研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。マルチモーダルセンシングを行う触覚センサにより人とロボットの協働をより安全に

マルチモーダルセンシングを行う触覚センサにより
人とロボットの協働をより安全に
【ポイント】
- 柔らかい素材を用いた連続体ロボット用触覚センサの形状復元情報の取得や接触検出を行うDeepLearningモデルを含む統合的なマルチモーダルセンシングプラットフォームを開発しました。
- 知覚情報を用いたロボットアームの動きを決定するアドミタンスベースコントローラにも取り組みました。
- 今後、このプラットフォームに基づいて、柔らかい素材を用いたセンサやロボットへの応用を期待します。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域のHo Anh Van准教授、Nguyen Tai Tuan大学院生(博士後期課程)、Luu Khanh Quan大学院生(博士後期課程)及びハノイ工業大学(ベトナム)のNguyen Quang Dinh博士の研究チームは、ソフトロボットのための新しい触覚センシングプラットフォームを開発しました。 |
【研究の内容】
本研究では、柔らかいスキンを持つ柔軟なロボットアーム用に設計した"ConTac"と呼ばれる新たなビジョンベースの触覚センシングシステムを開発しました。このシステムは、ロボットアームの位置推定と触覚検出を行うことが出来ます。また、シミュレーション上のデータで訓練した二つのDeepLearningモデルを使用しており、追加の調整を行うことなく実世界のデータで動作することが可能です。このシステムにおいて、二つの異なるロボットモジュールでテストし、その有効性を確認しました。さらに、形状情報と触覚情報を利用する制御戦略を開発し、ロボットアームが衝突に適切に対応できるようにしました。これらにより、このアプローチは、柔軟性の高いロボットの知覚と制御を大幅に改善できる可能性があることを解明しました。
自然界では象の鼻やタコの足など器用な動きをする体が存在します。本研究チームは、これらの自然構造の原理をロボットへ応用することで、高い堅牢性や安全性を備えた連続体ロボット[1]の開発を目指しています。
連続体ロボットは、ほとんどのタスクで必要となる自由度(DOF)よりも多くの自由度を持ち、剛体ロボットと異なる柔軟性や器用さにより、不測の事態へ対応可能です。特に、障害物や外乱などがある環境下で真価を発揮します。しかし、連続体ロボットのように柔軟性の高いロボットは、動作中に複雑な屈曲やカーブを描くため、形状や動きを正確に把握することが課題です。解析により、これらのロボットの運動学・動力学的問題を解決することは可能ですが、複雑なモデリングが必要となります。
解析とは別のアプローチとして、連続体ロボットに組み込まれた柔軟性を持つセンサを用いる方法があります。このセンサは、ロボットの表面に取り付けたり、覆ったりすることが出来ますが、この方法では多くの低解像度センサを必要とし、システムが大型になってしまうという欠点があります。そのため、ロボットやアクチュエータの端に1つのセンサモジュールを使用し、大型化を避ける効率的な解決策が求められていました。ところが、これまでの研究では、ロボットの姿勢推定に重点が置かれており、ロボットの柔軟性に対応するための接触検出は含まれていませんでした。
この問題に取り組むため、本研究チームは柔らかいスキンを持つロボットアームの形状を推定し、接触を検出できるConTacシステムを開発しました(図1)。このシステムの最終的な目標は、連続体ロボットに実装することですが、本研究では、検証のため柔らかいスキンを持つ多関節ロボットアームを用いて"知覚"に焦点を当て、開発を行いました。このシステムには、連続体ロボットのような屈曲動作が可能な骨格、マーカー付きの柔らかいスキン、スキンの変形を撮影するカメラ、スキンの形状と触覚のセンシングモデル及び接触機構が含まれます。また、キャリブレーションを行うことなく、同じ機構や形態を持つあらゆるロボットに適用することが出来ます。さらに、知覚情報を用いてロボットアームの動きを決定するアドミタンスベースコントローラ[2]を開発しました。
図1:ConTac概要。人間がロボットに触れると、ロボットは衝突を避けるために動きを変える。
本研究チームが開発を行ったConTacは、複雑な調整を必要とせず、様々なロボットアームで使用することを目指しています。これを実現するために、シミュレーションデータのみで学習させたDeepLearningモデルを用いました。これらのモデルは実際のロボットへ適応できるため、時間とリソースを短縮できます(図2)。ConTacシステムを搭載した柔軟なロボットアームは、ロボットが障害物の多い環境をナビゲーションし、人間とロボットが安全に作業することが求められるスマート農業やヘルスケアサービスに適しています。また、その柔らかさと柔軟的な機構は、周囲の環境を感知する能力が組み合わさり、植物や患者などへの安全なインタラクションでもあります。
図2:ConTacフレームワーク。センシングモデルの開発には、シミュレーション環境によるトレーニングデータの収集が用いられる。このシステムを搭載したロボットは、人間とロボットのインタラクションに用いられることが期待されている。
【今後の展開】
将来的に、既存のロボットシステムに簡単に組み込むことができる触覚センサの開発が期待されます。この進歩により、新しいセンシングと制御手法が導入されれば、ロボット本来の設計に変更を加えることなく、人間とロボットの安全な相互作用が促進されます。すべてのロボットが触覚を持つ社会となれば、産業と日常生活などに大きな変革をもたらすこととなります。
本研究成果は、2024年7月15日から19日にかけてオランダのデルフトで開催の、ロボティクス研究会におけるトップカンファレンス「ROBOTICS: SCIENCE AND SYSTEMS」で発表されました。
【論文情報】
論文題目 | ConTac: Continuum-Emulated Soft Skinned Arm with Vision-based Shape Sensing and Contact-aware Manipulation |
発表先 | Robotics: Science and Systems (RSS) |
著者 | Tuan Tai Nguyen, Quan Khanh Luu, Dinh Quang Nguyen, and Van Anh Ho* |
URL | https://enriquecoronadozu.github.io/rssproceedings2024/rss20/p097.pdf |
【用語解説】
令和6年8月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/08/06-1.html"ROSE"ハンド:バラの花から着想を得た包み込むように掴むロボットハンドを開発

"ROSE"ハンド:バラの花から着想を得た包み込むように掴むロボットハンドを開発
ポイント
- バラの花から着想を得て、物を包み込むように掴むソフトロボットハンドを開発した。
- ロボットハンドとして十分な把持力を持ちながら、素材にソフトマテリアルを使用することで把持物やその周辺を傷つけずに掴むことが可能である。
- ロボットハンド制御の複雑性を軽減させたシンプルな構造かつ優れた耐久力を持っており、多様な用途に使用できるため、幅広い分野での社会実装が期待される。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)人間情報学研究領域のホ アン ヴァン(Ho Anh Van)准教授は、バラの花から着想を得て、物を包み込むように掴み、かつ汎用性に優れたソフトロボットハンドを開発した。開発したロボットは、簡素化された制御機能と優れた耐久性を有しており、今後、農業分野における収穫作業代替ロボットとしての普及だけでなく、幅広い分野への応用が期待される。 |
【研究の背景と目的】
昨今、様々な分野でソフトハンドロボットが導入されている。特に、農業分野においては、ロボットハンドによる収穫作業の自動化が進められており、「農作物を傷つけずに収穫する」ための有用な手段として注目されている。
農業用のロボットハンドとしては、デリケートな農作物を把持することが可能なものがすでに開発されているが、イチゴやモモといった特にデリケートな農作物を対象とした把持の結果は芳しくない。また、ロボットハンドの普及が進まない原因の一つとして、ロボットが高価であることが挙げられる。ソフトロボットを含めたこれまでのロボットハンドは、対象物に特化した専用のロボットハンドとして開発されており、それに加えて、高度なセンシングや制御を必要としている。そのため、開発コストが高まることでロボットハンドの価格が上昇し、導入コストに影響していると考えられる。
本研究では、これらの課題を解決するため、"低価格であり、収穫物を傷つけない優しい把持が可能で、十分な力を持つロボットハンド"をコンセプトに、新しい農業用ロボットハンドの開発を目指した。さらに、農業だけでなく他分野での活用を視野に入れた、対象物を選ばず、また把持物とその周辺を傷つけずに把持することができるロボットハンドの実現を目指した。
【研究の内容】
■アイデア:
設計概念として、1)収穫物を傷つけないためにソフトマテリアルを用いる、2)ロボットハンドの制御を簡素化する、3)製作コストを低くする、4)対象物を選ばず汎用性に優れた把持を実現する、ことを目指した。以上を踏まえ、本研究で提案したバラの花の機能と美しさに着想を得たROSE(ROtation-based-Squeezing grippEr)ロボットハンド(以下、ROSEロボットハンド)は、大面積接触と閉じた構造を特徴とし、より優しい把持接触と汎用的な把持性能を実現した(図1、2)。
具体的に、ROSEロボットハンドでは、柔らかい素材であるソフトマテリアルを使用したスキンを作成し、樹脂製の軸部分の回転により動作するシンプルな機構を提案した。これにより、把持物を傷つけず、かつ制御の複雑さを軽減することに成功した。また、少量のソフトマテリアルと樹脂素材を用いた回転部分を3Dプリントにより形成することで安価に製作できる。さらに、ROSEロボットハンドの空間を閉じようとする動作により、単純な把持のみならず掴む動作も行えるため、把持対象が限定されない。
図1:開発したROSEロボットハンド
図2:設計概念
■特徴:
図2のように、ROSEロボットハンドの先端は半球の頂点を押し込み、窪ませた様な形状をしている。この窪みの底を軸とし、外側のスキンとこの軸を逆方向に回転させることでスキンにねじれを発生させ、それが窪んだ空間を閉じるように動作し把持を可能としている。従来の人の指を模倣したようなソフトロボットハンドでは適切な姿勢制御が必要であるが、ROSEロボットハンドは大面積接触と閉じた構造により、様々な対象物の把持を可能としている。特に、従来のロボットハンドでは困難であった油に浸した対象物の把持が可能であることが実験で示された(図3)。
図3:オリーブオイルタンクから浸したゆで卵の把持の様子
■動作ビデオ(YouTubeへリンク):https://youtu.be/E1wAI09LaoY
■他の技術との差:
前述したように、農業用ロボットハンドの課題の一つとして、収穫物を傷つけず、かつ潰さずに収穫することが挙げられる。この課題を解決するために様々な農業用ロボットハンドが開発されているが、特定の農作物の収穫に限られたものが多く、高価な導入コストという問題までは完全に解決できていない。
一方、このROSEロボットハンドは、対象物を選ばない把持が特徴である。通常のソフトロボットハンドは制御が難しいが、ROSEロボットハンドはそのシンプルな機構によりこの種の課題を解決した。例えば、農業用ロボットハンドでは、主に人の指を模したロボットハンドが多く使用されるが、把持の際に対象物の形状や柔らかさなどによって制御を工夫しなければならない。ROSEロボットハンドは、空間を閉じる動作により包み込むような把持を行うため、対象物によって制御を変える必要がなく、対象物を選ばずに把持することが可能である。結果として、導入コストの軽減につながると考えられる。
また、ROSEロボットハンドは、耐久性に優れている。耐久実験として、「把持対象物の上空からスタート→対象物まで下降→把持→持ち上げ→再び元の対象物があったところまで下降→把持解除→スタート地点へ戻る」という一連の流れを繰り返し行った。その結果、40万回の把持動作に成功した。それ以降は、スキンが破損したものの把持力の低下は見られなかった(図4a)。
さらに、把持した状態での引張強さを測定指標とし、把持力の測定を行った。ROSEロボットハンドが物体を掴み、保持し続けたままで、ROSEロボットハンドにかかる垂直方向の荷重を増加させ、破損するまでの荷重を計測した。その結果、平均400Nの荷重に耐えられることが分かり、耐久性が十分であることが確認できた(図4b)。
このように、従来のソフトロボットハンドの課題の一つとして挙げられる耐久性も十分に備えており、ROSEロボットハンドは他の技術と差別化できる優れたソフトロボットハンドである。

図4:(a)繰り返し動作による耐久実験の様子
(b)把持力の測定の様子

本研究成果は、2023年7月10日から14日まで韓国で開催の国際会議Robotics: Science and Systems (RSS2023)で発表された。
なお、本研究は、国立研究開発法人科学技術振興機構(JST)・戦略的創造研究推進事業さきがけ「IoTが拓く未来」研究領域(JPMJPR2038) (研究課題「タッチIoT : 触れるインターネット実現のための肌感覚送受信機の開発」)の支援を受け行った。
【波及効果・今後の展開】
従来のロボットハンドは把持が対象物に特化しており、精緻であるが汎用性に優れていなかった。これは、対象物や周辺に危害を加えないために必要不可欠な要素として、対象物によって特定のセンシングや制御を設定していたためでもある。しかし、昨今のソフトロボティクス研究の発展により、新たな機構を持つソフトロボットハンドが開発されている。ソフトロボットハンドは、柔らかい素材や空気などを使用した機構などが多く、制御面の工夫が強みである。ROSEロボットハンドもその一つであり、他のソフトロボットハンド同様に、今後需要が増加していくと考えられる。
ここで、本提案技術が想定する製品・サービスとして、次の二つを挙げる。第一に、果物の種類を選ばずに収穫作業を代替するロボットである。第二に、被介護者のQOL(Quality of life)を向上させるための生活支援介護ロボットである。本提案技術の汎用性を基に、幅広い分野でこれらの製品と新たなサービスを提供することで、ソフトロボットハンドの普及促進が期待される。
【論文情報等】
題目 | ROSE: Rotation-based Squeezing Robotic Gripper toward Universal Handling of Objects |
著者 | Son Tien Bui, Shinya Kawano, Van Anh Ho |
国際会議名 | Robotics: Science and System(RSS2023) |
会議発表日 | 2023年7月13日 |
論文掲載URL | https://roboticsproceedings.org/rss19/p090.html |
DOI | 10.15607/RSS.2023.XIX.090 |
令和5年7月14日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/07/14-1.html人間情報学研究領域のホ准教授らが国際会議RSS2023においてBest System Paper Awardの Finalistに選出

人間情報学研究領域のホ アン ヴァン准教授、修了生のBUI, Son Tienさん(令和5年3月博士後期課程修了、ホ研究室)および河野 晋也さん(令和5年3月博士前期課程修了、ホ研究室)が国際会議Robotics : Science and Systems(RSS)2023において発表した論文が、Best System Paper AwardのFinalistに選出されました。
RSSは、ロボティクス分野で権威あるトップカンファレンスの一つです。第19回となった今回は、令和5年7月10日から14日にかけて、韓国テグにて開催されました。
*参考:RSS2023
■年月日
令和5年7月14日
■研究題目、論文タイトル等
ROSE: Rotation-based Squeezing Robotic Gripper toward Universal Handling of Objects
■研究者、著者
Son Tien Bui, Shinya Kawano, Van Anh Ho
■対象となった研究の内容
本研究で提案したバラの花の機能と美しさに着想を得たROSE(ROtation-based-Squeezing grippEr)ロボットハンド(以下、ROSEロボットハンド)は、大面積接触と閉じた構造を特徴とし、より優しい把持接触と汎用的な把持性能を実現した。具体的に、ROSEロボットハンドでは、柔らかい素材であるソフトマテリアルを使用したスキンを作成し、樹脂製の軸部分の回転により動作するシンプルな機構を提案した。これにより、把持物を傷つけず、かつ制御の複雑さを軽減することに成功した。また、少量のソフトマテリアルと樹脂素材を用いた回転部分を3Dプリントにより形成することで安価に製作できる。さらに、ROSEロボットハンドの空間を閉じようとする動作により、単純な把持のみならず掴む動作も行えるため、把持対象が限定されない。
■選出にあたって一言
この度、RSSのようなトップ国際会議にBest System Paperファイナリストとして選ばれたのは、大変光栄です。この研究に貢献してきたHo研究室の修了生や現在のメンバーなどに感謝いたします。
令和5年8月3日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/08/03-1.html人間情報学研究領域のホ准教授のインタビュー記事がJST「サイエンスウィンドウ」に掲載されました
人間情報学研究領域のホ アン ヴァン准教授のインタビュー記事が、科学技術振興機構(JST)が運営するウェブマガジン「サイエンスウィンドウ」に掲載されました。
ホ准教授が取り組む、シリコンなどの柔らかい素材を使用した"ソフトロボット"の研究内容のほか、研究者としてのキャリアや、本学の研究環境についても紹介されています。ぜひご覧ください。
インタビュー記事はこちら(外部リンク)
JST Science Portal「サイエンスウィンドウ」特集記事【海を越えてきた研究者たち】
柔らかいロボットで人と協働する社会を
https://scienceportal.jst.go.jp/gateway/sciencewindow/20230215_w01/index.html
「サイエンスウィンドウ」は、科学技術振興機構(JST)が運営する、魅力あふれる科学の取り組みを分かりやすく紹介するWebマガジンです。多くの方にとって科学技術が身近なものになるよう、科学と暮らしの関係にフォーカスした情報をタイムリーに発信しています。
令和5年2月17日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/02/17-1.htmlマイクロロボットを"流れ"作業で迅速に作製 -生体分子モーターによる人工筋肉で自在にプリント・動的再構成可能に-

![]() ![]() ![]() |
国立大学法人 大阪大学 国立大学法人 北陸先端科学技術大学院大学 国立大学法人東海国立大学機構 岐阜大学 |
マイクロロボットを"流れ"作業で迅速に作製
-生体分子モーターによる人工筋肉で自在にプリント・動的再構成可能に-
【ポイント】
- マイクロ流路※1の中で、光に応答する材料を流しながら、マイクロロボット※2のボディと駆動源となるアクチュエータ※3を連続的に生産・組み立てを行う「マイクロロボットその場組み立て法」を開発
- 様々な機能をもつマイクロロボットの迅速な作製に成功
- より高機能なマイクロロボットの実現と、マイクロロボットの量産化に期待
【概要】
大阪大学・大学院工学研究科の森島圭祐教授、王穎哲特任研究員(常勤)は、 北陸先端科学技術大学院大学・先端科学技術研究科 バイオ機能医工学研究領域の平塚祐一准教授、岐阜大学・工学部の新田高洋教授との共同研究で、マイクロ流路内で、マイクロロボットの部品をプリント成形し、その場で組み立てることに成功しました。マイクロロボットの機械構造は光応答性ハイドロゲル※4でつくられ、アクチュエータは同じチームが開発した生体分子モーターからなる人工筋肉を利用しました。このアクチュエータと機械部品をマイクロ流路内で組み立てることにより、マイクロロボット製造の柔軟性と効率が向上しました。この方法で、様々な機能のマイクロロボットが実現されました。また、この成果により、これまで困難であった、特に柔軟な構造を持つマイクロソフトロボットの実現や、マイクロロボットの量産化が期待されます。 本研究成果は、2022年8月24日午後2時(米国時間)に発行される科学雑誌「Science Robotics」の表紙を飾りました。 |
【研究の背景】
マイクロロボット、特に柔軟な構造を持つロボットは、生物医学などの分野で非常に幅広い応用の可能性があるものの、小さなロボットにアクチュエータなど様々な機械部品を組み込むことは困難で、高機能のマイクロロボット開発の障害となっています。従来の方法では、通常、機械構造やアクチュエータなど、マイクロロボットの様々な部品を異なる場所で製造し、一つ一つ組み上げていくピック アンド プレース アセンブリによってマイクロロボットがつくられていました。この方法は時間と労力がかかり、また多くの制限があることが課題となっています。
【研究の内容】
本研究では、自然界の生体内システムの自己組織化プロセスに着想を得て、2021年に発表したプリント可能な生体分子モーターからなる人工筋肉(1)(2)に基づき、ロボット部品をその場で加工・組み立てしてマイクロロボットを製造する方法を開発しました。マイクロ流路内で、マスクレスリソグラフィー※5により、ハイドロゲル材料の機械的構造をプリントし、次に生体分子モーターからなる人工筋肉がハイドロゲル機構の狙った位置に直接プリントすることで、機構を駆動して目的の仕事を実施します(図1) 。 このその場組み立てにより、マイクロロボットを迅速に次々と生産することができます。
また、マイクロロボットに新しい人工筋肉を再プリントすることにより、アクチュエータを迅速に動的再構成し、複雑な仕事を行うマイクロロボットを実現しました(図2)。
さらに、生体分子モーターを使用する本研究とは異なる、生きた筋肉細胞を用いるアプローチとして細胞ハイブリッドロボット※6が注目されています。細胞ハイブリッドロボットは、柔軟性が高く、環境負荷が低いという利点があるものの、筋肉細胞の培養に数日かかってしまうという問題があります。本研究では、設計の柔軟性を向上させながら、製造プロセスを大幅に簡素化することに成功しました。今後のオンチッププリンティング技術の向上や人工筋肉の性能向上により、現在の細胞ハイブリッドロボットのボトルネックを打破し、実用化に向けた一歩を踏み出すことが期待される手法であると考えています。
(1) https://www.nature.com/articles/s41563-021-00969-6
(2) https://www.jaist.ac.jp/whatsnew/press/2021/04/20-1.html
図1 マイクロロボットその場組み立て法
図2 その場組み立て法によって製造したマイクロロボットが生体分子モーターからなる人工筋肉によって駆動する様子
【本研究成果が社会に与える影響(本研究成果の意義)】
今回の研究により、自然界の生体分子モーターによって運動が創発する自己組織化現象をオンチップ微小空間上で工学的に制御し、自在にデザインできる加工プロセスをボトムアップ的な発想でより簡便に実現できました。これにより、これまで超微小部品をトップダウン的に組み立てることが大きなボトルネックであったために遅れていた、マイクロロボットの組み立てやマイクロソフト機構のオンデマンド生産が可能になりました。今後、様々な機能を付与したマイクロロボットがオンチップ上で連続的にオンデマンド生産することが可能になり、化学エネルギーだけで駆動する超小型マイクロロボットが健康医療応用など様々な分野に展開、波及していくことが期待できます。
【特記事項】
本研究は、日本学術振興会(JSPS)科研費 基盤研究(S)(課題番号22H04951)、基盤研究(A)(課題番号22H00196)、基盤研究(B)(課題番号19H02106)、学術変革領域研究(A)(課題番号21H05880)、挑戦的萌芽研究(課題番号21K18700)、新エネルギー・産業技術総合開発機構(NEDO)「次世代人工知能・ロボット中核技術開発」(JPNP15009)の支援を受けて行われました。
【論文情報】
タイトル | In situ integrated microrobots driven by artificial muscles built from biomolecular motors |
著者名 | Yingzhe Wang, Takahiro Nitta, Yuichi Hiratsuka ,and Keisuke Morishima |
DOI | https://www.science.org/doi/10.1126/scirobotics.aba8212 |
【用語説明】
ガラスや高分子材料で作製した数ミリメートルから数マイクロメートルの流路で、効率的に化学反応などを起こすことができる。微小なバイオセンサーや化学分析装置に利用されている。
数ミリメートル以下のサイズのロボットで、医療などへの応用が期待されている。
モーターやエンジンなどのように電気や化学エネルギーなどを利用して、動きや力を発生する装置。
紫外線などの光を照射することでゼリー状に固まる物質。
光照射による微細加工技術で、半導体デバイスなどの製造に利用されている。
培養細胞と機械部品を融合させて作製したロボット。
【SDGs目標】
【参考URL】
森島圭祐教授 研究者総覧URL https://rd.iai.osaka-u.ac.jp/ja/90351526dc15ef59.html
生命機械融合ウェットロボティクス領域URL http://www-live.mech.eng.osaka-u.ac.jp/
令和4年8月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/08/26-1.html応用物理学領域の麻生助教と環境・エネルギー領域の桶葭准教授の研究課題が旭硝子財団の研究助成に採択
公益財団法人 旭硝子財団の研究助成「物理・情報分野 研究奨励」に応用物理学領域 麻生 浩平助教、「化学・生命分野 若手継続グラント」に環境・エネルギー領域 桶葭 興資准教授の研究課題が採択されました。
旭硝子財団は、次世代社会の基盤を構築するような独創的な研究への助成事業を通じて、人類が真の豊かさを享受できる社会および文明の創造に寄与しています。
「研究奨励」プログラムでは、若手研究者による基礎的・萌芽的な研究が支援されます。また、「若手継続グラント」プログラムでは、過去3年間に同財団の「研究奨励」プログラムを終了した若手研究者の中から意欲と提案力のある将来有望な研究者が選抜され、研究が支援されます。
*詳しくは、旭硝子財団ホームページをご覧ください。
「物理・情報分野 研究奨励」
【研究者名】応用物理学領域 麻生 浩平助教
■採択期間
令和3年4月1日~令和5年3月31日
■研究課題
固体内イオン伝導の解明に向けた電子顕微鏡とデータ科学による動的解析
■研究概要
リチウムイオン電池では、充放電に伴って電池内部をリチウムイオンが移動していきます。しかし、イオンがどのように移動していくのかは未だによく分かっていません。そこで本研究では、ナノメートル程度の空間スケール、かつ従来よりも短い時間スケールでリチウムイオンのダイナミクスを可視化することを目指します。実験手法として、電池を動作させて電気特性を測定しながら電池の構造を観察する、オペランド電子顕微鏡法を用います。オペランド電子顕微鏡像は大量の画像からなる動画として得られるため、手動での解析は困難です。そこで、動画からイオンの移動に関わる情報のみを抽出するために、データ科学の手法を活用します。リチウムイオンは電池内部でどのように動いていくのかという問いに対して、これまでにない実験的な知見を与えられると期待しています。
■採択にあたって一言
旭硝子財団、ならびに選考委員の皆様に心から感謝いたします。本研究を進めるにあたり数々のご協力を頂きました研究室の方々、ナノマテリアルテクノロジーセンターの皆様、および共同研究者の皆様方に感謝申し上げます。
「化学・生命分野 若手継続グラント」
【研究者名】環境・エネルギー領域 桶葭 興資准教授
■採択期間
令和3年4月1日~令和6年3月31日
■研究課題名
多糖の非平衡環境下における時空間マター
■研究概要
ソフトマテリアルの散逸構造はシンプルな数式で表現されるが、過渡的現象の議論にとどまっており、材料化には困難を極めています。これに対し本研究では、多糖の非平衡環境下における界面現象を時空間的に解明します。これによって、生体組織の幾何学構造形成に倣ったマテリアルデザインが拓かれると同時に、高分子科学、コロイド科学、流体科学などを背景としたバイオミメティクス戦略の展開が期待できます。
■採択にあたって一言
採択頂き大変嬉しく存じます。旭硝子財団、および本助成の選考委員会の皆様に深く感謝申し上げます。また共同研究者の皆様、および研究室の皆様に深く感謝申し上げます。科学と技術の発展に貢献できる様、誠心誠意励んで参ります。
令和3年5月14日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/05/14-2.html環境・エネルギー領域の桶葭講師が公益財団法人高分子学会2018年度高分子研究奨励賞を受賞

環境・エネルギー領域の桶葭 興資講師が公益財団法人高分子学会2018年度高分子研究奨励賞を受賞しました。
高分子研究奨励賞は、公益財団法人高分子学会が、高分子学会年次大会等において活発に発表あるいは活動している若手会員を対象に、将来、高分子科学の発展のために貢献する人材を育成することを目的に制定しているものです。
*参考
高分子学会ホームページ
■受賞年月日
令和元年5月30日
■研究題目
界面制御による多糖の自己組織化と機能性材料の設計
■受賞概要
桶葭興資氏は、多糖水溶液が乾燥界面で起こす散逸構造の研究を行ってきた。特に、自然界にある乾燥環境が多糖に与える影響に着目し、自己組織化によるユニークなパターン形成を見出している。多糖は光合成によってつくられた重要な天然由来物質の一つで持続可能社会の構築に必須でありながらも、その多様な潜在能力を活かした先端材料として普及が進んでいない。本研究では、自己集合性多糖水溶液の界面制御下、マクロ空間を分割する現象を見出すと同時に、三次元的な配向化技術の構築に成功した。高分子科学、コロイド科学、界面化学など多方面にわたる学問分野において意義深い。また、ゲルや液晶を主とした機能性ソフトマテリアルの開発に重要な一手となり、産学面への貢献も期待される。これらの研究成果は、高分子の自己組織化の解明に貢献するとともに、機能性材料設計に重要な指針を与えるものであり、高分子研究奨励賞に値するものと認められた。
■受賞にあたっての一言
大変名誉ある賞を頂き大変嬉しく存じます。高分子学会、選考委員会、および北陸支部の皆様に深く感謝申し上げます。また、本学金子達雄教授はじめ共同研究者の皆様、ご助言頂いた研究室の皆様にこの場をお借りして深く御礼申し上げます。科学技術の発展に貢献すべく誠心誠意励んで参ります。
令和元年6月4日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/06/04-01.html「北陸技術交流テクノフェア2017」に出展
10月26日(木)、27日(金)の2日間、福井県産業会館(福井県福井市下六条町)にて北陸最大規模の総合技術展示会「北陸技術交流テクノフェア2017」が開催されました。
本学からは、知能ロボティクス領域のHO, Anh Van准教授が「食品の把持に好適なソフトロボットハンド」について出展し、材料の柔らかさを活かした次世代ロボットの開発について、来場者に対して分かり易く説明しました。
本学出展ブースには、機械部品や食品製造業を中心とした企業関係者、金融機関や公的機関等の関係者及び本学への入学希望者等、2日間で25名の方々が来訪されました。HO, Anh Van准教授は、自身の研究内容について説明しながら、来場者と活発な意見交換を行いました。
本学出展ブースにて来訪者へ説明・情報交換等を行う様子
口頭発表をするHO,Anh Van 准教授
平成29年11月7日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2017/11/07-2.html北陸技術交流テクノフェア2017に本学が出展
10月26日(木)、27日(金)の2日間、福井県産業会館(福井県福井市下六条町)にて「北陸技術交流テクノフェア2017」が開催されます。
本学からは以下の研究室が出展します。
ご来場の際にはぜひお立ち寄りください。
日 時 | 平成29年10月26日(木) 10時00分~17時00分 10月27日(金) 10時00分~17時00分 |
会 場 | 福井県産業会館(福井県福井市下六条町103) |
出展研究室 |
先端科学技術研究科 知能ロボティクス領域 HO, Anh Van 准教授 「食品の把持に好適なソフトロボットハンド」 【小間番号】 T-16 【展示概要】 http://www.technofair.jp/syutenjyouhou/Ippan50.html |
詳細はこちらをご覧ください。
・北陸技術交流テクノフェア2017公式サイト
・北陸技術交流テクノフェア2017出展者情報