研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。消化酵素で分解するナイロンを開発 ―プラスチック誤飲事故の軽減、海洋生態系維持へ―
![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 独立行政法人 環境再生保全機構 |
消化酵素で分解するナイロンを開発
―プラスチック誤飲事故の軽減、海洋生態系維持へ―
ポイント
- 海洋プラスチックごみは誤飲するなど海洋生物への悪影響がある
- 従来の生分解性プラスチックは性能が低い問題がある
- 植物由来分子であるイタコン酸とアミノ酸からナイロンの開発に成功
- 従来ナイロンよりも高性能かつ人工胃液で分解・崩壊する性質を発見
環境再生保全機構(ERCA)が実施する環境研究総合推進費の一環として、北陸先端科学技術大学院大学・先端科学技術研究科 環境・エネルギー領域の金子 達雄教授らは、植物由来分子であるイタコン酸とアミノ酸であるロイシンからバイオナイロンを合成する手法を見出し、従来のナイロンよりも高耐熱・高力学強度であり、かつ胃に含まれる消化酵素であるペプシンで分解するバイオナイロンを開発しました。 海洋プラスチックごみ問題が深刻化する中、鳥類やクジラ類などの海洋生物が誤ってプラスチックごみを飲み込むことによる生態系への被害が問題視されています。生分解性プラスチックの中には海洋環境で分解するものがあり、中には消化酵素で分解するものも開発されているため本問題を解決するために重要であると考えられています。しかし、そのほとんどは柔軟なポリエステルであり耐熱性や力学強度の点で問題があります。このため用途は限られ、主に使い捨て分野で使用されているのが現状です。今回、金子教授らは、麹菌などが糖を変換して生産するイタコン酸および天然分子として有名なロイシンなどを原料にして、一般的なナイロンの原料の一つであるヘキサメチレンジアミンなどを反応させることでバイオナイロンを合成する条件を見出しました。得られたバイオナイロンはガラス転移温度が100℃を超え、力学強度が85MPaを超える高性能ナイロンであることも確認されました。これはナイロン中に硬い構造であるヘテロ環が含まれることに起因します。 また、アミノ酸には右手と左手の関係のような鏡像体が存在することが知られていますが、この鏡像関係にある一対のアミノ酸を混合するとナイロンの物性が向上することも見出されました。特に、L-ロイシンから得られるナイロン樹脂は胃中の消化酵素であるペプシンの存在下で崩壊し分子量も低下することが分かりました。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。 本成果は2021年4月30日に独国科学誌「Advanced Sustainable Systems」(インパクトファクター4.87(2019-2020))のオンライン版で公開されました。 |
本開発成果は、以下の事業・開発課題によって得られました。 研究開発期間:令和2年度~4年度(予定) 事業名 :環境再生保全機構(ERCA)環境研究総合推進費 開発課題名 :「バイオマス廃棄物由来イタコン酸からの海洋分解性バイオナイロンの開発」 チームリーダー:金子達雄(北陸先端科学技術大学院大学 教授) ERCA環境研究総合推進費は、気候変動問題への適応、循環型社会の実現、自然環境との共生、環境リスク管理等による安全の確保など、持続可能な社会構築のための環境政策の推進にとって不可欠な科学的知見の集積及び技術開発の促進を目的として、環境分野のほぼ全領域にわたる研究開発を推進しています。 |
<開発の背景と経緯>
植物などの生体に含まれる分子を用いて得られるバイオマスプラスチックは材料中に二酸化炭素を固定することにより、二酸化炭素濃度を削減し、低炭素社会構築に有効であるとされています。その中でも生分解性を有するものは、昨今深刻化する海洋プラスチックごみ問題の解決の糸口を与えるものと注目されています。特に、鳥類やクジラ類などの死骸の胃の中を調査するとプラスチックごみが蓄積している場合があり、それが原因で死に至った可能性が指摘されています。つまり、プラスチックごみの誤飲による生態系への被害が問題視されています。生分解性プラスチックの中には海洋環境で分解するものがあり、中には消化酵素で分解するものも開発されているため本問題を解決するためのキー材料となると考えられています。しかし、生分解性プラスチックのほとんどは柔軟なポリエステルで耐熱性や力学強度の点で問題があります。このため用途は限られ、主に使い捨て分野で使用されているのが現状です。たとえばPHBHと呼ばれる脂肪族ポリエステルは代表的な海洋分解性プラスチックを与えますが、その主骨格は一般的な工業用プラスチックに用いられる高分子に比べて柔軟であり、そのガラス転移温度は0℃付近であり室温での使用のためには高結晶化が余儀なくされます。また力学強度も20-30MPa付近です。(参考:ポリエチレン、塩ビ、ポリプロピレンなどの汎用プラスチックは20-70 MPa程度)
研究チームは、麹菌などが糖を変換して生産するイタコン酸を用いてバイオナイロンを開発することを目的として研究を進めていますが、アミノ酸であるロイシンなどを導入した新たなモノマーを合成し、一般的なナイロンの原料の一つであるヘキサメチレンジアミンなどを反応させることでバイオナイロンを合成する条件を見出しました(図1)。得られたバイオナイロンはガラス転移温度が100℃を超え、力学強度が85MPaを超える高性能ナイロンであることも確認されました(表1)。この高性能発現はナイロン中に硬い構造であるヘテロ環が含まれることに由来します。
最後に、L-ロイシンから得られるナイロン樹脂を合成し、これが胃中の消化酵素であるペプシンの存在下で崩壊(図2)し分子量も低下することが見いだされました(図3)。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。
<代表的作成方法>
ロイシン由来のジカルボン酸1-((S)-1-カルボキシ-3-メチルブチル)-5-オキソピロリジン-3-カルボン酸とヘキサメチレンジアミン(1.3g、10mol)をそれぞれアセトニトリルに溶解させた後に溶液を混合することでナイロン塩を析出させました(収率96%)。白色のナイロン塩を真空乾燥後170-180℃、50-60 rpmで激しく攪拌しバルクで重合しました。6時間後、粘性のあるポリマー溶融物が形成されました。これをDMFに溶解しアセトンに再沈殿することで精製を行いました。
<今回の成果>
今回の成果は大きく分けて2つ示すことができます。
1)鏡像関係にあるアミノ酸を分子鎖で混合したナイロンを合成することで、結晶化度および熱的力学的物性が向上することを発見
一般に再生可能な原料から得られる高分子は、熱的力学的性能が低く製造コストも高くなります。したがって、化石ベースのリソースと比較してパフォーマンスを向上させることができる合成アプローチを開発し、バイオベースのモノマーを利用することが重要です。ここでは、再生可能なイタコン酸とアミノ酸(D-またはL-ロイシン)から派生した新規な光学活性ジカルボン酸の生産に成功しました。まず、イタコン酸由来のイタコン酸ジメチルを出発物質として、剛直な不斉中心を持つ複素環式ジカルボン酸モノマーを高純度で得ました。これらのモノマーからアモルファスでありホモキラリティーを有するD-またはL-ロイシン由来のポリアミドを合成し、かつこれらをモノマー段階で混合したもの、オリゴマー段階で混合し追重合を行ったものを対象として研究を進めました(図1)。その結果、D-ロイシン由来のポリマー鎖とL-ロイシン由来のポリマー鎖との複合体は結晶化し、その結晶化度は36%に達しました。これは、キラル相互作用に由来するものと考えられます。得られた樹脂は、ガラス転移温度Tgが約117°C、溶融温度Tmが約213°Cであり、ポリアミド11などの従来のポリアミド(Tg約57°C)よりも高い値を示しました。さらに2.2〜3.8 GPaの高いヤング率および86〜108 MPaの高い力学強度を示しました(表1)。
2)バイオナイロン樹脂がペプシンの作用により崩壊し分解することを発見
バイオナイロンの酵素分解を、哺乳類の胃の消化酵素であるペプシンを使用して調べました。少量(150 mg)のポリアミド樹脂(Mw; 24,300-26,400 g / mol)と1 wt%のペプシン(5 ml)をpH 4.0のバッファーに入れて分解試験を行いました(対照実験はペプシンなし)。サンプルをインキュベーター内で37°Cで6週間振とうした結果、時間の経過に伴い平均分子量が24,300〜26,400 g / molから14,600〜16,500 g / molに減少することがわかりました(図3)。ペプシンによるナイロンの分解中の視覚的変化も崩壊現象として確認されました(図2)。研究チームは以前に、イタコン酸由来ポリアミドのピロリドンの開環反応を報告しましたが、今回発見した酵素分解はピロリドンの開環を誘発したと考えられます。ここで発見したペプシン分解は、哺乳類が当該ナイロン系プラスチックを誤飲した場合でも、哺乳類の消化管の安全性を維持することにつながる可能性があります。
<今後の展開>
本成果によりイタコン酸由来バイオナイロンの構造的な広がりが提案できました。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。
<参考図> 図1 (A)イタコン酸とアミノ酸からなるジカルボン酸モノマーの合成
(B)(A)のジカルボン酸とヘキサメチレンジアミンからのバイオナイロンの重合反応式
表1 バイオナイロンの物性表
図2 バイオナイロンがペプシン存在下で崩壊していく様子
図3 ペプシンを作用させたD-ロイシン由来バイオナイロンのGPC
【論文情報】
雑誌名 | Advanced Sustainable Systems |
題名 | High-performance BioNylons from Itaconic and Amino Acids with Pepsin Degradability (ペプシン分解性を示すイタコン酸とアミノ酸からの高性能バイオナイロン) |
著者名 | Mohammad Asif Ali,Tatsuo Kaneko* |
掲載日 | 2021年4月30日にオンライン版に掲載 |
DOI | 10.1002/adsu.202100052 |
令和3年5月10日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/05/10-1.html原子スケールナノテクノロジーで、革新的エネルギー・環境デバイスを開拓!


原子スケールナノテクノロジーで、
革新的エネルギー・環境デバイスを開拓!
R7年10月以降に入学する学生の受け入れは行いません
水田研究室 MIZUTA Laboratory
教授:水田 博(MIZUTA Hiroshi)
E-mail:
[研究分野]
サイレントボイスセンシング、超高感度センサ、熱制御素子
[キーワード]
グラフェン、ナノ電子機械システム(NEMS)、雷センサ、においセンサ、熱整流デバイス、バレートロニクス、量子デバイス、極限構造作製、第一原理計算
研究を始めるのに必要な知識・能力
水田研究室では物性物理、電気・電子工学、機械工学、化学、コンピュータ、IoT/AIの融合領域研究を行っていますので、これらのどれか1つ(あるいは複数)の基礎を修得していることが必要です。さらに、その専門を広げて行く好奇心旺盛な人が適しています。
この研究で身につく能力
水田研究室では、グラフェンをはじめとする新奇な原子層材料をベースに、NEMS(ナノ電子機械システム)技術と1ナノメートル精度の超微細加工技術を駆使して、超高感度センサデバイス、超低消費電力スイッチ、熱整流素子、バレートロニクスデバイスなどを開発しています。これらの研究を通して、①電子線直接描画や最先端ヘリウムイオンビーム技術による極微デバイス作製技術、②環境制御型・高周波プローブステーションや希釈冷凍機などを用いた極限電気特性測定、③第一原理計算からデバイス・回路シミュレーションに至る設計・解析技術、などを幅広く修得することができます。また、欧州を中心に海外研究機関と緊密に連携し、学生・スタッフが頻繁に交流しているため、研究を進める中で自然に国際的コミュニケーションスキルとリーダーシップ能力を身につけていくことが可能です。
【就職先企業・職種】 ICT企業、製造業、国立研究開発法人
研究内容
水田研究室では、グラフェンや極薄シリコン膜をはじめとする新奇な原子層材料と、原子スケール精度の超微細加工技術を駆使して、超高感度センサ、超低消費電力NEMS(ナノ電子機械システム)スイッチ、バレートロニクス、熱フォノンエンジニアリングなどを開発し、グローバルな環境・エネルギー問題に貢献することを目指しています。
具体的には以下の4テーマを中心に研究を推進しています。

図1.

図2.

図3.
①サイレントボイスセンシングの研究
従来のセンサ技術では検出が難しい自然界や生体の様々な微小信号(サイレントボイス(声なき声))を検出する革新的センサ素子の研究を行っています。落雷の予測を可能とする大気中電界センサ(図1右)や、疾病の予兆検出を目的とした超低濃度の皮膚ガス(におい)センサ(図1左)など、素子の原理探索から試作、測定データ解析技術の研究、さらに実用化研究まで、産業界とも連携して精力的に推進しています。
②超低電圧動作グラフェンNEMSスイッチの研究
グラフェンやhBN膜など異種原子層材料をファンデルワールス積層させたNEMS素子を作製し、その電気・機械的な動作の解明と超低電圧・急峻動作スイッチ(図2)の研究を行っています。シリコンMOSFETの理論限界を超える急峻スイッチング特性と0.5V未満の超低電圧動作を実現しています。
③ナノスケール熱制御技術の研究
最先端技術ヘリウムイオンビームミリング技術を用いて宙吊りグラフェン上に直径10nm以下のナノ孔周期的構造を形成します。特に非対称構造における熱整流素子(図3右)の実現を目指しています。
④原子層材料によるバレートロニクスの研究
バレー自由度を新たな情報担体として利用するバレートロニクスは、従来のエレクトロニクスを超える将来の情報処理技術として期待されています。原子層材料を積層した様々な構造におけるベリー曲率発生(図3左)を理論と実験の両面から探求しています。
主な研究業績
- J. Sun, M. Muruganathan, and H. Mizuta, ‘ Room temperature detection of individual molecular physisorption using suspended bilayer graphene’, Science Advances vol.2, no.4, e1501518 (2016) DOI:10.1126/sciadv.1501518
- A. Kareekunnan, T. Agari, A. M. M. Hammam, T. Kudo, T. Maruyama, H. Mizuta, and M. Muruganathan, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, ACS Omega 6, 34086-34091 (2021) DOI: 10.1021/acsomega.1c05530
- F. Liu, M. Muruganathan, Y. Feng, S. Ogawa, Y. Morita, C. Liu, J. Guo, M. Schmidt and H. Mizuta, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, Nano Futures 5(4), 045002 (2021) DOI: https://doi10.1088/2399-1984/ac36b5
使用装置
電子線リソグラフィー、走査型電子顕微鏡、
電界電離ガスイオン源(GFIS)微細加工装置、ヘリウムイオン顕微鏡(産業技術総合研究所)
環境制御型高周波プローバー、マルチガス種対応プローバー、
第一原理・量子輸送シミュレータ
研究室の指導方針
最先端のナノテクノロジーを駆使して、現在のCMOS技術を越える‘More than Moore’ & ‘Beyond CMOS’世代のエマージングテクノロジ開拓を目指しています。「まだ世界で誰も実現したことのない機能のデバイスをこの手で初めて開発してみたい!」という意欲のあるあなた、ぜひ一緒に研究しましょう。また、欧州・アジアを中心に海外研究機関に滞在しての研究活動も積極的に推進していますので、国際的に活躍したい方も大歓迎です。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/mizuta-lab/
エネルギー変換の最先端 ―未利用廃熱の高効率回収―


エネルギー変換の最先端 ―未利用廃熱の高効率回収―
R7年10月以降に入学する学生の受け入れは行いません
小矢野研究室 KOYANO Laboratory
教授:小矢野 幹夫(KOYANO Mikio)
E-mail:
[研究分野]
固体物性、熱電変換
[キーワード]
物理・実験系、低次元伝導体、熱電変換の物理、熱電材料、エネルギーの有効利用、エネルギーハーベスティング
研究を始めるのに必要な知識・能力
物理の実験系の研究室ですが、出身分野にはこだわりません。今までにも物理系、電子・電気系、機械系、化学系の学生が本研究室に来て活躍しています。JAISTに入学してから、応用物性数学、量子力学、固体物理学など自然科学系の講義を受講してもらうことをお願いしています。
この研究で身につく能力
物理系のみならず多様な分野から来た学生が、総合的な科学技術としての熱電変換の研究を行うことにより、修了後に企業や研究機関で社会に貢献することを目指しています。私たちの研究室で身につけられる能力は、具体的には以下のとおりです。
- 実際に手を動かしてものを作る面白さを知ること。
- 先端的な実験機器を用いた物理研究と実験手法の習得。
- 物理的または科学的な考え方の習得、ものごとを定量的に捉える力の獲得。
- プレゼンテーション能力、科学的な論文(主として日本語)の作成の方法。
【就職先企業・職種】 製造業ほか
研究内容

テトラヘドライト

硫化物熱電材料

ポストグラフェン材料
ゼーベック効果やペルチェ効果などを利用した『熱電変換技術』を使うと、熱エネルギーと電気エネルギーの相互変換が出来るため、廃熱から直接発電を行う『熱電発電』が可能となります。私たちの研究室では、【はかる】【つくる】【さがす】という3本の柱で熱電変換に関する研究を行っています。
【はかる】微小スケールの熱電性能の測定
「はかる」とは熱電材料の特性をはかるための評価手法の開発という意味です。近年、微細な構造を持った新規熱電素子が開発されていますが、システム自体が小さく測定が難しいため、新しい評価手法の開発が望まれています。
私たちの研究室では、3ω法(スリーオメガ法)と呼ばれる熱伝導率測定法を改良して、Bi-Te 系熱電ナノ粒子凝集体の熱伝導率を測定することに成功しました。さらにこの3ω法を改良することにより、遷移金属トリカルコゲナイドナノワイヤーの熱伝導率測定にもチャレンジしています。またポイントコンタクト型局所熱電性能測定法も開発しており、将来的にはグラフェンやポストグラフェンなど先端材料のフォノン物性を解明することを目指しています。
【つくる】インクジェット技術を用いた新規熱電モジュールの開発
実際に熱電発電を行うためには、Bi-Te 系熱電素子を多数配列させた熱電モジュールを作製しなければなりません。われわれは、LCD 用カラーフィルターの製造に利用されているインクジェット技術を熱電モジュール作製に応用するという、新たな製造プロセスの開発を行いました。
インクジェット印刷を用いることにより、従来作製が難しかった微小サイズモジュールや、ポリイミドをはじめとするフレキシブルな基板を用いたモジュールの試作に成功しました。今後は、焼成後の素子の密度と粒子配向性の向上といった課題を解決し、既存の分野およびエネルギーハーベスティングなど新しい分野への応用展開を図ることを予定しています。
【さがす】新しい熱電変換材料の創製
現在実用化されている熱電材料(Bi-Te 系材料)は、構成元素のTe が希少・高価であるという問題を抱えています。この問題を解決するため、私たちはTe の代替元素として硫黄(S)を用いた化合物、すなわち新しい硫化物熱電材料の開発を行っています。
最近、私たちはテトラヘドライトと呼ばれる熱電鉱物Cu12Sb4S13が、実用化されている材料と比べても遜色ない性能を示すことを発見しました。この材料は母体のままでも良好な熱電性能を示しますが、さらに、Cu サイトをNi で置換することにより熱電性能を約1.4倍向上させることに成功しました。
これ以外にも、多様な硫化物の低次元伝導体や、熱電材料と磁性体のハイブリッド材料の合成・開発を行い、その基礎物性や熱電性能を調査しています。
主な研究業績
- Development of thermal conductivity measurement system using the 3ω method and application to thermoelectric particles, S. Nishino, K. Suekuni, K. Ohdaira, and M. Koyano, Journal of Electronic Materials (2014), DOI: 10.1007/s11664-014-2993-9.
- High-performance thermoelectric mineral Cu12-xNixSb4S13 tetrahedrite, K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, Journal of Applied Physics 113, 043712 (2013)
- 廃熱も電気に変える熱電発電,小矢野幹夫,Ohm Bulletin, 2014年 VOL.49 冬号(通巻200号)pp. 02.
使用装置
物理特性測定装置 PPMS(熱電性能、電気伝導の測定)
ラマン散乱分光装置(固体中の素励起のエネルギー分析)
管状電気炉・マッフル炉(無機材料の合成)
ホットプレス装置(粉体試料の加圧焼結・配向制御)
研究室の指導方針
『多様な物性に多様な価値観で挑む』をモットーに、今まで誰も知らなかった新しい現象を発見したり、新規材料を創製することを目指しています。小矢野研は『エネルギーに興味がある人』『無機材料を自分で作ってみたい人』『科学や物理が好きな人』 を歓迎します!
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/kotai/koyano/index.html
新しいプロセス技術を駆使してシリコン系次世代太陽電池を開発しよう


新しいプロセス技術を駆使して
シリコン系次世代太陽電池を開発しよう
次世代シリコン太陽電池研究室
Laboratory on Next-Generation Silicon Photovoltaics
教授:大平 圭介(OHDAIRA Keisuke)
E-mail:
[研究分野]
太陽電池、半導体工学、薄膜形成
[キーワード]
結晶化、パッシベーション、モジュール耐久性
研究を始めるのに必要な知識・能力
学部もしくは高専で習う固体物理、半導体の基礎知識がある方が望ましい。
地球環境問題、エネルギー問題への関心は研究を進める原動力となる。
この研究で身につく能力
各学生の研究テーマを遂行することで、真空装置の取扱いの他、薄膜形成およびその物性評価技術、デバイス作製・評価技術が身につきます。また、データの解析や日々のディスカッション、ゼミ活動などを通じて、特に半導体や太陽電池に関する基礎学力を習得できます。さらに、学生の自主性を重んじる研究室の方針から、いわゆる「指示待ち人間」にならない、問題解決能力の高い人間に成長できます。国内・国際学会での発表や、展示会でのブース展示などを通して、プレゼンテーション能力や、英語も含めたコミュニケーション能力も鍛えられます。
【就職先企業・職種】 大学研究教育職、企業研究職(電機、精密機器メーカー)など
研究内容
地球上に豊富に存在するシリコンを用いた太陽電池は、現在でも市場の大部分を占めており、また今後も、太陽光発電技術の主役であり続けることが期待されています。一方で、さらなる低コスト化、高効率化、長寿命化が求められており、より一層の技術的なブレークスルーが必要です。当研究室では、以下の新技術に着目し、シリコン系高性能太陽電池実現のための基盤技術の確立を目指します。
1.瞬間熱処理による太陽電池用多結晶シリコン薄膜形成
キセノンランプにおけるミリ秒台の瞬間放電を利用したフラッシュランプアニール(FLA)は、数十J/㎠という、瞬間的には地上における太陽光の数万倍の強度のパルス光を照射できます。当研究室では、この手法を、安価なガラス基板上への多結晶シリコン薄膜の形成に応用する検討を行っています。非晶質シリコン膜をガラス基板上に形成し、一度のFLA光照射を行うだけで、膜厚4µm以上の多結晶シリコン膜が形成できます。水素を含有した非晶質シリコン膜を前駆体に用いると、結晶化後も膜内に多量の水素原子が残留し、シリコンの未結合手が終端されるため、低欠陥の多結晶シリコン膜が形成でき、高効率薄膜太陽電池用材料としての利用が期待されます。このFLAによる非晶質シリコン膜の結晶化の現象解明および制御と、形成される多結晶シリコン薄膜の太陽電池応用について研究を行っています。

FLA装置の発光の様子(左)と
Cat-CVD装置の触媒体(右)
2.触媒化学気相堆積(Cat-CVD)の太陽電池応用
加熱触媒体線での接触分解反応により原料ガスを分解して薄膜を形成するCat-CVD法は、膜堆積時の基板材料への損傷を低減でき、結晶シリコン表面でのキャリアの再結合を大幅に抑制可能な高品質パッシベーション膜を形成できます。触媒分解により生成するラジカルを用いたCatドーピングとともに、高効率バルク結晶シリコン太陽電池への応用を目指しています。
3.結晶シリコン太陽電池モジュールの耐久性と新構造開発
多数のモジュールが直列に接続される大規模太陽光発電所などで、モジュールのフレームとセルの間にかかる高電圧が原因で発電特性が低下する、いわゆる電圧誘起劣化(PID) の問題が顕在化しています。当研究室では、結晶シリコン太陽電池モジュールのPIDの機構を解明し、抑止技術を開発する研究を行っています。また、現行の太陽電池モジュールは、各部材が封止材で固められています。そのため、封止材由来の各種劣化が発生し、モジュールを廃棄する際の部材分別やリサイクルも困難です。この問題を解決するため、封止材を用いない新概念モジュールの開発にも取り組んでいます。
主な研究業績
- K. Ohdaira, M. Akitomi, Y. Chiba, and A. Masuda, Potential-induced degradation of n-type front-emitter crystalline silicon photovoltaic modules — comparison between indoor and outdoor test results, Sol. Energy Mater. Sol. Cells 249, 112038 (2023).
- R. Ohashi, K. Kutsukake, H. T. C. Tu, K. Higashimine, and K. Ohdaira, High passivation performance of Cat-CVD i‑a-Si:H derived from bayesian optimization with practical constraints, ACS Appl. Mater. Interf. 16, 9428 (2024).
- Z. Wang, H. T. C. Tu, and K. Ohdaira, Formation of n-type polycrystalline silicon with controlled doping concentration by flash lamp annealing of catalytic CVD amorphous silicon films, Jpn. J. Appl. Phys. 63, 105501 (2024).
使用装置
フラッシュランプアニール装置
触媒化学気相堆積(Cat-CVD)装置
太陽電池特性評価装置
太陽電池モジュール作製および信頼性評価装置
各種薄膜物性評価装置
研究室の指導方針
研究活動は自主性を重んじる方針で、学生自身の発想が研究に活かせます。毎朝一度、研究室メンバー全員が集まるミーティングを行い、その日の各自の活動を報告します。ミーティングでは、簡単な研究の相談もでき、メンバー間のコミュニケーションも十分行えるシステムです。当番の学生が文献紹介を行う勉強会では、細部にわたる質問への回答が求められ、しっかりとした基礎学力が身につきます。学術会議などでの外部発表は、積極的に行います。また、博士前期課程期間中に、英語の論文を執筆し投稿できるよう指導します。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/ohdaira/
結晶が成長する様子を観察してメカニズムを探る


結晶が成長する様子を観察してメカニズムを探る
次世代シリコン太陽電池研究室
Laboratory on Next-Generation Silicon Photovoltaics
講師:前田 健作(MAEDA Kensaku)
E-mail:
[研究分野]
結晶成長、太陽電池、非線形光学
[キーワード]
その場観察、結晶粒界、双晶
研究を始めるのに必要な知識・能力
学部や高専で習う基礎的な物理や数学の知識
思い込みで実験結果を判断せず、公平な視点で研究に取り組む姿勢
この研究で身につく能力
研究活動を通して、実験装置(ガス制御機構、加熱機構、顕微鏡など)の使い方やデータの収集と解析方法が身につきます。
また、定期的なゼミ活動や随時のディスカッションを通して、コミュニケーション能力や問題解決能力が鍛えられます。
失敗と思えるような実験から新しい発見が生まれることはよくあります。普通は気付けないような特徴を注意深く読み取る力や俯瞰的かつ合理的に考察する力など、修了後に社会で活躍する際にも役立つ能力を鍛えて欲しいと願っています。
【就職先企業・職種】 製造業など
研究内容
エレクトロニクス、オプトエレクトロニクスの発展を進めるには、材料となる結晶の高品質化や高性能化が不可欠です。結晶とは原子が規則正しく整列した固体であり、融液や溶液などの環境相から徐々に大きく成長することで形成されます。「成長」という言葉は主に生物に対して使われますが、立派な人間に成るには成長過程が重要であることと同様に、高性能な結晶を得るには成長過程が重要となります。この成長過程を注意深く観察することでメカニズムを解明し、高機能結晶を育てる技術を開発します。
1.薄膜多結晶シリコンの形成過程のその場観察
太陽電池の基板材料には半導体のシリコンが広く用いられています。薄膜多結晶シリコンはガラス基板上の非晶質シリコンにパルス光(フラッシュランプアニール光)を当てることで作ることができ、インゴットを薄くスライスして作る結晶基板よりも生産性とコスト面で優れています。非晶質シリコンが多結晶化する過程を観察することで、太陽電池の劣化の原因となる組織の形成機構を解明し、その形成を抑制する技術を開発します。
2.レーザー波長変換素子(周期双晶結晶)の作製

Li2B4O7の双晶成長過程(左)、顕微鏡観察炉(右)
半導体リソグラフィの極微細化やレーザー加工の超高精度化に伴い、高エネルギー効率で小型の全固体レーザー光源の短波長化が求められています。全固体レーザーは固体レーザーを非線形光学結晶により波長変換することで実現でき、光源にガスを用いるよりも安定で小型な装置となります。
非線形光学結晶の分極を周期的に反転することで変換効率を向上でき、強誘電体に電界印加することで生産されています。本研究では非強誘電体においても周期構造を導入するために、双晶形成を用いた反転技術の開発に取り組んでいます。
3.化合物半導体の融液成長過程の観察
シリコンSiは地殻中で酸素に次いで2番目に多い元素であり、単結晶シリコンは半導体デバイスの基板材料として世界中で広く生産されています。化合物半導体(InSb, GaSb, GaAsなど)の生産量は少ないですが、これからのエレクトロニクスの発展に無くてはならない結晶であり、単結晶育成技術の開発は重要です。結晶が成長する様子を観察して、双晶や粒界などの欠陥がどのように形成されるのか、そのメカニズムを解明することを目指しています。
主な研究業績
- K. Hu, K. Maeda, H. Morito, K. Shiga, K. Fujiwara, In situ observation of grain-boundary development from a facet-facet groove during solidification of silicon, Acta Materialia, 153, 186(2018).
- K. Maeda, A. Niitsu, H. Morito, K. Shiga, K. Fujiwara, In situ observation of grain boundary groove at the crystal/melt interface in Cu, Scripta Materialia, 146, 169(2018).
- K. Maeda, S. Uda, K. Fujiwara, J. Nozawa, H. Koizumi, S. Sato, Y. Kozawa, T. Nakamura, Fabrication of Quasi-Phase-Matching Structure during Paraelectric Borate Crystal Growth, Applied Physics Express, 6, 15501(2013).
研究室の指導方針
研究活動は自主性を重んじる方針で、学生自身の発想が研究に活かせます。毎朝一度、研究室メンバー全員が集まるミーティングを行い、その日の各自の活動を報告します。ミーティングでは、簡単な研究の相談もでき、メンバー間のコミュニケーションも十分行えるシステムです。当番の学生が文献紹介を行う勉強会では、細部にわたる質問への回答が求められ、しっかりとした基礎学力が身につきます。学術会議などでの外部発表は、積極的に行います。また、博士前期課程期間中に、英語の論文を執筆し投稿できるよう指導します。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/ohdaira/
自然環境と生体物質の歴史に学ぶー高分子の世界に挑戦!ー


自然環境と生体物質の歴史に学ぶ
ー高分子の世界に挑戦!ー
DRY & WET ソフトマテリアル研究室
Laboratory on DRY & WET Soft Materials
准教授:桶葭 興資(OKEYOSHI Kosuke)
E-mail:
[研究分野]
高分子科学、光化学、ソフトマター
[キーワード]
ゲル、水、ソフトマテリアルの幾何学、光機能材料、エネルギー変換材料、バイオミメティクス
研究を始めるのに必要な知識・能力
高分子科学、物理化学、材料科学、光化学、ソフトマターの基礎知識や経験を持っていると望ましいでしょう。そして何より、チャレンジングスピリットを強く持っている人、好奇心の強い人、思考の持久力を高めたい人と研究を始めたいと考えています。
この研究で身につく能力
論理説明能力・解釈能力、科学的な仮説検証・立案力、高精度なディスカッション能力、発表能力、英語コミュニケーション力
学問分野:高分子科学、光化学、コロイド科学、界面化学、幾何学、非線形科学など
【就職先企業・職種】 化学メーカー、医療機器メーカー、自動車関連、材料全般、食品関連、化粧品関連など
研究内容
自然界を見渡すと、目に見えるレベルで綺麗なパターンがたくさんあります。たとえば生体組織は小さな分子から「自己組織化」 によって創り上げられています。これは、物質そのものにだけ由来している訳ではなく、外的な環境が強く作用した結果です。変化する環境に適応できるように生命が進化した結果、多様な空間 パターンやリズムが生まれています。
一方、人工的に合成された分子から物理環境を制御してパターンを創り出す研究は歴史的に長くなされています。しかし、合成分子のままでは医療や工業的に材料化する上で困難を極め、生体組織との調和や自然との共生には幾つものハードルがあります。これに対して我々は直近の研究で、天然分子の多糖が自らパターンを再構築する現象を発見しました。ここで、「なぜ」「どのように」パターンをつくるのかを解明できれば、生体適合性と環境適応性を合わせ持つマテリアルを手に入れることができます。
1.DRY でWET な天然多糖の自己組織化
天然から抽出された多糖は、どのようにcmスケールの幾何学パターンを生み出すのか、特に、乾燥環境下で多糖が見せる「空間認識」の法則性を検証しています。DRY でWET な非平衡環境下、ミクロにもマクロにも高分子が組織化して析出してきます。実際の生体組織が常に乾燥環境におかれながらもWETなからだを維持していることを振り返ってみれば、水中から陸上進出した生体高分子の進化を紐解く鍵があるはずです。
2.ソフトマテリアルのパターン制御
生体高分子、合成高分子に関わらず多くのソフトマテリアルは、界面の応力制御によって形態の制御が可能です。ほんの小さな環境の違いや僅かな力学的エネルギー負荷によって、多様な構造や形態を見せます(自己集積、自己相似、フラクタルなど:図参照)。これを利用してDRY でWET な環境に適応した医療用材料の設計法を見出したいと考えています。
これら「自然美の追求」を基に現象の法則性を導くことが究極目標です。そして、生物がなぜパターンを創るようになったのか?自然科学の大命題に挑戦しています。
主な研究業績
- Bioinspired gels: polymeric designs towards artificial photosynthesis. Hagiwara R, Yoshida R, Okeyoshi K, Chemical Communications 60, 13314-13324 (2024).
- Recognition of spatial finiteness in meniscus splitting through evaporative interface fluctuations. Wu L, Saito I, Hongo K, Okeyoshi K, Advanced Materials Interfaces 10, 2300510 (2023).
- DRY & WET: meniscus splitting from a mixture of polysaccharides and water. Okeyoshi K, Polymer Journal 52, 1185 (2020).
使用装置
各種光学顕微鏡、各種光学装置(偏光、蛍光など)、画像解析装置、粘度計、密度計、動的光散乱、電子顕微鏡
研究室の指導方針
社会で働くトレーニング期間として、個人個人の能力を最大限に発揮できるようにサポートします。我々のグループは研究・文化の両面で多様な環境に在り、多角的な視野を構築する上で日本でも稀に見る貴重なチャンスです。突出した先端研究をみなさんと進めたいと考えています。そのためにも以下1−3の基礎を実践していきます。
1. 実験とディスカッションを通して論理的思考力と先見性の能力を養う。
2. 仮説と検証を繰り返し大目標にアプローチする。
3. 学会発表、学術論文発表を念頭に科学的言語を使う。
これらの積み重ねを自信にして創造力を高めていきたいと考えています。熱いハートのみなさん、ぜひ21世紀のパイオニアを目指して一緒にチャレンジしましょう!
[研究室HP] URL:https://sites.google.com/oke-acgroup.com/web/home-j
パターン形成:分割現象における「対称性の破れ」を実証

![]() ![]() |
北陸先端科学技術大学院大学 科学技術振興機構(JST) |
パターン形成:分割現象における「対称性の破れ」を実証
【ポイント】
- 水の蒸発によって現れるパターン形成「界面分割現象」の新たな特徴を発見
- ポリマー分散液の蒸発界面が複数に分割するとき、「対称性の破れ」が現れることを実証
- 生体組織など自然界に見られる非対称なパターン形成の理解に有用
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域のグエン チキムロク大学院生(博士後期課程)、桶葭興資准教授らは、ポリマーが水に分散した粘性流体から現れる散逸構造[用語解説1]「界面分割現象」において、対称性の破れ[用語解説2]を実証した。これまで、界面[用語解説3]で起こる幾何学変形が、時間とともにどう進んでいくかは、不明な点が多かった。今回、明確な境界条件のもと、確率統計を通した解析を進めた結果、分割時に現れる核の位置に、空間的な「対称性の破れ」が生じることが明らかになった。これは、生体組織など自然界に見られる非対称なパターン形成の理解に有用である。 |
【研究概要】
自然界には様々な幾何学パターンがあり、例えば雪の結晶の形は、気温と水蒸気の量で多様に変化する。また、乾燥環境は水の蒸発を引き起こし、生物であればその成長過程で非対称なパターンをつくる。これまで、この幾何学性や非対称性について、数理的な解釈がなされてきたものの、物理化学的実験に基づいた再現はなされてこなかった。一方、桶葭准教授らの研究グループはこれまでに、ポリマー水分散系の蒸発界面に着目し、散逸構造「界面分割現象」を報告してきた (※1)。これは、ポリマー水溶液などの粘性流体を明確な境界のある有限空間から乾燥環境下におくと、一つの蒸発界面が複数の界面に分割される幾何学化現象である。ここで、空間軸の一つを1ミリメートル程度の隙間にすることで毛管現象[用語解説4]の物理条件が制御された空間となる。さらに、一定温度下で水の蒸発を一方向になるよう設定すると、蒸発界面直下の濃密なポリマーの密度がゆらぎ、複数の特異的位置でポリマーが析出して界面分割する。具体的には、多糖[用語解説5]の水溶液を乾燥環境下におくと、まるで界面から芽が出るようにセンチメートル単位で多糖が析出し界面が複数に分割される。ここでは、ミクロ構造の秩序化と同時に、マクロなパターンが現れることが分かっていた。しかし、非平衡で開放的な蒸発界面から引き起こされる実際の分割現象は、核形成位置の平均的情報は得られるものの、その不確定さのため複数の核形成メカニズムについては未解明な特徴が多かった。
※1. https://www.jaist.ac.jp/whatsnew/press/2023/09/22-1.html
図. 界面分割現象における「対称性の破れ」: A. 空間軸の一つとしてセル幅を大きくしていくと、分割現象の特徴が現れる概念図。界面がゆらぎ、対称性が破れ、そして水中に分散していたポリマーが析出する核を非同期に形成する。B. 同一条件で得られる異なる分割(二分割、もしくは三分割)と、セル幅に対する核形成位置のデータ。C. 対称性の破れを加味した分岐モデル。核1と核2とは、タイミングがずれて発生する(時間的に同期していない)。 |
そこで今回、ポリマー分散液の一つの蒸発界面が、二つ、もしくは三つに分割される空間条件に焦点をあて、その核形成位置を詳細に検討した(図A)。確率統計論を通した界面科学的な解析から、それぞれの分割数に対して、「対称性の破れ」と「非同期性」が現れ、相互に関係し合う特徴であることが分かった。核の位置については平均化による統計評価ではなく、結果に対する場合分けを通し、特徴的な「ずれ」を評価した(図B)。すると、分割点の位置には偏りがあり、セル幅に対して均等に半分、もしくは均等に三分の一に分割するわけではない、という基本原理が明らかになった。実際、二分割される場合、核はセル幅の中心ではなく、中心からずれた位置に形成される傾向となった。この「ずれ」は、セル幅を少しずつ大きくすると顕著に現れ、三分割される場合、2番目の核形成が起こるタイミングや位置に大きく影響し、非同期性として現れた。この「対称性の破れ」と「非同期性」は、時間発展の現象理解に重要である(図C)。
また、この核間隔は、ポリマー水溶液の液相と空気の界面における毛管長が影響する。今回の実証実験では、粘性流体として多糖キトサン[用語解説6] の水分散系を用いており、5~8ミリメートル程度の間隔であった。これまでにいくつかの多糖でも分割現象は実証されており、研究グループは現在、様々な化学種・物質群への拡張や現象の特徴的メカニズムの解明を進めている。これらを通して、自然界にも通ずるパターン形成の普遍的理解が期待される。
本成果は、2025年6月4日に科学雑誌「Advanced Science」誌(WILEY社)のオンライン版で公開された。なお、本研究は、国立研究開発法人科学技術振興機構(JST) 創発的研究支援事業(JPMJFR201G)、日本学術振興会科研費 基盤研究B(JP23K21136)、日本学術振興会科研費 新学術領域研究(JP22H04532)、および公益財団法人旭硝子財団 若手継続グラントの支援のもと行われた。
【今後の展開】
生物を含め自然界には多様な散逸構造が在り、対称性の破れを明確に扱うことは重要である。パターン形成に関する歴史的研究にはチューリングパターン[用語解説7]などがあり、ソフトマテリアルを題材とした研究例も多い。これは、生物における自己組織化の理解や実空間におけるマテリアル設計に重要なテーマと認識されているためでもある。今回のような実検証を通じたパターン形成の理解が進めば、今後、高分子科学、コロイド科学、界面科学、材料科学、流体力学、非平衡科学、生命科学などの分野への進展に留まらない。実時空間と仮想時空間を通した数理科学、シミュレーション、データサイエンスなどとの融合によって、パターン形成の理解と材料設計に有用と期待される。
【論文情報】
掲載誌 | Advanced Science (WILEY) |
題目 | Symmetry breaking in meniscus splitting: Effects of boundary conditions and polymeric membrane growth |
著者 | Thi Kim Loc Nguyen, Taisuke Hatta, Koji Ogura, Yoshiya Tonomura, Kosuke Okeyoshi* |
DOI | 10.1002/advs.202503807 |
掲載日 | 2025年6月4日 |
【用語解説】
令和7年6月4日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/06/04-1.html未来を描くキャリア相談会(大学生または高専生とその保護者、大学院進学を考える社会人対象)
生成AIが飛躍的に進化し、グローバルの経済状況が流動化していく中、私たちの生活スタイルや考え方も変化していくこの時代を生き抜くうえで、「大学院」で学ぶことは非常に有意義です。物理学・化学・生物学といった自然科学を基盤とした学際的な研究分野であるマテリアルサイエンス研究領域の現役教員が、大学院という選択肢について、ざっくばらんにお話しします。
興味のある方は、以下の連絡先までぜひお申し込みください。
北陸先端科学技術大学院大学
マテリアルサイエンス 教授 栗澤元一(kurisawa@jaist.ac.jp)
令和7年3月26日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/03/26-1.html学生の永原さんが第6回フロンティア太陽電池セミナーにおいて優秀ポスター賞を受賞

学生の永原光倫さん(博士前期課程2年、サスティナブルイノベーション研究領域、大平研究室)が、第6回フロンティア太陽電池セミナーにおいて優秀ポスター賞を受賞しました。
フロンティア太陽電池セミナーは、産官学の様々な分野で太陽電池研究に取り組む研究者が集まり、シリコンや化合物など無機系、有機薄膜系、ペロブスカイト型、さらには量子ドット型など新しい太陽電池も含み、広く太陽電池の開発研究および関連する基盤技術を題材に取り上げ、様々な視点から徹底的に議論し、研究者間での連携を深めることで、本研究分野の飛躍的な発展の促進を図るものです。
第6回フロンティア太陽電池セミナーは令和6年12月12日~13日にかけて、愛媛県(松山市)にて開催されました。
※参考:第6回フロンティア太陽電池セミナー
■受賞年月日
令和6年12月13日
■研究題目、論文タイトル等
封止材とカバーガラスを使用しない曲面結晶Si太陽電池モジュールの機械的強度および浸水試験
■研究者、著者
永原光倫、Huynh Thi Cam Tu、大平圭介
■受賞対象となった研究の内容
封止材とカバーガラスを使用しない曲面・大面積結晶Si太陽電池モジュールに対し、JIS規格に基づく砂袋式荷重試験と降雹試験の2種類の機械的強度試験を行った。結果として、砂袋式荷重試験では、切削加工により作製したポリカーボネート(PC)ベースが破壊されないことや、フロントカバーであるPC板と太陽電池セルの接触による破損がないことが分かった。降雹試験では、降雹によるフロントカバーに傷が確認されないことや、衝撃による太陽電池セルの破損が見られないことを確認した。以上のことから、従来型太陽電池モジュールの評価基準を満たす機械的強度を有することが分かった。また、ベースの端部にOリングをはめ込み、ポリカーボネート製カバーとフレーム状のクランプで押さえることにより水分浸入の抑止を試みた。この構造を持つ小型モジュールに対し浸水試験を行った結果、水分浸入がみられなかったことから、OリングとAlフレームは水分浸入を防ぐ構造であるということが示された。
■受賞にあたって一言
優秀ポスター賞を受賞でき、とてもうれしく思います。研究を進める中で、大平圭介教授をはじめ多くのサポートと貴重な助言をいただいたことが、今回の受賞につながったと感じています。これからも一層研究活動に取り組んでいきたいです。
令和7年1月31日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/01/31-2.html学生の萩原さんがGel Symposium 2024においてSmart Molecules Best Poster Awardを受賞
学生の萩原礼奈さん(博士後期課程1年、サスティナブルイノベーション研究領域、桶葭研究室)が14th International Gel Symposium(Gel Symposium 2024)において、Wiley社発行のジャーナルSmart MoleculesよりBest Poster Awardを受賞しました。
Gel Symposiumは、高分子ゲルおよび関連する材料科学・工学の基礎研究と実用的応用における最新の課題に焦点を当てた国際会議です。
Gel Symposium 2024は、令和6年11月17日~21日にかけて沖縄県にて開催され、高分子ゲルだけでなく、無溶媒エラストマー、ゴム、その他のポリマーネットワーク、およびアクティブソフトマターに関する研究についても議論が行われました。
※参考:Gel Symposium 2024
■受賞年月日
令和6年11月21日
■研究題目、論文タイトル等
Design of Open Systems Using Aqueous Polymer Solutions Causing Meniscus Splitting
■研究者、著者
萩原礼奈、桶葭興資
■受賞対象となった研究の内容
高分子溶液の乾燥過程で界面の変形が生じる界面分割現象は非平衡現象の一つとして注目されている。多糖類のみで確認されていたこの現象を合成高分子でも実証した本研究は、開口部のデザインにより湿度を調整することで界面変形パターンの制御に成功した。
■受賞にあたって一言
この度はGel Symposium 2024にてSmart Molecules Best Poster Awardを頂戴し、誠に光栄に思います。本研究の遂行にあたり、丁寧なご指導を賜りました桶葭興資准教授及び研究室のメンバーにこの場を借りて心より御礼申し上げます。今後も界面変形の普遍性を明らかにするため、研究を進めていきます。
令和7年1月21日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/01/21-1.htmlなぜ実用熱電材料の熱伝導率は低いのか?レーザーラマン散乱分光が出した答えは? ~実用熱電モジュールの性能向上に大きく期待~

なぜ実用熱電材料の熱伝導率は低いのか?レーザーラマン散乱分光が出した答えは?
~実用熱電モジュールの性能向上に大きく期待~
【ポイント】
- レーザーラマン散乱分光法を応用した格子振動の解析手法を、熱電材料の熱伝導率評価に適用しました。
- 実用熱電材料(ビスマス-テルル-セレン系材料)において、4次以上の高次の非調和振動はほとんど存在しないことを実証しました。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域のLiu Ruian大学院生(博士後期課程)、小矢野 幹夫教授は、レーザーラマン散乱分光法を実用熱電材料(ビスマス-テルル-セレン系材料)に適用し、4次以上の高次の非調和格子振動がほとんど存在しないことを実証しました。この成果は、なぜ実用熱電材料の熱伝導率は低いのかという問いに対して答えを与えるだけでなく、よりよい熱電材料、すなわち低い熱伝導率をもつ材料を開発するにはどうすればよいかという指針を与えるものです。 |
【研究背景と内容】
熱電変換技術は、固体素子(以下、「熱電素子」という。)のみを使って、熱エネルギーから電気エネルギーを取り出したり、電気によって熱の流れを制御する技術です。熱電変換技術のうち、熱電素子に直流電流を流すと素子の両端でそれぞれ吸発熱がおこるペルチェ効果と、素子に温度差をつけると電圧が発生するゼーベック効果があります(図1)。特に、ペルチェ効果は、インターネットや先進AI技術を支える光通信用レーザーダイオードの温度制御に使用されており、私たちの豊かな生活を陰で支えている必要不可欠なものです。
図1 一対のp型およびn型の熱電素子を組み合わせたπ型熱電モジュールの概念図。熱電モジュールに直流電流を流すと上下電極で吸発熱が起こり(左図)、温度差をつけると逆に電圧が発生する(右図)。 |
このように産業応用されている熱電素子の心臓部にはビスマス-テルル-セレン系の材料が使われています。この材料は、同じような結晶構造を持つビスマス-アンチモン-テルル系材料と組み合わせて熱電素子が製造されます。このビスマス-テルル-セレン系の熱電材料は、熱を伝えにくいという性質(低い熱伝導率*1)が特徴で、優れた熱電性能を持っています。電気の良導体であるにもかかわらず、窓ガラスのような絶縁体と同等の熱伝導率(約 1 W/mK)を示します。
低い熱伝導率の原因として、これまで格子振動の非調和項が熱の流れを阻害していることが効いているのではないかと考えられてきましたが、よくわかっていませんでした。本研究は、レーザーラマン散乱分光法をビスマス-テルル-セレン系材料に適用して、格子振動の高次の項がどのようになっているかを確かめた画期的なものです。
レーザーラマン散乱分光法は、試料に単色レーザー光を照射して、散乱してきた光(ラマン散乱光)と入射レーザー光のエネルギー差から、物質中の格子振動のエネルギーを測定する手法です。さらに散乱光ピークのピーク幅を解析することにより、格子振動の緩和時間(格子振動がどれくらいの速さで励起されて減衰するか)に関する情報が得られます。得られた振動エネルギーを、計算機でシミュレーションした結果と比較することにより、どの振動パターンがどのようなエネルギーを持っているかを推測することも可能です。
私たちは図2に示す温度可変ラマン散乱分光器を用いて、ビスマス-テルル-セレン系材料のラマン散乱スペクトルを広い温度範囲で測定し、その変化を詳細に解析しました。スペクトルは図3に示すように3本のピーク(一つ一つが格子振動のエネルギーに対応します)からなっており、その半値幅を温度に対してプロットすると、温度の上昇とともにほとんど直線的に増加しています(図4)。この温度変化をBalkanskiモデル*4を使って解析すると、「格子振動には非調和成分が存在するが、それは3次までの振動であり、4次以上の非調和振動*2*3は存在しない」ということが明らかになりました。4次の非調和振動は近似的には大きな振幅をもった格子振動に対応するため、この結果は、「大振動振幅が熱の流れを阻害することは、ビスマス-テルル-セレン系材料の低熱伝導率の原因ではない」ということを示しており、むしろ構成元素が重元素であることが主な理由であることを明確に表しています。
図2 レーザーラマン散乱分光実験の様子。温度可変チェンバー内のアルミ基板上に設置された試料に、光学窓を通してレーザー光を照射する。散乱されたラマン光は顕微鏡の接眼レンズを通して分光器で分光される。 |
図3 実測された熱電材料Bi2Te3のラマンスペクトルの一例。特徴的な3本のピーク(A1gおよびEgモード)が観測される。黒点が測定値、赤線はフィッテイング曲線である。 |
図4 ラマンピークの半値幅の温度依存性の一例。温度の上昇とともに、ほとんど直線的に半値幅が広くなっていることが分かる。4次の非調和項が含まれる場合は、この振る舞いが下凸の曲線となる。 |
これらの情報は、なぜ実用熱電材料の熱伝導率は低いのかという問いに対して答えを与えるだけでなく、よりよい熱電材料、すなわち低い熱伝導率をもつ材料を開発するにはどうすればよいかという指針を与えるものです。さらにレーザーラマン散乱分光法が物質の熱の伝わり方を解析する一つの有効な手法として提示されたため、今後、他の材料の熱測定にも同様の手法が応用されることが期待されます。
本成果は、2024年11月25日に科学雑誌「Physical Review B」に掲載されました。なお、本研究は、科学研究費助成事業基盤研究(C)20K05343の支援のもと行われたものです。
【論文情報】
掲載誌 | Physical Review B 110, 174310(2024) |
論文題目 | Investigation of phonon anharmonicity in Se-doped Bi2Te3 via temperature-dependent Raman spectroscopy |
著者 | Ruian Liu, and Mikio Koyano |
掲載日 | 2024年11月25日 |
DOI | 10.1103/PhysRevB.110.174310 |
【用語説明】
熱の伝わりやすさを示す指標。固体の場合、単位温度差を付けた場合に単位時間内に流れる、単位長さ単位断面積当たりの熱量で定義される(単位: W/mK)。一般に熱伝導率が高い物質(金属等)は熱をよく伝え、電気を流さない絶縁体は熱を伝えにくい。熱電変換材料の場合は、高い伝導率と低い伝導率という相反する物性が要求される。
物質中では原子の熱振動を通じて熱エネルギーが高温側から低温側に伝わっていく。このときの状態は、原子がバネで規則的につながれたモデルで記述することができる。フックの法則に従う理想的なバネで構成されていれば、原子が振動したとき、この連成振動系の固有振動のみが安定なエネルギーを持つ。この振動状態を調和振動と呼ぶ。
調和振動のみでは固体の熱膨張が説明できないため、実際の固体物質を構成しているバネは非線形バネである。非線形バネは、調和振動に加えて3次や4次の高次の非調和項を持っている(図5)。3次の項は振動の平衡位置のずれ、4次の項は大振幅振動に近似的に対応する。非調和項が存在すると音波同士の衝突が可能となるため、より減衰が速くなり熱エネルギーの伝播が阻害される。
音波とのアナロジーで考えると、調和振動は基準音(純音)に、非調和項は倍音に対応する。
物質の振動特性を解析するための理論モデルで、特にラマン散乱分光法のデータを解析する際に用いる。このモデルが提唱する半値幅の温度依存性を用いることにより、格子振動の非調和項を次数ごとに分離することができる。
図5 格子振動の調和項(調和振動)と非調和項の概念図。
令和7年1月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/01/06-1.html高分子ネットワークで人工光合成

高分子ネットワークで人工光合成
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域の萩原礼奈大学院生(博士後期課程)、桶葭興資准教授、東京大学(総長・藤井輝夫、東京都文京区)大学院工学系研究科の吉田亮教授の研究グループは、人工光合成ゲルの研究について特集論文を発表しました。 |
これまでの人工光合成[用語解説1]の研究では、有機/無機にかかわらず様々な物質群の探索と電子移動の向上に注力されてきました。しかし、その反応が起こる液相では、分子集団としての振る舞いが無秩序のため、拡散律速によるエネルギー損失が問題でした。一方、実際の光合成を行う葉緑体では、その内部に在るチラコイド膜によって区画されたナノ空間があります。この膜上では複数の分子団の位置関係が絶妙に制御されており、化学反応場として必要不可欠です。このような空間制御を可能とするシステムとしてゲル相は有用であり、ハイドロゲル[用語解説2]の網目構造は高いポテンシャルを持ちます(図)。事実、光エネルギー捕集分子、電子伝達分子、触媒分子など複数の機能団に高分子の網目構造を精密に導入することで、能動的な電子輸送が可能となります。例えば、光エネルギーによる水の分解には、同時に複数の電子が輸送される必要があり、多数の酸化還元反応が伴います。この化学反応が起こる場に、刺激応答性高分子[用語解説3]の網目を導入することで、反応に伴った高分子の伸び縮みを利用することができます。これによって電子の能動輸送が実現します。実際、光エネルギーによって水を分解して酸素発生や水素発生するゲルシステムが提案されました。
この人工光合成ゲルは、外界からのエネルギーや物質の授受が可能な開放系マテリアルで、生物に倣った物質システムです。今後も、高分子ネットワークを活用した機能性材料の設計は、様々なエネルギー変換システムの構築など、持続可能な社会の実現に資するものと考えられます。
本成果は、2024年11月1日(英国時間)に科学雑誌「Chemical Communications」誌(RSC社)のオンライン版で公開されました。また、本研究は、日本学術振興会科研費 挑戦的研究(萌芽)(JP21K18998)の支援のもと行われました。
図:葉緑体にヒントを得た人工光合成ゲルの概念図。A. 葉緑体の内部では、チラコイド膜に4つのタンパク質が連携して酸化還元反応を起こし、電子伝達が達成されている。B. 水の可視光分解に必要な4つの機能団を高分子ネットワークに組み込んだ概念図。 |
【論文情報】
掲載誌 | Chemical Communications (The Royal Society of Chemistry) |
論文題目 | Bioinspired hydrogels: polymeric designs towards artificial photosynthesis |
著者 | Reina Hagiwara, Ryo Yoshida, Kosuke Okeyoshi* |
DOI | 10.1039/d4cc04033c |
掲載日 | 2024年11月1日付、オンライン版(オープンアクセス) |
【関連論文】
精密な高分子設計による能動的電子輸送が終始可能に
-高分子が触手のように電子を授受-(2023.12.14 プレスリリース)
https://www.jaist.ac.jp/whatsnew/press/2023/12/14-1.html
高分子の"伸び縮み"で「人工光合成」を加速する!
-電子伝達を制御する高分子の相転移(2019.6.12 Academist Journal)
https://academist-cf.com/journal/?p=11128
高分子の相転移を利用した人工光合成に成功
-可視光エネルギーによる高効率な水素生成を達成-(2019.5.15 プレスリリース)
https://www.jaist.ac.jp/whatsnew/press/2019/05/15-1.html
【用語解説】
令和6年11月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/11/06-1.html「北陸技術交流テクノフェア2024」に出展しました
10月17日(木)~18日(金)の2日間、福井県産業会館(福井県福井市)にて、業種・分野・地域を超え、様々な企業・大学・研究機関等が一堂に会する北陸最大級の総合展示会である「北陸技術交流テクノフェア2024」が開催され、本学からは超越バイオメディカルDX研究拠点(eMEDX)がブース出展を行いました。
ブースには、企業、教育、行政関係者を中心とし、幅広い分野の方々からの訪問(49名: 42機関)があり、大変盛況な様子でした。


ブースの様子
令和6年11月5日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/11/05-2.html10月17日(木)~18日(金) 北陸技術交流テクノフェア2024に本学が出展
10月17日(木)~18日(金)の2日間、福井県産業会館(福井県福井市)にて、業種・分野・地域を超え、様々な企業・大学・研究機関等が一堂に会する北陸最大級の総合展示会である「北陸技術交流テクノフェア2024」が開催されます。
本学からは超越バイオメディカルDX研究拠点(eMEDX)がブース出展を行います。
ご来場の際には来場登録のうえ、ぜひお立ち寄りください。
(登録フォーム)https://www.technofair.jp/regist/?m=1
日 時 | 10月17日(木) 10時00分~17時00分 10月18日(金) 10時00分~16時00分 |
会 場 | 福井県産業会館(福井県福井市下六条町103番地) |
ブース出展 |
【出展者】超越バイオメディカルDX研究拠点 【出展分野】研究・支援・公的機関 【ブース番号】T-120 |
詳細はこちらをご覧ください。
・北陸技術交流テクノフェア2024 公式サイト
第18回研究科セミナー(サスティナブルイノベーション研究領域)「サウサンプトン大学におけるサスティナブル電子技術の研究と新しい博士トレーニングセンター(CDT)の紹介」
日 時 | 令和6年10月8日(火)15:00~16:30 |
場 所 | マテリアルサイエンス研究棟4棟8階 中セミナー室 |
講演題目 | サウサンプトン大学におけるサスティナブル電子技術の 研究と新しい博士トレーニングセンター(CDT)の紹介 |
講演者 | Professor, Kees de Groot University of Southampton |
使用言語 | 英語 |
お問合せ先 | 北陸先端科学技術大学院大学 サスティナブルイノベーション研究領域 教授 水田 博(E-mail:mizuta ![]() |
● 参加申込・予約は不要です。直接会場にお越しください。
出典:JAIST イベント情報https://www.jaist.ac.jp/whatsnew/event/2024/09/27-1.html学生の永原さんが第21回「次世代の太陽光発電システム」シンポジウム(第4回⽇本太陽光発電学会学術講演会)においてInnovative PV奨励賞を受賞
学生の永原光倫さん(博士前期課程2年、サスティナブルイノベーション研究領域、大平研究室)が第21回「次世代の太陽光発電システム」シンポジウム(第4回⽇本太陽光発電学会学術講演会)においてInnovative PV奨励賞を受賞しました。
日本太陽光発電学会は、太陽光発電に関連する学術分野の研究の促進ならびに成果の普及に関する事業を行い、将来の脱炭素社会の実現とその発展に寄与することを目的としています。
同シンポジウムは、国内の太陽光発電にかかわる研究者や技術者が一堂に会し、分野の垣根なく議論する場として開催されています。
Innovative PV奨励賞は、同シンポジウムにおいて、太陽光発電ならびにその関連分野の発展に貢献しうる優秀な講演論文を発表した35歳以下の同会若手会員に対し授与されるものです。
※参考:日本太陽光発電学会
■受賞年月日
令和6年8月28日
■研究題目、論文タイトル等
封止材とカバーガラスを使用しない曲面結晶Si太陽電池モジュールの機械的強度評価
■研究者、著者
永原光倫、Huynh Thi Cam Tu、大平圭介
■受賞対象となった研究の内容
封止材とカバーガラスを使用しない曲面・大面積結晶Si太陽電池モジュールに対し、JIS規格に基づく砂袋式荷重試験と降雹試験の2種類の機械的強度試験を行った。結果として、砂袋式荷重試験では、切削加工により作製したポリカーボネート(PC)ベースが破壊されないことや、フロントカバーであるPC板と太陽電池セルの接触による破損がないことが分かった。降雹試験では、降雹によるフロントカバーに傷が確認されないことや、衝撃による太陽電池セルの破損が見られないことを確認した。以上のことから、従来型太陽電池モジュールの評価基準を満たす機械的強度を有することが分かった。
■受賞にあたって一言
奨励賞を受賞でき、とてもうれしく思います。研究を進める中で、大平教授をはじめ多くの方からサポートや貴重な助言をいただいたことが、今回の受賞につながったと感じています。これからも一層研究活動に取り組んでいきたいです。
令和6年9月24日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/09/24-2.html