研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。触媒インフォマティクスにおけるデータ問題とは(コメンタリー)
国立大学法人北陸先端科学技術大学院大学
国立大学法人北海道大学
触媒インフォマティクスにおけるデータ問題とは(コメンタリー)
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科物質化学フロンティア研究領域の谷池俊明教授は、北海道大学(総長・寳金清博、北海道札幌市)大学院理学研究院化学部門の髙橋啓介教授と共同で、触媒インフォマティクスの実践における最大の課題であるネガティブデータの欠損についてのコメンタリー(Commentary)論文を発表した。 |
物質、材料研究開発におけるデータ駆動型アプローチ、いわゆるマテリアルズインフォマティクスは、創世の時を終え、近年、研究開発の現場において爆発的に普及しつつある。その最大の課題として、原資となる高品質かつ大規模な実験データの入手が極めて難しいことがあげられる。谷池教授、髙橋教授らの研究グループは、これまで、ハイスループット実験[*1用語解説]を基盤として触媒インフォマティクスを開拓し、当該分野におけるデータの質と規模の問題に正面から取組んできた。
本論文では、触媒を中心とする既存の材料データにまつわる種々の問題、特に、低性能な触媒や合成の失敗など、功利的な視点ではネガティブと捉えられるデータの著しい欠落に関して、その原因や影響、将来的な対策等をまとめた。本論文により、当該分野や関連分野を含む研究者にデータ駆動型アプローチにおけるこれらのデータ問題への理解を深めてもらい、データ、特にネガティブデータの公開に対するマインドセットの修正につながることを期待したい。
本成果は、2023年2月27日(米国東部標準時間)にSpringer Nature発行「Nature Catalysis」のオンライン版に掲載された。
なお、本研究は、科学技術振興機構(JST)戦略的創造研究推進事業CREST研究領域「多様な天然炭素資源の活用に資する革新的触媒と創出技術」(研究総括:上田渉)における「実験・計算・データ科学の統合によるメタン変換触媒の探索・発見と反応機構の解明・制御」(研究代表:髙橋啓介)の支援を受けて行われた。
【論文情報】
掲載誌 | Nature Catalysis (Springer Nature) |
論文題目 | The value of negative results in data-driven catalysis research |
著者 | Toshiaki Taniike, Keisuke Takahashi |
掲載日 | 2023年2月27日(米国東部標準時間)にオンライン版に掲載 |
DOI | 10.1038/s41929-023-00920-9 |
【用語解説】
*1 ハイスループット実験
実験の回転速度をスループットと呼ぶ。ハイスループット実験とは高度な並列化や自動化によってスループットを劇的に改善した手法を指す。
令和5年3月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/03/08-1.html令和4年度地域連携事業 宮竹小学校の児童が来学-附属図書館・JAISTギャラリー見学&理科特別授業-

2月17日(金)、能美市立宮竹小学校の4年生20名が、理科の特別授業を受けました。特別授業では、ナノマテリアルテクノロジーセンターの赤堀准教授及び木村技術専門職員が講師となり、液体窒素や液体酸素を用いた様々な科学実験を行いました。
子供たちは、酸素や窒素、空気などの気体が入った風船を液体窒素で冷やしたときの反応の違いや、液体窒素や液体酸素によって、花や電池、線香などの身近な物が化学反応を起こす様子を観察しました。
今回の特別授業は科学技術の世界に触れることのできる貴重な機会となりました。
2月28日(火)には、同校の3年生16名が附属図書館の見学やJAISTギャラリーでのパズル体験を行いました。本棚に並ぶ多くの図書や、貴重図書室の『解体新書』(杉田玄白著)や『アトランティコ手稿』(レオナルド・ダ・ヴィンチ著)を目にし、本学職員の解説を熱心に聞き入っていました。
また、実際に触って解いて遊ぶことができるパズルに興味津々な様子で、本学の学生が解説しながらパズルを解く実演では、多くの児童が積極的に質問する様子が見られました。

風船を用いた科学実験を行う4年生

液体窒素を観察する4年生

貴重図書室を見学する3年生(附属図書館)

JAISTギャラリーでのパズル実演を見る3年生
令和5年3月7日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/03/07-1.html動的核偏極磁気共鳴法による炭素材料表面の微細構造の解析に世界で初めて成功 -次世代の炭素材料の開発と利用促進に貢献-

![]() ![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 国立大学法人京都大学 国立大学法人岡山大学 |
動的核偏極磁気共鳴法による炭素材料表面の微細構造の解析に世界で初めて成功
-次世代の炭素材料の開発と利用促進に貢献-
ポイント
- 次世代の炭素材料として、グラフェンや薄膜炭素といった材料が注目されている。炭素材料は、化学反応の触媒や燃料電池等の電極触媒としてだけでなく、ドラッグデリバリーシステムなどのバイオマテリアル分野を含め、多種多様な分野での応用が期待されている。
- NMR(核磁気共鳴分光法)による炭素材料の表面構造分析の感度を改善するため、信号強度増幅剤を用いた動的核偏極磁気共鳴法により、これまで同手法では不可能と考えられていた炭素表面の微量なメチル基、水酸基などの表面官能基の検出に成功した。
- これにより、炭素材料の性質に大きな影響を及ぼす表面構造の微細な違いが検出可能となった。
- 今後の炭素材料の表面構造制御ならびに様々な用途に応じた炭素材料の開発とその炭素材料の利用促進に貢献できる。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)ナノマテリアルテクノロジーセンターの後藤和馬教授、岡山大学大学院自然科学研究科の安東映香大学院生は、京都大学化学研究所の梶弘典教授、鈴木克明助教ならびに岡山大学学術研究院自然科学学域の神戸高志准教授、異分野融合先端研究コアの仁科勇太研究教授らと共同で、動的核偏極磁気共鳴法(DNP-NMR)による炭素材料の微細表面構造解析に成功した。これまで不可能とされていたDNP-NMR法による炭素表面のメチル基や水酸基などの表面官能基の信号の大幅な増幅に成功し、炭素材料の性質に大きな影響をおよぼす微量のメチル基、水酸基の観測に成功した。今後の炭素材料の表面構造制御ならびに様々な用途に応じた炭素材料の開発とその炭素材料の利用促進に貢献できる。 |
【研究の背景】
次世代炭素材料の一つとしてグラフェンや薄膜炭素が注目されており、その応用に関して数多くの研究が行われています。グラフェンや薄膜炭素材料の作製にはいくつかの方法があり、黒鉛を化学的に酸化して炭素層を剥離することで、酸化グラフェンを得る方法などが知られています。この酸化グラフェンは触媒となる金属ナノ粒子を担持する[用語解説]ことや、ポリマーやカーボンナノチューブなどと複合化ができるため、化学反応の触媒、燃料電池等の電極触媒としてだけでなく、ドラッグデリバリーシステムなどのバイオマテリアル分野を含め、多種多様な分野での応用が期待されています。
このような炭素材料の表面には数多くの欠陥構造があり、そこには水酸基やカルボキシル基、エポキシ基、メチル基などの表面官能基が存在していることが知られています。炭素材料の性質はこの表面官能基の種類や結合量により、大きく変わることも知られています。よって、この表面官能基の状態を把握し、制御することが材料開発において重要となります。従来、炭素材料の表面官能基についてはX線光電子分光法(XPS)や昇温脱離法(TPD)といった分析手段により解析されてきましたが、これらの方法では分析の感度は良いものの、精度に課題がありました。一方、本研究で用いた核磁気共鳴分光法(NMR)[用語解説]では、官能基の種類の分析は高精度で行えるものの、従来の方法では検出感度が低いという問題があり、高精度かつ高感度な炭素材料の表面構造の分析手段が望まれていました。
【研究の内容】
本研究では、NMR による分析の感度を改善するために、近年溶液中の分子の水素(1H)原子や炭素(13C)原子を高感度で観測する技術として注目されている、動的核偏極(DNP)[用語解説]という手法を用いた分析を試みました。NMRは、磁場中に置かれた原子核が特定の周波数の電磁波(ラジオ波)を吸収する現象を利用することによって、対象原子の状態を観測する分析手段で、化学物質の同定や病院のMRI検査などに広く用いられています。DNP-NMRは、測定したい試料にマイクロ波(MW)を同時に照射することで、試料中に含まれる信号強度増幅に用いるラジカル分子[用語解説]の磁化を原子核に移し、NMRの信号強度を最大で200倍以上に増幅させる画期的手法です。しかし、炭素材料はマイクロ波を吸収し効率的な磁化移動を阻害する上に、マイクロ波吸収による温度上昇も生じることからDNP効果が減少するという問題があるため、これまでDNP-NMRを用いた炭素材料の信号強度増幅は不可能とされてきました。
これに対し、本研究では、DNPによる信号強度増幅を可能にするため、DNP測定で用いられる信号強度増幅用のラジカルと溶媒の組み合わせを、従来のTEKPol/有機溶媒系からAMUPol/水系に変更し、水酸基やカルボキシル基の存在により親水性が増していると考えられる炭素表面へラジカル分子の接近を可能とすることで、DNPによる信号強度増幅を実現しました。また、炭素材料自体がその欠陥構造内に所有している内在ラジカルを用いたDNP信号強度増幅現象を発現することも観測しました。この手法により、従来の一般的NMR測定ではほとんど観測できなかった酸化グラフェン末端のメチル基を、1H-13C CP/MAS 固体NMR法[用語解説]にて明確に観測することに成功しました。このとき、信号強度増幅は10倍以上となります。また、スクロースを焼成して作製した無定形炭素材料[用語解説] においても、水酸基の信号強度の10倍以上の増幅を達成しました。
本研究により、今後DNP-NMRを用いて炭素材料の微細表面構造の解析が進むことが期待されます。DNP-NMRを用い、炭素材料の表面構造に残存する微少量の表面官能基の存在を明らかにすることで、それぞれの炭素材料の表面状態の違いを解明することができ、これにより、各種触媒元素の担持への適合性などを知ることができるようになると期待されます。適合性が判明することによって、多種多様な分野の各種用途に最適化した薄膜炭素材料の開発に大きく貢献できることが期待されます。
本研究成果は、2月14日にElsevier社が発行する学術雑誌「Carbon」のオンライン版に掲載されました。また、3月25日に出版予定の当該誌206号において、表紙(front cover)に採択されることになりました。
【論文情報】
論文題目 | Dynamic nuclear polarization - nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials |
雑誌名 | Carbon |
著者 | Hideka Ando, Katsuaki Suzuki, Hironori Kaji, Takashi Kambe, Yuta Nishina, Chiyu Nakano, Kazuma Gotoh |
WEB掲載日 | 2023年2月14日 |
出版予定日 | 2023年3月25日 |
DOI | 10.1016/j.carbon.2023.02.010 |
図 DNP-NMRによる観測(信号強度増幅は10倍以上となる。)
【用語説明】
担持:他の物質を固定する土台となる物質のことを担体といい、担持は、その土台に金属などの物質を付着させること。金属をグラフェン上に担持した触媒は、水酸化触媒や酸化触媒として工業的にも利用されている。
NMR (Nuclear Magnetic Resonance) :核磁気共鳴分光法。試料を磁場中に置き、電磁波を照射すると、元素ごとに特定の周波数を吸収する「共鳴」現象が生じる。周波数を観測することで水酸基、カルボキシル基、メチル基などを分別して検出が可能なため、有機化合物の分析などに広く用いられている。
DNP (Dynamic Nuclear Polarization):動的核偏極。NMR測定時にマイクロ波を照射することで測定核近傍のラジカルの磁化を測定対象原子核に移動させる手法。NMRでの共鳴信号検出の際のエネルギー準位間の電子の占有数差を大きく変化させることにより、通常のNMR信号に比べて数倍から最大で200倍以上の信号強度を得ることができる。
ラジカル:不対電子を持つ原子や分子。共有電子対を形成していないため、極めて不安定かつ反応性が高い状態である。
1H-13C CP/MAS 固体NMR:体交差分極(CP)マジック角回転(MAS)NMR法。1H元素の磁化を13C元素に特定条件下で移動させ、さらに試料全体を数kHz以上の超高速回転で回転させることにより、炭素のNMR信号を高感度、高精度で検出する実験手法。
無定形炭素材料:黒鉛やダイヤモンド、カーボンナノチューブなどのような規則的構造をもつ炭素材料とは異なり、結晶構造を持たない非結晶性炭素。但し、非結晶性ではあるが完全に規則構造が無い訳ではなく、ある程度炭素の層状構造や内部細孔などが存在することが知られている。無定形炭素の一種である難黒鉛化性炭素(ハードカーボン)はリチウムイオン電池・ナトリウムイオン電池の負極として用いられている。
令和5年3月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/03/07-1.html人間情報学研究領域のホ准教授のインタビュー記事がJST「サイエンスウィンドウ」に掲載されました
人間情報学研究領域のホ アン ヴァン准教授のインタビュー記事が、科学技術振興機構(JST)が運営するウェブマガジン「サイエンスウィンドウ」に掲載されました。
ホ准教授が取り組む、シリコンなどの柔らかい素材を使用した"ソフトロボット"の研究内容のほか、研究者としてのキャリアや、本学の研究環境についても紹介されています。ぜひご覧ください。
インタビュー記事はこちら(外部リンク)
JST Science Portal「サイエンスウィンドウ」特集記事【海を越えてきた研究者たち】
柔らかいロボットで人と協働する社会を
https://scienceportal.jst.go.jp/gateway/sciencewindow/20230215_w01/index.html
「サイエンスウィンドウ」は、科学技術振興機構(JST)が運営する、魅力あふれる科学の取り組みを分かりやすく紹介するWebマガジンです。多くの方にとって科学技術が身近なものになるよう、科学と暮らしの関係にフォーカスした情報をタイムリーに発信しています。
令和5年2月17日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/02/17-1.html物質化学フロンティア研究領域の松村教授らの論文がJournal of Materials Chemistry B誌の表紙に採択
松村研究室(物質化学フロンティア研究領域)、本郷研究室(サスティナブルイノベーション研究領域)、兵庫県立大学大学院工学研究科 遊佐真一准教授らの論文が英国王立化学会(Royal Society of Chemistry)のJournal of Materials Chemistry B誌の表紙(Back cover)に採択されました。
本研究成果は、松村研究室、本郷研究室および兵庫県立大学との共同研究によるものです。また、本研究は、科研費「学術変革領域研究(A)公募研究」の支援により実施されました。
■掲載誌
Journal of Materials Chemistry B, 21 February 2023, Issue 7,Page 1381 to 1600
掲載日:2023年2月15日
■著者
Nishant Kumar (博士後期課程3年、松村研究室), Kenji Oqmhula(博士後期課程2年、本郷研究室), Kenta Hongo, Kengo Takagi(兵庫県立大学),Shin-ichi Yusa(兵庫県立大学), Robin Rajan, Kazuaki Matsumura
■論文タイトル
Mechanistic insights and importance of hydrophobicity in cationic polymers for cancer therapy
■論文概要
カチオン性高分子に疎水性部位を導入することで飛躍的にガン細胞への障害性が向上することを確認し、そのメカニズム解明の一端として、合成高分子とガン細胞の細胞膜への相互作用の向上を分子動力学シミュレーション等で明らかにしました。
この研究結果は、今後の新しい高分子抗ガン剤の分子設計の指針となることが期待されます。
表紙詳細:https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb90030d
論文詳細:https://pubs.rsc.org/en/content/articlelanding/2023/tb/d2tb02059a/unauth
令和5年2月16日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/02/16-2.htmlリチウムイオン2次電池の急速充放電を促すリチウムボレート型のバイオマス由来バインダーを開発

リチウムイオン2次電池の急速充放電を促す
リチウムボレート型のバイオマス由来バインダーを開発
ポイント
- リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。
- リチウムイオン2次電池のグラファイト負極用バインダーとして、カフェ酸*1とLiBH4(水酸化ホウ素リチウム)との脱水素カップリング重合によりリチウムボレート型水溶性ポリマーを合成した。
- 本負極バインダーを適用した系では、低い最低被占軌道(LUMO)を持つポリマーによりホウ素を含むSEI(固体電解質界面)が形成され、界面抵抗が低減することが分かった。また、同バインダーを用いることにより、負極内におけるリチウムイオンの拡散係数の向上が観測された一方、リチウム挿入反応の活性化エネルギーは減少することが観測された。
- このことから、従来負極バインダーとして使用されているPVDF(ポリフッ化ビニリデン)やCMC-SBR(カルボキシメチルセルロース-スチレン - ブタジエンゴム)をバインダーとした系と比較して急速充放電条件において顕著な適性を示した。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の物質化学フロンティア研究領域 松見紀佳教授、ラージャシェーカル バダム元講師、アヌシャ プラダン研究員、宮入諒矢元大学院生、高森紀行大学院生(博士後期課程2年)は、リチウムイオン2次電池*2の急速充放電を促すリチウムボレート型バイオベースバインダーの開発に成功した。 |
【研究の内容と背景】
リチウムイオン2次電池の開発においては、高容量化やサイクル耐久性の向上、高電圧化など様々な開発課題解決に向けた取組みが行われているが、それと同時に急速充放電の実現に向けた技術開発についても高い関心が集まっている。しかしながら、その実現には固体中のリチウムイオンの拡散速度の向上や電極―電解質界面の特性、活物質の多孔性などの諸ファクターの検討を要している。
今回、本研究においては、カフェ酸とLiBH4(水酸化ホウ素リチウム)をテトラヒドロフラン溶液中で脱水素カップリング重合することによって、リチウムボレート型バイオベースポリマーを合成した(図1)。合成によって得られたポリマーは水溶性であり、環境負荷の少ない水系スラリーからの負極作製が可能であった。また、得られたポリマーの構造はNMR、XPS、SEM等の各測定によって決定した。
まず、合成によって得られたポリマーを負極バインダーとして用い、アノード型ハーフセル*3を構築し、性能を評価した。本バインダーを用いた系においては、PVDF(ポリフッ化ビニリデン)やCMC-SBR(カルボキシメチルセルロース-スチレン - ブタジエンゴム)を用いた系と比較して、リチウム挿入反応のピークにおけるオーバーポテンシャルが20 mV-100 mV低下し、よりスムーズな電極反応が示唆された。また、Randles-Sevcik式から、負極におけるリチウムイオンの拡散係数を算出すると7.24 x 10-9 cm2s-1であり、PVDFやCMC-SBR系バインダーと比較して有意に高い値であった。
さらに、インピーダンス測定を経て算出したリチウム挿入反応の活性化エネルギーは、本バインダー系において22.6 kJ/molであり、PVDF(28.78 kJ/mol)やCMC-SBR系(58.34 kJ/mol)バインダーと比較して有意に低下した。
次に、充放電試験の結果、1C*4条件において100サイクル時点で放電容量は本バインダー系では343 mAhg-1であり、PVDFで278 mAhg-1、CMC-SBRで188 mAhg-1であった(図2)*5。さらに、急速充電条件(10C)においては、本バインダー系では73 mAhg-1、PVDFで40 mAhg-1、CMC-SBRで17 mAhg-1であり、本バインダーの急速充放電条件における適性が示された(図2)。本バインダー系では1200サイクル(10C)まで安定した充放電挙動を示し、1200サイクル時点の容量維持率は93%であった。
また、動的インピーダンス(DEIS)測定を行ったところ、本バインダー系におけるSEI(固体電解質界面)抵抗はPVDFやCMC-SBR系バインダーと比較して有意に低下した(図3)。これは、充放電試験後に電池セルを分解し負極を分析したところ、XPSによる測定においてホウ素を含有したSEI形成が観測されたことから、SEI抵抗の低減に大いに寄与していると考えられる(図3)。
1200サイクル(10C)充放電後においても、負極を分解し、SEM(走査型電子顕微鏡)の断面像を観察したところ、PVDFバインダーの場合の体積膨張は15.49%であったが、本バインダー系では8.50%に抑制された。さらに本負極バインダーを用いたフルセルにおいても良好に作動した。
本成果は、ACS Materials Letters (米国化学会)のオンライン版に1月9日に掲載された。
本研究は、内閣府の戦略的イノベーション創造プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
【今後の展開】
バインダーを含む負極コンポジットの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業的応用への橋渡し的条件において検討を継続する。
すでに国内特許出願済みであり、今後は、企業との共同研究を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | ACS Materials Letters (米国化学会) |
題目 | Extreme Fast Charging Capability in Graphite Anode via a Lithium Borate Type Biobased Polymer as Aqueous Polyelectrolyte Binder |
著者 | Anusha Pradhan, Rajashekar Badam*, Ryoya Miyairi, Noriyuki Takamori and Noriyoshi Matsumi* |
掲載日 | 2023年1月9日 |
DOI | 10.1021/acsmaterialslett.2c00999 |
図1.(A) 高分子バインダーの合成スキーム
(B) MALDI-TOF MSスペクトル (C) DFT計算によるポリマーの最適化構造 (D) 1H NMR スペクトル (E) 13C NMR スペクトル (F) XPS スペクトル(Li 1s 及びB 1s) |
図2.充放電試験結果
(a) 1C. (b) 10 C.種々の負極バインダー使用時の充放電曲線(0.01-2.1V at 1C ) (c) CAB. (d) PVDF (e) CMC-SBR |
図3.動的インピーダンススペクトル
(a) 本バインダー使用時 (b) PVDF使用時 (c) フィッティングに用いた等価回路 (d) CMC-SBR使用時 (e) RSEI 抵抗の比較 (f) XPS スペクトルB 1s (g) XPS スペクトルO 1s |
【用語説明】
カフェ酸は、ケイ皮酸のパラ位及びメタ位がヒドロキシ化された構造を持つ芳香族カルボン酸で、フェニルプロパノイドの1種である。カフェ酸はリグニン生合成の重要な中間体であるため、全ての植物に含まれている。
電解質中のリチウムイオンがイオン伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
バッテリー容量に対する充放電電流値の比であり、バッテリーの充放電特性(充放電するときの電流の大きさや放電能力・許容電流)を表す。1Cとは1時間で満充電状態から完全に放電した状態になる時の電流値を表し、この数字が高ければ高いほど大きな電流を出力できる。
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和5年2月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/02/01-1.html抗ガン高分子の分子設計指針に新たな光 ~カチオン性と疎水性の相乗効果で高い細胞障害性が発現~

![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 兵庫県公立大学法人兵庫県立大学 |
抗ガン高分子の分子設計指針に新たな光
~カチオン性と疎水性の相乗効果で高い細胞障害性が発現~
ポイント
- 一般的には低分子化合物であることが多い抗ガン剤において、抗ガン効果の高い高分子の分子設計指針を見出した。
- カチオン性高分子に疎水性分子を導入することで抗ガン活性が向上し、高い細胞障害性を発現することが明らかになった。
- 分子動力学シミュレーションなどの手法により、合成高分子とガン細胞の細胞膜の相互作用が抗ガン効果の重要なメカニズムであることを確認し、今後の新規高分子抗ガン剤の分子設計の指針となることが期待される。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市) 物質化学フロンティア研究領域の松村和明教授、ラジャン ロビン助教、サスティナブルイノベーション研究領域の本郷研太准教授、兵庫県立大学大学院工学研究科の遊佐真一准教授らは、精密高分子設計の技術と分子動力学シミュレーションなどの手法を用いて、抗ガン活性の高い高分子化合物の分子設計の指針を見出すことに成功しました。 一般的には、抗ガン剤は、低分子化合物であることが多く、その副作用や水溶性など多くの問題が挙げられます。高分子化合物の抗ガン剤はこれまで研究例があまりなく、また、細胞毒性のあるカチオン性高分子を利用した研究が行われてきました。 本研究では、このカチオン性高分子に疎水性部位を導入することで飛躍的にガン細胞への障害性が向上することを確認し、そのメカニズム解明の一端として、合成高分子とガン細胞の細胞膜への相互作用の向上を分子動力学シミュレーション等で明らかにしました。この研究結果は、今後の新しい高分子抗ガン剤の分子設計の指針となることが期待されます。 本研究成果は、英国王立化学会発刊のJournal of Materials Chemistry Bのオンライン版に1月6日に掲載されました。 |
【研究の背景】
日本人の三大疾病の第一位を占めるガンに対し、治療薬としての抗ガン剤の研究は重要な役割を担っていますが、まだ副作用も大きく、新たな作用機序に基づく効果の高い抗ガン剤の開発が待ち望まれています。
抗ガンペプチドのように、高分子化合物による細胞膜障害を利用した抗ガン剤の研究も行われており、高分子抗ガン剤の研究は、ガンの治療に新しい選択肢を提供するために重要です。
ガン細胞は、細胞膜表面にホスファチジルセリン[用語説明]というマイナスに帯電したリン脂質が発現していることが多いため、正常の細胞に比べて表面電位がマイナスに帯電しているといわれています。そこで、プラスに帯電したカチオン性高分子による細胞膜破壊作用をその機序として抗ガン高分子や抗ガンペプチドの研究が行われてきました。
今回の研究では、合成高分子によるガン細胞への障害性の向上に向けた分子設計の指針を見出しました。
【研究の内容】
研究グループは、4級カチオンを側鎖にもつ高分子(図1)に、ブチルメタクリレートやヘキシルメタクリレート、オクチルメタクリレートなどの疎水性のアルキル鎖を持つモノマーを共重合することで合成した疎水性導入カチオン高分子化合物(図2)が、肝臓ガン細胞や結腸ガン細胞、悪性黒色腫細胞に対して、高い障害性を持つことを明らかにしました(図3)。図3(a)は、カチオン性ポリマー中のブチルメタクリレートのモノマー比が大きくなるほど細胞毒性が高くなり、(b)では、アルキル基の炭素数が大きくなるほど強い細胞毒性を持つことが示されました。つまり、カチオン性基と疎水性基による相乗効果が認められました。
次に、研究グループは、この疎水性部位を導入したカチオン性高分子とガン細胞の細胞膜の相互作用について、パルス磁場勾配核磁気共鳴法(Pulsed-filed gradient Nuclear Magnetic Resonance : PFG-NMR)[用語説明]や分子動力学(MD)シミュレーション[用語説明]など様々な手法を用いて実験と計算の両面から確認しました。
PFG-NMRの測定結果から、疎水性モノマーであるブチルメタクリレートを導入したカチオン性高分子の拡散係数が、細胞膜を模した脂質二重膜と同時に存在するときに小さくなることが確認されました。この結果は、合成高分子が脂質分子と相互作用することで分子の運動性が抑制されていることを示しており、相互作用の向上が示唆される結果となりました。
また、MDシミュレーションでは、疎水性側鎖の導入により10 nsにおけるポリマーとリン脂質膜のコンタクト原子数が、疎水部位の導入前より2倍程度大きな値を示しました(図4)。この相互作用の向上の要因について考察するため、ポリマーの吸着構造の比較を行ったところ、疎水性部位の存在下では、ポリマー主鎖配向が細胞膜の分子配向に対してより平行であることが示されており、ガン細胞の細胞膜への吸着及び膜内へ侵入しやすい主鎖配向を持つことがわかりました(図5)。これにより、ガン細胞の細胞膜構造をより破壊しやすいと考えられます。
以上のことから、「細胞膜障害性」という新たな機序を持つ高分子抗ガン剤の分子設計指針として、カチオン性と疎水性のバランスが重要であることを示しました。
今後はその抗ガン剤高分子にガン細胞選択性などの機能をさらに追求することで新しい抗ガン剤の開発につなげていきます。
本研究は、科研費「学術変革領域研究(A)公募研究(課題番号:21H05516および21H05535)」の支援により実施されました。
本研究成果は、令和5年4月に北陸先端科学技術大学院大学に新設予定の超越バイオメディカルDX研究拠点所属教員らによる先行事例です。
【論文情報】
雑誌名 | Journal of Materials Chemistry B |
題目 | Mechanistic insights and importance of hydrophobicity in cationic polymers for cancer therapy |
著者 | Nishant Kumar, Kenji Oqmhula, Kenta Hongo, Kengo Takagi, Shinichi Yusa, Robin Rajan, Kazuaki Matsumura |
WEB掲載日 | 2023年1月6日(英国時間) |
DOI | 10.1039/D2TB02059A |
図1 合成4級カチオン性高分子 (PAMPTMA)
図2 疎水性付与合成4級カチオン性高分子 (a)ブチルメタクリレート共重合体(PAMPTMA-r-BuMA) (b)ヘキシルメタクリレート共重合体(PAMPTMA-r-HexMA) (c)オクチルメタクリレート共重合体(PAMPTMA-r-OctMA) |
図3 肝ガン細胞(HepG2)に対する抗ガン高分子の細胞毒性試験。縦軸は細胞生存率。
(a)ブチルメタクリレート(BuMA)の導入量の影響。P3:カチオン性高分子(PAMPTMA),
P6:PAMPTMAに対するBuMAの導入モル比5%, P7: 10%, P8: 20%, P9: 30% (b)アルキル基の長さの影響。P7: BuMA 10%, P10: HexMa 10%, P11: OctMa 10%
|
図4 リン脂質膜とポリマーのコンタクト数。
BuMA10%導入ポリマー(赤)の方が10ns時点において2倍程度大きなコンタクト数を示す。
図5 MDシミュレーションにおけるスナップショット。
(a)PAMPTMA (b) PAMPTMA-r-BuMA
(b)ではポリマー主鎖配向が膜の分子配向に対してより平行であり、
細胞膜への吸着及び膜内へ侵入しやすい主鎖配向を持つ |
【用語説明】
細胞膜のアニオン性の細胞内リン脂質成分であり、通常は、細胞膜の内側に主に存在しています。しかし、ガン細胞では細胞膜表面に高頻度に発現しているといわれています。
核磁気共鳴(NMR)技術の一種で、磁場勾配を利用して、物質中の空間的な分布を可視化することができます。また、液体中の分子の拡散移動速度を測定する方法の一つです。
分子レベルで物質の構造や動きを計算するためのコンピュータシミュレーション手法です。原子や分子間の力を計算し、物質の構造や動きを時間発展させることができます。
令和5年1月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/01/30-1.html学生の龍岡さんが第24回日本糖質学会ポスター賞及び2022年度糖鎖科学中部拠点奨励賞を受賞
学生の龍岡 博亮さん(博士後期課程3年、バイオ機能医工学研究領域、山口拓実研究室)が第24回日本糖質学会ポスター賞及び2022年度糖鎖科学中部拠点奨励賞を受賞しました。
日本糖質学会ポスター賞は、日本糖質学会年会において優れた研究成果発表を行った35歳以下の若手研究者を対象に、選考が行われます。このたび2022年度(第41回年会)の選考結果が発表され、龍岡さんが第24回日本糖質学会ポスター賞を受賞しました。
また、令和5年1月7日に行われた糖鎖科学中部拠点 第18回「若手の力」フォーラムにおいても龍岡さんは成果発表を行い、2022年度糖鎖科学中部拠点奨励賞を受賞しました。
*参考:日本糖質学会ポスター賞
■受賞年月日
令和5年1月7日
(2022年度糖鎖科学中部拠点奨励賞)
■受賞テーマ
溶液NMR法を用いた糖-水および水-水間相互作用の解析
(第24回日本糖質学会ポスター賞)
溶液NMR計測と分子シミュレーションを用いた糖-水および水-水間相互作用の解析
(2022年度糖鎖科学中部拠点奨励賞)
■研究概要
糖鎖の生物機能メカニズムには、糖鎖のコンフォメーションや運動性に加え、水和構造が密接に影響していると考えられます。しかし、糖鎖の水和に関する研究は、あまり進んでいません。本研究では、NMR法や分子シミュレーションを活用して水和挙動の探査に取り組み、糖鎖が、結合様式や水酸基の配向などわずかな構造の違いを利用して、異なる溶媒和環境を形成することを明らかにしました。得られた成果は、糖鎖の化学と生物学をつなぐ重要な知見となるものです。本研究の進展により、糖鎖の関与する生命機能の更なる理解とその応用へ向けた道が開けるものと期待されます。
■受賞にあたって一言
この度は、伝統ある日本糖質学会ポスター賞を受賞できたことを、大変光栄に思います。さらにそこからもう一歩研究を進め、中部地区の多くの若手が参加する糖鎖科学中部拠点「若手の力」フォーラムにおいて奨励賞をいただくことができました。糖鎖には、謎がたくさんあり、様々なアイデアやアプローチを試せる面白さがあります。日頃からご指導いただいている山口拓実准教授をはじめ共同研究者に恵まれ、合成化学や物理化学、計算化学にわたる様々な経験を積み、こうした方法を活かすことができました。研究の成果が、糖鎖研究のますますの発展につながったらと考えています。また、同期をはじめ研究室のメンバーと切磋琢磨することで、ここまで成し遂げることができました。あらためて感謝します。本研究はJAIST次世代特別研究員として支援を受けて実施しました。おかげで研究に集中して取り組むことができました、御礼申し上げます。

糖鎖科学中部拠点奨励賞
受賞の様子
令和5年1月30日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2023/01/30-1.html分子自己集合の常識が覆る!? 自己集合で低対称な分子集合体を形成できることを発見

![]() ![]() |
国立大学法人長崎大学 国立大学法人東京大学大学院総合文化研究科 国立大学法人北陸先端科学技術大学院大学 |
分子自己集合の常識が覆る!?
自己集合で低対称な分子集合体を形成できることを発見
ポイント
- 分子自己集合によるC1対称性分子集合体の形成を発見し、分子低対称化に基づく光物性変化を確認した。
- 低対称な分子集合体の形成は大きなエントロピーロスを伴うため、分子自己集合で得ることは困難だと考えられていた。
- 低対称構造を有する分子集合体を得るための新たなアプローチを提供し、低対称構造に基づく新奇機能性材料の創出につながる可能性がある。
長崎大学大学院工学研究科の馬越啓介教授、東京大学大学院総合文化研究科の堀内新之介講師、北陸先端科学技術大学院大学先端科学技術研究科バイオ機能医工学研究領域の山口拓実准教授らの研究グループは、有機分子と遷移金属錯体(注1)を混ぜるだけで、分子対称性が最も低いC1対称の分子集合体が形成することを発見し、自己集合に基づく分子低対称化が物質の光学特性にどのような影響を与えるかも明らかにしました。 通常、分子自己集合では化学熱力学の原理によって、物質の配置エントロピー(注2)が最も高くなる高対称構造体が生成物として得られやすいことが知られています。本研究では、そのような分子自己集合の常識を覆し、分子自己集合によって低対称な分子自己集合体が得られることを発見し、分子自己集合に基づく低対称化(Symmetry-breaking assembly)が起こることを見出しました。これまで様々な研究グループによって低対称構造を有する分子集合体を合成しようとするアプローチが報告されてきましたが、本研究成果はそれらとは一線を画す、新しい方法論となりました。 本研究成果は、1月11日に英国のNature Research社が出版する総合科学速報誌「Nature Communications」誌に掲載されました。 |
【研究の背景】
分子自己集合は自然界で一般的に観測される現象であり、小さな分子がひとりでに集まって巨大な集合構造が構築される現象のことを指します。身近な例では雪の結晶が成長する過程がそうであり、規則的で様々な形状を持つ美しい雪の結晶が報告されています。近年では新しい材料を作り出す手法にこの分子自己集合を取り入れる試みが盛んであり、自己集合性化合物に関する研究はノーベル化学賞の有力候補とされています(図1)。
図1. 金属イオンと有機分子の自己集合によって得られる分子集合体の例
自己集合性化合物の一番の特徴は、雪の結晶でも見られるような、規則的で美しく対称性の高い構造です。これは、分子自己集合の過程が系の乱雑さを表す指標であるエントロピーを大きく減少させる反応であるため、自己集合によるエントロピーの損失を少しでも抑えるため、生成物の構造は高配置エントロピーをもつ対称性の高い構造体になりやすいことに由来しています。自然界では自己集合によって形成する酵素やDNAが生体活動を司っていますが、人類はまだそれらに匹敵するような洗練された機能をもつ自己集合性化合物を合成できていません。この理由は、酵素やDNAが人工的な自己集合性化合物と異なり、低対称で高い複雑性を持つ集合体であるためです。自己集合によって様々な集合構造が合成できることが当たり前となった今日では、自然界で達成されている複雑な仕組みを人工分子系でも達成するため、得られる分子集合体を低対称化する試みや複雑性を付与する研究が盛んに行われています。
【研究内容】
酵素やDNAは水素結合や分子間相互作用のような弱い会合力の協同作用によって自己集合構造を形成しています。研究グループは、自己集合の仕組みに弱い会合力の協同作用を取り入れることで、新しいタイプの分子集合体の合成を探索しました。その結果、水素結合能を持つ有機分子とカチオン性遷移金属錯体(注1)の組み合わせから、通常の自己集合では得ることが困難な最も対称性の低いC1の分子対称性を持つ分子集合体が得られることを発見しました(図2)。
図2. 有機化合物と遷移金属錯体を用いたC1対称性分子集合体の形成
さらに、分子自己集合によって遷移金属錯体の物性が大きく変化することも明らかにしました。遷移金属錯体が有機分子と分子集合体を形成すると、金属錯体の発光特性が大きく向上(高エネルギー化・高効率化・長寿命化)しました。次に研究グループは、用いた遷移金属錯体が2種類の光学異性体の混合物であることに目をつけ、低対称な分子集合構造がキラル光学特性(注3)に与える影響を調べました。その結果、分子自己集合に基づく低対称化(Symmetry-breaking assembly)によって、キラルな遷移金属錯体から観測される円偏光発光の異方性因子glum値が向上することを明らかにしました(図3)。類似な遷移金属錯体を用いてもSymmetry-breaking assemblyを伴わない場合はglum値に変化がなかったことから、このglum値の変化は低対称構造に由来する物性変化であると結論しました。
図3. 分子低対称化にともなうキラル光物性の変化
【今後の展開】
従来の分子自己集合では、得られる化合物の構造は対称性の高い構造という常識があり、低対称構造体を自己集合によって合成することは困難とされてきました。本研究では分子自己集合の常識を覆し、C1対称性を持つ分子集合体を得ることに成功し、その低対称構造に由来する特徴的な物性変化も明らかにしました。この研究成果は、低対称構造を有する分子集合体を得るための新たなアプローチを提供するだけでなく、低対称な分子集合体を用いた機能性材料の礎となる可能性があります。
【謝辞】
本研究は、科研費「若手研究(課題番号:JP19K15589)」、科研費「基盤研究C(課題番号:JP20K05542)」「新学術領域研究「配位アシンメトリー」(課題番号:JP19H04569、JP19H04587)」、「新学術領域研究「水圏機能材料」(課題番号:JP22H04554)」、「文部科学省 マテリアル先端リサーチインフラ(課題番号:JPMXP1222JI0014)」、JSPS国際交流事業「ナノ空間を反応場・デバイスとして活用する物質科学国際拠点の構築」(整理番号R2906)、長崎大学卓越大学院プログラム(整理番号1814)、日揮・実吉奨学会研究助成、野口遵研究助成、小笠原敏晶記念財団一般研究助成、泉科学技術振興財団研究助成、高橋産業経済研究財団研究助成
の支援により実施されました。
【発表雑誌】
雑誌名 | 「Nature Communications」(オンライン版:1月11日) |
論文タイトル | Symmetry-Breaking Host-guest Assembly in a Hydrogen-bonded Supramolecular System |
著者 | Shinnosuke Horiuchi, Takumi Yamaguchi, Jacopo Tessarolo, Hirotaka Tanaka, Eri Sakuda, Yasuhiro Arikawa, Eric Meggers, Guido H. Clever, Keisuke Umakoshi |
DOI | https://doi.org/10.1038/s41467-023-35850-4 |
【用語解説】
遷移金属イオンと有機化合物が配位結合によって複合体となった化合物の総称。その中でも正の電荷を帯びたものはカチオン性と呼ばれる。
分子の位置と構造情報に関する状態量。分子の位置が平均化され構造情報が少ない集合構造は高配置エントロピーを持ち、全ての分子の位置が個別に観測され構造情報に富んだ集合構造は低配置エントロピーの構造となる。
元の構造とその鏡像が重なり合わない性質をキラリティと言い、この性質を持つことを形容詞系でキラルと表す。キラル分子特有の光学特性をキラル光学特性と言い、化合物の立体構造に由来した物性値である。
令和5年1月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/01/16-1.html炭素1原子層厚のグラフェン膜を使った超低電圧・急峻動作のナノ電子機械スイッチ開発に成功 - 究極の低消費電力エレクトロニクスや集積センサシステム実現に期待 -

炭素1原子層厚のグラフェン膜を使った
超低電圧・急峻動作のナノ電子機械スイッチ開発に成功
- 究極の低消費電力エレクトロニクスや集積センサシステム実現に期待 -
ポイント
- 単層グラフェン膜で作製した両持ち梁を、機械的に上下させて安定動作するNEMS(ナノ電子機械システム)スイッチを世界で初めて実現
- スイッチング電圧<0.5 Vの超低電圧動作と急峻なオン・オフ切替え(電流スイッチング傾き≈20 mV/dec)を実現。従来の半導体技術を用いたNEMSスイッチに比べて約2桁の低電圧化を達成
- 制御電極表面に単層の六方晶窒化ホウ素原子層膜を備えることで、従来のグラフェンNEMSスイッチの問題であったグラフェン膜張り付き(スティクション)を解消し、5万回のオン・オフ繰り返し動作を実現
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域の水田 博教授、マノハラン ムルガナタン元JAIST講師、デンマーク工科大学のゴク フィン ヴァン博士研究員(元JAIST博士研究員)らは、単層グラフェン[用語解説1](原子1層厚の炭素原子シート)膜で作製した両持ち梁を、0.5V未満の超低電圧で機械的に上下させ、5万回繰り返しても安定動作するNEMS(ナノ電子機械システム)[用語解説2]スイッチの開発に世界で初めて成功しました。本デバイスを用いれば、スイッチオフ状態での漏れ電流を原理的にゼロにすることが可能となり、現在のエレクトロニクス分野で深刻な問題となっている集積回路やセンサシステムの待機時消費電力[用語解説3]の飛躍的な低減が実現し、今後のオートノマス(自律化)ITシステムの実現に向けた革新的パワーマネジメント技術として期待されます。 |
【背景と経緯】
現在のIT技術は、シリコン集積回路の基本素子であるMOSFET(金属酸化物半導体電界効果トランジスタ)の堅調な微細化に支えられ発展を遂げてきました。最新のマイクロプロセッサでは、数十億個という膨大な数の高速MOSFETをチップに集積することで、大量のデータを瞬時に計算・処理しています。しかし、この半導体微細化の追求に伴って、MOSFETのオフリーク電流(トランジスタをスイッチオフした状態での漏れ電流)の増大が深刻な問題となっています。オフリーク電流によりシステム待機時の消費電力(スタンバイパワー)は急増し、現代の集積回路システムにおいてはシステム稼動時の消費電力(アクティブパワー)と同等の電力消費となっています。スタンバイパワーを低減するために、現在、デバイス・回路・システム全てのレベルにおいてさまざまな対策が検討されています。このうちデバイスレベルでは、トンネルトランジスタや負性容量電界効果トランジスタなどいくつかの新原理のスイッチングトランジスタが提案され、研究開発が進められていますが、未だ従来のMOSFETを凌駕するオフリーク電流特性を実現するには至っていません。
【研究の内容】
水田教授、マノハラン元講師らの研究チームは、原子層材料であるグラフェンをベースとしたナノメータスケールでの電子機械システム(Nano Electro-Mechanical Systems: NEMS)技術による新原理のスイッチングデバイスを開発してきました。2014年には、2層グラフェンで形成した両持ち梁を静電的に動かし、金属電極上にコンタクトさせて動作するグラフェンNEMSスイッチの原理実験に成功しています。しかし、このスイッチではオン・オフ動作を繰り返すうちにグラフェンが金属表面に張り付く(スティクション)問題が生じ、繰り返し動作に限界がありました。
今回、研究チームは、制御電極表面に単層の六方晶窒化ホウ素[用語解説4]原子層膜を備えることで(図1参照)、グラフェンと電極間に働くファンデルワールス力[用語解説5]を低減させ、スティクションの発生を抑制して安定したオン・オフ動作を5万回繰り返すことに世界で初めて成功しました(図2参照)。また、素子構造の最適化を併せて行うことでスイッチング電圧が0.5 V未満という超低電圧を達成し、従来の半導体技術を用いたNEMSスイッチに比べて約2桁の低電圧化を実現しました。同時に、従来のNEMSスイッチでは不可避であったオン電圧とオフ電圧のずれ(ヒステリシス)の解消にも成功しました。
5万回を超える繰り返し動作を経ても、5桁近いオン・オフ電流比や、電流スイッチング傾き≈20 mV/decの急峻性が維持され、それらの経時劣化が極めて小さいことも確認されました。
本成果は、2022年12月22日にWiley社が発行する材料科学分野のトップジャーナルである「Advanced Functional Materials」に掲載されました。
本成果を含めて、水田教授は「ナノメータスケールにおける電子-機械複合機能素子の研究」の業績で2018年度科学技術分野の文部科学大臣表彰科学技術賞 研究部門を受賞しています。
【今後の展望】
これらの優れた性能と信頼性の高さから、本新型NEMSスイッチは、今後の超高速・低消費電力システムの新たな基本集積素子やパワーマネジメント素子として大いに期待されます。さらに、今回の新型スイッチの作製においては、大面積化が可能なCVD[用語解説6]グラフェン膜とhBN膜を採用しており、将来の大規模集積化と量産への展望も広がります。
図1.開発に成功した超低電圧動作グラフェンNEMSスイッチの(a)作製方法, (b)構造, (c)CVDグラフェン膜とhBN膜のラマンスペクトル, (d)作製した素子のSEM(電子顕微鏡)写真
図2.オン・オフの繰り返し動作測定結果:(a)印加電圧(上)と電流応答(下)、(b)繰り返し測定直後と(c)25,000回繰り返し後のオン・オフ電流特性。特性の経時劣化は極めて小さい。
【論文情報】
掲載誌 | Advanced Functional Materials (Volume32, Issue52) |
論文題目 | Sub 0.5 Volt Graphene-hBN van der Waals Nanoelectromechanical (NEM)Switches |
著者 | Manoharan Muruganathan, Ngoc Huynh Van, Marek E. Schmidt, Hiroshi Mizuta |
掲載日 | 2022年12月22日 |
DOI | 10.1002/adfm.202209151 |
【用語解説】
2004年に発見された、炭素原子が蜂の巣状の六角形結晶格子構造に配列した単原子シート。
半導体集積回路作製技術によって形成されたナノメータスケールの機械的可動構造を有するデバイス。
電源に接続された集積回路・システムが、電源の切れている状態でも消費する電力。
グラフェンのユニットセルの2個の炭素原子の代わりに、窒素原子(N)とホウ素原子(B)で蜂の巣状格子構造を構成する化合物。電気的に絶縁体である。
原子や分子の間に働く力(分子間力)の一種。
さまざまな物質の薄膜を形成する蒸着法の一つで、基板物質上に目的とする膜の成分元素を含む原料ガスを供給し、化学反応・分解を通して薄膜を堆積する方法。
令和5年1月10日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/01/10-1.html学生の柿﨑さんが第30回日本ポリイミド・芳香族系高分子会議にて優秀ポスター賞を受賞
学生の柿﨑 翔さん(博士前期課程2年、サスティナブルイノベーション研究領域、金子 達雄研究室)が第30回日本ポリイミド・芳香族系高分子会議にて優秀ポスター賞を受賞しました。
日本ポリイミド・芳香族系高分子会議では、芳香族系高分子を中心に幅広い分野における合成、材料分野を基軸として研究を展開する研究者・学生らの学術交流として、毎年研究発表会を開催しています。今年はコロナ禍を考慮しながらの対面形式で、令和4年12月10日に千葉県の東邦大学にて開催されました。
優秀ポスター賞は、発表会ポスターセッションにおいて優秀な研究発表を行った学生に授与されます。
■受賞年月日
令和4年12月10日
■発表者名
柿﨑翔、Yin Hongrong、高田健司、金子達雄
■発表題目
Syntheses of Photoresponsive poly(amide-ester)s using itaconic acid and cinnamic acid
■研究概要
本研究では、バイオ由来物質であるイタコン酸及びm-クマル酸を原料とした紫外線応答性ポリアミドエステルの合成に成功しました。得られたポリマーは二段階の溶融重縮合を経て合成され、m-クマル酸の組成の増加に伴って分子量並びにガラス転移点が上昇しました。さらに、当ポリマーから作製したフィルムに対して紫外線照射を行ったところ、m-クマル酸特有のE-Z異性化による凸変形が確認されました。これは、紫外線から得られるエネルギーを力に変換することができるバイオ由来ポリマーの開発に大きく寄与する研究になります。
■受賞にあたって一言
この度は、第30回日本ポリイミド・芳香族系高分子会議におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている金子達雄教授、高田健司助教にこの場をお借りして心より御礼を申し上げます。さらに、本研究に関して多くのご助言をいただきました研究室のメンバーに深く感謝いたします。


令和4年12月15日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2022/12/15-1.htmlナノマテリアル・デバイス研究領域の麻生助教の研究課題が澁谷学術文化スポーツ振興財団の研究助成に採択
ナノマテリアル・デバイス研究領域の麻生 浩平助教の研究課題が公益財団法人 澁谷学術文化スポーツ振興財団の研究助成「大学の新技術、研究活動への奨励金」に採択されました。
澁谷学術文化スポーツ振興財団は、大学における学術研究の充実を図ること等により、地域社会の発展の寄与することを目的としています。「大学の新技術、研究活動への奨励金」は、石川県地域の大学・大学院等の研究機関において、研究活動を行い、その研究成果が期待されるグループおよび個人を対象に贈呈されるものです。
*詳しくは、公益財団法人 澁谷学術文化スポーツ振興財団をご覧ください。
- 研究期間:令和4年11月~令和5年10月
- 研究課題名:「全固体電池内での局所イオン伝導を可視化するデータ駆動その場観察手法の開発」
- 研究概要:全固体リチウム (Li) イオン電池の実用化に向けて盛んな研究が進められています。例えば、充電がより早く完了する電池の開発が挙げられます。充電とともに、電池内部ではLiイオンが動くので、どういった条件だと動きが速まるのか理解することが大切です。ここで、結晶構造の乱れがLiイオンの動きに変化をもたらすと指摘されています。結晶構造の乱れはナノ(10億分の1)メートルスケールなので、そのスケールでLiイオンの動きを観察することが求められます。そこで本研究では、ナノスケールでLiイオンの動きを可視化する手法を開発します。電池を動作させながらナノスケールで動画を取得できる、オペランド電子顕微鏡法を用います。そして、データ科学の助けを借りることで、数千枚の動画からLiイオンの分布や速度を自動的に解析する手法を開発します。本研究によって、電池開発に新たなアイデアをもたらすことを期待しています。
- 採択にあたって一言:澁谷学術文化スポーツ振興財団、ならびに選考委員の皆様に心から感謝いたします。本研究を進めるにあたりいつも多大なご協力を頂いております大島義文教授、共同研究者の皆様、各研究室の皆様、ナノマテリアルテクノロジーセンターの皆様に厚く御礼を申し上げます。学術や社会に貢献しうる研究成果を挙げられるよう引き続き尽力してまいります。
令和4年12月5日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/12/05-1.html微生物合成したバイオマス由来化合物の添加によるリチウムイオン2次電池用正極の安定化

![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 国立大学法人筑波大学 |
微生物合成したバイオマス由来化合物の添加による
リチウムイオン2次電池用正極の安定化
ポイント
- リチウムイオン2次電池の正極材料としての活用が活発に検討されているLiNMC系正極は、その安定化のために、有効な添加剤を活用するアプローチが重要である。
- 微生物合成により得られたバイオマス由来のピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))がリチウムイオン2次電池のLiNi1/3Mn1/3Co1/3O2正極の安定化に有効な添加剤であることを見出した。
- 微生物合成を採用することにより、比較的複雑な構造を有する添加剤を簡易かつ低コストに、また低環境負荷な手法で合成することが可能となる。
- DMBAPは汎用の電解液よりも最高被占軌道(HOMO)が高く酸化されやすいため、電解液に先立ち正極表面で酸化され、好ましい界面を形成しつつ、電解液の過度な分解を抑制した。その結果、界面抵抗を顕著に低下させるに至った。SEM(走査型電子顕微鏡)像においてもDMBAPがLiNi1/3Mn1/3Co1/3O2正極の形態の変性を抑制することが示された。
- カソード型ハーフセル (3.0 V-4.5 V)において、DMBAP 2 mg/mlを電解液(EC/DEC/LiPF6)に添加した系においては、1Cの電流密度における100サイクル後の放電容量は83.3 mAhg-1であり、DMBAP非添加系における放電容量の42.6 mAhg-1を大幅に上回った。さらにDMBAPによる電池系の安定化効果はフルセルにおいても顕著であった。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の物質化学フロンティア研究領域 松見紀佳教授、ラージャシェーカル バダム元講師、アグマン グプタ研究員、高森紀行大学院生(博士後期課程2年)、筑波大学生命環境系 高谷直樹教授、桝尾俊介助教、皆川一元大学院生は、微生物合成したピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))がリチウムイオン2次電池のLiNi1/3Mn1/3Co1/3O2正極の安定化に有効な添加剤であることを見出した。 |
【研究の内容と背景】
近年、リチウムイオン2次電池[用語解説1]開発において、高電圧化に有効なLiNMC系正極(LiNixMnyCozO2; x+y+z = 1)の活用が活発に検討されている。一方、正極材料としては比較的不安定なLiNMC系正極を安定化するためには有効な添加剤を活用するなどのアプローチが重要である。北陸先端科学技術大学院大学の松見教授らの研究グループでは、この添加剤の活用について、正極添加剤BIANODAの合理的な設計法[参考文献1,2]について報告したが、有機合成化学的な添加剤の合成においては材料の精製等がやや煩雑であった。
そこで今回は微生物合成によってピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))を合成し、LiNMC系正極用添加剤として検討した。本化合物もBIANODAと同様にHOMOが高く、重合性官能基を持つこと、正極活物質の劣化因子であるフッ化水素(HF)をトラップ可能な構造であること、遷移金属への配位子構造等を併せ持つなど、LiNMC系正極の安定化剤として理想的な構造を有している(図1)。この微生物合成を採用することにより、比較的複雑な構造を有する添加剤を簡易かつ低コストに、また低環境負荷な手法で合成することが可能となる。
また、筑波大学の高谷教授らのグループでは、Pseudomonas fluorescens SBW25の遺伝子クラスターがDMBAPの微生物合成に有用であることを見出しており[参考文献3]、さらにグルコースを原料としてDMBAPを発酵生産する組換え細菌も見出している[参考文献3]。
このような系の積極的活用は、新たなカテゴリーの電池用添加剤ライブラリーを見出すとともに電池材料のバイオマス代替を促進する上で大変魅力的である。
本研究では、まずLiNi1/3Mn1/3Co1/3O2/電解液(エチレンカーボネート(EC)/ジエチレンカーボネート(DEC)/ヘキサフルオロリン酸リチウム(LiPF6))/Li型ハーフセルにおいて、電解液に2 mg/mlのDMBAPを添加し、正極安定化剤としての性能を評価した。カソード型ハーフセルのサイクリックボルタモグラム (3.0 V- 4.5 V)の第一サイクルにおいては、DMBAP添加系においては非添加系には見られない酸化ピークが観測され、添加剤に基づいた被膜形成挙動が示唆された。
添加剤DMBAPの量を変化させつつ充放電特性評価を行うと、電解液への添加量が 2 mg/mlの系において最善の性能が観測された。DMBAP 2 mg/mlを電解液(EC/DEC/LiPF6)に添加した系においては1Cの電流密度における100サイクル後の放電容量は83.3 mAhg-1であり、DMBAP非添加系における放電容量の42.6 mAhg-1を大幅に上回った(図2(b))。また、DMBAP添加系においては、リチウム挿入・脱離反応のオーバーポテンシャルの低下も観測された(図2(d))。さらにDMBAPによる電池系の安定化効果はフルセルにおいても顕著であった。
次に、カソード型ハーフセル[用語解説2]における界面形成挙動の解析のため動的インピーダンス(DEIS)測定を行った。各電圧下におけるそれぞれのインピーダンススペクトルに関する等価回路フィッティングを行い、カソード側の界面抵抗(CEI)を算出したところ、DMBAP添加系においてはすべての測定条件下において非添加系よりも抵抗が低く、DMBAPの界面抵抗低減効果が顕著であることが明らかとなった。
また、LiNi1/3Mn1/3Co1/3O2正極を電解液(EC/DEC/LiPF6)中で保管した系においては、SEM(走査型電子顕微鏡)像において形態の変性が観測されるが、DMBAPを共存させた系においては形態変化は抑制され(図3)、DMBAPによる安定化効果が再び示された。
本成果は、ネイチャー・リサーチ社刊行のScientific Reportのオンライン版に11月25日に掲載された。
本研究は、内閣府の戦略的イノベーション創出プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
【今後の展開】
リチウムイオン2次電池の開発においては、作用機構が異なる他の添加剤との併用により、さらなる相乗効果につながることが期待される。
さらに、遷移金属組成の異なる様々なLiNMC 系正極(LiNixMnyCozO2; x+y+z = 1)を効果的に安定化することが期待できる。
既に国内において特許出願済みであり、今後は、企業との共同研究を通して将来的な社会実装を目指す。特に、電池セルの高電圧化技術の普及と電池材料のバイオマス代替を促進することを通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | Scientific Reports(Springer-Nature) |
題目 | Microbial pyrazine diamine is a novel electrolyte additive that shields high-voltage LiNi1/3Co1/3Mn1/3O2 cathodes |
著者 | Agman Gupta, Rajashekar Badam, Noriyuki Takamori, Hajime Minakawa, Shunsuke Masuo, Naoki Takaya and Noriyoshi Matsumi* |
WEB掲載日 | 2022年11月25日(英国時間) |
DOI | 10.1038/s41598-022-22018-1 |
図1.DMBAPによるLiNMC系正極安定化の概念図
重合性官能基(-NH2)を持つこと、フッ化水素(HF)をトラップ可能な構造であること、遷移金属への配位子構造(C₄H₄N₂)等を併せ持つことなど、安定化剤として理想的な構造を有する。 |
図2.(a)様々な電流密度におけるカソード型ハーフセル(DMBAP添加物存在下及び非添加系)の充放電挙動
(b) 1Cにおけるカソード型ハーフセル(DMBAP添加物存在下及び非添加系)の充放電挙動 (c) DMBAP添加物存在下及び非添加系の容量維持率の比較 (d) 1CにおけるDMBAP添加物存在下及び非添加系のオーバーポテンシャルの比較 |
図3.(a) LiNMC 系正極
(b) 電解液(エチレンカーボネート(EC)/ジエチレンカーボネート(DEC)/ヘキサフルオロリン酸リチウム(LiPF6))処理後のLiNMC系正極 (c) DMBAPを添加した電解液で処理後のLiNMC系正極のSEM像 |
【参考文献】
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、カソード極/電解質/Liの構成からなる半電池を意味する。
令和4年11月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/11/30-1.html学生の福田さんが令和4年度北陸地区高分子若手研究会において優秀ポスター賞を受賞
学生の福田 雄太さん(博士前期課程1年、物質化学フロンティア研究領域、山口 政之研究室)が令和4年度北陸地区高分子若手研究会において優秀ポスター賞を受賞しました。
高分子学会北陸支部は、毎年、高分子にかかわる若手の交流と研究の活性化を目的に、若手研究会を開催しています。今回、令和4年度北陸地区高分子若手研究会は令和4年11月19日に富山県立大学にて開催されました。
第一線で活躍している若手研究者の講演、および学生を中心としたポスター発表会が行われ、ポスターセッションでは、優れた若手発表者にポスター賞が授与されました。
■受賞年月日
令和4年11月19日
■発表題目
メゾ相からのa晶転移を利用したアイソタクチックポリプロピレンの高強度化
■受賞対象となった研究の内容
アイソタクチックポリプロピレン(iPP)は汎用プラスチックであり、安価で高強度であることから身の回りの様々なものに使われています。このiPPを成形する際に熱処理を工夫することにより試料の高強度化を図る研究を行っています。
■受賞にあたって一言
この度は北陸地区若手研究会において優秀ポスター賞を受賞できたことを大変うれしく思っています。受賞にあたって日頃から熱心に指導してくださる山口政之教授、木田拓充助教および研究室のメンバーに深くお礼申し上げます。


令和4年11月22日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2022/11/22-2.html学生のZUMILAさんが2022年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞
学生のZUMILA, Haililiさん(博士後期課程2年、バイオ機能医工学研究領域、藤本研究室)が2022年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞しました。
北陸地区講演会と研究発表会は、毎年秋に、金沢大学、福井大学、富山大学、北陸先端科学技術大学院大学のいずれかの大学にて開催しています。特別講演のほか、ポスター発表があり、200~300名が参加しています。
今回、2022年度日本化学会北陸地区講演会と研究発表会は、令和4年11月11日に富山大学にて開催されました。
■受賞年月日
令和4年11月16日
■発表題目
Development of 3-cyanovinylcarbazole induced ultra-fast photocrosslinking mediated DNA circuits
(超高速DNA光架橋反応を用いたユニークなDNA回路開発)
■発表者名
ズミラ ハリリ、セティ シダント、藤本 健造
■受賞対象となった研究の内容
DNAはナノスケールのバイオ高分子として知られており、過去数十年の間に様々なナノスケールの分子デバイスの構築に利用されてきました。今回、研究室オリジナルの超高速DNA光架橋剤である3-シアノビニルカルバゾールを用いて、光エネルギーによって制御可能な新しいDNA回路の設計に挑戦しました。高いDNA架橋率を実現することで、望ましくない複合体を防ぎつつ、高速にDNAの入力順を計算できるような光誘起メモリ回路の構築に成功しました。
■受賞にあたって一言
この度は、2022年度日本化学会北陸地区講演会と研究発表会におきまして、このような賞を頂けたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導いただいている藤本健造教授にこの場をお借りして心より御礼申し上げます。また、多くのご助言やディスカッションにご協力頂いた藤本研究室の皆様に深く感謝いたします。
令和4年11月22日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2022/11/22-1.html下水中の新型コロナウイルス検出・監視により感染拡大防止につなげる下水サーベイランス技術の開発
![]() ![]() ![]() ![]() |
BioSeeds株式会社 金沢大学 北陸先端科学技術大学院大学 一般財団法人北陸産業活性化センター |
下水中の新型コロナウイルス検出・監視により
感染拡大防止につなげる下水サーベイランス技術の開発
北陸先端科学技術大学院大学(以下、JAIST)発のベンチャー企業であるBioSeeds株式会社を代表とする5機関は、この度、内閣官房公募事業「ウィズコロナ時代の実現に向けた主要技術の実証・導入に係る事業」に申請を行い、採択されましたのでお知らせします。 下水中の新型コロナウイルス検出・監視は、患者から直接新型コロナウイルス(以下、コロナウイルス)を検出するよりも早くコロナウイルスの感染拡大を発見できる効率的な方法です。 今回採択されたのは、内閣官房が公募を行う3つの研究開発領域のうち、コロナウイルス感染拡大防止につなげるための【領域3:下水サーベイランス技術の開発】のプロジェクトです。 (参考) 内閣官房事業(株式会社三菱総合研究所が請負) https://pubpjt.mri.co.jp/publicoffer/20220411.html 地域や大規模なコミュニティで下水を活用したコロナウイルスの感染動態監視を実用化する際、下水からのコロナウイルスの抽出(=濃縮)、分析、データの共有等のステップが必須です。今回採択されたプロジェクトでは、現状の実験室レベルでの検出法は利用に制限があるという課題を解決する対策として、検出現場で簡単・迅速・正確に下水監視が可能な革新的技術の開発を行います。 |
本プロジェクトは、BioSeeds株式会社(代表機関)のほか、JAIST、金沢大学、東京大学、一般財団法人北陸産業活性化センターの5機関連携の体制で進めます。
事業予算は、総額で約14,000千円を予定しています。
BioSeeds株式会社が2021年度に開発した高感度コロナウイルス迅速簡便検査法(以下、RICCA)のノウハウをベースに、定量化可能な検出法(定量型RICCA)への改良を行います。さらに、金沢大学本多了教授の下水中に存在するコロナウイルスの検出・分析技術、JAIST高木昌宏教授の下水マイクロバイオーム解析技術、東京大学一木隆範教授の可搬型PCR装置による検出技術、一般財団法人北陸産業活性化センターのユーザビリティ評価といった、優れた技術を有する連携機関と共に本プロジェクトを推進し、付加価値の高い下水サーベーランスサービスを開発、社会実装することで、コロナウイルス感染症等の新規感染症防止対策と、経済活動の両立を目指します。
【プロジェクトの概要】
研究開発プロジェクト名:
集団感染の早期発見と老人ホーム・診療所などを対象とした予防のため、現場で下水を監視する高感度新型コロナウイルス迅速簡便検査法の開発
プロジェクトマネージャー:
BioSeeds株式会社 代表取締役社長 Biyani Manish(ビヤニ マニシュ)
参画機関:
BioSeeds株式会社、JAIST、金沢大学、東京大学、一般財団法人北陸産業活性化センター
事業期間:
令和4年10月から令和5年3月20日まで
研究開発のイメージ:
1)成果
【会社概要】
BioSeeds株式会社
BioSeeds株式会社は、次の2つの主要な目標によって、人々と環境及び健康を維持・強化することを目指しています。
1) マイクロ・ナノテクノロジーによって発明された新しいツールを提供する「ビジネス'D'」
2) アプタマーを用いた診断薬や治療薬の開発「ビジネス'W'」
【本プレスリリースに関する照会先】
BioSeeds株式会社
ビヤニ、上田 TEL:0761-51-1591
令和4年11月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/11/01-1.html