研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。多糖膜が超らせん構造によって湿度変化に瞬間応答 -ナノスケールから再組織化-

多糖膜が超らせん構造によって湿度変化に瞬間応答
-ナノスケールから再組織化-
PRポイント
- ナノメートルスケールから階層的に再組織化されたマイクロファイバー
- 湿度変化に瞬間応答して曲がる天然高分子のフィルム
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)の先端科学技術研究科、環境・エネルギー領域の、博士後期課程大学院生ブッドプッド クリサラ、桶葭 興資准教授、岡島麻衣子研究員、金子 達雄教授らは、シアノバクテリア由来の多糖サクランを用いて、水中で自ら形成するマイクロファイバーが乾燥時に2次元蛇行構造、3次元らせん構造など高秩序化することを見出した。さらにこの構造を利用して、水蒸気をミリ秒レベルで瞬間感知して屈曲運動を示すフィルムの作製に成功した。天然由来の代表物質でもある多糖をナノメートルスケールから再組織化材料としたこととしても意義深い。光合成産物の多糖を先端材料化する試みは、持続可能な社会の構築に重要である。
多糖は分子認識や水分保持など、乾燥環境下で重要な役割を果たす。しかし、天然から抽出された多糖が潜在的に持つ自己組織化を活用することはこれまで困難であった。特に、セルロースナノファイバーなど分子構造を制御した透明素材などはできても、外界変化への応答材料には利用されてこなかった。一方で、我々の研究グループはこれまでに、シアノバクテリア由来の多糖サクランに関する研究を進め、超高分子量の物性やレアメタル回収能など様々な特性を持つ多糖であることを明らかにしてきた。本研究では、1)分子・ナノメートルスケールからマイクロファイバー形成の階層化、2)界面移動による秩序立った変形、3)その多糖膜の水蒸気駆動の運動について報告した。 ![]() 用いた多糖サクランのユニークな特徴として、直径約1 µm、長さ 800 µm以上と他には類を見ない大きなマイクロファイバーを水中で自己集合的に形成する。今回、これが乾燥界面の移動によって蛇行構造やらせん構造に変形することを解明した。乾燥した多糖フィルムの内部では、このねじれた構造がバネ様運動を引き起こす。このメカニズムを利用して、水滴が接近した際、瞬時に屈曲する運動素子の開発に成功した(図)。 本成果は、科学雑誌「Small」誌に6/9(米国時間)オンライン版で公開された。なお、本研究は文部科学省科研費はじめ、旭硝子財団、積水化学工業、澁谷工業の支援のもと行われた。 |
<背景と経緯>
天然高分子など生体組織が水と共生して高効率なエネルギー変換を達成している事実に鑑みれば、持続可能な社会への移行に向けて学ぶべき構造と機能である。例えば、ソフトでウエットな高分子ハイドロゲルは人工軟骨や細胞足場など医用材料をはじめ、生体機能の超越が有望視されている。同時に、刺激応答性高分子を用いたケモメカニカルゲルや湿度応答する合成高分子フィルムなど、しなやかに運動するアクチュエータの研究も注目されてきた。これに対し、天然物質の多糖を再組織化させて先端材料とする研究は発展途上にある。
我々はこれまでに、シアノバクテリア由来の多糖サクランに関する研究を進め、超高分子量、レアメタル回収能など様々な特性を持つ天然高分子であることを明らかにしてきた。さらに直近の研究では、サクラン繊維が水中から乾燥される際に、空気と水の界面にならび一軸配向膜を形成することも見出している。
<今回の成果>
1.多糖サクランのマイクロファイバーの微細構造(図1)
用いた多糖サクランは、直径約1 µm、長さ 800 µm以上と他には類を見ない大きなマイクロファイバーを水中で自己集合的に形成する。このマイクロファイバーを電子顕微鏡で観察すると、直径約50 nmのナノファイバーが束となり、ねじれた構造をとっていることが分かった。これは、人工的に形を作ったわけではなく、多糖が潜在的に持つ自己集合によるものである。他の多糖やDNAやタンパク質の自己集合体と比較しても、驚異的に大きなサイズである。
2.乾燥界面の移動によってファイバーがしなやかに蛇行・らせんを描いて変形(図2)
今回、これが乾燥界面の移動によって蛇行構造やらせん構造に変形することを解明した。界面移動がゆっくりの場合、マイクロファイバーが一軸配向構造、もしくは蛇行構造を形成する。一方、界面移動が早い場合、3次元的な超らせん構造を形成する。1本のマイクロファイバーが蛇行構造をとった後に超らせん構造をとることから、界面がマイクロファイバーの変形に強く寄与していると考えられる。
3.多糖膜の水滴接近に伴う瞬間応答(図3)
乾燥した多糖膜の内部では、このねじれた構造がバネ様運動を引き起こす。このメカニズムを利用して、水滴が接近した際、瞬時に屈曲する運動素子の開発に成功した。時空間解析から、水滴が接近/離隔した際、曲った状態とフラットな状態を可逆的にミリ秒レベルで屈曲運動を示すことが分かる。このような瞬間応答は、湿度変化を膜中のねじれた構造が瞬時に水和/脱水和を大きな変化に増幅したためと考えられる。
<今後の展開>
天然多糖を再組織化することで、水蒸気駆動型の運動素子をはじめ、光、熱など外界からのエネルギーを変換するマテリアルの構築が期待される。多糖ファイバーに機能性分子を導入しておくことで、湿度だけでなく、光や温度の外部環境変化に応答するソフトアクチュエーターである。本研究の成果は、天然由来の代表物質でもある多糖をナノメートルスケールから再組織化材料としたこととしても意義深い。光合成産物の多糖を先端材料化する試みは、持続可能な社会に非常に重要である。
![]() マイクロファイバーはナノファイバーが束になってねじれた状態。 |
A![]() |
B![]() |
C ![]() A. 蛇行構造をとったマイクロファイバー。B. 界面移動による高次構造化。C. 1本のマイクロファイバーが蛇行構造やらせん構造をとった様子の顕微鏡画像。 |
A ![]() |
B ![]() |
図3. 多糖膜の水滴接近に伴う瞬間応答 A. 多糖フィルムに水滴を接近させた際に示す屈曲運動と時空間解析。水滴が接近した際、ミリ秒レベルで屈曲運動を示す。 B. 屈曲変形の概念図。乾燥した多糖フィルムの内部にあるファイバーのねじれた構造がバネ様運動を引き起こし、高速な屈曲変形を示す。 |
【用語説明】(Wikipedia より)
※1自己組織化:
物質や個体が、系全体を俯瞰する能力を持たないのにも関わらず、個々の自律的な振る舞いの結果として、秩序を持つ大きな構造を作り出す現象のことである。自発的秩序形成とも言う。
※2シアノバクテリア:
ラン藻細菌のこと。光合成によって酸素と多糖を生み出す。
※3多糖:
グリコシド結合によって単糖分子が多数重合した物質の総称である。デンプンなどのように構成単位となる単糖とは異なる性質を示すようになる。広義としては、単糖に対し、複数個(2分子以上)の単糖が結合した糖も含むこともある。
※4サクラン:
硫酸化多糖の一つで、シアノバクテリア日本固有種のスイゼンジノリ (学名:Aphanothece sacrum) から抽出され、重量平均分子量は2.0 x 107g/mol とみつもられている。
※5界面:
ある均一な液体や固体の相が他の均一な相と接している境界のことである。
【論文情報】
掲載誌 | Small (WILEY) |
Vapor-sensitive materials from polysaccharide fibers with self-assembling twisted microstructures | |
著者 | Kulisara Budpud, Kosuke Okeyoshi, Maiko K. Okajima, Tatsuo Kaneko DOI: 10.1002/smll.202001993 |
掲載日 | 2020年6月9日(米国時間)にオンライン掲載 |
令和2年6月11日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/06/11-1.html学生の秦野さんが令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞
学生の秦野加奈さん(博士前期課程2年、応用物理学領域、水谷研究室)が令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材、環境材料など、工学と物理学の接点にある最先端課題、学際的なテーマ、社会問題解決に取り組みながら学術活動を続けています。
応用物理学会北陸・信越支部学術講演会発表奨励賞は、応用物理学会北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的とし授与されるものです。
令和元年度応用物理学会北陸・信越支部学術講演会は、12月7日に福井県福井市において開催されました。
■受賞年月日
令和元年12月7日
■研究タイトル
光第二高調波を用いたサクラン水溶液の動的観察
■発表者
秦野加奈、李彦蓉、趙越、Khuat Thi Thu Hien, 水谷五郎、桶葭興資、岡島麻衣子、金子達雄
■研究概要
サクランは2007年にJAISTの金子 達雄教授と岡島研究員(環境エネルギー領域、金子研究室)により発見された高分子多糖類です。本研究ではフェムト秒レーザーを用いた光第二高調波(SHG)顕微鏡により、対称性の破れという観点から、サクラン水溶液が乾燥する過程でどのように変化するかをとらえることを試み、水溶液中のサクランから発生する第二高調波を観察することに成功しました。また、実際に観察されたトーラス状の形をした20m程度のサイズのSHGスポットの発生は興味深いものであり、これよりサクラン水溶液中のマランゴニ対流についての新たな知見が得られる可能性があります。
■受賞にあたっての一言
サクラン研究会に続き、SHGを使ったサクラン研究に興味と意義を感じて頂けたことを大変光栄に思います。日頃からご指導いただいている水谷先生、金子先生、また両研究室でお世話になっている皆さまにこの場をお借りして御礼申し上げます。
令和2年1月15日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/01/15-1.html学生の中野さんが2019年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞
学生の中野 雅元さん(博士前期課程2年、生命機能工学領域、藤本研究室)が2019年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞しました。
今回、2019年度日本化学会北陸地区講演会と研究発表会は、11月29日に石川県金沢市において開催されました。
■受賞年月日
令和元年11月29日
■発表者名
中野雅元、Siddhant Sethi、本田望、中村重孝、藤本健造
■発表題目
標的シトシンの周辺環境が光化学的C to U変換に及ぼす影響
■研究概要
本研究では、DNA鎖中でのシトシンをピンポイントでウラシルに変換する際の周辺塩基の影響を評価した。従来、光化学的にシトシンをウラシルへの変換する際には90°Cの加熱を必要としており、遺伝子疾患の治療法としての細胞内応用は困難であった。そこで、変換部位周辺の塩基を変化させた際の変換効率を調べ、極性が非常に重要であることを見出した。さらに、リン酸の付与により細胞内に適応可能な条件でのシトシンからウラシルへの変換を見出した。以上の成果は今後のウラシルからシトシンへの変異に基づく遺伝子疾患の治療法として期待される。
■受賞にあたっての一言
この度は、2019年度日本化学会北陸地区講演会と研究発表会に起きまして、このような章を頂けたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導いただいている藤本健造教授にこの場をお借りして心より御礼申し上げます。さらに、多くのご助言やディスカッションに乗って頂いた藤本研究室の皆様に深く感謝いたします。
令和元年12月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/12/20-1.html学生の平松さんが令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞
学生の平松 考樹さん(博士前期課程2年、応用物理学領域、村田研究室)が、令和元年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、発表奨励賞を授与し、その功績を称えることを目的としています。
令和元年度応用物理学会北陸・信越支部学術講演会は、12月7日に福井県福井市において開催されました。
■受賞年月日
令和元年12月7日
■研究題目、論文タイトル等
ケイ素含有イオン液体を用いた高効率電気化学発光セルの作製とその動作機構の解明
■研究者、著者
平松 考樹、鈴木 貴斗、村田 英幸
■受賞対象となった研究の内容
電気化学発光セル (LEC)は、発光層が発光材料および電解質からなる発光素子です。素子に電圧を印加すると電解質由来のイオンが分極し、電気二重層とp、nドープ領域を形成することで電荷の注入および輸送を促進するため、有機ELと比較しシンプルな層構造で発光できる素子となっています。LECでは電解質のアニオンとカチオンの構造が電気二重層およびp、nドープ領域の形成に影響し、電荷バランスを決定します。本研究ではイオン液体をLECの電解質に使用しており、そのアニオンおよびカチオンの構造により電荷バランスを制御することで高効率発光を実現しました。
■受賞にあたっての一言
応用物理学会北陸・信越支部学術講演会にて、発表奨励賞をいただけましたこと大変光栄に思っております。本研究を進めるにあたりご指導いただきました村田教授、卒業生の鈴木貴斗様 (現 日清紡ホールディングス (株))をはじめ、多くのご助言をいただきました研究室の皆様にこの場をお借りして、心より御礼申し上げます。
令和元年12月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/12/17-1.html学生の秦野さんが令和元年度エクセレントコア「天然マテリアル」研究拠点シンポジウムにおいてポスター賞を受賞
学生の秦野 加奈さん(博士前期課程2年、応用物理学領域・水谷研究室)が令和元年度エクセレントコア「天然マテリアル」研究拠点シンポジウム(第11回サクラン研究会年次大会)においてポスター賞を受賞しました。
同シンポジウムは、天然マテリアル、特に本学にて発見されたサクランに関する研究のさらなる発展を目指し、幅広い分野の研究者との相互交流・意見交換を行うために本学のエクセレントコア「高性能天然由来マテリアル開発拠点」及びサクラン研究会が開催したものです。
今回は、10月25日に本学において開催されました。
■受賞年月日
令和元年10月25日
■研究タイトル
サクラン水溶液からの光第二高調波の観察
■発表者
秦野加奈、李彦蓉、趙越、Khuat Thi Thu Hien, 水谷五郎、桶葭興資、岡島麻衣子、金子達雄
■研究概要
サクランは2007年にJAISTの金子教授と岡島研究員(環境エネルギー領域・金子研究室)により発見された高分子多糖類です。本研究ではフェムト秒レーザーを用いた光第二高調波(SHG)顕微鏡により、対称性の破れという観点から、サクランが乾燥する過程でどのように変化するかをとらえることを試み、実際に、水溶液中のサクランから発生する第二高調波を観察することに成功しました。
■受賞にあたっての一言
本学にて開催されたサクラン研究会においてポスター賞を頂けたことを大変光栄に思います。日頃からご指導いただいている水谷先生、金子先生、また両研究室でお世話になっている皆さまにこの場をお借りして御礼申し上げます。
令和元年11月14日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/11/14-2.htmlエクセレントコアシンポジウムの開催について
標題について、エクセレントコア「天然マテリアル」研究拠点シンポジウム(第11回サクラン研究会 年次大会)を下記のとおり開催しますので、ご案内いたします。
本シンポジウムは、天然マテリアル、特に本学にて発見されたサクランに関する研究のさらなる発展を目指し、幅広い分野の研究者との相互交流・意見交換を行うために本学のエクセレントコア「高性能天然由来マテリアル開発拠点」及びサクラン研究会が開催するものです。
参加は無料となっており、事前の参加申込み等も必要ありませんので、奮ってご参加下さい。
開催日時 | 令和元年10月25日(金) 10:00~17:50 |
会 場 | マテリアルサイエンス系 小ホール |
プログラム | 司会 金子 達雄 北陸先端科学技術大学院大学 教授(環境・エネルギー領域)
座長 三俣 哲 新潟大学 研究教授
座長 岡島 麻衣子
|
学生の瀧本さんがマテリアルライフ学会第30回研究発表会において研究奨励賞を受賞
学生の瀧本 健さん(博士前期課程2年、物質化学領域、谷池研究室)がマテリアルライフ学会第30回研究発表会において研究奨励賞を受賞しました。
マテリアルライフ学会は、有機、無機、金属からなる素材およびそれらを加工して得られる各種材料と構成物・製品並びにバイオマテリアル、古文化財などの耐久性、寿命予測と制御についての科学および技術の進歩を図ることを目的とした学会です。
研究奨励賞は、優れた発表を行った発表者に授与され、耐久性、寿命予測と制御についての科学および技術の進歩に資することを目的としています。今回、41件の研究発表があり、そのうち5名の発表者が研究奨励賞を受賞しました。
■受賞年月日
令和元年7月5日
■研究タイトル等
マイクロプレートを用いた高分子材料の安定化に関する耐光性評価
■研究者、著者名
瀧本 健、中山 超、竹内 健悟、谷池 俊明
■研究概要
高分子材料の長寿命化において、安定化剤を高分子材料中に添加する手法が一般に用いられます。各材料に対する安定化剤の性能を評価するためには、膨大な数の光劣化試験が必要ですが、1回に加速試験を行える検体数が限られており、劣化検出のための分析も逐次的であることが課題でした。そこで本研究では、マイクロプレートを用いた新規ハイスループットプロトコルを考案し、加速試験・劣化検出の並列化によって耐光性評価に関する実験のスループットの向上に成功したことを報告しました。
■受賞にあたっての一言
このような名誉ある賞をいただくことができ、大変光栄に思います。本研究において熱心なご指導をいただきました谷池准教授、竹内客員研究員、中山超氏をはじめ、多くのご助言をいただきました研究室の皆様にこの場をお借りして心より御礼を申し上げます。
令和元年8月7日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/08/07-1.html学生の中山さん、修了生の北村さんと物質化学領域の谷池准教授、和田特任助教がマテリアルライフ学会総説賞を受賞

学生の中山 超さん(博士後期課程3年、物質化学領域、谷池研究室)、修了生の北村 太志さん(平成30年3月博士前期課程修了)と物質化学領域の谷池 俊明准教授、和田 透特任助教がマテリアルライフ学会総説賞を受賞しました。
マテリアルライフ学会は、有機、無機、金属からなる素材およびそれらを加工して得られる各種材料と構成物・製品並びにバイオマテリアル、古文化財などの耐久性、寿命予測と制御についての科学および技術の進歩を図ることを目的とした学会です。
マテリアルライフ学会総説賞は、編集委員による厳正なる評価を基に、優れた論文の発表者に授与されます。また、耐久性、寿命予測と制御についての科学および技術の進歩に貢献することが期待される論文に与えられるものです。
■受賞年月日
令和元年7月4日
■論文タイトル
ハイスループット化学発光イメージングと機械学習を併用した安定化剤配合の探索
■著者
中山超、北村太志、谷池俊明、和田透
■論文概要
高分子材料の長寿命化において安定化剤配合の検討は最も効果的な手段でありますが、莫大な安定化剤の組み合わせの中から効果的な配合を探索すること、安定化剤を添加した材料の寿命評価時間短縮が最大の課題でした。本研究では安定化剤配合の探索手段として、機械学習である遺伝的アルゴリズムと100検体同時の寿命評価が可能なハイスループット化学発光イメージング(HTP-CLI)を併用し、有効性の高い配合の特徴を進化させていくことで、効率的に配合の性能を向上させていくことを提案しました。
■受賞にあたっての一言
今回、このような賞をいただき大変光栄に思います。本発表において熱心なご指導を頂いた谷池准教授、和田特任助教、北村太志氏、装置を開発した荒谷尚樹氏および激励を頂いた研究室の皆様には心より感謝申し上げます。


令和元年7月11日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/07/11-2.html生命機能工学領域の藤本研究室の論文がWiley社刊行Chemistry an Asian Journal誌の表紙に採択
生命機能工学領域の藤本 健造教授、中村 重孝助教らの論文がWiley社刊行Chemistry an Asian Journal誌の表紙に採択されました。
■掲載誌
Chemistry an Asian Journal (IF=3.692) volume 14, Issue 11, 2019
■著者
Kenzo Fujimoto(教授)、Hung Yang-Chun(2017.3修了)、Shigetaka Nakamura(助教)
■論文タイトル
Strong Inhibitory Effects of Antisense Probes on Gene Expression through Ultrafast RNA Photocrosslinking
■論文概要
今回藤本研究室のグループは、乳癌由来の培養細胞であるHeLa細胞を用い、モデル系である標的遺伝子の発現を、超高速光架橋型人工核酸(CNVD)を組み込んだDNAプローブを用いることによりほぼ完全に抑制することに成功しました。光照射の場所やタイミングにより遺伝子発現を制御することができるため、疾患部位のみに薬効を発揮させることができます。また、光照射エネルギーにより遺伝子発現量を制御することができるため、細胞内遺伝子発現を最適な量に調節することが可能となりました。これにより従来は困難であった発現量の調節も可能となります。
今後、遺伝子の異常発現を伴う細胞の癌化に対し、有用な治療法となると期待できます。また、超高速光架橋核酸(CNVD)は日華化学株式会社より販売されており、本研究成果の普及に大きく寄与することが期待されます。
論文詳細:https://onlinelibrary.wiley.com/doi/full/10.1002/asia.201801917
平成31年6月11日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2019/06/11-2.html蛍光タンパク質フォトルミネッセンスの電気制御に成功
蛍光タンパク質フォトルミネッセンスの電気制御に成功
ポイント
- 蛍光タンパク質とは下村脩らが発見したGFP及びその類縁分子の総称で、大きさおよそ4ナノメートル、基礎医学・生物学研究に広く利用されている。今回、金属と水溶液の界面に蛍光タンパク質を配置し、そのフォトルミネッセンス(蛍光)を電気制御することに世界で初めて成功した。
- この原理をもとに、蛍光タンパク質を用いた微小ディスプレイの作成と動作にも成功した。
北陸先端科学技術大学院大学(JAIST)(学長・浅野哲夫、石川県能美市)の先端科学技術研究科のTRISHA, Farha Diba(博士後期課程学生)、濱宏丞(博士前期課程学生・研究当時)、生命機能工学領域の今康身依子研究員、平塚祐一准教授、筒井秀和准教授らの研究グループは、蛍光タンパク質のフォトルミネッセンス(蛍光)を電気的に制御する手法を世界で初めて確立し、この原理を用いた微小ディスプレイの作成と動作に成功した。
蛍光タンパク質とは、下村脩らによりオワンクラゲから最初に発見された緑色蛍光タンパク質(GFP)及びその類縁分子の総称で、大きさおよそ4ナノメートル、成熟の過程で自身の3つのアミノ酸が化学変化を起こし明るい蛍光発色団へと変化する。生体内の細胞や分子を追跡したり、局所環境センサーを作ったりすることが可能になり、GFPの発見は2008年のノーベル化学賞の対象になった。蛍光タンパク質は多様な光学特性を示すことでも知られ、例えば、フォトスイッチングという現象を使うと、蛍光顕微鏡の空間解像度を格段に良くすることができ、その技術も2014年のノーベル化学賞の対象に選ばれた。 研究グループは、金薄膜に蛍光タンパク質を固定化し、±1~1.5V程度の電圧を溶液・金属膜間に印加することによりフォトルミネッセンスが最大1000倍以上のコントラスト比で変調される現象を発見した。またこの原理に基づいた、大きさ約0.5ミリのセグメントディスプレイの試作と動作に成功した(下図)。 本成果は、5月8日(水)に「Applied Physics Express (アプライド・フィジックス・エクスプレス)」誌に掲載された。 なお、本研究は、国立研究開発法人理化学研究所・光量子工学研究センターとの共同研究であり、また、科学研究費補助金、光科学技術振興財団、中部電気利用基礎研究支援財団などの支援を受けて行われた。 |
<今後の展開>
基礎医学・生物学研究で広く使われている蛍光タンパク質の性質は、溶液や細胞内環境において詳しく調べられてきた。今回、金属―溶液の界面という環境において、新たな一面を示すことが明らかになった。現状での表示装置としての性能は既存技術に比べれば動作速度や安定性の点で及ばないものの、今後、電気制御メカニズムの詳細が明らかになれば、蛍光タンパク質の利用は、分子センサー素子など、従来の分野を超えてより多様な広がりをみせる可能性がある。
<論文情報>
"Electric-field control of fluorescence protein emissions at the metal-solution interface"
(金属・溶液界面における蛍光タンパク質発光の電圧制御)
https://iopscience.iop.org/article/10.7567/1882-0786/ab1ff6
T. D. Farha, K. Hama, M. Imayasu, Y. Hiratsuka, A. Miyawaki and H. Tsutsui
Applied Physics Express (2019)
令和元年5月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/05/16-1.htmlシリセンと六方晶窒化ホウ素の積層構造を実現 -シリセンの性質に影響しない絶縁性酸化防止膜の実証-

シリセンと六方晶窒化ホウ素の積層構造を実現
-シリセンの性質に影響しない絶縁性酸化防止膜の実証-
ポイント
- シリセンはケイ素版グラフェンと言える原子層物質。このシリセンと絶縁性の原子層物質である六方晶窒化ホウ素の積層構造を二ホウ化物薄膜上で実現。
- 世界で初めて、絶縁性の六方晶窒化ホウ素シートにより、シリセンの構造や電子状態に影響を及ぼすことなく、大気中での酸化防止に成功した。
北陸先端科学技術大学院大学(JAIST)(学長・浅野 哲夫、石川県能美市)の先端科学技術研究科応用物理学領域のアントワーヌ・フロランス講師、高村 由起子准教授らは、トゥウェンテ大学、ウォロンゴン大学と共同で、シリセンと六方晶窒化ホウ素(hBN)の積層構造を二ホウ化ジルコニウム薄膜上に形成し、シリセンの構造と電子状態を乱さずに、大気中で一時間以上の酸化防止が可能であることを世界で初めて実証しました。 |
<今後の展開>
六方晶窒化ホウ素(hBN)がシリセンの電子的特性に影響せずに良好な界面を形成することが実験的に明らかとなり、加えて、一原子層厚みにも関わらず、短時間とはいえ大気中での酸化防止効果があることが実証されました。今後は、このhBNシート上にさらに厚く保護層を形成することでシリセンを大気中で安定的に取り扱うことが可能になり、従来困難であった大気中での評価や加工、ひいてはデバイス作製へと発展することが期待できます。
<論文>
"Van der Waals integration of silicene and hexagonal boron nitride" (シリセンと六方晶窒化ホウ素のファン・デル・ワールス積層)
DOI: https://iopscience.iop.org/article/10.1088/2053-1583/ab0a29/
F. B. Wiggers, A. Fleurence, K. Aoyagi, T. Yonezawa, Y. Yamada-Takamura, H. Feng, J. Zhuang, Y. Du, A.Y. Kovalgin and M. P. de Jong
2D Materials 6, 035001 (2019).
平成31年4月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/04/08-1.htmlモデル動物が群れをつくるメカニズムを解明
![]() |
![]() |
![]() |
モデル動物が群れをつくるメカニズムを解明
滋賀医科大学神経難病研究センターの杉 拓磨助教、西村 正樹教授、九州大学の伊藤 浩史准教授、北陸先端科学技術大学院大学先端科学技術研究科/生命機能工学領域の永井 健講師は、動物集団が群れをつくる際のメカニズムを解明しました。これにより将来的に渋滞時や災害時の群衆の効率的な流動制御や、ロボットの群知能制御などへつながることが期待されます。この研究成果は、平成31年2月18日に英国科学誌「Nature Communications(ネイチャー・コミュニケーションズ)」に掲載されました。
<ポイント>
- 生物学でよく使われる線虫という動物がたくさん集まるとネットワーク状に群れることを発見。
- 線虫の群れと、人、鳥、魚の群れは共通するメカニズムで形成されることを強く示唆。
<概要>
- 半世紀近く世界中で研究されているモデル動物の線虫C. エレガンスが、集団でネットワーク状の群れをつくることを発見。世界で初めてモデル動物の集団行動の実験システムを開発。
- 人、鳥、魚の群れ形成メカニズムの理論的研究で用いられてきた数理モデルをもとに数値シミュレーションを行った。
- その結果、①ぶつかった線虫が移動方向をそろえることと②線虫1個体が弧を描くように動くことが、線虫の不思議なネットワークをつくる鍵であることを明らかにした。
- 渋滞時や災害時の人の集団行動の解析やロボットの群知能の効率的制御につながることが期待できる。
<内容詳細>
【研究背景と経緯】
夕暮れどきに浮かぶ鳥の群れや水族館のイワシの群れなど、大量の動物による組織的な行動は多くの人を魅了します。また駅などの混雑時や渋滞時の人の群衆を効率的に流動させることは重要な問題です。これまで、群れ形成について理論研究が盛んに行われ、様々な群れに共通する形成メカニズムの存在が予言される一方、実験的な証明はほとんどありませんでした。これは、野外の鳥や魚の大規模な群れを実験室に再現することが不可能という、ある意味、当然の理由によるものでした。
土壌に生息する線虫C. エレガンス(図1a)は、モデル動物として半世紀近く研究され、細胞死機構の発見や緑色蛍光タンパク質の動物応用などで数々のノーベル賞の対象となりました。われわれは、線虫の体長はわずか1 mm弱であるため、仮に一度に大量飼育できれば、コンパクトな群れ形成の解析システムを作れるのではないかと考えました。さらにモデル動物としての利点である変異体を用いた解析ができることから、過去の理論的研究で提案されたメカニズムを実験的に検証できると考えました。
滋賀医科大学の杉 拓磨助教、西村 正樹教授、九州大学の伊藤 浩史准教授、北陸先端科学技術大学院大学の永井 健講師は、線虫C. エレガンスを大量飼育する方法を確立し、集団によりネットワーク状に群れをつくることを発見しました(図1)。実験と数理シミュレーションを組み合わせた解析の結果、①隣接する線虫同士が相互作用し移動方向をそろえることと②線虫1個体が弧を描くように動くことがこの群れの形成条件であることを明らかにしました(図2)。このメカニズムは人や鳥、魚の群れ形成の理論的研究から提唱されてきたものと類似していることから、本研究は、群れ形成の根底に共通のメカニズムがあることを実験で強く示唆した初めての例となります。
【研究内容】
線虫の飼育では通常、寒天培地上に塗布した大腸菌を餌として与えますが、この従来法では餌が枯渇すると線虫の増殖は止まってしまい、大量の線虫を得ることはできません。そこで本研究では、技術的ブレークスルーの1つとして、栄養に富む「ドッグフード」を線虫の餌として利用することにより、餌の枯渇なく、大量の線虫C. エレガンスを飼育することが可能になりました。そして驚くべきことに線虫集団はガラス表面(図1b)、プラスチック表面(図1c)、寒天培地表面(図1d)でネットワーク状に群れることを発見しました。この群れ形成の意味は、1個体では乾燥状態で干からびてしまう線虫が集団で群れることにより、表面張力により水を保持し、乾燥への耐性を獲得することにあると考えられます。
次に、1個体レベルと集団レベルの線虫の観察から、図2に記載の①と②が特徴的な線虫の運動であると示されました。この単純な物理的条件は過去の人や鳥、魚の群れの理論的研究から予想されたメカニズムと類似していることから、過去のこれらの研究をもとに数理モデルを作成しました。このモデルはシミュレーションにおいて線虫のネットワーク状の群れを再現しました。
つづいて、実験とシミュレーションで数理モデルのパラメータを変えた場合のそれぞれの結果の整合性を確認し、モデルの正確性を検証しました。まず上述①と②の条件(図2)に焦点をあて、線虫周囲の湿度を変えることにより相互作用の強さを変えることや(図3)、描く弧の大きさが小さい線虫変異体を用いた実験を行いました(図3)。その結果、数理モデルのシミュレーションと実験結果はよく一致しました。さらに神経科学分野の最先端テクノロジーであるオプトジェネティクス(p4参照)を用いた実験結果も再現されました。以上の実験とシミュレーションを用いた検証から、上述2条件(図2)が線虫集団による群れ形成の基本メカニズムであると結論づけました。
【今後の展開】
本研究は、人や鳥、魚などの動物集団の群れ形成に共通するメカニズムの存在を初めて実験的に示しました。今後、まずこの独自のモデル動物を用いた実験システムを用いて、さらに数理モデルの正確性を高める予定です。このようなモデルは、避難時や渋滞時の人の動きの解析につながります。実際、国内においても企業と大学が連携して、魚の群れが協調して行動する仕組みを自動運転技術に応用し、渋滞緩和に活かすための共同研究を実施しています。また、災害時や祭典での群衆の渋滞における圧死を避けるための緊急避難方法の解析は類似のモデルを用いて行われており、今後、本研究により数理モデルによる予測精度が向上すれば、効率的な避難方法の提案などにつながります。人間以外にも羊や魚の群れの効率的な制御を行うことにより、畜産や漁業などにも有用な知見を与えることも期待できます。
また、世界中で盛んなロボット開発では、ロボット単体では困難な作業を集団で行わせるため、群知能と呼ばれるアルゴリズムの開発が進められています。例えば、スイスの会社は超小型群ロボットKilobotを開発し、群制御を通して、がれき中の生存者探索や汚染物質除去などを実現しようとしています。本研究は、これらの研究分野とも密接に関連していくことが期待されます。
【参考図】
【論文情報】
論文名 | C. elegans collectively forms dynamical networks |
著者名 | Takuma Sugi*, Hiroshi Ito*, Masaki Nishimura, Ken H. Nagai* (*は責任著者) |
雑誌名,巻号,DOI | Nature Communications (2019年2月18日 (日本時間) 付 電子版), doi:10.1038/s41467-019-08537-y |
【研究資金情報】
- 科学研究費補助金 基盤研究(B)、若手研究(B)、新学術領域研究
- 科学技術振興機構 戦略的創造研究推進事業「さきがけ」
- 持田記念医学薬学振興財団
【用語説明】
- 線虫C. エレガンス
土壌に生息する非寄生性の線虫で、正式名称はセノハブダイディス・エレガンス。分子遺伝学的な解析の可能なモデル動物の1つ。半世紀近く前にシドニー・ブレナーにより利用され始め、細胞死の発見、RNA干渉の発見、緑色蛍光タンパク質の個体レベルでの応用により2002年と2006年のノーベル医学生理学賞、2008年のノーベル化学賞の対象となった。1998年には多細胞生物で初めて全ゲノム配列の解読が終了した。ヒトの遺伝子数と同程度の約2万個の遺伝子を持ち、それらの中にはヒトの遺伝子と類似したものが40%弱も含まれる。また体が透明なため、体外から体を傷つけずに蛍光観察できる。 - オプトジェネティクス
光遺伝学と呼ばれる、最先端のテクノロジー。光感受性のイオンチャネル分子を標的の神経細胞に発現させ、光刺激によりそのイオンチャネルを活性化させることで標的の神経細胞を活性化できる。線虫の場合、体が透明で光透過性が高いので、体を傷つけずに標的の神経細胞のみを活性化させることができる。本研究では、前進と後進を駆動する神経細胞にイオンチャネル分子を発現し、活性化した。
平成31年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/02/19-1.html「日本固有資源"サクラン"の細胞を並べる機能を発見」を開発 -細胞組織工学へ新たな道-
「日本固有資源"サクラン"の細胞を並べる機能を発見」を開発
-細胞組織工学へ新たな道-
北陸先端科学技術大学院大学(JAIST、学長・浅野 哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の金子研究室らは、日本固有種微生物スイゼンジノリから抽出される超高分子サクラン(発見者:岡島麻衣子研究員)の新しい機能を発見しました。3Dプリンターで凹凸にパターン化したポリスチレン基板(武藤工業株式会社作成)の上でサクランゲルを作成することで、このパターンが転写されたゲルを得ました。ゲル内部の分子配列は特殊であり凹部のみでサクラン分子鎖が配向し、細胞をその上に播種すると細胞のほとんどがそれに沿って伸展することが見いだされました。
スイゼンジノリは日本固有種の食用藻類で福岡県、熊本県の一部で地下水を利用し養殖されています。このスイゼンジノリの主成分であるサクランは、2006年本学の岡島らによって発見され、天然分子の中で最も大きな分子量を持ち、高い保水能力(ヒアルロン酸の5倍~10倍)と抗炎症効果を持つ新機能物質として注目され、現在では化粧品を中心に幅広く用いられています。研究チームは昨年このサクランの高い保水能力に着目し、サクラン・レーヨン混紡繊維"サク・レ"を作製するなど、人体に接触する材料としての研究を進めてきました。並行してサクランが作るゲルの細胞適合性などを系統的に研究する中で、今回の発見に至りました。 このゲルは極めて低濃度で液晶構造を形成するサクラン分子鎖の自己配向性を巧みに利用した例であり、サクランがポリスチレン基板に張り付きながら乾燥していく際に、凸部から凹部に向かって重力に伴う延伸張力が働き分子配向すると考えられます。これにより膜自身にも分子配向の方向に筋状のマイクロ構造が形成され、その方向を細胞が認識して配向伸展したと考えています。これが細胞を並べるメカニズムです。また、サクランは光合成を行うラン藻(スイゼンジノリ)が作る物質であるため、空気と水と日光さえあれば作ることが可能であり、生産時に大気の二酸化炭素(CO2)削減に貢献する究極にエコな物質といえます。 ![]() 写真 パターン化サクランゲル(左:ゲル,右:ゲル上の伸展細胞) 本成果はアメリカ化学会誌 [ACS Applied Materials & Interfaces(インパクトファクター8.1)] でオンライン公開され近く印刷公開予定です。 |
<開発の背景と経緯>
藻類などの植物体に含まれる分子を用いて得られるバイオマス注1)材料の中には、材料中にCO2を長期間固定できるため、持続的低炭素社会の構築に有効であるとされています。北陸先端科学技術大学院大学の研究チームはこれまで、淡水性の藍藻であるスイゼンジノリから高保湿力を持つ繊維質である超高分子「サクランTM」注2)を開発してきました。
近年、iPS細胞の発見に端を発し、細胞組織工学の分野が活発化してきています。しかし、細胞を配向させる技術が無いと人工臓器も単なる分化細胞の塊にすぎません。そこで、細胞を適所で配向させる技術が待たれています。
<作製方法>
3Dプリンタで作成したマイクロプラスチック棒のアレイの上にサクランをキャストした。得られたフィルムはプラスチック棒の間でサクランが棒に対して垂直に配向することが分かりました(図1)。
<今回の成果>
このゲルは極めて低濃度で液晶構造を形成するサクラン分子鎖の自己配向性を巧みに利用した例であり、サクランがポリスチレン基板に張り付きながら乾燥していく際に、凸部から凹部に向かって重力に伴う延伸張力が働き分子配向すると考えられます。これにより膜自身にも分子配向の方向に筋状のマイクロ構造が形成され、その方向を細胞が認識して配向伸展したと考えています。この上に、L929マウス線維芽細胞を播種した所、細胞はサクランの配向に応じてパターン化した配向性を示すことが分かりました(図2)。
<今後の展開>
ほとんど全ての臓器は配向しており細胞を配向させるこの技術は組織工学に極めて有用と考えられる。サクランは元来緊急時の火傷治療膜、臓器癒着防止膜、湿布剤に応用できると報告してきましたが、今回人工血管、人工皮膚など、組織工学用基板へ応用展開も期待できます。
<参考図> | ||
![]() |
![]() |
![]() |
図1 3Dプリンタで作成した基板上でキャストしたサクランの偏光顕微鏡注3)写真(530nmの鋭敏色板使用) 左2つは上からの観察、右は横からの観察 | ||
![]() |
||
図2 播種した細胞の写真(ほぼすべての細胞が左右に伸展している) |
<用語説明>
注1)バイオマス(例 スイゼンジノリ)
生物資源(bio)の量(mass)を表す概念で、一般的には「再生可能な、生物由来の有機性資源で化石資源を除いたもの」をバイオマスと呼ぶ。本研究で取り扱ったスイゼンジノリ(ラン藻の一種であり学名はAphanothece sacrum)は日本固有のバイオマスの一種であり、世界でも極めて希な食用ラン藻である。また、スイゼンジノリは江戸時代から健康維持のために食され、当時は細川藩および秋月藩における幕府への献上品とされてきた。大量養殖法が確立されている。
注2)サクラン
スイゼンジノリが作る寒天質の主成分である。硫酸化多糖類の一つでスイゼンジノリから水酸化ナトリウム水溶液により抽出される。サクランの重量平均絶対分子量は静的光散乱法で2.0 x 107 g/mol と見積もられている。現実的には原子間力顕微鏡によりサクラン分子が 13 μm の長さを持つことが直接観察されている。天然分子で 10 μm 以上の長さにも達するものを直接観察した例はこれが初めてとされる。サクランという名称はスイゼンジノリの種名の語尾を多糖類の意味の "-an" という接尾後に変換したもので、北陸先端科学技術大学院大学の岡島らによって発見され名付けられた。現在もその金属吸着性や高保水性などに関する研究が進められており、吸水高分子として応用が進められている。
注3)偏光顕微鏡
光学顕微鏡の一種。試料に偏光を照射し、偏光および複屈折特性を観察するために用いられる。偏光特性は結晶構造や分子構造と密接な関係があるため、鉱物学や結晶学の研究で多く用いられる。他、高分子繊維の研究などにも用いられる。一般には特定方向に偏波させることのできる二枚のフィルター(偏光板)をお互いに直交させて使用する。これにより光は通らなくなるが、屈折率に方向依存性のある高分子繊維などが二枚の偏光板の間に存在すると、この高分子繊維だけが観察可能となる。さらに、特殊なカラーフィルターを組み合わせることで高分子繊維内部の分子配向の方向を色調変化により判定することが可能となる。
平成31年1月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/01/21-1.html学生の鈴木さんが応用物理学会北陸・信越支部において発表奨励賞を受賞

学生の鈴木 友康さん(博士前期課程1年、環境・エネルギー領域・大平研究室)が、平成30年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
「応用物理学会」は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。またこの賞は、応用物理学会北陸・信越支部の学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手会員に対し「北陸・信越支部発表奨励賞」を授与し、その功績を称えることを目的としています。
■受賞年月日
平成30年12月1日
■講演題目
「n型フロントエミッター型太陽電池モジュールの電圧誘起劣化におけるSiO₂膜の効果」
■講演概要
近年、大規模太陽光発電所などで、太陽電池モジュールのアルミフレームとセル間の電位差に起因して性能が劣化する電圧誘起劣化(PID)が問題となっている。本研究では、今後の普及が期待される、基板にn型結晶Siを用い、光入射側にp型エミッター層があるn型フロントエミッター型(n-FE)結晶Si太陽電池モジュールに関し、セル中のSiO₂膜がPIDにおよぼす影響を、SiO₂膜がないn-FEセルを用いたモジュールへのPID試験との比較により検証した。SiO₂膜の無いモジュールでは、表面の窒化Si膜への正電荷蓄積に起因する初期の劣化が確認できなかったが、Na+侵入に起因するその後の劣化に関しては、劣化の程度が大きく、発現する時間も早まった。以上のことから、n-FEモジュールのSiO₂膜は、窒化Siに蓄積する正電荷のSi側への放出を抑止するため初期のPIDを引き起こす一方、Na+侵入によるPIDを遅延する効果があると考察した。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。ご指導いただいた、産業技術総合研究所増田淳様、大平圭介教授、D3山口世力氏ならびに研究室のメンバーには厚く御礼申し上げます。また、今回の実験を行うに当たり、n-FEセルを作製いただいた、豊田工業大学の中村京太郎教授にも厚く御礼申し上げます。今後もこれを励みにし、研究に精一杯取り組んでいきたいと思います。
平成30年12月12日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2018/12/12-1.html学生の重松さんがNANO-SciTech 2018において発表奨励賞を受賞
学生の重松 沙樹さん(博士前期課程2年、応用物理学領域・村田研究室)がThe 9th International Conference on Nanoscience and Nanotechnology 2018 (NANO-SciTech 2018)において発表奨励賞を受賞しました。
International Conference on Nanoscience and Nanotechnology (NANO-SciTech)は、毎年開催され国内外から最先端の研究者・技術者の方々が参加する国際的な研究発表および情報交換の場となっています。
本会議の目的は、ナノテクノロジーに関連する問題についての進歩、実践的な経験、革新的なアイデア、その他幅広いトピックを発見することです。今回の会議は、マレーシアのUniversiti Teknologi MARA (UiTM)の主催で2018年2月26日~3月1日の期間、マレーシアのUiTMにて開催されました。また、発表奨励賞 (Award of Best Oral Presentation)は、優れた発表方法で科学的知識に貢献する内容の発表に対して贈られます。
■受賞年月日
平成30年2月28日
■著者
重松沙樹、宮里朗夫、宮林恵子、酒井平祐、村田英幸
■論文タイトル
Detection of degradation products of OLED by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
■論文概要
有機EL素子の劣化機構を明らかにするためには劣化反応に伴う生成物を特定することが必要です。しかし、劣化生成物が素子の発光領域のどこに、どのような構造をした劣化生成物が存在するか明らかになっていません。本研究では、フーリエ変換イオンサイクロトロン共鳴質量分析イメージング(FT-ICR-MSI)法を劣化した有機EL素子に初めて適用しました。質量分析イメージング法は、質量分析を二次元マッピングする手法であり、注目する物質の面内分布を可視化することが可能です。劣化前後の有機EL素子をFT-ICR-MSIで解析した結果、素子の発光領域によって異なる劣化生成物が存在することを見出しました。さらに劣化程度の異なる領域で検出された劣化生成物の精密質量を用いて、その化学構造を決定し劣化反応機構を明らかにしました。
■受賞にあたって一言
The 9th International Conference on Nanoscience and Nanotechnology 2018 (NANO-SciTech 2018)におきまして発表奨励賞を頂けたこと大変光栄に思います。研究するにあたり、ご指導頂きました村田英幸教授、ナノテクノロジーセンター 宮里朗夫様、酒井平祐助教、静岡大学 宮林恵子准教授に深く御礼申し上げます。また、会議に参加するにあたりたくさんのサポートをしていただいたMohd Zaidanさん、ならびに研究室のメンバーに深くお礼申し上げます。卒業まであと残りわずかですが受賞を励みに、研究に精一杯取り組んでいきたいと思います。
平成30年3月9日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2018/03/09-2.html環境・エネルギー領域の大平准教授の研究グループの講演がPVSEC-27においてBest Paper Awardを受賞
環境・エネルギー領域の大平圭介准教授のグループと、産業技術総合研究所太陽光発電研究センターの増田淳副研究センター長(兼本学客員教授)のグループとの共同研究の成果をまとめた講演が、27th Photovoltaic Science and Engineering Conference (PVSEC-27)において、Best Paper Awardを受賞しました。
PVSECは、アジア・太平洋地域で開催される太陽光発電に関する最大級の国際学会で、今回が27回目の開催です。各種太陽電池材料やデバイス、評価技術、信頼性、市場・政策など広範囲のトピックスを対象としており、今回は10のエリアに分かれて発表が行われました。Best Paper Awardは、総発表件数750件超の中から、全エリアを通して数件程度に授与されるものです。
■受賞年月日
平成29年11月17日
■タイトル
Jsc and Voc reductions in silicon heterojunction photovoltaic modules by potential-induced degradation tests
■著者
Keisuke Ohdaira (JAIST), Seira Yamaguchi (JAIST), Chizuko Yamamoto (AIST), and Atsushi Masuda (AIST)
■発表概要
大規模太陽光発電所において、太陽電池モジュールのフレームと発電素子(セル)の間の電位差が原因で発電性能が低下する、電圧誘起劣化(potential-induced degradation: PID)の問題が顕在化しています。結晶シリコンと非晶質シリコンとのヘテロ接合からなるシリコンヘテロ接合(silicon heterojunction: SHJ)太陽電池は、高効率太陽電池としてすでに市販されており、大規模太陽光発電所への導入も進んでいますが、そのPID現象や発現機構は未解明でした。今回の研究では、SHJ太陽電池モジュールに対してPID試験を行い、1) 電流の低下に特徴づけられるPIDがまず発現すること、2) 透明導電膜の還元による光学損失がこの電流低下の原因であること、3) さらに長時間のPID試験を行うと電圧の低下も起こること、4) モジュールに用いる封止材を変更することでPIDを抑止できること、を明らかにしました。
■受賞にあたって一言
太陽光発電分野の権威ある国際学会であるPVSECでのBest Paper Awardを受賞でき、大変光栄に感じております。実験データの多くが産業技術総合研究所で取得されたものであり、共著者の皆様にも感謝いたしております。今後も引き続き、SHJ太陽電池モジュールをはじめ、n型結晶Si太陽電池モジュールのPIDの現象解明と抑止技術開発に、精力的に取り組んでいきたいと思います。本研究は国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託により行っているものであり、関係各位に感謝いたします。
平成29年11月22日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2017/11/22-1.html