとめて一つの粒子とみなしたものをポーラロン準粒子と呼びます。色中心と呼ばれる不純物を導入したダイヤモンド結晶に超短パルスレーザー光を照射し、その反射率の変化を精密測定した結果、ポーラロンが色中心の周りに飛び出して協力しあうことを発見しました。
ダイヤモンドの結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがあります。この窒素と空孔が対になったNitrogen- Vacancy(NV)中心はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となります。NV中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性を高空間分解能・高感度なセンサー機能として利用することが期待されています。NV中心の周りの結晶格子の歪み(ひずみ)により、NV中心の電子のエネルギー準位が分裂することが分かっていますが、電子と格子歪みの相互作用メカニズムなど詳細については、ほとんど解明されていませんでした。 本研究では、純度の高いダイヤモンド結晶の表面近傍に、密度を制御したNV中心を極めて薄いシート(ナノシート)状に導入しました。そのシートにパルスレーザーを照射し、ダイヤモンドの格子振動の様子を調べた結果、NV中心の密度が比較的低いにもかかわらず、格子振動の振幅が約13倍に増強されることが分かりました。そこで、量子力学に基づく計算手法(第一原理計算)でNV中心の周りの電荷状態を計算したところ、正負の電荷が偏った状態になっていることが分かりました。 電子と結晶格子の振動をまとめて一つの粒子とみなしたものをポーラロン準粒子と呼び、これにはいくつかのタイプがあります。ダイヤモンドでは、約70年前にフレーリッヒが提案したタイプは形成されないと考えられていましたが、今回の解析結果は、フレーリッヒ型のポーラロンがNV中心から飛び出してナノシート全体に広がっていることを示しています。本研究成果は、ポーラロンを利用したNV中心に基づく量子センシング技術の新たな戦略への道筋を開くものです。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明 教授
市川 卓人 大学院生(当時)
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀 准教授
慶應義塾大学 電気情報工学科
ポール フォンス 教授
【研究の背景】
ダイヤモンドは炭素原子のみからなる結晶で、高い硬度や熱伝導率を持っています。その特性を生かし、研磨材や放熱材料などさまざまな分野で応用されています。
そして、最近注目されているのが量子センサー注1)としての働きです。ダイヤモンド中の不純物には窒素やホウ素などさまざまなものがあります。その中でも、不純物原子で置換された点欠陥注2)に電子や正孔が捕捉され発光を伴う種類のものは、ダイヤモンドを着色させるため「色中心」と呼ばれ、量子準位の変化で温度や電場を読み取る量子センサーとして用いられています。量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心注3)と呼ばれる複合欠陥を用いたセンサーは、高空間分解能・高感度を必要とする細胞内計測やデバイス評価装置のセンサーへの応用が期待されています。
NV中心の周りの炭素原子の格子にはヤーン・テラー効果注4)により歪みが生じていることが分かっており、この格子歪みに伴いNV中心の電子状態が分裂し、NV中心からの発光強度などに影響を与えることが知られています。しかし、その格子歪みに関しては、ポーラロン注5)の存在が示唆されるものの、電子と格子振動の相互作用の観点からは十分な解明がなされていませんでした。
【研究内容と成果】
本研究では、極めて不純物が少ない高品質のダイヤモンド結晶に窒素イオン(14N+)を4種類の線量(ドーズ)で注入することで、NV中心の密度を制御しながら表面近傍40ナノメートルの深さに導入し、そのナノシートにおける炭素原子の集団運動(格子振動:フォノン注6))の様子を調べました。
フェムト秒(1000兆分の1秒、fs)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注7)を、NV中心を導入した高純度ダイヤモンド単結晶に照射し、ポンプ・プローブ分光法注8)によりダイヤモンド試料表面における反射率の変化を精密に計測しました。その結果、ポンプパルス照射直後(時間ゼロ)に見られる超高速に応答する電気・光学効果注9)の信号に加え、結晶中に発生した40テラヘルツ(1012 Hz)の極めて高い周波数を持つ位相がそろった格子振動を検出することに成功しました(図1)。さらにNV中心の密度を変化させて計測を行ったところ、14N+ドーズ量が1x1012/cm2のときに、格子振動の振幅(波形の縦軸方向の幅)が約13倍にも増強されることが分かりました(図2)。
通常の固体結晶では、格子欠陥を導入すると欠陥による格子振動の減衰が大きくなるため、格子振動の振幅は小さくなることが知られており、約13倍もの増強は固体物理学の範疇では説明できません。そこで第一原理計算注10)を用いて、NV中心の周りの電荷状態を計算したところ、正負の電荷が偏った状態になっていることが分かりました。これは、NV中心の周りに分極が発生しており、ヤーン・テラー効果によるポーラロンとは全く異なるフレーリッヒ型ポーラロン注11)がNV中心の周りに存在していることを示唆しています。また、約13倍もの格子振動の増強は、フレーリッヒ型ポーラロンがNV中心近傍から飛び出してナノシート全体に広がり、互いに協力し合っていることを示しています(図3)。一方、さらにドーズ量が増加すると、今度は欠陥による減衰により格子振動の振幅が小さくなることも分かりました(図2)。よって、ドーズ量が1x1012/cm2の時に増強と減衰がつり合い、最も協力現象が起こりやすいことが示されました。
【今後の展開】
本研究グループではこれまで、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)が発現することを報告しました。SHGは結晶にレーザー光を照射した際に、そのレーザー周波数の2倍の周波数の光が発生する現象です。今回の成果は、これらの先行研究に基づいたものです。
今回明らかにした物理的メカニズムは、レーザーパルスの強い電場下で起こるNV中心近傍のフレーリッヒ相互作用による協力的ポーラロンの生成と、それによるダイヤモンド格子振動の増強を示唆しています。また、今回観測したダイヤモンドの格子振動は、固体材料の中で最も高い周波数を持っています。つまり、これらの結果は、40テラヘルツという極めて高い周波数の格子歪み場による電子と格子振動の相互作用(ポーラロン準粒子)を利用したNV中心に基づく量子センシング技術の開発に向けた新たな戦略への道筋を開くものと言えます。
【参考図】
図1 本研究で行なった実験の概要図
NV中心なし、およびNV中心ありのダイヤモンド試料で得られた時間分解反射率信号。挿入図はNV中心の局所構造(楕円)およびポンプ・プローブ分光法の概要を示している。挿入図中の紫色の球が窒素(Nitrogen)を、点線で描かれた円が空孔(Vacancy)を示す。ポンプパルスを照射したのち、プローブパルスを照射するまでの時間を遅延時間(単位はfs)と呼ぶ。
図2 実験で得られた位相がそろった格子振動信号のドーズ依存性
NV中心なし、および4種類の窒素イオン(14N+)のドーズ量におけるダイヤモンド試料の時間分解反射率変化信号。黒線は、位相がそろった格子振動の信号を減衰型の正弦波(sin関数)によりフィットした結果である。ドーズ量が1x1012 N+cm-2の時に、位相がそろった格子振動の振幅がNV中心なしの場合と比較して約13倍に増強されていることが分かった。
図3 NVダイヤモンドにおける協力的ポーラロニック描像の模式図
図中のτは、パルスレーザー(ポンプパルス)照射後の経過時間(単位はfs)を表す。(a) 励起前のNVダイヤモンドの電荷状態を示す。NV中心は負に帯電したNV-状態(赤色の電荷分布)と電荷が中和されたNV0状態(緑色の電荷分布)が混在し、それぞれは局在している。挿入図はイオン化ポテンシャルINVを示し、rはイオン半径である。 (b) 光励起により、NV中心はポンプ電場Epumpによってイオン化される。 (c) 光励起直後、電荷は強く非局在化され、NV中心間の距離にわたって広がり、非線形分極PNLを形成する。 (d) 非線形分極PNLによりコヒーレントな(位相のそろった)格子振動が駆動される。
【用語解説】
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
結晶格子中に原子1個程度で存在する格子欠陥を指す。原子の抜け穴である空孔や不純物原子で置換された置換型欠陥などがある。
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」は、ダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NV中心には、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
固体中において、電子的に縮退した基底状態を持つ場合、結晶格子は変形する(歪ませる)ことによりエネルギーが低く安定な状態になる。このような効果をヤーン・テラー効果という。1937年にイギリスのハーマン・アーサー・ヤーンとハンガリーのエドワード・テラーにより提唱された。
結晶中の格子振動と電子が相互作用すると、結合して相互作用の衣を着た素励起である準粒子、すなわちポーラロンが生成される。ポーラロンの存在は1933年にロシアの物理学者レフ・ダヴィドヴィッチ・ランダウによって提案された。フレーリッヒが提案したタイプのポーラロン注11)はこれまで極性をもつ半導体や誘電体など(分極を有する材料)で報告されているが、ダイヤモンドは極性材料ではないため、フレーリッヒ型ポーラロンは観測されていなかった。
原子の集団振動を格子振動と呼ぶ。格子振動を量子化したものをフォノンと呼ぶ。
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
強い励起パルス(ポンプパルス)により試料を励起し、時間遅延をおいて弱い探索パルス(プローブパルス)を照射し、プローブ光による反射率変化などから試料内部に励起された物質の応答を計測する手法のこと。
物質に電場を印可すると、その強度に応じて屈折率が変化する効果のこと。
「もっとも基本的な原理に基づく計算」という意味で、量子力学の基本法則に基づいた電子状態理論を用いて電子状態を解く計算手法である。物質の光学特性などの物性を求めることができる。
電子と縦波光学フォノンの間の相互作用をフレーリッヒ相互作用と呼ぶ。1954年にドイツの物理学者ヘルベルト・フレーリッヒにより提唱された。この相互作用により生じたポーラロンがフレーリッヒ型ポーラロンである。
【研究資金】
本研究は、科研費による研究プロジェクト(22H01151, 22J11423, 22KJ0409, 23K22422, 24K01286)、および科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)(JPMJCR1875)の一環として実施されました。
【掲載論文】
題名 | Cooperative dynamic polaronic picture of diamond color centers. (ダイヤモンド色中心の協力的な動的ポーラロニック描像) |
著者名 | T. Ichikawa, J. Guo, P. Fons, D. Prananto, T. An, and M. Hase |
掲載誌 | Nature Communications |
掲載日 | 2024年8月30日 |
DOI | 10.1038/s41467-024-51366-x |
令和6年9月2日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/09/02-1.htmlエレクトロニクスの機能的多様化を目指す化合物半導体デバイス技術


エレクトロニクスの機能的多様化を目指す
化合物半導体デバイス技術
化合物半導体エレクトロニクス研究室
Laboratory on Compound Semiconductor Electronics
教授:鈴木 寿一(SUZUKI Toshi-kazu)
E-mail:
[研究分野]
化合物半導体エレクトロニクス
[キーワード]
化合物半導体デバイス、異種材料融合技術、超高速デバイス、省エネルギーデバイス、デバイス計測技術
研究を始めるのに必要な知識・能力
必要な知識・能力ということではありませんが、ものごとの本質を理解したいという意欲、数学や物理学の基礎力とそれを支える論理性は、研究を進める際に重要であると考えています。
この研究で身につく能力
化合物半導体電子デバイスの作製技術および測定解析技術を身に付けながら、デバイス内の電子の挙動を物理的に考察して理解することができるようになると思います。こうした能力は、将来エレクトロニクスの広い分野で活躍するための素地となると考えています。また、産学連携を通じて産業界の問題意識を感じてもらうことも期待しています。さらに、日本語および英語によるプレゼンテーション能力の向上も目指します。
【就職先企業・職種】 総合電機、半導体・電子部品、半導体製造装置、通信機器、輸送機器、自動車
研究内容

化合物半導体高速トランジスタ

デバイスの周波数応答特性

異種材料基板上化合物半導体デバイス

異種材料閉じ込めによる二次元電子状態
<エレクトロニクスの機能的多様化に向けて>
現在のディジタルエレクトロニクスの主役であるSiデバイスは、微細化による性能向上を続けてきました。しかし、こうした「More Moore」の軸に沿った進歩の限界が意識されるようになっています。今後のエレクトロニクスの発展のためには、「More than Moore」の視点に基づく機能的多様化が必要であり、それに向けて重要な役割を果たすのが化合物半導体デバイスです。
<化合物半導体とは?>
III-V 族を中心とした化合物半導体は多彩な材料系であり、これまでもSi では不可能な様々な機能を有するデバイスに応用されてきました。特に、高い電子移動度と高い電子飽和速度を有する化合物半導体は高速電子デバイス応用に、また、直接遷移型の化合物半導体は光デバイス応用に好適であるため、化合物半導体を用いたデバイスは、高速アナログ・ミックスドシグナルエレクトロニクス、光エレクトロニクス分野で利用されてきました。これまで、GaAs 基板上格子整合材料が化合物半導体の第一世代として、InP 基板上格子整合材料が第二世代として大きな役割を果たしてきましたが、今後は、高In 組成InGaAs、InAs、Sb 系材料などのナローギャップ化合物半導体と、GaN、AlN などのワイドギャップ化合物半導体の重要性が高まると考えられます。これらナローギャップ半導体は中赤外光に対応するエネルギーギャップを、ワイドギャップ半導体は紫外光に対応するエネルギーギャップを有しており、それぞれの波長域における光デバイス応用に重要です。また、電子有効質量は概ねエネルギーギャップと比例関係にあり、ナローギャップ化合物半導体は小さい電子有効質量を有しています。電子有効質量が小さければ、高い電子移動度と高い電子飽和速度が得易いため、ナローギャップ半導体は超高速デバイス応用に有用です。ただし、高耐圧化に適したワイドギャップ半導体に対し、ナローギャップ半導体の耐圧は低く、充分なパワー性能を得ることが困難です。一方、GaN は電子有効質量が大きく、この点ではデバイス高速化に有利ではないように思われますが、大きい光学フォノンエネルギーと特有のバンド構造により、電子移動度こそ低いものの、高い電子飽和速度を有しているため、高速性能とパワー性能を併せ持ったデバイスへの応用が期待されます。
<本研究室の取り組み>
こうした特長を有する化合物半導体を適材適所にデバイス応用することは、エレクトロニクスの機能的多様化に向けて極めて重要です。さらに、化合物半導体と異種材料を融合集積する技術によって、より高度な機能的多様化の可能性も期待できます。こうした背景のもと、本研究室では、ナローギャップ/ ワイドギャップ化合物半導体エレクトロニクスの研究に取り組んでいます。次世代の超高速デバイスや省エネルギーデバイスを目指し、ナロー/ ワイドギャップ化合物半導体デバイス技術とそれらの異種材料融合技術の研究を進めながら、デバイス動作を深く理解するためのデバイス計測技術も開拓しています。
主な研究業績
- Low-frequency noise in AlTiO/AlGaN/GaN metal-insulator-semiconductor field-effect transistors with non-gate-recessed or partially-gate-recessed structures, D. D. Nguyen, Y. Deng, and T. Suzuki, Semicond. Sci. Technol. 38, 095010 (2023).
- Mechanism of low-temperature-annealed Ohmic contacts to Al-GaN/GaN heterostructures: A study via formation and removal of Ta-based Ohmic-metals, K. Uryu, S. Kiuchi, T. Sato, and T. Suzuki, Appl. Phys. Lett. 120, 052104 (2022).
- Electron mobility anisotropy in InAs/GaAs(001) heterostructures, S. P. Le and T. Suzuki, Appl. Phys. Lett. 118, 182101 (2021).
使用装置
分子線エピタキシー装置
電子線・紫外線リソグラフィー装置
パラメータアナライザ
ネットワークアナライザ
ダイナミックシグナルアナライザ
研究室の指導方針
・理学の心で工学を。ものごとの本質を理解することを大切にします。
・少しづつであっても、自分でよく考え、納得しながら前進することが重要であると考えています。
・学生と教員がよき共同研究者となり、お互いに成長することを目指します。
・毎週行う研究報告会・日本語輪講・英語輪講を通じ、エレクトロニクス分野で活躍するための基礎を固めます。
[研究室HP] URL:https://www.jaist.ac.jp/nmcenter/labs/suzuki-www/
原子スケールナノテクノロジーで、革新的エネルギー・環境デバイスを開拓!


原子スケールナノテクノロジーで、
革新的エネルギー・環境デバイスを開拓!
R7年10月以降に入学する学生の受け入れは行いません
水田研究室 MIZUTA Laboratory
教授:水田 博(MIZUTA Hiroshi)
E-mail:
[研究分野]
サイレントボイスセンシング、超高感度センサ、熱制御素子
[キーワード]
グラフェン、ナノ電子機械システム(NEMS)、雷センサ、においセンサ、熱整流デバイス、バレートロニクス、量子デバイス、極限構造作製、第一原理計算
研究を始めるのに必要な知識・能力
水田研究室では物性物理、電気・電子工学、機械工学、化学、コンピュータ、IoT/AIの融合領域研究を行っていますので、これらのどれか1つ(あるいは複数)の基礎を修得していることが必要です。さらに、その専門を広げて行く好奇心旺盛な人が適しています。
この研究で身につく能力
水田研究室では、グラフェンをはじめとする新奇な原子層材料をベースに、NEMS(ナノ電子機械システム)技術と1ナノメートル精度の超微細加工技術を駆使して、超高感度センサデバイス、超低消費電力スイッチ、熱整流素子、バレートロニクスデバイスなどを開発しています。これらの研究を通して、①電子線直接描画や最先端ヘリウムイオンビーム技術による極微デバイス作製技術、②環境制御型・高周波プローブステーションや希釈冷凍機などを用いた極限電気特性測定、③第一原理計算からデバイス・回路シミュレーションに至る設計・解析技術、などを幅広く修得することができます。また、欧州を中心に海外研究機関と緊密に連携し、学生・スタッフが頻繁に交流しているため、研究を進める中で自然に国際的コミュニケーションスキルとリーダーシップ能力を身につけていくことが可能です。
【就職先企業・職種】 ICT企業、製造業、国立研究開発法人
研究内容
水田研究室では、グラフェンや極薄シリコン膜をはじめとする新奇な原子層材料と、原子スケール精度の超微細加工技術を駆使して、超高感度センサ、超低消費電力NEMS(ナノ電子機械システム)スイッチ、バレートロニクス、熱フォノンエンジニアリングなどを開発し、グローバルな環境・エネルギー問題に貢献することを目指しています。
具体的には以下の4テーマを中心に研究を推進しています。

図1.

図2.

図3.
①サイレントボイスセンシングの研究
従来のセンサ技術では検出が難しい自然界や生体の様々な微小信号(サイレントボイス(声なき声))を検出する革新的センサ素子の研究を行っています。落雷の予測を可能とする大気中電界センサ(図1右)や、疾病の予兆検出を目的とした超低濃度の皮膚ガス(におい)センサ(図1左)など、素子の原理探索から試作、測定データ解析技術の研究、さらに実用化研究まで、産業界とも連携して精力的に推進しています。
②超低電圧動作グラフェンNEMSスイッチの研究
グラフェンやhBN膜など異種原子層材料をファンデルワールス積層させたNEMS素子を作製し、その電気・機械的な動作の解明と超低電圧・急峻動作スイッチ(図2)の研究を行っています。シリコンMOSFETの理論限界を超える急峻スイッチング特性と0.5V未満の超低電圧動作を実現しています。
③ナノスケール熱制御技術の研究
最先端技術ヘリウムイオンビームミリング技術を用いて宙吊りグラフェン上に直径10nm以下のナノ孔周期的構造を形成します。特に非対称構造における熱整流素子(図3右)の実現を目指しています。
④原子層材料によるバレートロニクスの研究
バレー自由度を新たな情報担体として利用するバレートロニクスは、従来のエレクトロニクスを超える将来の情報処理技術として期待されています。原子層材料を積層した様々な構造におけるベリー曲率発生(図3左)を理論と実験の両面から探求しています。
主な研究業績
- J. Sun, M. Muruganathan, and H. Mizuta, ‘ Room temperature detection of individual molecular physisorption using suspended bilayer graphene’, Science Advances vol.2, no.4, e1501518 (2016) DOI:10.1126/sciadv.1501518
- A. Kareekunnan, T. Agari, A. M. M. Hammam, T. Kudo, T. Maruyama, H. Mizuta, and M. Muruganathan, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, ACS Omega 6, 34086-34091 (2021) DOI: 10.1021/acsomega.1c05530
- F. Liu, M. Muruganathan, Y. Feng, S. Ogawa, Y. Morita, C. Liu, J. Guo, M. Schmidt and H. Mizuta, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, Nano Futures 5(4), 045002 (2021) DOI: https://doi10.1088/2399-1984/ac36b5
使用装置
電子線リソグラフィー、走査型電子顕微鏡、
電界電離ガスイオン源(GFIS)微細加工装置、ヘリウムイオン顕微鏡(産業技術総合研究所)
環境制御型高周波プローバー、マルチガス種対応プローバー、
第一原理・量子輸送シミュレータ
研究室の指導方針
最先端のナノテクノロジーを駆使して、現在のCMOS技術を越える‘More than Moore’ & ‘Beyond CMOS’世代のエマージングテクノロジ開拓を目指しています。「まだ世界で誰も実現したことのない機能のデバイスをこの手で初めて開発してみたい!」という意欲のあるあなた、ぜひ一緒に研究しましょう。また、欧州・アジアを中心に海外研究機関に滞在しての研究活動も積極的に推進していますので、国際的に活躍したい方も大歓迎です。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/mizuta-lab/
第10回研究科セミナー(ナノマテリアル・デバイス研究領域)「機能性化合物の分子設計と社会実装」
日 時 | 令和7年9月19日(金)15:30~17:00 |
場 所 | 知識科学講義棟2棟 中講義室 |
講演題目 | 機能性化合物の分子設計と社会実装 |
講演者 | コニカミノルタ株式会社 技術開発本部 技術顧問 北 弘志 氏 |
使用言語 | 日本語 |
お問合せ先 | 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域 教授 村田 英幸(E-mail:murata-h ![]() |
● 参加申込・予約は不要です。直接会場にお越しください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2025/08/08-1.html第3回研究科セミナー(ナノマテリアル・デバイス研究領域)「円偏光イメージングによる磁気・カイラル構造分析とその展望」
日 時 | 令和7年5月28日(水)15:30~16:30 |
場 所 | マテリアルサイエンス講義棟 1階 小ホール |
講演題目 | 円偏光イメージングによる磁気・カイラル構造分析とその展望 |
講演者 | 文部科学省 初等中等教育局 教科書調査官(物理) 成島 哲也 氏 |
使用言語 | 日本語 |
お問合せ先 | 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域 准教授 安 東秀 (E-mail:toshuan ![]() |
● 参加申込・予約は不要です。直接会場にお越しください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2025/05/26-1.htmlナノマテリアル・デバイス研究領域のHO教授のチームがRoboSoft 2025 Competitionにおいて優勝

ナノマテリアル・デバイス研究領域のHO, Anh Van教授のチームが、8th IEEE-RAS International Conference on Soft Robotics (RoboSoft 2025) Competitionにおいて、Manipulation Challenge 1st placeを獲得しました。
RoboSoft 2025は"Interdisciplinarity and Widening Horizons"をテーマとして、令和7年4月23日~26日にかけて、スイス(ローザンヌ)にて開催されたソフトロボティクスに関する国際会議です。同会議では、研究者、業界の専門家、学生が一堂に会し、最先端の進歩を探求し、様々な分野における知見を共有しました。
同会議と併催で行われたコンペティションは、実際のロボットアプリケーションに焦点を当てたシナリオで構成され、「管内移動」、「デリケートな果物の収穫」、「医療スクリーニングと介入」という3つの具体的な課題が提示されました。HO教授のチームは「デリケートな果物の収穫」の課題に参加し、最も高い得点を獲得しました。
※参考:RoboSoft 2025(Competitions)
■受賞年月日
令和7年4月26日
■研究題目、論文タイトル等
ROSE: A Rotation-Based Soft Gripper Harnessing Morphological Computation for Adaptive and Robust Manipulation
■研究者、著者
Khoi Thanh Nguyen, Nhan Huu Nguyen, and Van Anh Ho
■受賞対象となった研究の内容
このコンペティションでは、ラズベリーのような繊細な果実を収穫する際のソフトロボットグリッパーの有効性を評価します。果実の遮蔽状態の変化、密集、動きによる乱れといった実際の農業現場に見られる課題を再現することで、現実的な収穫条件をシミュレーションしています。
フィールドに即した環境を再現することで、この競技は、実用的な果実収穫において柔軟性(コンプライアンス)と力の制御を効果的に両立できるソフトグリッパーの設計を明らかにします。
この結果は、農業分野におけるソフトロボティクスの重要な役割を強調し、グリッパー技術の現在の進展を示すとともに、自動化かつ繊細な作物収穫システムに対する大きな成長可能性を示唆しています。
提案されている課題は以下の通りです:
・課題1:ロボットが単体のベリーを摘み取る
・課題2:ロボットが密集しているベリーを摘み取る
・課題3:葉に部分的に隠れた単体のベリーを摘み取る
・課題4:葉に部分的に隠れた密集したベリーを摘み取る
・課題5:動いている単体のベリーを摘み取る
当チームのソフトグリッパー「ROSE」は、すべての課題を8分未満で成功裏に完了しました。
■受賞にあたって一言
今回のコンテストは、非常に意義があり、必要な取り組みであると感じました。競技シナリオは、距離制限、葉や枝といった障害物の存在、果実の揺れ、さらには果実の柔らかさまでも再現されており、現実の環境を非常によく模倣していました。そのため、同コンテストは、ベリーの収穫能力を評価するための優れたベンチマークとなります。
また、他のチームの興味深い設計を直接見られる場でもあり、それらの実際の効果を確認できる貴重な機会でもありました。さらに、アイデアを交換したり、将来的な共同研究の可能性について議論したりするための交流の場としても、とても良い機会になりました。
今回、Holabの収穫アームが1位を獲得できたことを非常に嬉しく思っています。この成果により、多くの人に私たちのアームを知ってもらうことができ、JAISTの存在も広く認識されるようになりました。同コンテストを通じて、自分たちの技術の実力を再確認するとともに、現時点での課題も明確になり、今後の改善に向けた大きなヒントを得ることができました。
令和7年5月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/05/20-1.htmlナノマテリアル・デバイス研究領域のHo教授の「ROSEハンド」が日本科学未来館1階 「Tokyo Mirai Park」内にて展示されます
東京都は「東京ベイeSGプロジェクト」として、日本科学未来館1階に「Tokyo Mirai Park」をオープンし、最先端テクノロジーを展示しており、令和7年3月19日(水)からは、展示をリニューアルし、「やわらかい」をテーマにしたユニークなテクノロジーを展示します。
今回、ナノマテリアル・デバイス研究領域のHo Anh-Van(ホ アン ヴァン)教授のバラの花から着想を得た、モノを包み込むように掴むソフトロボットハンド「ROSEハンド」が展示されますので、ぜひお立ち寄りください。
東京都の報道発表資料はこちら(外部リンク)
「Tokyo Mirai Park」における展示のリニューアル及び「先行プロジェクト」成果発表会の開催について
令和7年3月13日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/03/13-1.htmlナノマテリアル・デバイス研究領域の村田教授が応用物理学会第14回(2024年度)北陸・信越支部貢献賞を受賞
ナノマテリアル・デバイス研究領域の村田英幸教授が公益社団法人応用物理学会第14回(2024年度)北陸・信越支部貢献賞を受賞しました。
応用物理学会は、応用物理学および関連学術分野の研究の促進ならびに成果の普及に関する事業を行い、もって社会の発展に寄与することを目的として設立されました。
応用物理学会北陸・信越支部では、北陸・信越支部活動を通じて応用物理学の発展に顕著な貢献をなした会員に対して、その功績を称え、応用物理学会北陸・信越支部貢献賞を授与しています。
村田教授は、北陸・信越支部の運営と活性化、および有機電子デバイスに関する研究による応用物理学の発展に対する顕著な貢献が評価され、この度の受賞となりました。
※参考:応用物理学会北陸・信越支部
■受賞年月日
令和6年12月7日
■受賞にあたって一言
この度、北陸・信越支部貢献賞を授与していただいたことを大変光栄に存じます。ご推挙いただいた北陸・信越支部幹事の皆様に心から厚くお礼を申し上げます。応用物理学会北陸・信越支部は、新潟、長野、富山、石川、福井の地区幹事から構成され、応用物理学会の地方支部の中で独自に国際学会(EM-NANO)を主催している唯一の支部です。2013年に金沢で開催したEM-NANO2013で組織委員長を務めさせていただいたことは大変貴重な経験となりました。
支部主催の学術講演会では、電気・電子、システム、材料、半導体、光、計測、生物、情報工学など様々な学際分野に関連した発表が活発に行われています。学生の発表に対して教育的な観点からコメントや質問をしていただけるので、応用物理分野で学び始めた学生にとっては最適な発表の場と思います。支部の運営に携わってこられた先生方のご尽力に対して敬意を表すると共に、今後益々の支部のご発展を祈念いたします。
令和7年1月23日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/01/23-2.html第25回研究科セミナー(ナノマテリアル・デバイス研究領域)「HfO2系強誘電体薄膜の特性とその考え方」
日 時 | 令和6年12月19日(木)15:30~17:00 |
場 所 | マテリアルサイエンス研究棟Ⅳ棟8階 中セミナー室 |
講演題目 | HfO2系強誘電体薄膜の特性とその考え方 |
講演者 | 東京大学 名誉教授 鳥海 明 氏 |
使用言語 | 日本語 |
お問合せ先 | 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域 教授 徳光 永輔 (E-mail:e-toku ![]() |
● 参加申込・予約は不要です。直接会場にお越しください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2024/11/22-1.html第26回研究科セミナー(ナノマテリアル・デバイス研究領域)「科学研究とスタートアップのための家電製品のハッキング」
日 時 | 令和6年11月25日(月)13:30~15:00 |
場 所 | 知識科学講義棟 2階 中講義室 |
講演題目 | 科学研究とスタートアップのための家電製品のハッキング |
講演者 | Associate Professor, Edwin En-Te Hwu Technical University of Denmark |
使用言語 | 英語 |
お問合せ先 | 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域 准教授 安 東秀(E-mail:toshuan ![]() |
● 参加申込・予約は不要です。直接会場にお越しください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2024/11/21-1.html第20回研究科セミナー(ナノマテリアル・デバイス研究領域)「Ultrafast Photoelectron Spectroscopy and Microscopy on Nanofemto Scale」
日 時 | 令和6年10月15日(火)10:00~11:30 |
場 所 | マテリアルサイエンス講義棟 1階 小ホール |
講演題目 | Ultrafast Photoelectron Spectroscopy and Microscopy on Nanofemto Scale |
講演者 | Professor, Hrvoje Petek University of Pittsburgh |
使用言語 | 英語 |
お問合せ先 | 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域 教授 高村 由起子(E-mail:yukikoyt ![]() |
● 参加申込・予約は不要です。直接会場にお越しください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2024/10/10-2.html第12回研究科セミナー(ナノマテリアル・デバイス研究領域)「Science of van der Waals Materials in Czech Republic - Landscape for Collaboration and Academic Exchange」
日 時 | 令和6年9月2日(月)15:30~17:00 |
場 所 | マテリアルサイエンス講義棟 1階 小ホール |
講演題目 | Science of van der Waals Materials in Czech Republic - Landscape for Collaboration and Academic Exchange |
講演者 | Charles University (CU) Professor, Jana Vejpravova J. Heyrovský Institute of Physical Chemistry Vice-Director, Martin Kalbac |
使用言語 | 英語 |
お問合せ先 | 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域 教授 高村 由起子(E-mail:yukikoyt ![]() |
● 参加申込・予約は不要です。直接会場にお越しください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2024/08/30-1.html第11回研究科セミナー(ナノマテリアル・デバイス研究領域)「高・中エントロピー合金中に短距離秩序は実在するのか?」
日 時 | 令和6年8月28日(水)15:30~17:00 |
場 所 | マテリアルサイエンス講義棟 1階 小ホール |
講演題目 | 高・中エントロピー合金中に短距離秩序は実在するのか? |
講演者 | 東北大学 金属材料研究所 助教 池田 陽一 氏 |
使用言語 | 日本語 |
お問合せ先 | 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域 教授 大島 義文(E-mail:oshima ![]() |
● 参加申込・予約は不要です。直接会場にお越しください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2024/08/26-1.html新奇ナノスケールデバイス研究拠点セミナー
日 時 | 令和6年3月1日(金)15:00~16:30 |
場 所 | マテリアルサイエンス研究棟4棟8階 中セミナー室 |
講演題目 | 「電子放出位置のサブナノメートル光制御」 ―超高速スイッチの一分子への集積化― |
講演者 | 静岡大学 柳澤啓史 特任准教授 |
使用言語 | 日本語 |
学生の大橋さんが第14回半導体材料・デバイスフォーラムにおいて最優秀口頭発表賞を受賞

学生の大橋亮太さん(博士前期課程2年、サスティナブルイノベーション研究領域、大平研究室)が第14回半導体材料・デバイスフォーラムにおいて最優秀口頭発表賞を受賞しました。
第14回半導体材料・デバイスフォーラムは、熊本高等専門学校が主催し、令和5年12月9日、九州工業大学にてハイブリッド開催されました。同フォーラムは半導体材料・関連デバイス研究分野に重点を置き、研究発表や討論を通じて、高専学生と大学(院)生との学生間交流を図り、高専学生の教育・研究力向上への貢献を目指しています。
最優秀口頭発表賞は、同フォーラムにおいて、半導体デバイスの発展に貢献しうる最も優秀な口頭発表をした筆頭著者に贈られるものです。
※参考:第14回半導体材料・デバイスフォーラム
■受賞年月日
令和5年12月9日
■研究題目
ベイズ最適化を適⽤したCat-CVD i-a-Si およびn-a-Siの堆積条件探索
■研究者、著者
大橋亮太、Huynh Thi Cam Tu、東嶺孝一、沓掛健太朗、大平圭介
■受賞対象となった研究の内容
現在、太陽電池市場の大部分を占めているSi系太陽電池において、特に高効率なSiヘテロ接合(SHJ)太陽電池に着目し、高効率化を目指し研究を行っている。SHJ太陽電池の作製にあたり、我々は触媒化学気相堆積(Cat-CVD)法を用いて結晶Siウエハ上に非晶質Si(a-Si)を堆積している。しかし、堆積時のパラメータが多いため、高性能なSHJ太陽電池の作製条件の探索に膨大な時間がかかる。そこで、ベイズ最適化を用いて効率よく高い性能を示す条件探索を行っている。
本講演では、ベイズ最適化を用いて真性非晶質Si(i-a-Si)層とn型非晶質Si(n-a-Si)層の堆積条件探索について発表した。i-a-Si層及びn-a-Si層の探索を、それぞれ20回、21回とかなり少ない回数で完了することができ、高いパッシベーション性能と十分な導電性を兼ね備えるa-Si膜の堆積条件を確立した。
■受賞にあたって一言
この度、第14回半導体材料・デバイスフォーラムにおいて、最優秀口頭発表賞を賜り、大変光栄に思います。高専生が多い会議でしたので、自分の研究の面白さやJAISTの良さが少しでも伝わっていれば嬉しいです。本研究の推進にあたり、ご指導、ご協力いただいた大平圭介教授、HUYNH, Tu Thi Cam特任助教をはじめとした大平研究室メンバーの皆様に、この場を借りて厚く御礼申し上げます。また、ベイズ最適化のご指導をいただいた沓掛健太朗研究員(理化学研究所)、透過型電子顕微鏡にて試料の観察をご担当いただいた技術専門員の東嶺孝一様にも、心より感謝申し上げます。
令和6年1月22日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/01/22-1.html非対称な二次元シートを利用したナノサイズの巻物構造の実現 〜高性能な触媒や発電デバイスへの応用に期待〜

![]() |
東京都公立大学法人 国立大学法人筑波大学 国立大学法人東北大学 国立大学法人東海国立大学機構 国立大学法人金沢大学 国立大学法人 |
![]() |
東京都公立大学法人 国立大学法人筑波大学 国立大学法人東北大学 国立大学法人東海国立大学機構 国立大学法人金沢大学 国立大学法人 |
非対称な二次元シートを利用したナノサイズの巻物構造の実現
~高性能な触媒や発電デバイスへの応用に期待~
【概要】
東京都立大学、産業技術総合研究所、筑波大学、東北大学、名古屋大学、金沢大学、北陸先端科学技術大学院大学らの研究チーム(構成員及びその所属は以下「研究チーム構成員」のとおり)は、次世代の半導体材料として注目されている遷移金属ダイカルコゲナイド(TMD)(注1)の単層シートを利用し、最小内径5 nm程度のナノサイズの巻物(スクロール)状構造の作製に成功しました。TMDは遷移金属原子がカルコゲン原子に挟まれた3原子厚のシート状物質であり、その機能や応用が近年注目を集めています。一般に、TMDは平坦な構造が安定であり、円筒などの曲がった構造は不安定な状態となります。本研究では、上部と下部のカルコゲン原子の種類を変えたヤヌス構造と呼ばれるTMDを作製し、この非対称な構造がスクロール化を促進することを見出しました。理論計算との比較より、最小内径が5 nm程度まで安定な構造となることを確認しました。また、スクロール構造に由来して軸に平行な偏光を持つ光を照射したときに発光や光散乱の強度が増大すること、表面の電気的な特性がセレン側と硫黄側で異なること、及びスクロール構造が水素発生特性を有するなどの基礎的性質を明らかにしました。
今回得られた研究成果は、平坦な二次元シート材料を円筒状の巻物構造に変形する新たな手法を提案するものであり、ナノ構造と物性の相関関係の解明、そしてTMDの触媒特性や光電変換特性などの機能の高性能化に向けた基盤技術となることが期待されます。
本研究成果は、2024年1月17日(米国東部時間)付けでアメリカ化学会が発行する英文誌『ACS Nano』にて発表されました。
【研究チーム構成員】
【ポイント】
- 遷移金属ダイカルコゲナイド(TMD)のシートを安定した構造で巻物(スクロール)にする新たな手法を開発。
- TMDの上部と下部の組成を変えた「ヤヌス構造」が、スクロール化を促進することを発見。
- TMDの曲率や結晶の対称性などの制御を通じた触媒や光電変換機能の高性能化が期待。
【研究の背景】
近年、ナノチューブと呼ばれるナノサイズの円筒状物質は、その特徴的な構造に由来する物性、そして触媒や太陽電池等の光電変換デバイス等への応用について世界中で盛んに研究が行われています。一般に、ナノチューブは、厚みが1原子から数原子程度の極薄の二次元的なシート構造を円筒状に丸めた構造を持つナノ物質であり、代表的な物質として、炭素の単原子層であるグラフェンを丸めたカーボンナノチューブが知られています。また、遷移金属原子がカルコゲン原子に挟まれた構造を持つ遷移金属ダイカルコゲナイド(TMD)についても、二次元シートやナノチューブ構造が存在します。最近では、TMDのナノチューブが同軸状に重なった多層TMDナノチューブにおいて、その巻き方に起因する超伝導や光起電力効果を示すことが報告されました。一方、このような多層TMDナノチューブは、様々な直径や巻き方などを持つナノチューブが同軸状に重なっているため、その結晶構造の同定は困難となります。その電気的・光学的性質と構造の相関を明らかにするには、ナノチューブの巻き方を制御することが重要な課題となっていました。
このような課題の解決に向け、これまで主に二つのアプローチが報告されてきました。一つは、多層TMDナノチューブとは別に、構造の同定が容易な単層TMDナノチューブに着目したものです。特に、カーボンナノチューブ等をテンプレートに用いた同軸成長により、単層TMDナノチューブを成長させることができます。本研究チームの中西勇介助教、宮田耕充准教授らは、これまで絶縁体のBNナノチューブの外壁をテンプレートに用いたMoS2(二硫化モリブデン)の単層ナノチューブ(https://www.tmu.ac.jp/news/topics/35021.html)や、様々な組成のTMDナノチューブ(https://www.tmu.ac.jp/news/topics/36072.html)の合成に成功してきました。しかし、同軸成長法では、得られるTMDナノチューブの長さが多くの場合は100 nm以下と短く、物性や応用研究には更なる合成法の改善が必要となっています。もう一つのアプローチとして、単結晶性の単層のTMDシートを巻き取り、各層の結晶方位が揃ったスクロール構造にする手法も知られていました。一般にマイクロメートルサイズの長尺な構造が得られますが、TMDシートを曲げた場合、遷移金属原子を挟むカルコゲン原子の距離が伸び縮みするため、構造的には不安定となります。そのため、得られるスクロール構造も内径が大きくなり、また円筒構造ではなく平坦な構造になりやすいなどの課題がありました。
【研究の詳細】
本研究では、長尺かつ微小な内径を持つスクロール構造の作製に向け、上部と下部のカルコゲン原子の種類を変えたヤヌス構造と呼ばれるTMDに着目しました。このヤヌスTMDでは、上下のカルコゲン原子と遷移金属原子の距離が変わることで、曲がった構造が安定化することが期待できます。このようなヤヌスTMDを作製するために、研究チームは、最初に化学気相成長法(CVD法)(注2)を利用し、二セレン化モリブデン(MoSe2)および二セレン化タングステン(WSe2)の単結晶性の単層シートをシリコン基板上に合成しました。この単層シートに対し、水素雰囲気でのプラズマ処理により、単層TMDの上部のセレン原子を硫黄原子に置換し、単層ヤヌスTMDを作製できます。次に、有機溶媒をこの単層ヤヌスTMDに滴下することで、シートの端が基板から剥がれ、マイクロメートル長のスクロール構造を形成しました(図1)。
図1 単層ヤヌスMoSSeを利用したナノスクロールの作製手法。(a)単層MoSe2の構造モデル。(b)熱CVDシステムの概略図。(c)単層ヤヌスMoSSeの構造モデル。(d)水素プラズマによる硫化プロセスの概略図。(e)ヤヌスナノスクロールの構造モデル。(f)有機溶媒の滴下によるナノスクロールの作製方法の概略図。 ※原論文「Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides」の図を引用・改変したものを使用しています。 |
この試料を電子顕微鏡で詳細に観察し、実際にスクロール構造を形成したこと(図2)、全ての層が同一の方位を持つこと、そして最小内径で5 nm程度まで細くなることなどを確認しました。観察された内径に関しては、ヤヌスTMDのナノチューブでは最小で直径が5 nm程度までは、フラットなシート構造よりも安定化するという理論計算とも一致します。また、このスクロール構造に由来し、軸に平行な偏光を持つ光を照射したときに発光や光散乱の強度が増大すること、表面の電気的な特性がセレン原子側と硫黄原子側で異なること、およびスクロール構造が水素発生特性を有することも明らかにしました。
図2 ナノスクロールの電子顕微鏡写真。
※原論文「Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides」の図を引用・改変したものを使用しています。 |
【研究の意義と波及効果】
今回得られた研究成果は、平坦な二次元シート材料を円筒状のスクロール構造に変形する新たな手法を提案するものです。特に、非対称なヤヌス構造の利用は、様々な二次元シート材料のスクロール化に適用することができます。また、単結晶のTMDを原料に利用することで、スクロール内部の層の結晶方位を光学顕微鏡による観察で容易に同定すること、そして様々な巻き方を持つスクロールの作製が可能になりました。今後、本研究成果より、様々な組成や構造を持つスクロールの実現、電気伝導や光学応答と巻き方の関係の解明、触媒やデバイス応用など、幅広い分野での研究の展開が期待されます。
【用語解説】
タングステンやモリブデンなどの遷移金属原子と、硫黄やセレンなどのカルコゲン原子で構成される層状物質。遷移金属とカルコゲンが1:2の比率で含まれ、組成はMX2と表される。単層は図1aのように遷移金属とカルコゲン原子が共有結合で結ばれ、3原子厚のシート構造を持つ。近年、TMDが持つ優れた半導体特性により大きな注目を集めている。
原料となる材料を気化させて基板上に供給することにより、薄膜や細線を成長させる合成技術。
【発表論文】
タイトル | Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides |
著者名 | Masahiko Kaneda, Wenjin Zhang, Zheng Liu, Yanlin Gao, Mina Maruyama, Yusuke Nakanishi, Hiroshi Nakajo, Soma Aoki, Kota Honda, Tomoya Ogawa, Kazuki Hashimoto, Takahiko Endo, Kohei Aso, Tongmin Chen, Yoshifumi Oshima, Yukiko Yamada-Takamura, Yasufumi Takahashi, Susumu Okada, Toshiaki Kato*, and Yasumitsu Miyata* *Corresponding author |
雑誌名 | ACS Nano |
DOI | https://doi.org/10.1021/acsnano.3c05681 |
本研究の一部は、日本学術振興会 科学研究費助成事業「JP21H05232, JP21H05233, JP21H05234, JP21H05236, JP21H05237, JP22H00283, JP22H00280, JP22H04957, JP21K14484, JP20K22323, JP20H00316, JP20H02080, JP20K05253, JP20H05664, JP21K14498, JP21K04826, JP21H02037, JP22H05459, JP22KJ2561, JP22H05445, JP23K13635, JP22H05441, JP23H00097, JP23K17756, JP23H01087」、文部科学省マテリアル先端リサーチインフラ事業「JPMXP1222JI0015」、創発的研究支援事業FOREST「JPMJFR213X and JPMJFR223H」、戦略的創造研究推進事業さきがけ「JPMJPR23H5」、矢崎科学技術振興記念財団、三菱財団、村田学術振興財団および東北大学電気通信研究所共同プロジェクト研究の支援を受けて行われました。
令和6年1月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/01/18-1.html