研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。生体内の高分子混雑に着目した新規の細胞モデルの創成に成功

![]() ![]() ![]() ![]() ![]() |
生体内の高分子混雑に着目した新規の細胞モデルの創成に成功
名古屋大学大学院理学研究科の瀧口 金吾講師、同志社大学生命医科学部の作田 浩輝特任助教、藤田 ふみか大学院生、北陸先端科学技術大学院大学先端科学技術研究科 生命機能工学領域の濵田 勉准教授、法政大学生命科学部の林 真人教務助手、三重大学大学院工学研究科の湊元 幹太教授、京都大学高等研究院医学物理・医工計測グローバル拠点の吉川 研一特任教授らの共同研究グループは、二種類の水溶性高分子のミクロ相分離条件下でDNAとリン脂質を共存させると、内部にDNAを取込み、リン脂質の膜で囲まれた細胞内小器官様の構造が自発的に生成することを発見しました。この発見が元になり、細胞が自律的に複雑な構造や高度な機能を生み出す機構の謎に迫る研究に発展することが期待されます。
その成果をまとめた論文が、国際科学雑誌ChemBioChem誌のオンライン版に2020年7月15日付けで公開されましたが、この度、Very Important Paper の1つに選ばれ、研究内容を紹介するイラストがChemBioChem誌の2020年21巻23号に掲載されました。
この研究は、平成24年度から始まった文部科学省科学研究費助成事業新学術領域『分子ロボティクス』プロジェクトおよび平成31年度から始まった日本学術振興会科学研究費助成事業『細胞結合ネットワークの構築による人工細胞モデルの組織化と集団動態発現』等の支援のもとでおこなわれたものです。
【ポイント】
- 異なる高分子 注1)の混雑によって高分子同士が相分離 注2)を起こしてミクロ液滴を形成している溶液にリン脂質を加えると、脂質が自発的にミクロ液滴の界面に局在化することで、細胞内小器官(オルガネラ)注3)の形成に似た区画化を起こすことを発見した。
- この新知見を利用することで、リン脂質によって小胞化されたミクロ液滴の内部に、長鎖DNAを濃縮して封入させることに成功した。
- 本研究で見出されたミクロ液滴のリン脂質によって区画化される小胞化は、原始生命体(細胞の起源)のモデル実験系と成り得ると同時に、人工脂質膜小胞を調製するための有力な新手法として期待される。
- この研究成果をまとめた論文が、国際科学雑誌ChemBioChem誌に掲載され、さらに、Very Important Paper (VIP)に選ばれた。【論文を紹介するイラスト(下図)はChemBioChem誌の2020年21巻23号に掲載】
【研究背景と内容】
近年、細胞内の複雑な構造が生み出される起源や、脂質膜によって区画化される多様な細胞内小器官および、顆粒などの膜によって隔てられていない領域 注3)などが形成・維持される機構について、相分離 注2)の視点から研究されています。
本研究では、液-液相分離(LLPS)注2)を示すことができる水溶性の高分子ポリマーであるポリエチレングリコール(PEG)およびデキストラン(DEX)注1)の混合によってミクロ液滴を生成させた溶液にリン脂質を加えると、ミクロ液滴の界面に脂質が自発的に集まって膜を形成することを見出しました(図1)。この脂質に覆われたミクロ液滴が、外液の浸透圧を高張にすると、脂質二重膜でできた膜小胞と同様に破裂や穿孔、収縮をすることから(図2)、ミクロ液滴を覆う脂質が、生体膜の基本構造である脂質二重膜と同じ性質を示すことが分かりました。
図1:ミクロ液滴の界面へのリン脂質の蓄積。
リン脂質添加後のPEG / DEX混合溶液の顕微鏡画像(ミクロ液滴の生成を示す明視野像とリン脂質の局在を示す蛍光像)。蛍光像(白の破線部分)から得られた蛍光強度の空間プロファイル。
図2:高張な水溶液(NaCl溶液)の注入による脂質膜構造の形態変化。
外液の浸透圧が変化することによって、リン脂質に覆われたミクロ液滴の内部から外液に向かって大量の水分子が移動しようとする結果、脂質膜の破裂や穿孔や収縮が起きる。左から、破裂後のリン脂質の凝集塊、穿孔を起こした脂質膜の残骸、収縮した脂質膜。
ところで、核酸であるDNAも生体内で重要な働きをしている天然の高分子です。我々共同研究グループの先行研究から、長鎖DNAがDEXを高濃度で含むミクロ液滴に遍在することが明らかにされていました。長鎖DNAを内部に濃縮して取込んだミクロ液滴を形成している相分離溶液系にリン脂質を加えると、やはり脂質が自発的にミクロ液滴を覆うことで、内部にDNAを含む細胞内小器官様の安定化された小胞の形成が認められました(図3)。
このミクロ液滴からリン脂質膜で安定化された細胞内小器官様の小胞が自発的・自己組織的に創成されてくる過程は、原始の生命体の細胞の内部構造の起源を考える際の貴重な知見であり、多種類の高分子の混合によって細胞内小器官(オルガネラ)や膜によって隔てられていない構造が自発的に形成されてくる可能性を示した研究成果です。
図3:リン脂質の膜で区画化・小胞化されたミクロ液滴へのDNAの自発的なカプセル化。
長鎖DNAを含むPEG / DEX混合溶液にリン脂質を添加すると、自発的にDNAを取込んだ脂質の膜に覆われたミクロ液滴が生成される。
【成果の意義】
本研究の発見は、多種類の高分子の混合によって生体高分子(ここでは長鎖DNA)を取込んだミクロ液滴が自発的に生じ、これに生体膜の重要な構成成分であるリン脂質を加えると、更にミクロ液滴の界面にリン脂質が集積して自己組織的に細胞内小器官様の小胞構造が形成されることを示した研究成果です。
この発見の特筆すべきこととして、本研究で用いられたどの成分、高分子のPEGとDEX、生体高分子の長鎖DNA、そしてリン脂質も、酵素と基質との間に観られる鍵と錠との関係のような相互作用を互いに示さないことが挙げられます。このことは、生命現象の説明や理解に必ず分子間の特異的な相互作用の存在を想定して来たこれまでの生命科学に一石を投じるものであり、非常に重要です。
細胞内では、細胞分裂の際、分離・分配された染色体が脂質の膜で覆われ核膜が再生することで2つの娘細胞の核が形成されます。また、オートファジーでは、変性したり役目を終えたりした生体因子や細胞内に侵入して来た細菌などの外敵の分解除去のため、あるいは細胞内物質のリサイクルのため、それらを取り込む様に脂質膜でできた"袋"を形成します。これらのことから、本研究で得られた知見は、非膜性の顆粒の様な細胞内領域と膜に覆われた細胞内小器官との関係に新たな視点を与えると共に、濃厚環境での生体高分子の在り様、細胞内に観察されるような重層的に区画された領域や細胞内小器官の様な特別な構造の起源の理解に迫る成果だと言えます。
【用語説明】
- 注1) 高分子(ポリマー):
ある化学物質が、様々な結合を介して連なっていくことで、より大きな分子になったもの。一本の鎖状のポリマーもあれば、枝分かれしながら繋がっているポリマーもあります。
今回の研究で用いられたポリエチレングリコール(PEG)やデキストラン(DEX)は、その代表的なものです。
DNAも、ヌクレオチドが連なってできた天然のポリマーです。生体内には、様々な糖鎖やアクチン線維や微小管の様なアクチンやチューブリンと呼ばれる蛋白質が繊維状に集まってできた細胞骨格などが存在していますが、これらも天然のポリマーと考えることができます。 - 注2) 相分離、液-液相分離 (Liquid-Liquid Phase Separation, LLPS):
LLPSは、複数の水溶性高分子を混合し混雑化すると(図4 (a))、ある高分子が他の高分子よりも高濃度で存在する領域が水溶液中に現れる現象です。このように異なる領域に分かれていく現象を相分離と呼びます。そのようにしてできてくる領域ですが、混合の仕方によって生きた細胞や細胞内小器官と同等のサイズを持つミクロ液滴になります。
今回の研究では、PEGが濃く存在する溶液中に、DEXが濃く存在するミクロ液滴が生じる条件下で実験が行われました(図4 (b))。
図4:PEGとDEXの混合(左)によって生じるLLPS(上)。Bars = 100 μm。本共同研究グループの先行研究論文 ChemBioChem 2018, 19(13), 1370-1374 (Figure S1) より転載。
- 注3) 細胞内小器官(オルガネラ):
細胞内に存在する核やミトコンドリア、ゴルジ体などの総称。
これまで細胞内小器官は、膜によって外界から隔てられて、その構造や機能が維持されていると考えられてきました。しかし近年、膜によって外部から隔てられていない領域・顆粒(例として核小体やストレス顆粒など)が、非膜性の細胞内小器官として重要な働きを担っていることが分かってきて、それらの形成維持機構が、細胞内の複雑で階層的な構造の組織化に関連して議論される様になっていました。
【論文情報】
雑誌名 | ChemBioChem 2020, 21 (23), 3323-3328. |
論文タイトル | "Self-Emergent Protocells Generated in an Aqueous Solution with Binary Macromolecules through Liquid-Liquid Phase Separation." |
著者 | Hiroki Sakuta, Fumika Fujita, Tsutomu Hamada, Masahito Hayashi, Kingo Takiguchi, Kanta Tsumoto, Kenichi Yoshikawa. |
論文本文 | DOI: 10.1002/cbic.202000344 |
イラスト (Cover Feature) |
DOI: 10.1002/cbic.202000760 |
【研究費】
・科研費 基盤研究(A)(15H02121)
・科研費 基盤研究(C)(19K06540)
・科研費 基盤研究(B)(20H01877)
・特別研究員奨励費(18J12947)
・文部科学省新学術領域研究
「アメーバ型分子ロボット実現のための要素技術開発とその統合」(24104004)
・文部科学省新学術領域研究
「ゆらぎと構造の協奏:非平衡系における普遍法則の確立」(25103012)
・文部科学省新学術領域研究
「宇宙からひも解く新たな生命制御機構の統合的理解」(18H04976)
令和2年12月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/12/09-1.html世界初 キヌアからブラッダー細胞形成遺伝子を発見

世界初 キヌアからブラッダー細胞形成遺伝子を発見
石川県立大学 森 正之准教授、今村 智弘特任講師、古賀 博則客員教授、高木 宏樹准教授、北陸先端科学技術大学院大学先端科学技術研究科、生命機能工学領域の大木 進野教授らは、(公財)岩手生物工学研究センターなどの機関と共同で、塩生植物キヌア(Chenopodium quinoa)からブラッター細胞の形成に関わる遺伝子を発見しました。 本研究成果は、「Communications Biology」で公開されました。
<ポイント>
- キヌアからブラッダー細胞形成に関わる新規WD40タンパク質をコードするREBC遺伝子を発見
- REBC遺伝子は、ブラッダー細胞形成のみならず葉緑体形成にも関与していることを発見
- ブラッダー細胞の茎頂保護機能を発見
<発表論文>
論文タイトル | A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa |
論文著者 | Tomohiro Imamura, Yasuo Yasui, Hironori Koga, Hiroki Takagi, Akira Abe, Kanako Nishizawa, Nobuyuki Mizuno, Shinya Ohki, Hiroharu Mizukoshi, and Masashi Mori |
雑誌 | Communications Biology (DOI: 10.1038/s42003-020-01249-w) |
<研究の背景>
国連大学の報告によると、世界の灌漑地の約1/5が塩害にさらされています。その被害は、年間およそ273億USドルの経済損失を引き起していることが報告されており、今後さらに広がることが予想されています。一方、世界の人口は、2050年までに97億人に達することが予想されております。そのため、この人口の爆発的な増加に耐えうる食糧生産は、早急に解決すべき大きな課題となっております。しかし、主要穀物である小麦やイネなどは、塩に弱いで植物であり、これらの主要穀物に対する塩害は、食糧生産において大きな問題となります。キヌアは、非常に高い耐乾燥性と耐塩性を併せ持ち、他の植物では生育困難な厳しい環境で生育できる塩生擬似穀物です。さらに、キヌアの種子は、必須アミノ酸・ミネラル・植物繊維を豊富に含み高い栄養価を持つことから、国際連合食糧農業機関(FAO)では、世界の食糧問題解決の切り札になり得るスーパーフードとして注目されています。
キヌアを含めたアカザ属植物は、植物体の表面に球状の表皮細胞(ブラッダー細胞)を形成します(図1)。ブラッダー細胞は、通常細胞の1000倍以上の大きさがあり、細胞内に高濃度の塩を蓄積することが知られています。このブラッダー細胞の性質は、キヌアの高い塩耐性の一因と考えられています。独自の形態と機能を持つブラッダー細胞ですが、その形成メカニズムは全く分かっていませんでした。
本研究では、塩生植物のキヌアに形成されるブラッダー細胞の形成機構を明らかにするために、ブラッダー細胞の形成に関わる遺伝子の単離を試みました。その結果、EMS処理の変異原処理により、ブラッダー細胞が著しく減少したrebc変異体を獲得し、次世代シークエンサーを用いた解析により、ブラッダー細胞形成に関わるrebc変異体の原因遺伝子(REBC)の単離に成功しました。その単離したREBC遺伝子は、ブラッダー細胞を形成しない植物には存在しないことが明らかとなりました。このことから、ブラッダー細胞の形成機構は、同じ植物の表皮細胞であるトライコームの形成機構とは異なることが示唆されました。さらに、rebc変異体はブラッダー細胞の形成のみならず葉緑体の形成にも影響を及ぼしていることが明らかとなりました。また、rebc変異体を用いた環境ストレス実験により、ブラッダー細胞は、塩を蓄積するだけでなく、その細胞を密集させることにより茎頂などの組織を環境ストレスから保護していることが明らかとなりました。
<研究の内容>
1.ブラッダー細胞が減少した変異体の作出
ブラッター細胞の形成に関わる遺伝子を単離するために、約8000粒のキヌア種子ついて、EMSを用いた変異原処理を実施しました。その結果、大部分のブラッダー細胞が欠失した変異体を得ることができました(図2)。この変異体を reduced epidermal bladder cells (REBC)変異体と命名しました。rebc変異体の分離比を確認しましたところ、野生型とrebc変異の割合が3:1に分離しました。興味深いことに、キヌアは異質4倍体の植物にもかかわらず、rebcの形質は、一遺伝子支配の劣勢形質であることがわかりました。
2.環境ストレス試験
キヌアは、ブラッダー細胞に塩を高濃度に蓄積することにより、高塩環境においても正常に生育できることが知られています。そこで、大部分のブラッダーが欠失したrebc変異体について、塩ストレス実験を実施しました。その結果、rebc変異体は、野生型に比べて高濃度の塩条件において生育が阻害されていることがわかりました。さらに、別の環境ストレスとして、茎頂に風を当て続けたところ、野生型では問題なく生育したのですが、rebc変異体では風によって茎頂にダメージを受けていることが明らかとなりました(図3)。これらの実験からブラッダー細胞は、塩を蓄積する機能のほかに、茎頂などの特定の組織に密集して存在することにより、風などの環境ストレスから組織を保護していることが新たに明らかとなりました。
3.rebc変異体の原因遺伝子の特定
rebc変異体の原因遺伝子を明らかにするために、次世代シークエンサーを用いたin silico subtraction 法を利用して変異箇所の特定を試みました。その結果、rebc変異体は、新規なWD40ドメインタンパク質遺伝子の変異が原因であることを明らかにし、その遺伝子をREDUCED EPIDERMAL BLADDER CELLS (REBC)遺伝子と名付けました(図4)。他植物の表皮細胞であるトライコームでは、その形成に関与する遺伝子が同定されており、その中でWD40ドメインタンパク質としてTTG1遺伝子が重要な役割をしています。REBCとTTG1を比較したところ、これらのタンパク質は、別の機能を持つタンパク質であることが示唆されました(図5)。またトライコームを形成する植物体には、REBC遺伝子のオルソログが存在しませんでした。これらの結果より、ブラッダー細胞の形成は、トライコームとは異なる機構の存在が示唆されました。
4.rebc変異体における葉緑体形成
rebc変異体について、網羅的な発現解析を実施したところ、発現が変動した遺伝子の多くが葉緑体局在タンパク質をコードする遺伝子でありました。さらに、クロロフィル含量を測定したところ、rebc変異体のクロロフィル含量が有意に低下していることが明らかとなりました。そこで、rebc変異体の葉緑体の形態について、電子顕微鏡を用いて観察しました。その結果、rebc変異体の葉緑体は、内部構造の約1/3が欠失していることが明らかとなりました(図6)。さらに、ブラッダー細胞の葉緑体を観察した結果、rebc変異体のブラッダー細胞の中の葉緑体は、野生型に比べクロロフィルの自家蛍光の強度が低下し、さらにブラッダー細胞あたりの葉緑体数が減少していることが明らかとなりました。以上の結果より、rebc変異体は、ブラッダー細胞の形成のみならず、葉緑体の形成にも影響を及ぼしていることが明らかになりました。
<今後の展望>
本研究成果によって、キヌアのブラッダー細胞形成に関する分子メカニズムの一端を明らかにすることができました。今後、ブラッダー細胞の形成に関する分子メカニズムの全容が明らかになることが期待できます。さらに、ブラッダー細胞形成の知見を利用することによって、キヌアの塩耐性機構を組み入れた新たなコンセプトの環境ストレス耐性作物を作出することが期待できます。
図1 キヌアのブラッダー細胞 (a)キヌア植物体、(b)キヌアの葉(裏側)、(c)キヌアの葉(拡大)、
(d-f) キヌアブラッダー細胞 BC:ブラッダー細胞、SC: 柄細胞
図2 rebc変異体について (a-c)キヌア芽生え (d-f)キヌア芽生え(茎頂付近)
(a, d)野生型、(b, e)rebc1変異体、(c, f)rebc2変異体
図3 風ストレス処理による影響 (a)野生型、(b)rebc1変異体、(c)rebc2変異体
・rebc変異体は風ストレスによって、茎頂が枯死している。
図4 REBC遺伝子の単離 (a) REBC遺伝子の概略図 赤矢印はrebc変異体の変異箇所
(b)rebc1×rebc2交配後代(F1)の解析
・rebc1×rebc2交配個体も、rebc変異の形質を示したことから、REBCが原因遺伝子であることが明らかとなった。
図5 (a) REBCとTTG1との比較(系統樹解析)、(b) アラビドプシスttg1変異体を用いた相補実験
上段:ベクターコントロール、中段:REBC過剰発現体、下段:AtTTG1過剰発現体
・REBCタンパク質は、TTG1タンパク質とは別のグループに属し、TTG1の機能を相補することができない。
図6 rebc変異体の葉緑体について (a-c) 走査型電子顕微鏡像 (b-f)透過型電子顕微鏡像
(a, d)野生型、(b, e)rebc1変異体、(c, f)rebc2変異体
・rebc変異体では、葉緑体の膜構造1/3が欠失している。
<用語説明>
- キヌア
ヒユ科アカザ亜科アカザ属の植物。南米アンデス原産の穀物で必須アミノ酸・ミネラル・植物繊維を豊富に含み高い栄養価を持ち、さらに、環境適応能力が高く、非常に高い耐乾燥性と耐塩性を合わせ持ち、国際連合食糧農業機関(FAO)は、世界の食糧問題解決の切り札になり得る作物として注目している。近年、我々のグループとその他のグループによってキヌアゲノムが解読され、キヌアが持つ環境ストレス耐性および高栄養価についての遺伝子研究が進められている。 - 擬似穀物
米や麦などのイネ科(禾穀類)や、大豆や小豆などのマメ科(菽穀類)ではないが、見た目がイネ科の穀物に類似した食べられる種子を形成する植物(ソバ、キヌア、アマランサスなど)を指す。 - in silico subtraction法
次世代シークエンサーのシークエンスデータを用いて、サンプル間の塩基配列の違い(多型、変異箇所)を特定する方法。異質倍数体の植物(キヌアは異質4倍体)でも検出が可能。本研究では、親から分離した後代について、野生型形質を示す個体群と、rebc変異形質を示す個体群を、それぞれまとめてゲノムを抽出し、次世代シークエンサーによって、それぞれの形質を示す個体群のシークエンスリードを獲得。その後、二形質間のシークエンスリードを比較することにより、形質を支配する遺伝子を特定した。
令和2年9月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/09/17-1.htmlナノテクノロジーと遺伝子工学のマリアージュ -ガン幹細胞制御技術に向けて-

ナノテクノロジーと遺伝子工学のマリアージュ
-ガン幹細胞制御技術に向けて-
ポイント
- ナノテクノロジーと遺伝子工学を利用し、細胞やマウス体内のガン幹細胞性を制御することに成功
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科物質化学領域の都 英次郎准教授の研究グループは、ウシの角に似た炭素分子「カーボンナノホーン」(CNH)*1と遺伝子工学を使ってマウス体内のガン幹細胞性を制御する技術の開発に成功した。
再発と転移を繰り返す治療抵抗性のガン幹細胞を体内から排除可能な治療法が望まれている。本研究では、生体透過性の高い近赤外レーザー光*2でCNHが容易に発熱する性質(光発熱特性)*3と52℃以上の温度になるとカルシウムイオンを細胞内に取り込むTransient Receptor Potential Vanilloid 2(TRPV2)*4というタンパク質に着目した。遺伝子工学的手法によりTRPV2を導入したガン細胞にCNHの光発熱特性を作用させたところ、細胞内に過剰のカルシウムイオンが流入し、標的とするガン細胞が選択的かつ効果的に死滅することが明らかとなった(図1)。また、マウスを用いた実験で本手法がガン幹細胞性の制御に有用であることも分かった。本手法を利用すれば体外からレーザー光を照射し、その熱で患部を狙い撃ちできるほか、治療の難しいガン幹細胞の予防・治療法にも道が開けると期待している。 本成果は、2020年8月17日に英国科学誌「Nature Communications」のオンライン版に掲載された。なお、本研究成果は日本学術振興会科研費[基盤研究A、基盤研究B、国際共同研究加速基金(国際共同研究強化)]の支援のもと、国立研究開発法人産業技術総合研究所と行われた共同研究によるものである。 |
図1. 機能性CNHとTRPV2によるガン細胞殺傷メカニズム
【論文情報】
掲載誌 | Nature Communications |
論文題目 | Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes |
著者 | Yue Yu, Xi Yang, Sheethal Reghu, Sunil C. Kaul, Renu Wadhwa, Eijiro Miyako* |
掲載日 | 2020年8月17日にオンライン版に掲載 |
DOI | 10.1038/s41467-020-17768-3 |
【用語説明】
*1 カーボンナノホーン(CNH)
直径は2~5 nm、長さ40~50 nmで不規則な形状を持つ。数千本が寄り集まって直径100 nm程度の球形集合体を形成している。とりわけ、薬品の輸送用担体として期待されており、バイオメディカル分野で注目を集めている。
*2 近赤外レーザー光
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
*3 光発熱特性
数多くあるナノカーボン材料の特性の一つであり、レーザー光やカメラのフラッシュにより容易に発熱する特性のこと。
*4 Transient Receptor Potential Vanilloid 2(TRPV2)
細胞膜に存在するタンパク質の一種。52℃以上の温度によって活性化し、細胞内へカルシウムイオンを流入する。
令和2年8月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/08/17_2.html「日本固有資源"サクラン"の細胞を並べる機能を発見」を開発 -細胞組織工学へ新たな道-
「日本固有資源"サクラン"の細胞を並べる機能を発見」を開発
-細胞組織工学へ新たな道-
北陸先端科学技術大学院大学(JAIST、学長・浅野 哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の金子研究室らは、日本固有種微生物スイゼンジノリから抽出される超高分子サクラン(発見者:岡島麻衣子研究員)の新しい機能を発見しました。3Dプリンターで凹凸にパターン化したポリスチレン基板(武藤工業株式会社作成)の上でサクランゲルを作成することで、このパターンが転写されたゲルを得ました。ゲル内部の分子配列は特殊であり凹部のみでサクラン分子鎖が配向し、細胞をその上に播種すると細胞のほとんどがそれに沿って伸展することが見いだされました。
スイゼンジノリは日本固有種の食用藻類で福岡県、熊本県の一部で地下水を利用し養殖されています。このスイゼンジノリの主成分であるサクランは、2006年本学の岡島らによって発見され、天然分子の中で最も大きな分子量を持ち、高い保水能力(ヒアルロン酸の5倍~10倍)と抗炎症効果を持つ新機能物質として注目され、現在では化粧品を中心に幅広く用いられています。研究チームは昨年このサクランの高い保水能力に着目し、サクラン・レーヨン混紡繊維"サク・レ"を作製するなど、人体に接触する材料としての研究を進めてきました。並行してサクランが作るゲルの細胞適合性などを系統的に研究する中で、今回の発見に至りました。 このゲルは極めて低濃度で液晶構造を形成するサクラン分子鎖の自己配向性を巧みに利用した例であり、サクランがポリスチレン基板に張り付きながら乾燥していく際に、凸部から凹部に向かって重力に伴う延伸張力が働き分子配向すると考えられます。これにより膜自身にも分子配向の方向に筋状のマイクロ構造が形成され、その方向を細胞が認識して配向伸展したと考えています。これが細胞を並べるメカニズムです。また、サクランは光合成を行うラン藻(スイゼンジノリ)が作る物質であるため、空気と水と日光さえあれば作ることが可能であり、生産時に大気の二酸化炭素(CO2)削減に貢献する究極にエコな物質といえます。 ![]() 写真 パターン化サクランゲル(左:ゲル,右:ゲル上の伸展細胞) 本成果はアメリカ化学会誌 [ACS Applied Materials & Interfaces(インパクトファクター8.1)] でオンライン公開され近く印刷公開予定です。 |
<開発の背景と経緯>
藻類などの植物体に含まれる分子を用いて得られるバイオマス注1)材料の中には、材料中にCO2を長期間固定できるため、持続的低炭素社会の構築に有効であるとされています。北陸先端科学技術大学院大学の研究チームはこれまで、淡水性の藍藻であるスイゼンジノリから高保湿力を持つ繊維質である超高分子「サクランTM」注2)を開発してきました。
近年、iPS細胞の発見に端を発し、細胞組織工学の分野が活発化してきています。しかし、細胞を配向させる技術が無いと人工臓器も単なる分化細胞の塊にすぎません。そこで、細胞を適所で配向させる技術が待たれています。
<作製方法>
3Dプリンタで作成したマイクロプラスチック棒のアレイの上にサクランをキャストした。得られたフィルムはプラスチック棒の間でサクランが棒に対して垂直に配向することが分かりました(図1)。
<今回の成果>
このゲルは極めて低濃度で液晶構造を形成するサクラン分子鎖の自己配向性を巧みに利用した例であり、サクランがポリスチレン基板に張り付きながら乾燥していく際に、凸部から凹部に向かって重力に伴う延伸張力が働き分子配向すると考えられます。これにより膜自身にも分子配向の方向に筋状のマイクロ構造が形成され、その方向を細胞が認識して配向伸展したと考えています。この上に、L929マウス線維芽細胞を播種した所、細胞はサクランの配向に応じてパターン化した配向性を示すことが分かりました(図2)。
<今後の展開>
ほとんど全ての臓器は配向しており細胞を配向させるこの技術は組織工学に極めて有用と考えられる。サクランは元来緊急時の火傷治療膜、臓器癒着防止膜、湿布剤に応用できると報告してきましたが、今回人工血管、人工皮膚など、組織工学用基板へ応用展開も期待できます。
<参考図> | ||
![]() |
![]() |
![]() |
図1 3Dプリンタで作成した基板上でキャストしたサクランの偏光顕微鏡注3)写真(530nmの鋭敏色板使用) 左2つは上からの観察、右は横からの観察 | ||
![]() |
||
図2 播種した細胞の写真(ほぼすべての細胞が左右に伸展している) |
<用語説明>
注1)バイオマス(例 スイゼンジノリ)
生物資源(bio)の量(mass)を表す概念で、一般的には「再生可能な、生物由来の有機性資源で化石資源を除いたもの」をバイオマスと呼ぶ。本研究で取り扱ったスイゼンジノリ(ラン藻の一種であり学名はAphanothece sacrum)は日本固有のバイオマスの一種であり、世界でも極めて希な食用ラン藻である。また、スイゼンジノリは江戸時代から健康維持のために食され、当時は細川藩および秋月藩における幕府への献上品とされてきた。大量養殖法が確立されている。
注2)サクラン
スイゼンジノリが作る寒天質の主成分である。硫酸化多糖類の一つでスイゼンジノリから水酸化ナトリウム水溶液により抽出される。サクランの重量平均絶対分子量は静的光散乱法で2.0 x 107 g/mol と見積もられている。現実的には原子間力顕微鏡によりサクラン分子が 13 μm の長さを持つことが直接観察されている。天然分子で 10 μm 以上の長さにも達するものを直接観察した例はこれが初めてとされる。サクランという名称はスイゼンジノリの種名の語尾を多糖類の意味の "-an" という接尾後に変換したもので、北陸先端科学技術大学院大学の岡島らによって発見され名付けられた。現在もその金属吸着性や高保水性などに関する研究が進められており、吸水高分子として応用が進められている。
注3)偏光顕微鏡
光学顕微鏡の一種。試料に偏光を照射し、偏光および複屈折特性を観察するために用いられる。偏光特性は結晶構造や分子構造と密接な関係があるため、鉱物学や結晶学の研究で多く用いられる。他、高分子繊維の研究などにも用いられる。一般には特定方向に偏波させることのできる二枚のフィルター(偏光板)をお互いに直交させて使用する。これにより光は通らなくなるが、屈折率に方向依存性のある高分子繊維などが二枚の偏光板の間に存在すると、この高分子繊維だけが観察可能となる。さらに、特殊なカラーフィルターを組み合わせることで高分子繊維内部の分子配向の方向を色調変化により判定することが可能となる。
平成31年1月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/01/21-1.htmlJAIST社会人セミナー 平成29年度第5回「co-café@JAIST」「お酒とお化粧の話~細胞膜に聞いてみよう~」

下記のとおり、平成29年度第5回「co-café@JAIST」を開催しますので、 ご案内します。
産学官連携推進センターでは、地方創生/地域活性化の推進を目的に、今年度から社会人人材育成事業としてJAIST社会人セミナーを実施しています。
JAIST社会人セミナーでは、①co-café@JAIST(異業種・異分野の産学連携交流イベント)、②地域人材育成セミナー、③社会人向けデザインスクールという3つの事業を行っています。
今回の「co-café@JAIST」は、本学の最先端技術の紹介や、本学の若手教員と地域企業とのニーズ・シーズの出会い場とすることを目的とした産学官連携の交流イベントです。
多くの方のご参加をお待ちしております。
日 時 | 平成29年9月6日(水)18:30 ~ |
会 場 | 北陸先端科学技術大学院大学 産学官連携本部 産学官連携推進センター 金沢駅前オフィス(金沢市本町2-15-1 ポルテ金沢12階) |
開催内容 | ・18:30~ ミニセミナー テーマ:お酒とお化粧の話 ~細胞膜に聞いてみよう~ 講 師:北陸先端科学技術大学院大学 生命機能工学領域 下川 直史 助教 ゲスト:株式会社福光屋 専務取締役 福光 太一郎 氏 ・19:00~ 交流会 |
お申し込み | 下記PDFの参加申込フォームに必要事項をご記入の上、FAXまたはE-mailでお申込みください。 (定員:30名、参加無料 ※交流会のみ有料/参加費1,000円) |
お問合わせ | 北陸先端科学技術大学院大学 産学官連携本部 産学官連携推進センター 担当:八十出(やそで)、辰巳 【TEL】0761-51-1070 【Fax】0761-51-1427 【E-mail】co-cafe@jaist.ac.jp |
化学と生物の融合による新たな人工タンパク質の創製


化学と生物の融合による
新たな人工タンパク質の創製
人工タンパク質合成研究室
Laboratory on Nonnatural Protein Biosynthesis
教授:芳坂 貴弘(HOHSAKA Takahiro)
E-mail:
[研究分野]
遺伝子工学・タンパク質合成・ケミカルバイオロジー
[キーワード]
遺伝暗号拡張、人工タンパク質、非天然アミノ酸、無細胞翻訳系、蛍光分析
研究を始めるのに必要な知識・能力
タンパク質や遺伝子に興味を持っていること。生物化学・有機化学に関する基礎的な知識や実験技術が必要になりますが、入学後に修得することも可能です。
この研究で身につく能力
遺伝子工学・タンパク質合成・有機合成・蛍光分析などに関する専門的な知識と実験技術を修得することができます。また研究活動を通じて、実験計画の立案・関連研究の調査・実験データの取得と分析・研究成果のまとめとプレゼンテーション、に至る一連の研究プロセスを学ぶことができます。これらの能力は、技術者・研究者としていずれも必要不可欠なものです。
【就職先企業・職種】 化学・生物関連企業、研究機関
研究内容
遺伝子工学・タンパク質合成などの生物化学的手法と、有機合成などの化学的手法を組み合わせることで、新たな人工タンパク質の創製を目指して研究を行っています。具体的には、以下のような研究テーマを進めています。また、研究室で得られた成果を企業と共同で実用化するための研究も行っています。

図1.4塩基コドンを用いた非天然アミノ酸のタンパク質への導入

図2.抗原分子を検出できる蛍光抗体センサーの例
1.遺伝暗号の拡張による非天然アミノ酸のタンパク質への導入
タンパク質はDNAの遺伝暗号に従ってアミノ酸が連なって合成され、それが精密な立体構造を形成することで、高度な機能を発揮しています。しかし生物が使用しているのはわずか20種類のアミノ酸のみです。私たちは、この20種類の制限を超えて、人工的に合成した「非天然アミノ酸」をタンパク質の特定部位に導入することのできる、新たな技術の開発に成功しています。これは、4塩基コドンなどの拡張遺伝暗号に非天然アミノ酸を割り当てる(図1)、という新しい概念によって達成されています。
2.新たな機能を持つ人工タンパク質の創製
上記の技術を利用することで、新たな機能を持った人工タンパク質の創製を進めています。例えば、抗体などの特定の分子を認識して結合するタンパク質に、蛍光分子を付加した非天然アミノ酸を導入することで、蛍光により標的分子を検出できるタンパク質センサーを合成できます(図2)。また、非天然アミノ酸の導入技術を利用することで、新しいタンパク質医薬品の合成も試みています。これらの研究の一部は、企業・研究機関との共同研究により進めています。
3.生物の潜在能力を利用した新たなバイオ技術の開発
非天然アミノ酸のタンパク質への導入技術は、生物がもともと持っている潜在能力を、人工的に引き出して活用したものと言えます。私たちは、そのような生物の持つ潜在能力を新たに見つけ出し利用することで、人工タンパク質などの有用物質を合成することのできる、新たなバイオ技術の開発にも挑戦しています。
主な研究業績
- A. Yamaguchi, T. Hohsaka, Synthesis of novel BRET/FRET protein probes containing light-emitting proteins and fluorescent nonnatural amino acids, Bull. Chem. Soc. Jpn., 85, 576-583 (2012).
- R. Abe, H. Ohashi, I. Iijima, M. Ihara, H. Takagi, T. Hohsaka, H. Ueda, “Quenchbodies”: Quench-based antibody probes that show antigen-dependent fluorescence, J. Am. Chem. Soc., 133, 17386-17394 (2011).
- 芳坂貴弘、非天然アミノ酸のタンパク質への導入技術-バイオメディカル応用に向けて、メディカルバイオ別冊, 72-77 (2010).
使用装置
蛍光分析装置(分光光度計・蛍光寿命測定・蛍光スキャナなど)
遺伝子解析装置(DNAシーケンサー・リアルタイムPCRなど)
質量分析装置
研究室の指導方針
人工タンパク質に関連した研究テーマに対して、実験を通じて新たな成果を挙げるとともに、その研究プロセスを修得することを目標としています。具体的には、各自の研究テーマに対して、実験を試行錯誤的に繰り返す過程を通じて、実験計画の立案、結果の解釈と問題点の把握、次の実験計画へのフィードバック、などを独力で遂行できる能力を鍛錬します。そのために、研究室ゼミでは定期的に研究報告会を開催して、進捗状況の確認と指導・助言を行います。また、研究成果は積極的に学会等で発表する機会を設けています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/hohsaka/
次世代の細胞計測技術を創り、ニューロン情報処理の秘密に迫る


次世代の細胞計測技術を創り、
ニューロン情報処理の秘密に迫る
神経情報生理学研究室
Laboratory for Neural Information Physiology
准教授:筒井 秀和(TSUTSUI Hidekazu)
E-mail:
[研究分野]
分子生物学、生理学、生物物理学、細胞計測
[キーワード]
神経細胞、分子センサー、次世代計測技術
研究を始めるのに必要な知識・能力
予備知識:分子・細胞生物学や電気回路の基礎などを理解しているとスムーズに研究を開始できますが、初学者にも丁寧に指導します。
求める人材:新しい技術を創出したい人。実験が好きで、試行錯誤や寄り道の楽しさを理解している方。
この研究で身につく能力
分子・細胞生物学、基礎生理学、生物物理学に関する基本的な研究方法や実験手技を理解し、体得します。さまざまな生命現象の仕組みや分子的基礎が詳細に解明されてきましたが、その一方で、広大な領域が未だに謎に包まれたまま残されています。本研究室では、新しい技術を創出し、今までアクセス不可能だった領域に踏み入る意義や楽しさを学びます。こうした新規技術を創り出すための創意工夫、粘り強い探求や試行錯誤を通じて身に付く能力は、学術の世界のみならず、社会や産業の発展を牽引する上で大いに役に立ちます。
【就職先企業・職種】学術、医工学・電気、情報・バイオなど
研究内容
【ニューロン回路の不思議】
柔軟さ、堅牢さ、緻密さを兼ね備えていることが細胞・組織・器官の機能の特徴の一つです。生き物の仕組みを知りたい!そんな素朴な疑問を大切に研究を行っています。具体的には、ニューロン回路における情報処理の秘密に迫るための、新しい細胞計測技術の創出に取り組んでいます。ニューロン回路は究極の生体組織です。0.1ボルト、1ミリ秒程度の電圧信号が回路網を高速に流れ、情報の表現や処理を司っています。この過程を詳細に理解することができれば、疾患の理解や新しい情報処理様式の発見のほか、想像もできない展開も期待できます。しかし、この挑戦は、数多くの障壁に阻まれています。例えば、既存の細胞計測技術では、複雑なニューロン回路の中を伝播する電気信号を十分に詳細に追跡することは困難で、実験的な立場における大きな課題の一つです。研究室では、主に二つの異なるアプローチでこの課題に取り組んでいます。
【次世代の電気生理計測法の探求】

(上)ニューロンの配線メカニズムを用いて作成した微小電極との接合構造
電気生理計測とは、金属やガラス管の微小電極を用いて、細胞の電気的現象を調べる手法の総称です。長い歴史のある計測法ですが、今日の最先端研究でも欠かすことのできない、強力な手法です。しかしながら、細胞認識能を原理的に備えていない、などの本質的な欠点が残されています。研究室では、脳内でニューロンが配線される分子メカニズムと微細加工技術を融合させることで、この課題の解決に取り組んでいます。これまでに、分子生物学的に人工設計したシナプス誘導因子を用いて、特定種のニューロンを特定の電極に接続する基本原理の実証など成功しています。ニューロン活動を読み取る次世代の電気生理技術の創出に向けて、皆さんと様々な工夫をこらし、探求をしていきます。
また、思いもよらぬ方向から、研究の突破口が開けることも多くあります。既成概念にとらわれず、不思議・楽しい!を大切にし、色々な技術や考え方を学際的に学び、日々の研究に活かしていくことを心掛けています。
【ニューロン活動を可視化する分子センサー】

(左)分子センサーの性能試験の様子
(中央)分子センサーを発現した神経細胞
(右)試作した次世代電気生理技術の原理実証用の微小電極
ある種の細胞には膜電位の変化(電圧信号)を感知するための分子が備わり、電圧信号を増幅し、細胞外環境に応じて細胞内の環境を変化させています。こうした分子を部品として使うことで、電圧信号を光の信号として可視化するセンサー分子を創ることが出来ます。研究室ではこれまでに単一細胞の単一スパイクを可視化することなどに成功してきています。皆さんといろいろなアイディアを持ち寄り、センサーのさらなる高速・高感度化を目指したいと考えています。また、細胞に備わるそうした分子が、そもそもどのような仕組みで電圧信号を感知しているのか?といった基礎的な問題にも興味を持って研究を進めています。
主な研究業績
- K. Sekine, et al., Neuron-microelectrode junction induced by an engineered synapse organizer, Biochem. Biophys. Res. Commun. p149935, 2024.
- W. Haga, et al., Development of artificial synapse organizers liganded with a peptide tag for molecularly inducible neuron-microelectrode interface, Biochem. Biophys. Res. Commun., vol. 699, 2024.
- S. Kim, et al., Formation of neuron-microelectrode junction mediated by a synapse organizer, Appl. Phys. Express, vol. 16, 2023.
使用装置
各種光学顕微鏡・走査型電子顕微鏡
電気生理・電気化学計測関連機器
薄膜作成・微細加工装置
細胞・組織培養関連機器
分子生物学関連機器
研究室の指導方針
研究は自由で楽しいものであるべきと考えますが、それもバックグラウンドの正しい理解や確かな実験技術に基づくはずです。まずは正確な実験や観察が行えるようになる事に努めます。研究結果の定期的な発表(プログレスレポート)および論文紹介(ジャーナルクラブ)を通じてプレゼンテーション力を身につけます。英語専門書を一つ選定して、輪読を行い、研究の背後にある概念や文化を理解する事にも重点を置きます。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/tsutsui/wordpress/
ナノ粒子工学:機能材料の創製から応用まで


ナノ粒子工学:機能材料の創製から応用まで
ナノ粒子工学研究室 Laboratory on Nanoparticle Engineering
教授:前之園 信也(MAENOSONO Shinya)
E-mail:
[研究分野]
ナノ材料化学、ナノ材料物性、コロイド化学
[キーワード]
半導体ナノ粒子、磁性体ナノ粒子、金属ナノ粒子、バイオ医療、エネルギー変換、センシング
研究を始めるのに必要な知識・能力
基礎学力、コミュニケーション能力、知的好奇心、柔軟な思考
この研究で身につく能力
修士課程では、(1) ナノ材料の化学合成技術、(2) 各種分析機器(透過型電子顕微鏡、X 線回折装置、X 線光電子分光、組成分析装置など)の操作スキル、(3) 基礎学問の知識(無機材料化学、結晶学、コロイド化学、固体物性など)、(4) ナノ材料に関する先端専門知識を身につけて頂きます。博士課程では、1-4に加え、英語によるプレゼンテーション能力、英語論文執筆能力、研究課題設定能力、共同研究遂行能力など、研究者に必要なあらゆる能力を身につけて頂きます。
【就職先企業・職種】 製造業(化学、精密機器、電気機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
物質をナノメートルサイズまで細かくしていくと、種々の物性がサイズに依存する新奇な材料となります。このような新奇材料を一般に「ナノ材料」と呼びますが、我々はその中でも特に「ナノ粒子」に興味を持ち、ナノ粒子に関する基礎から応用に亘る研究を行っています。半導体、磁性体、金属などのナノ粒子を化学合成し、その表面をさまざまな配位子によって機能化し、さらにそれらナノ粒子の高次構造を制御することによって、バイオ・医療分野あるいは環境・エネルギー分野で新たな応用を開拓することを目指しています。
1.磁性体ナノ粒子の合成とバイオ医療分野への応用
超常磁性体のナノ粒子を独自の方法によって合成し、その表面を自在に修飾することによって、バイオ医療分野での様々な応用の道を開拓しています。具体的には、細胞やタンパクの磁気分離、MRI 造影剤、ドラッグデリバリーシステムなどのナノ磁気医療に応用するための技術開発を行っています。
2.半導体ナノ粒子の合成とエネルギー変換素子への応用
狭ギャップ化合物半導体から広ギャップ酸化物半導体のナノ粒子まで、幅広い種類の半導体ナノ粒子を化学合成し、それらを用いて低炭素社会の実現を志向したナノ構造エネルギー変換素子の創製に関する研究を行っています。特に、ナノ構造熱電素子や光機能素子などに興味を持っています。
3.金属ナノ粒子を用いたバイオセンシング技術の開発
近年、金ナノ粒子を用いた様々なバイオセンサが開発され、簡便かつ迅速に DNA 配列検出やタンパク質機能解析などが可能となってきています。我々は、ナノ粒子プローブを用いたバイオセンシング技術の更なる高度化を目指し、異種金属元素からなるヘテロ構造ナノ粒子や合金ナノ粒子のプローブの開発を進めています。
主な研究業績
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, and S. Maenosono, “Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles”, ACS Nano 16 (2022) 885
- J. Hao, B. Liu, S. Maenosono, and J. Yang, “One-Pot Synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) Core-Shell Nanoparticles as Highly Efficient Catalysts for the Reduction of 4-Nitrophenol”, Sci. Rep. 12 (2022) 7615
- T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono, “Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes”, Langmuir 37 (2021) 6566
使用装置
透過型電子顕微鏡 (TEM) 超伝導量子干渉磁束計 (SQUID)
過型電子顕微鏡 (STEM) 動的光散乱測定装置 (DLS)
X 線回折装置 (XRD) 共焦点レーザー顕微鏡 (CLSM)
X 線光電子分光装置 (XPS) 核磁気共鳴装置 (NMR)
研究室の指導方針
就職希望者には、基礎・専門知識はもちろん、コミュニケーション能力、英会話力、論理的思考力および柔軟な対応力を涵養し、不確実性の時代を生き抜くことができる人材となってもらうための指導を行います。企業経験を活かした実践的就職指導も行っています。
博士後期課程への進学希望者については、先端的かつ国際的な研究環境を提供することによって、将来的に大学教員や企業研究者として活躍できるグローバル研究人材を育成します。
[Website] URL:https://www.jaist.ac.jp/~shinya/
物質化学フロンティア研究領域の都教授らの論文がAdvanced Science誌の最も閲覧された論文の上位10%にランクインされました

物質化学フロンティア研究領域の都 英次郎教授らの「阿吽の呼吸で癌を倒す! -灯台下暗し:最強の薬は腫瘍の中に隠されていた-」に係る論文が、生物・化学系トップジャーナルAdvanced Science誌の最も閲覧された論文の上位10%にランクインしました。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Advanced Science
■著者
Yamato Goto, Seigo Iwata, Mikako Miyahara, Eijiro Miyako*
■論文タイトル
Discovery of intratumoral oncolytic bacteria toward targeted anticancer theranostics
■論文概要
本研究では、マウス生体内の大腸癌由来腫瘍組織から主に3種類の細菌の単離・同定に成功し、これらの細菌にA-gyo(阿形;Proteus mirabilis)、UN-gyo(吽形;Rhodopseudomonas palustris)、そしてAUN(阿吽;A-gyoとUN-gyoから成る複合細菌)とそれぞれ命名しました。これらの細菌を、大腸癌を皮下移植した担癌モデルマウスの尾静脈に投与したところ、低酸素状態の腫瘍環境内で高選択的に集積・生育・増殖が可能で、かつ高い抗腫瘍効果を示すことを発見しました。とりわけ、AUNは、単回投与にも関わらず、A-gyoとUN-gyoの協奏作用により細胞障害性の免疫細胞を効果的に賦活化し、大腸癌、肉腫(サルコーマ)、転移性肺癌、薬物耐性乳腺癌といった様々な癌種に対して強力な抗腫瘍活性を示すことが明らかとなりました。また、AUNは、生体透過性の高い近赤外光によって標的とする腫瘍内で近赤外蛍光を発現することが分かりました。さらに、マウスを用いた生体適合性試験(血液学的検査、組織学的検査、細菌コロニーアッセイなど)を行った結果、いずれの検査からもAUNそのものが生体に与える影響は極めて少ないことが分かりました。これらの成果は、今回発見した細菌を用いた癌の診断・治療法の基礎に成り得るだけでなく、細菌学や腫瘍微生物学などの研究領域への新しい概念の創出として貢献することを期待させるものだと考えられます。
論文詳細:https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202301679
プレスリリース詳細:https://www.jaist.ac.jp/whatsnew/press/2023/05/08-1.html
令和7年4月17日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/04/17-2.html磁石と光で機能制御可能なナノ粒子の開発に成功! -高性能がん診断・治療に向けて-

磁石と光で機能制御可能なナノ粒子の開発に成功!
-高性能がん診断・治療に向けて-
【ポイント】
- 磁性イオン液体とカーボンナノホーンから成る複合体の作製に成功
- 当該ナノ粒子の磁場応答性とEPR効果により標的とする腫瘍内に効果的に集積し、マウスに移植したがんの可視化と、抗がん作用、光熱変換によるがん治療が可能であることを実証
- 当該ナノ粒子と近赤外光を組み合わせた新たながん診断・治療技術の創出に期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)物質化学フロンティア研究領域の都 英次郎教授らは、カーボンナノホーン*1表面に磁性イオン液体*2、近赤外蛍光色素(インドシアニングリーン*3)、分散剤(ポリエチレングリコール-リン脂質複合体*4)を被覆したナノ粒子の作製に成功した(図1)。得られたナノ粒子は、ナノ粒子特有のEPR効果*5のみならず、磁性イオン液体に由来する磁場駆動の腫瘍標的能によって、大腸がんを移植したマウス体内の腫瘍内に効果的に集積し、磁性イオン液体に由来する抗がん作用に加え、生体透過性の高い近赤外レーザー光*6により、インドシアニングリーンに由来するがん患部の可視化とカーボンナノホーンに由来する光熱変換による多次元的な治療が可能であることを実証した。さらに、マウスを用いた生体適合性試験などを行い、いずれの検査からもナノ粒子が生体に与える影響は極めて少ないことがわかった。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待される。 |
【研究背景と内容】
がんは世界における死亡の主な原因の1つである。世界保健機関 (WHO) によると、2020年には約1,000万人のがん患者が亡くなっている。とりわけ先進国の人口の高齢化と生活習慣の要因により、症例数は引き続き増加すると予想されている。科学、技術、社会の発展が大きく進歩したにもかかわらず、従来の抗がん剤の特異性の低さ、重篤な副作用、転移性疾患に対する有効性の限界などが相まって、がんは依然として重要かつ世界的な健康課題となっている。従って、より効果的かつ安心・安全な先進がん診断・治療技術の開発は急務である。
イオン液体は、低融点、低揮発性、高イオン濃度、高イオン伝導性などの特長を持つ室温で液体として存在する塩であり、コンデンサ用電解液や帯電防止剤、CO2吸収剤などの様々な産業用途に応用されており、とりわけ環境・エネルギー分野で注目されている。また、近年イオン液体に抗がん作用があることが見出されており、上記の分野のみならず医療分野への応用展開も期待されている。
そもそもイオン液体という物質は、陽イオン分子と陰イオン分子という極めてシンプルな2種類の構成要素で成り立っている。つまり、陽イオン側と陰イオン側の両方に多様な可能性があることから、両者の組み合わせとなるイオン液体には、膨大な種類が存在しうることになる。そのためイオン液体は「デザイナー溶媒」と呼ばれている。例えば、陽イオンが1-ブチル-3-メチルイミダゾリウム、陰イオンが塩化鉄であるイオン液体([Bmin][FeCl4])は、ネオジム磁石程度の磁場に応答する「磁性イオン液体」として知られている。磁石に反応する流体としては、この磁性イオン液体の他に、磁性流体という粉末磁石を懸濁させた油などが知られている。しかし、従来の磁性流体は、固体と液体に分離してしまいやすく不安定であった。磁性イオン液体は極めて安定であり、揮発せず、燃えないなどのイオン液体特有の性質を保持している。このため磁性イオン液体は、固体磁石にはできなかった液体磁石の新しい用途に向けて応用が期待されている。しかし、このような磁性イオン液体の高い潜在能力に反して、これまで報告されている磁性イオン液体の応用例は、化学物質の抽出や分離に限られていた。
一方、ナノ炭素材料の一つであるカーボンナノホーン(CNH)は、高い生体適合性と優れた物理化学的特性を有することが知られており、とりわけバイオメディカル分野で大きな注目を集めている。都教授は、CNHが生体透過性の高い波長領域(650~1100 nm)のレーザー光により容易に発熱する特性(光発熱特性)を世界に先駆けて発見し、当該光発熱特性を活用したがん診断・治療技術の開発を推進している(※1)。また、都研究室では、革新的がん診断・治療技術に向けてCNHのさらなる高性能化・高機能化に取り組んでいる(※2)。
(※1) https://www.jaist.ac.jp/whatsnew/press/2020/08/17_2.html
(※2) https://www.jaist.ac.jp/whatsnew/press/2024/08/22-1.html
本研究では、磁性イオン液体([Bmin][FeCl4])と光発熱素材(CNH)を複合化した新規ナノ粒子を開発し、がん診断・治療技術への可能性を調査した。より具体的には、[Bmin][FeCl4]、近赤外蛍光色素(インドシアニングリーン)、分散剤(ポリエチレングリコール-リン脂質複合体)を被覆したCNH([Bmin][FeCl4]‒PEG‒ICG‒CNH複合体)をがん患部に同時に送り込むことで、[Bmin][FeCl4]に由来する磁場応答性と抗がん作用に加え、生体透過性の高い近赤外レーザー光を用いることで、インドシアニングリーンに由来する近赤外蛍光特性を用いた患部の可視化やCNHに由来する光熱変換を利用した、新たながんの診断や治療の実現を目指した。
当該目標を達成するために、今回開発した技術では、簡便な超音波照射によって[Bmin][FeCl4]、近赤外蛍光色素(インドシアニングリーン)、ポリエチレングリコール-リン脂質複合体をCNH表面に吸着させることで、CNHを水溶液中に分散できるようにした(図1)。この方法で作製した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体は、7日以上の粒径安定性を有していること、細胞に対し高い膜浸透性を有し抗がん作用を発現すること、近赤外レーザー光照射により発熱が起こることが確認できたため、がん患部の可視化と治療効果について試験を行った。
大腸がんを移植して約10日後のマウスに、当該[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体を尾静脈から投与し、医療用バンデージを使って患部に小型のネオジウム磁石を24時間張り付けた後に740~790 nmの近赤外光を当てたところ、がん患部が蛍光を発している画像が得られた(図2A)。また、当該ナノ粒子が、ネオジウム磁石を用いない場合や磁性イオン液体を被覆していないナノ粒子(PEG‒ICG‒CNH複合体)に比較して、がん組織に効果的に取り込まれていることが分かった(図2A)。そこで、当該ナノ粒子([Bmin][FeCl4]‒PEG‒ICG‒CNH複合体 + 磁場)が集積した患部に対して808 nmの近赤外レーザー光を照射したところ、[Bmin][FeCl4]に由来する抗がん作用に加え、CNHの光熱変換による効果で5日後には、がんを完全に消失させることが判明した(図2B)。
一方、腫瘍内における薬効メカニズムを組織学的評価により調査したところ、とりわけ磁場印可とレーザー照射した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体においてがん細胞組織の顕著な破壊が起こることが明らかとなった。
さらに、[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体をマウスの静脈から投与し、生体適合性を組織学的検査、血液検査、体重測定により評価したが、いずれの項目でも[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体が、革新的がん診断・治療法の基礎に成り得ることを示すだけでなく、ナノテクノロジーや光学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、2025年3月3日に生物・化学系のトップジャーナル「Small Science」誌(Wiley発行)のオンライン版に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、大学発新産業創出基金事業スタートアップ・エコシステム共創プログラム(JPMJSF2318)ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
図1.様々な機能性分子を被覆したナノ粒子の作製と本研究の概念。
CNH: カーボンナノホーン、ICG: インドシアニングリーン、[Bmim][FeCl4]: 磁性イオン液体、
DSPE‒PEG2000‒NH2: ポリエチレングリコール-リン脂質複合体。
図2. ナノ粒子をがん患部に集積・可視化(A)し、光照射によりがんを治療(B)
(赤色の囲いは腫瘍の位置、赤色の矢印は消失した腫瘍の位置をそれぞれ示している)。
【論文情報】
掲載誌 | Small Science |
論文題目 | Multifunctional magnetic ionic liquid-carbon nanohorn complexes for targeted cancer theranostics |
著者 | Yun Qi, Eijiro Miyako* |
掲載日 | 2025年3月3日にオンライン版に掲載 |
DOI | 10.1002/smsc.202400640 |
【用語説明】
飯島澄男博士らのグループが1998年に発見したカーボンナノチューブの一種。直径は2~5 nm、長さ40~50 nmで不規則な形状を持つ。数千本が寄り集まって直径100 nm程度の球形集合体を形成している。とりわけ、薬品の輸送用担体として期待されており、バイオメディカル分野で注目を集めている。
磁気力によってイオンが移動する液体。
肝機能検査に用いられる緑色色素のこと。近赤外レーザー光を照射すると近赤外蛍光と熱を発することができる。
ポリエチレングリコールとリンを含有する脂質(脂肪)が結合した化学物質。脂溶性の薬剤を可溶化させる効果があり、ドラッグデリバリーシステムによく利用される化合物の一つ。
100nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみ、がん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
令和7年3月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/06-1.html金沢大学・北陸先端科学技術大学院大学 第4回共同シンポジウム with 第16回ライフサイエンス研究交流セミナーを開催
令和7年2月3日(月)、金沢大学自然科学系図書館棟1階大会議室において、金沢大学・北陸先端科学技術大学院大学 第4回共同シンポジウム with 第16回ライフサイエンス研究交流セミナーを開催しました。
金沢大学と本学は、平成30年度より融合科学共同専攻における分野融合型研究を推進してきましたが、昨年度より、融合科学共同専攻の活動にとどまらず、両大学間の共同研究の発展と促進を目的に共同シンポジウムを開催しており、今回は4回目の開催となりました。また今回は、金沢大学内で平成27年度から定期的に開催してきたライフサイエンス研究交流セミナーとの合同開催とし、ポスターセッションを開催しました。
「健康長寿」をテーマに開催した今回の共同シンポジウムは、金沢大学 和田隆志 学長による開会挨拶後、がん治療や老化細胞の解析等に係る先進的な研究開発および両学間での共同研究の成果等について、本学 物質化学フロンティア研究領域 栗澤元一 教授、金沢大学 がん進展制御研究所長 鈴木健之 教授、本学 物質化学フロンティア研究領域 都英次郎 教授、金沢大学 がん進展制御研究所 城村由和 教授にそれぞれご講演いただき、本学 寺野稔 学長の挨拶をもって閉会となりました。
また、共同シンポジウム終了後、ライフサイエンス研究交流セミナーとして、両大学の若手研究者・学生によるポスターセッションが開催され、ライフサイエンス分野に係る自身の研究成果の発表を通じ、他研究者との活発な意見交換が行われました。リラックスした空間の中、多くの研究者が積極的に情報交換を行い、異分野の研究者との研究交流も促進される大変有意義な機会となりました。
今後とも本シンポジウムが両大学間の共同研究発展の端緒となるよう推進して参ります。

開会の挨拶をする和田学長

シンポジウムの様子

講演①「難治性疾患治療を変える薬効増幅型緑茶カテキン・ナノ粒子の開発」栗澤 元一 教授(本学 物質化学フロンティア研究領域、 超越バイオメディカルDX研究拠点)

講演②「がん悪性進展におけるエピゲノム・エピトランスクリプトーム制御の解明に向けて」鈴木 健之 教授(金沢大学 がん進展制御研究所 所長)

講演③「光細菌を利用したがん診断・治療技術」都 英次郎 教授(本学 物質化学フロンティア研究領域、 超越バイオメディカルDX研究拠点)

講演④「革新的な健康寿命延伸法創出に向けた老化細胞多様性の包括的解明」城村 由和 教授(金沢大学 がん進展制御研究所)

閉会のあいさつをする寺野学長

ポスターセッションの様子①

ポスターセッションの様子②
令和7年2月12日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/02/12-1.html量子グレードの高品質・高輝度蛍光ナノ粉末ダイヤモンド ~ナノダイヤモンド量子センサの性能向上で超高感度の測定が可能に~

![]() ![]() |
岡山大学 量子科学技術研究開発機構 北陸先端科学技術大学院大学 筑波大学 |
量子グレードの高品質・高輝度蛍光ナノ粉末ダイヤモンド
~ナノダイヤモンド量子センサの性能向上で超高感度の測定が可能に~
【ポイント】
- 明るい蛍光イメージングとナノ量子計測法が利用可能な品質等級(量子グレード)を実現しました。
- 従来の蛍光ナノ粉末ダイヤモンド※1に比べて量子特性が10倍以上、温度感度が2桁向上しました。
- ナノダイヤモンド量子センサの性能を大幅に向上させた画期的な成果です。
- 細胞内やナノ電子デバイスの温度や磁場を超高感度で測定可能になることが期待されます。
岡山大学学術研究院環境生命自然科学学域(理)の藤原正澄研究教授、押味佳裕日本学術振興会特別研究員、同大大学院環境生命自然科学研究科の中島大夢大学院生、大学院自然科学研究科のマンディッチサラ大学院生、小林陽奈非常勤研究員(当時)は、住友電気工業株式会社の西林良樹主幹、寺本三記主席、辻拡和研究員、量子科学技術研究開発機構量子生命科学研究所の石綿整主任研究員、北陸先端科学技術大学院大学ナノマテリアル・デバイス研究領域の安東秀准教授、筑波大学システム情報系の鹿野豊教授らとの共同研究により、従来の10倍以上の優れた量子特性(量子コヒーレンス※2)を持つ高輝度の蛍光ナノ粉末ダイヤモンドを世界で初めて報告しました。この蛍光ナノ粉末ダイヤモンドは、住友電気工業株式会社との協力によって実現されたもので、高い蛍光輝度で蛍光イメージングが可能で、高品質な量子センサ特性を有しており、温度量子測定においても1桁以上の感度向上が確認されました。 本研究成果は、2024年12月16日に「ACS Nano」のオンライン先行版に掲載されました。蛍光ナノ粉末ダイヤモンドを用いた量子センシング※3技術は、近年注目を集めている超高感度ナノセンシング技術です。しかし、これまで高い蛍光輝度と様々な量子計測法を行うのに要求される品質等級(量子グレード)の両立は困難とされてきました。本研究により、ナノダイヤモンド量子センサの性能が大幅に向上され、細胞内やナノ電子デバイスの温度や磁場を超高感度で測定できると期待されます。 |
【現状】
蛍光ナノ粉末ダイヤモンドを用いた量子センシングは、ナノスケールでの温度、磁場、化学環境の変化を高感度に計測できる技術として、生命科学やナノテクノロジー分野で大きな注目を集めています。この技術は、細胞内の微小領域やデバイス内部の構造を精密に計測できることから、将来的には癌の超早期診断や極微量ウイルスの検出などの医療分野や、リチウムイオンバッテリーの状態モニタリングなどのスマートデバイス分野での応用が期待されています。しかし、量子センシングの性能は蛍光ナノ粉末ダイヤモンドの電子スピン特性に大きく依存しており、このスピン特性の向上が技術の成否を左右します。特に、従来の蛍光ナノダイヤモンドでは、蛍光強度とスピン特性の両立が難しく、測定感度が劣化するという課題がありました。
【研究成果の内容】
本研究では、蛍光ナノ粉末ダイヤモンド中のスピン不純物(孤立窒素原子や天然炭素に含まれる約1%の13C同位体)を大幅に減少させ、スピン純度を飛躍的に向上させることに成功しました。また、窒素空孔欠陥中心(NV中心)※4を高効率で生成するためのダイヤモンド成長法およびナノ粒子粉砕法を最適化し、含有されているNV中心が約1 ppm、孤立窒素が約30 ppm、13C同位体が0.01%以下に制御され、平均粒径277 nmの大きさを有するナノ粉末ダイヤモンドを作製しました。その結果、光検出磁気共鳴※5信号(ODMR)が著しく改善され、従来の蛍光ナノ粉末ダイヤモンドと比較して量子コヒーレンス時間が10倍以上延長されました。(図1)
図1:細胞内の量子グレード蛍光ナノ粉末ダイヤモンドとそのスピン特性
さらに、これらの蛍光ナノ粉末ダイヤモンドを細胞内に導入し、従来の蛍光ナノ粉末ダイヤモンドに比べてより高感度にODMR信号が検出できることを実証しました。また、バルク結晶のみで実現されていた量子計測法の1つである、超高感度温度測定法「サーマルエコー」も観測することに成功しました。これにより、従来のナノダイヤモンド温度量子センシングに比べて1桁以上感度が向上することを確認しました(図2)。ナノダイヤモンド量子センサの実用に道を開く画期的な成果です。
図2:サーマルエコー法による超高感度温度測定と従来に比べた測定感度の向上
【社会的な意義】
本研究は、生命科学やナノテクノロジー分野におけるナノスケールセンシング技術の大きな進展をもたらす可能性を秘めています。蛍光ナノ粉末ダイヤモンドは、優れた光安定性と生体適合性を持ち、既に一部で商用化が始まっている有望な蛍光イメージング材料です。ナノダイヤモンド量子センサの応用が進展すれば、癌などの超早期診断や極微量ウイルス検出といった新しい診断技術の開発が期待されます。また、ナノメートルからマイクロメートルの微小領域で温度や磁場を検出する技術は、リチウムイオンバッテリー内部の状態モニタリングなど、スマートデバイスの革新的な性能向上にも貢献すると期待されています。本研究を通じて量子センシング技術が進展することで、蛍光ナノ粉末ダイヤモンドのバイオ医療やスマート電子技術分野での幅広い商用化が期待されます。
【論文情報】
論文名 | Bright quantum-grade fluorescent nanodiamonds |
邦題名 | 「高輝度量子グレード蛍光ナノ粉末ダイヤモンド」 |
掲載紙 | ACS Nano |
著者 | Keisuke Oshimi, Hitoshi Ishiwata, Hiromu Nakashima, Sara Mandić, Hina Kobayashi, Minori Teramoto, Hirokazu Tsuji, Yoshiki Nishibayashi, Yutaka Shikano, Toshu An, Masazumi Fujiwara |
DOI | 10.1021/acsnano.4c03424 |
URL | https://doi.org/10.1021/acsnano.4c03424 |
【研究資金】
- 独立行政法人日本学術振興会「科学研究費助成事業」
‣基盤A・24H00406,研究代表:藤原正澄
‣基盤A・20H00335,研究代表:藤原正澄
‣国際共同研究強化(A)・20KK0317,研究代表:藤原正澄
‣特別研究員奨励費・23KJ1607,研究代表:押味佳裕 - 国立研究開発法人科学技術振興機構
「先端国際共同研究推進事業(ASPIRE)次世代のためのASPIRE」
(JPMJAP2339,研究代表:鹿野豊(筑波大学) - 国立研究開発法人 新エネルギー・産業技術総合開発機構
「官民による若手研究者発掘支援事業」
(JPNP20004,研究代表:藤原正澄) - 国立研究開発法人日本医療研究開発機構「ムーンショット型研究開発事業」
(JP23zf0127004,研究代表:村上正晃(北海道大学)) - 国立研究開発法人科学技術振興機構 未来社会創造事業 「共通基盤」領域 本格研究
(JPMJMI21G1,研究代表:飯田琢也(大阪公立大学)) - 国立研究開発法人科学技術振興機構 戦略的創造研究推進事業さきがけ
(JPMJPR20M4,研究代表:鹿野豊(筑波大学)) - 国立研究開発法人科学技術振興機構 科学技術イノベーション創出に向けた大学フェローシップ創設事業
(JPMJFS2128, 研究代表:押味佳裕(岡山大学))
(JPMJFS2126, 研究代表:マンディッチサラ(岡山大学)) - 公益財団法人 山陽放送学術文化・スポーツ振興財団「研究助成」(研究代表:藤原正澄)
- 公益財団法人 旭硝子財団「研究助成」(研究代表:藤原正澄)
- 文部科学省「ナノテクノロジープラットフォーム」(JPMXP09F21OS0055)
- 国立研究開発法人科学技術振興機構 創発的研究支援事業
(JPMJFR224K,研究代表:石綿整(QST)) - 公益財団法人 村田学術振興・教育財団「研究助成」(研究代表:石綿整(QST))
【補足・用語説明】
ダイヤモンド中に存在する窒素欠陥中心によって赤い発光を示す、ナノメートルサイズのダイヤモンド粉末粒子。褪色がなく安定した蛍光を半永久的に示す蛍光材料。生体毒性も低く、バイオイメージングなどに利用されている。
量子力学において量子状態が外部からの影響を受けずに一貫性を保ちながら情報を保持できる性質。温度測定の場合、ダイヤモンド窒素欠陥中心の電子スピン状態が温度情報を感じることのできる時間であり、コヒーレンスが失われると温度測定の精度が低下する。
量子力学の原理に基づいてさまざまな物理量を超高感度に計測することができる。特に蛍光ナノ粉末ダイヤモンドでは、窒素欠陥中心が有する電子スピン状態を、量子力学の原理に基づいて操作・検出することで、さまざまな物理量(磁気・温度・電気)を超高感度に計測することができる。
ダイヤモンドの炭素格子中に含まれる結晶欠陥の1つ。窒素原子と隣接する空孔から構成され、緑色の光を吸収して赤い蛍光を示す。この蛍光は、光検出磁気共鳴を示し※5、これが磁場や温度によって影響されるため、蛍光を通したセンシングが可能。超高感度計測が可能な量子センサとして注目され、生体内での温度や磁場の計測、量子情報技術などで注目されている。
光検出を通して電子スピンとマイクロ波の共鳴を観測する手法。蛍光ナノ粉末ダイヤモンドの場合、2.87 GHz付近のマイクロ波を照射すると、電子スピン共鳴が生じ、それが蛍光輝度の減少に表れる。
令和6年12月23日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/12/23-1.htmlOIST-JAIST Joint Symposiumを開催
11月27日(水)、沖縄科学技術大学院大学(以下「OIST」という。) にて、OIST-JAIST Joint Symposiumを開催しました。
OISTと本学(JAIST)は、令和5年度に学術協力に関する基本協定を締結して両大学間の学術協力の強化を進めてきましたが、この度、両大学間の共同研究の発展と促進を目的に共同シンポジウムを開催しました。
"Collaborative Innovation for a Sustainable Future through Advanced Materials Science"をテーマに開催した今回のシンポジウムは、OIST カリン マルキデス 学長及び御手洗 哲司 研究担当ディーンによる開会挨拶後、OIST 細胞シグナルユニット 山本 雅 教授、本学 超越バイオメディカルDX研究拠点 栗澤 元一 教授、OIST パイ共役ポリマーユニット クリスティーヌ ラスカム 教授、本学 マテリアルズインフォマティクス国際研究拠点長 谷池 俊明 教授から、それぞれ先進的な研究についてご講演いただき、OIST エイミー シェン プロボスト及び本学 永井 由佳里 理事(研究振興、社会連携担当)の挨拶をもって閉会となりました。
本シンポジウムが現地のみの開催であったにも関わらず、両大学から約50名の参加がありました。また、質疑応答の時間だけでなく、コーヒーブレイク中にも多くの研究者間で活発な意見交換が行われました。
シンポジウム終了後には、同日OISTと金沢大学ナノ生命科学研究所(NanoLSI)が開催していた8th NanoLSI Symposiumのポスターセッションに本シンポジウム参加者も出席しました。本学からは6名の研究者がポスターセッションにおいて、自身の研究成果を発表しました。同ポスターセッションには、OIST、NanoLSI、本学から総勢80名程の研究者が参加し、多角的な意見交換を繰り広げました。
本シンポジウムの開催は、今後の両大学間での強固な研究連携の構築を目指す上で、大変有意義なものとなりました。本シンポジウムが端緒となり、今後両大学間で新たな研究プロジェクトの発足等、持続可能な共同研究体制が築かれるよう、より一層注力して参ります。


開会の挨拶をするOIST マルキデス学長(左)と御手洗研究担当ディーン(右)

講演① "Development of a New
Methodology of Cancer Chemotherapy"
山本 雅 教授(OIST 細胞シグナルユニット)

講演② "Enhancing Healing Power with Green Tea Nanomedicine for Treatment of Intractable Diseases"
栗澤 元一 教授(本学 超越バイオメディカルDX研究拠点)

講演③ "Dual-catalytic Reactions to Promote Previously Inaccessible Reactions"
クリスティーヌ ラスカム 教授
(OIST パイ共役ポリマーユニット)

講演④ "Streaming Materials Discovery by High-Throughput Experimentation and Machine Learning"
谷池 俊明 教授(本学 マテリアルズインフォマティクス国際研究拠点)


閉会の挨拶をするOIST シェンプロボスト(左)と本学 永井理事(右)

OIST、NanoLSI、本学のポスターセッション
令和6年12月6日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/12/06-2.html学生の加藤さんがSLTB2024においてPoster Awardを受賞

学生(JAIST-Spring研究員)の加藤裕介さん(博士後期課程2年、物質化学フロンティア研究領域、松村研究室)が、60th Anniversary Meeting of the Society for Low Temperature Biology (SLTB2024)において、Poster Awardを受賞しました。
本研究成果は、次世代研究者挑戦的研究プログラム(JAIST-SPRING)の支援のもと行われたものです。
SLTB2024は、令和6年9月11日~13日にかけてイギリスのマンチェスター大学にて開催された低温生物学に関する国際会議です。今回は低温生物学会(SLTB)60周年の記念会議となり、特に低温生物学会の歴史と持続可能なバイオバンクについて焦点が当てられ、生物、物理、化学など様々な分野からのアプローチによる低温環境での生物の生命現象に関する最新の研究成果について議論が行われました。
※参考:SLBT2024
■受賞年月日
令和6年9月12日
■研究題目、論文タイトル等
Cryopreservation with intracellularly introduced polymeric cryoprotectants and extracellular non-permeable small molecule cryoprotectants
■研究者、著者
加藤裕介、松村和明
■受賞対象となった研究の内容
細胞や組織の凍結保存を達成するためには、細胞内の氷晶形成を抑制することが重要と言われている。この研究では、その目的のために凍結保護高分子を細胞内に導入することにより、細胞外保護剤との相乗的保護効果を得ることに成功した。
■受賞にあたって一言
このたびはSLTB2024にてPoster Awardを戴き、大変光栄に存じます。本研究の遂行にあたり、丁寧なご指導を賜りました松村和明教授に、この場を借りて心より御礼申し上げます。また、多くのご助言をいただきました研究室の皆様に、深く感謝いたします。
令和6年10月31日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/10/31-1.html物質化学フロンティア研究領域の都教授らの論文がSmall Science誌の表紙に採択
物質化学フロンティア研究領域の都 英次郎教授らの「がんを欺くためのがん細胞の顔をしたナノ粒子の開発に成功」に係る論文が、生物・化学系のトップジャーナルSmall Science誌の表紙に採択されました。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST)研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Small Science, Vol. 4, No. 10
掲載日:2024年10月6日
■著者
Nina Sang, Yun Qi, Shun Nishimura, Eijiro Miyako*
■論文タイトル
Biomimetic Functional Nanocomplexes for Photothermal Cancer Chemoimmunotheranostics
■論文概要
本研究では、カーボンナノホーン表面にがん細胞成分と抗がん剤を被覆したナノ粒子の作製に成功しました。得られたナノ粒子は、ナノ粒子特有のEPR効果のみならず、がん細胞成分に由来する血中滞留性、腫瘍標的能によって、大腸がんを移植したマウス体内の腫瘍内に効果的に集積し、がん細胞成分に由来する免疫賦活化効果と抗がん剤に由来する薬効に加え、生体透過性の高い近赤外レーザー光により、がん患部の可視化と光熱変換による多次元的な治療が可能であることを実証しました。さらに、マウスを用いた生体適合性試験などを行い、いずれの検査からもナノ粒子が生体に与える影響は極めて少ないことがわかりました。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待されます。
表紙詳細:https://onlinelibrary.wiley.com/doi/abs/10.1002/smsc.202470043
論文詳細:https://onlinelibrary.wiley.com/doi/10.1002/smsc.202400324
プレスリリース:https://www.jaist.ac.jp/whatsnew/press/2024/08/22-1.html
令和6年10月11日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/10/11-1.html夢のマイホームを細菌が手に入れたら・・・細菌の抗がん性能が劇的に向上することを発見

夢のマイホームを細菌が手に入れたら・・・
細菌の抗がん性能が劇的に向上することを発見
【ポイント】
- 水槽用ろ過材を使って細菌を培養すると細菌の薬剤耐性乳腺がんモデルマウスに対する抗がん活性と生体適合性が劇的に向上することを発見
- ろ過材に含まれる微量の光触媒(酸化チタン)が細菌の抗がん性能を高めることを発見
- 酸化チタンを内包した多孔質高分子複合材料を基材とするAUNの簡便な培養方法の樹立に成功
- 大動物を用いた安全性評価によってAUNの高い生体適合性を実証
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)物質化学フロンティア研究領域の都 英次郎教授と宮原 弥夏子大学院生(博士後期課程、JAIST SPRING研究員)らは、ろ過材を使って培養した細菌の薬剤耐性乳腺がんモデルマウスに対する抗がん活性と生体適合性が向上することを発見した。また、ろ過材に含まれる微量の光触媒(酸化チタン)が細菌の抗がん性能を高めるというメカニズムを見出したことで、酸化チタンを内包した多孔質高分子複合材料を基材とするAUNの簡便な培養方法の樹立に成功した。さらに、大動物を用いた安全性評価によってAUNの高い生体適合性を実証した。 |
【研究背景と内容】
人生で一番大きな買い物といえば、家を思い浮かべる方が多いだろう。もしこの夢のマイホーム(水槽用ろ過材)を細菌に与えてみると抗がん作用がどうなるのか、本研究は、そんな遊び心からスタートした。
アクアリウム愛好家の間では、金魚や熱帯魚の飼育における水槽内の水質浄化にろ過材を使用することが多い。ろ過材の役割とは、水質を汚染するアンモニアを分解する細菌の繁殖を助ける"住処(家)"を提供することであり、様々な形や種類のろ過材がペットショップ等で安価に入手することができる。なお、これまでろ過材を使用して培養した細菌を水質浄化以外の目的で利用されることは本研究を除いて未だかつて報告がない。
近年、低酸素状態の腫瘍内部で選択的に集積・生育・増殖が可能な細菌を利用したがん標的治療に注目が集まっている。都教授の研究グループは、腫瘍組織から強力な抗腫瘍作用のある複数の細菌[A-gyo(阿形)、UN-gyo(吽形)、AUN(阿吽)と命名]の単離に世界にさきがけて成功している[プレスリリース(阿吽の呼吸で癌を倒す!-灯台下暗し:最強の薬は腫瘍の中に隠されていた-)https://www.jaist.ac.jp/whatsnew/press/2023/05/08-1.html]。なかでもAUN(A-gyoとUN-gyoからなる複合細菌)は、様々ながん腫に対して高い抗腫瘍活性を示すことを見出している。将来の臨床試験を見据えて、当該複合細菌AUNの簡便な培養方法の構築が必要不可欠である。
本研究では、当該腫瘍内複合細菌AUNの抗がん性能を高めるべく、異なる表面構造を有する複数の多孔質ろ過材[セラミック、ガラス、麦飯石、ポリプロピレン(PP)]を使用した細菌培養を試みた。なお、AUNの培養には、構成細菌の一つであるUN-gyoが光合成細菌であるため、ハロゲンランプ等を用いる光照射が必須である。
各種ろ過材を用い、光照射下で培養したAUNを、薬剤耐性乳腺がん細胞株(EMT6/AR1)を背面に移植したマウスの尾静脈に投与したところ、セラミックス製ろ過材で培養したAUNが顕著な抗がん作用と有意なマウス生存率を示すことがわかった。一方、他のろ過材(麦飯石、ガラス、PP)で培養したAUNとろ過材を用いない従来のAUNでは、3日以内にマウスが死亡した。また、コントロール群(AUN未投与群)は経時的に明らかな腫瘍体積増加を示し、すべてのマウスが13日以内に死亡した。
材料表面上の材質や多孔質構造が、細菌の活動を含む細胞生理機能に影響を与えることがよく知られているものの、「いったい何故、セラミックス製ろ過材だけがAUNの抗がん作用や生体適合性を高めるのか」、本研究では、その謎の解明に迫った。
まず、4種類のろ過材の元素分析を行ったところ、無機材料で構成されるろ過材(セラミックス、麦飯石、ガラス)では、元素組成が良く似ており、主成分が二酸化ケイ素(SiO2)であることがわかった。一方、PP製のろ過材は91%割合のPPで構成されていた。また、セラミックス製のろ過材と麦飯石には、細菌やウイルスといった病原性微生物を排除するのによく利用される光触媒[酸化チタン(TiO2)]が微量に含まれていることがわかった。従って、「このTiO2がAUNの抗がん性能の向上に寄与しているのではないか」、という仮説を立てた。
本仮説を検証するために、TiO2を内包する多孔質のポリジメチルシロキサン(PDMS)(TiO2-PDMS)から成るろ過材を調製した。予想した通り、TiO2-PDMSろ過材を用いて培養したAUN(AUN@TiO2-PDMS)は、セラミックス製ろ過材を用いて培養したAUNと同様に単回投与で腫瘍が完全に消失した(図1A、1B)。比較対象として TiO2を含有していないPDMS 製の足場材料で培養した AUN では、2日以内にマウスが死亡することがわかった。一方、コントロール群(AUN未投与群)は腫瘍退縮や生存率の改善に全く効果が見られなかった。また、AUN@TiO2-PDMSの優れた抗がん作用により、マウスの生存率も有意に延長された(図1C)。以上の結果から、光触媒TiO2を内包した多孔質高分子複合材料によってAUNの抗がん性能を大幅に改善できることがわかった。
図1.AUN@TiO2-PDMSの抗腫瘍効果に係る写真(腫瘍が完全消失)(A)、
腫瘍体積の経時変化(B)、ならびにマウス生存率(C)。
次に、何故、TiO2-PDMS複合材料がAUNの治療機能を向上できるのか、そのメカニズムを明らかにするために各種ろ過材でAUNを培養した後の細菌濃度を比較検証した(図2A)。この結果、TiO2-PDMSは、5日間培養した後のAUNの濃度を有意に減少させた。実際、TiO2を含有する3種類のろ過材(TiO2-PDMS、セラミックス製ろ過材、麦飯石)は、ハロゲンランプの光を3時間照射したところ細菌を弱体化させる効果のある活性酸素種(ROS)を検出した(図2B)。以上の結果をまとめると、光照射したTiO2-PDMS複合材料から発生するROSは、AUNの生体機能に影響を与えるため、毒性の低減化を引き起こしていると考えられる。
図2. 各種ろ過材で培養した5日後の細菌濃度(A)と各種ろ過材から発生したROS(B)
次に、このようなAUNの高い抗腫瘍メカニズムを解析するために定量的ポリメラーゼ連鎖反応(qPCR)アッセイ、フローサイトメトリー解析、および免疫組織化学(IHC)染色を用いてAUN@TiO2-PDMSを静脈内投与した24時間後の固形腫瘍内の免疫細胞やサイトカインの挙動を調査した。この結果、AUN@TiO2-PDMSを投与すると腫瘍内の炎症性サイトカインTNF-αが増加し、T細胞、NK細胞、およびマクロファージが活性化されることが明らかになった(図3A、3B)。また、ヘマトキシリンとエオシン(H&E)染色では、非治療群と比較して、AUN@TiO2-PDMSの強力な抗がん効果による腫瘍組織の破壊も確認された(図3C)。さらに、AUN@TiO2-PDMS投与後の腫瘍切片におけるアポトーシスマーカー(カスパーゼ-3および末端デオキシヌクレオチジルトランスフェラーゼ[TdT]を介した2'-デオキシウリジン、5'-三リン酸[dUTP]ニックエンドラベリング[TUNEL])およびTNF-α染色により、腫瘍内では大規模なアポトーシスが発現しており、強い炎症反応が誘発されていることもわかった(図3C)。以上の結果より当該薬効メカニズムを図3Dにまとめる。最後に、大型動物モデル(ビーグル犬)を用いたAUN@TiO2-PDMSの安全性評価(血液学的、組織学的検査)を実施したところ、複合細菌AUN投与による重篤な副作用は無いことがわかった。
図3. 免疫細胞と炎症系サイトカインの発現挙動に係るqPCRの結果(A)と
フローサイトメトリーの結果(B)、ならびに組織学的染色の結果(C)。(D)薬効メカニズム。
本研究は、将来の悪性乳癌の臨床治療に向けて光触媒を内包したろ過材がAUNの機能増強のための有望な材料の一つに成り得ると期待している。
本成果は、2024年10月7日に生物・化学系のトップジャーナル「Chemical Engineering Journal」誌(エルゼビア社発行)のオンライン版に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、JST次世代研究者挑戦的研究プログラム(未来創造イノベーション研究者支援プログラム)(JPMJSP2102)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
【論文情報】
掲載誌 | Chemical Engineering Journal(エルゼビア社発行) |
論文題目 | Photocatalytic scaffolds enhance anticancer performances of bacterial consortium AUN |
著者 | Mikako Miyahara, Yuki Doi, Naoki Takaya, Eijiro Miyako* |
掲載日 | 2024年10月7日にオンライン版に掲載 |
DOI | https://doi.org/10.1016/j.cej.2024.156378 |
令和6年10月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/10/09-1.html