研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。光電極の反応メカニズムを解明 ~光の強度変化で見えた新たな課題と可能性~
![]() ![]() ![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 東京都公立大学法人 東京都立大学 国立大学法人東京科学大学 Swansea University |
光電極の反応メカニズムを解明
~光の強度変化で見えた新たな課題と可能性~
【ポイント】
- 周波数データの先進的解析により、水分解反応中の電子の動きを時間領域で可視化
- 電子と正孔の再結合過程を3種に分類し、電場と光の強さで変化するメカニズムを解明
- 反応のボトルネックとなる遅い反応過程を発見し、水分解反応の効率低下要因を特定
光電気化学的な水分解は、クリーンな水素を生成する有望な技術ですが、その効率は電子と正孔の再結合1によって大きく制限されています。この課題を克服するためには、電荷の分離と移動の特性を詳細に分析し、再結合のメカニズムを明確にすることが不可欠です。 今回、北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)張葉平特別研究員(日本学術振興会特別研究員PD)、東京都立大学(学長・大橋隆哉、東京都八王子市)都市環境科学研究科天野史章教授、Dr. Surya Pratap Singh、東京科学大学(旧・東京工業大学、理事長・大竹尚登、東京都目黒区)物質理工学院材料系宮内雅浩教授、山口晃助教、Dr. Yue Yang、Imperial College London (United Kingdom) Prof. Salvador Eslava、Ms. Mengya Yang、Dr. Junyi Cui、Prof. James R Durrant (Swansea University, United Kingdomと兼務)、Dr. Daniele Benettiの共同研究チームは、「光強度変調光電流分光法(IMPS)2」と「緩和時間分布(DRT)解析3」を組み合わせた新たな分析手法を適用し、光電極の動作環境下でのその場観察を行いました。その結果、これまで一つの現象として捉えられていた電子と正孔の再結合が、実は異なる3つの過程に分かれていることを明らかにしました。さらに、反応速度が遅い領域に未知の"サテライトピーク4"が存在することを発見し、これが電子移動や反応のボトルネックとなる可能性を示しました。本研究の成果は、光触媒や光電極材料の効率的な設計につながるものであり、2025年2月22日付けで「Journal of the American Chemical Society」誌に掲載されました。 |
【研究の背景】
光触媒は、太陽光というクリーンで無尽蔵なエネルギーを利用して水素を生成する技術として注目されています。しかし、実用化に向けた大きな課題のひとつが、「電子と正孔の再結合」です。これは、光によって励起された電子が、化学反応に利用される前に元の状態に戻ってしまう現象で、エネルギー変換の効率を大きく低下させます。従来の研究では、この再結合がどのように起こるのかを詳細に分析することが難しく、単純化したモデルで説明されることがほとんどでした。そこで、研究チームは、再結合過程には複数のメカニズムが混在する可能性があると考え、周波数ごとの電流の応答を時間ごとの変化として"見える化"する解析手法を適用することで、光照射下での電子や正孔の動的な過程を捉えその詳細を明らかにしました。
【研究の詳細】
本研究では、光触媒として広く研究されている酸化チタン(TiO2)を光電極の材料に用いて、水分解反応の動作環境における電子の動きを詳細に分析しました。まず、「光強度変調光電流分光法(IMPS)」を用いて、光の強さを周期的に変化させた際の電流の応答を測定し、光触媒内でどのようなプロセスが起こっているかを周波数ごとに測定しました。次に、「緩和時間分布(DRT)解析」を適用し、得られたデータを時間領域に変換することで、これまで1つのプロセスと考えられていた再結合過程が、実際には複数のプロセスに分かれていることを"見える化"することに成功しました。異なる光強度でIMPSを測定した結果、次の3つの異なる電位領域が存在することがわかりました。
(1) 高電位領域:光強度に依存せず、安定した電流応答を示す
(2) 中電位領域:光強度に強く影響される再結合プロセスが支配的
(3) 低電位領域:逆電子移動(BER)が発生し、光電流が抑制される
図 本研究で明らかにした、3つの電位領域における光触媒プロセスの緩和時間分布、およびそれに対応する半導体電極のバンド曲がり5モデル。電位領域ごとのバンド構造をもとに、異なる3種の再結合プロセス(OPR、EHR、BER)を分類することに成功した。 |
さらに、これらのメカニズムを半導体電極におけるバンド曲がりモデルと対応付けることで、これまで一括りにされていた「バルク再結合」を「過剰な光侵入による再結合(OPR)」と「過剰な正孔による再結合(EHR)」いう2種類に分類し、それぞれの特徴を明らかにしました。また、これまで観測されていなかった遅い反応過程が"サテライトピーク"として高電位領域に現れることを確認しました。このピークは光強度や反応条件によって変化し、特に表面の正孔密度によって再結合経路と競合する可能性が示唆されました。
【今後の展望】
本研究の成果により、光電気化学的な水分解反応のボトルネックとなる反応過程をより正確に特定できるようになりました。これにより、光触媒や半導体電極のさらなる高効率化に向けた新たな材料設計の指針が示されます。今後は、異なる材料や反応環境での適用を進めることで、実用化に向けた最適な設計戦略を提案していく予定です。光触媒および光電気化学的な水分解の性能向上により、水素エネルギーの普及が加速し、カーボンニュートラル社会の実現に貢献することが期待されます。
【論文情報】
掲載誌 | Journal of the American Chemical Society |
論文題目 | Analysis of TiO2 Photoanode Process Using Intensity Modulated Photocurrent Spectroscopy and Distribution of Relaxation Times |
著者 | Yohei Cho, Mengya Yang, Junyi Cui, Yue Yang, Surya Pratap Singh, Salvador Eslava, Daniele Benetti, James R Durrant, Akira Yamaguchi, Masahiro Miyauchi, and Fumiaki Amano |
掲載日 | 2025年2月22日 |
DOI | https://doi.org/10.1021/jacs.4c17345 |
【研究資金】
本研究は、日本学術振興会 科学研究費助成事業「JP20H02525, JP21J21388, JP22KJ1272, JP23K26735, JP23K17953, JP24KJ1201, JP24H00463」、東京都立大学、東京工業大学物質・情報卓越教育院、英国工学・物理科学研究会議(EPSRC, Grant EP/S030727/1)、Imperial College Londonからの支援を受けたものです。
【受賞】
本研究は、光エネルギーの化学変換と太陽光エネルギーの有効利用、および人工光合成をテーマとする国際会議でOral Presentation Awardを受賞しています。
【用語説明】
光触媒や半導体電極が光を吸収すると電子と正孔(電子の抜けた穴)が生成される。これらの電荷が化学反応に利用される前に再び結びついて消失してしまう現象。再結合が起こると、エネルギーが熱や光として失われ、反応効率が低下するため、光触媒や半導体電極の性能を向上させるには、再結合を抑える必要がある。
光の強度をわずかに変化させ、そのときの周期的な電流応答を周波数ごとに測定することで、半導体電極内部の電子の動きを解析する手法。動作環境下の光電極をそのまま観察できる「オペランド分光法」の一種。一定の電位を保ったまま測定できるため、半導体内部の電場変動による測定誤差が少なく、光強度や電位の影響を精度よく観察できる。
周波数領域のデータを時間領域に変換することで、どの時間スケールで反応や再結合が起こっているかを特定する解析手法。事前に複雑な数理モデルを使う必要がなく、複数の反応過程を分離して評価できる。それぞれの反応過程がどのくらいの時間で進行するかを示す時定数を「緩和時間」と呼ぶ。
DRT解析の結果として、主な反応プロセスであるメインピークとは別に観測された新たなピーク。今回の研究では、IMPSの解析で初めてサテライトピークの存在を明確に捉え、それが再結合と競合する要因になりうることを明らかにした。
半導体電極の表面付近において、電荷の分布によってエネルギーバンド(電子が存在できるエネルギー準位の範囲)が曲がる現象。これは、外部から電場が加わったり、半導体が電解質と接触したりすることで生じる。バンド曲がりの状態によって、電子や正孔がどのように移動し、化学反応に寄与するかが決まる。本研究では、電位によってバンド曲がりを精密に制御することで、各状態に対応する再結合プロセスを明らかにした。
令和7年2月25日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/02/25-1.html夢のマイホームを細菌が手に入れたら・・・細菌の抗がん性能が劇的に向上することを発見

夢のマイホームを細菌が手に入れたら・・・
細菌の抗がん性能が劇的に向上することを発見
【ポイント】
- 水槽用ろ過材を使って細菌を培養すると細菌の薬剤耐性乳腺がんモデルマウスに対する抗がん活性と生体適合性が劇的に向上することを発見
- ろ過材に含まれる微量の光触媒(酸化チタン)が細菌の抗がん性能を高めることを発見
- 酸化チタンを内包した多孔質高分子複合材料を基材とするAUNの簡便な培養方法の樹立に成功
- 大動物を用いた安全性評価によってAUNの高い生体適合性を実証
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)物質化学フロンティア研究領域の都 英次郎教授と宮原 弥夏子大学院生(博士後期課程、JAIST SPRING研究員)らは、ろ過材を使って培養した細菌の薬剤耐性乳腺がんモデルマウスに対する抗がん活性と生体適合性が向上することを発見した。また、ろ過材に含まれる微量の光触媒(酸化チタン)が細菌の抗がん性能を高めるというメカニズムを見出したことで、酸化チタンを内包した多孔質高分子複合材料を基材とするAUNの簡便な培養方法の樹立に成功した。さらに、大動物を用いた安全性評価によってAUNの高い生体適合性を実証した。 |
【研究背景と内容】
人生で一番大きな買い物といえば、家を思い浮かべる方が多いだろう。もしこの夢のマイホーム(水槽用ろ過材)を細菌に与えてみると抗がん作用がどうなるのか、本研究は、そんな遊び心からスタートした。
アクアリウム愛好家の間では、金魚や熱帯魚の飼育における水槽内の水質浄化にろ過材を使用することが多い。ろ過材の役割とは、水質を汚染するアンモニアを分解する細菌の繁殖を助ける"住処(家)"を提供することであり、様々な形や種類のろ過材がペットショップ等で安価に入手することができる。なお、これまでろ過材を使用して培養した細菌を水質浄化以外の目的で利用されることは本研究を除いて未だかつて報告がない。
近年、低酸素状態の腫瘍内部で選択的に集積・生育・増殖が可能な細菌を利用したがん標的治療に注目が集まっている。都教授の研究グループは、腫瘍組織から強力な抗腫瘍作用のある複数の細菌[A-gyo(阿形)、UN-gyo(吽形)、AUN(阿吽)と命名]の単離に世界にさきがけて成功している[プレスリリース(阿吽の呼吸で癌を倒す!-灯台下暗し:最強の薬は腫瘍の中に隠されていた-)https://www.jaist.ac.jp/whatsnew/press/2023/05/08-1.html]。なかでもAUN(A-gyoとUN-gyoからなる複合細菌)は、様々ながん腫に対して高い抗腫瘍活性を示すことを見出している。将来の臨床試験を見据えて、当該複合細菌AUNの簡便な培養方法の構築が必要不可欠である。
本研究では、当該腫瘍内複合細菌AUNの抗がん性能を高めるべく、異なる表面構造を有する複数の多孔質ろ過材[セラミック、ガラス、麦飯石、ポリプロピレン(PP)]を使用した細菌培養を試みた。なお、AUNの培養には、構成細菌の一つであるUN-gyoが光合成細菌であるため、ハロゲンランプ等を用いる光照射が必須である。
各種ろ過材を用い、光照射下で培養したAUNを、薬剤耐性乳腺がん細胞株(EMT6/AR1)を背面に移植したマウスの尾静脈に投与したところ、セラミックス製ろ過材で培養したAUNが顕著な抗がん作用と有意なマウス生存率を示すことがわかった。一方、他のろ過材(麦飯石、ガラス、PP)で培養したAUNとろ過材を用いない従来のAUNでは、3日以内にマウスが死亡した。また、コントロール群(AUN未投与群)は経時的に明らかな腫瘍体積増加を示し、すべてのマウスが13日以内に死亡した。
材料表面上の材質や多孔質構造が、細菌の活動を含む細胞生理機能に影響を与えることがよく知られているものの、「いったい何故、セラミックス製ろ過材だけがAUNの抗がん作用や生体適合性を高めるのか」、本研究では、その謎の解明に迫った。
まず、4種類のろ過材の元素分析を行ったところ、無機材料で構成されるろ過材(セラミックス、麦飯石、ガラス)では、元素組成が良く似ており、主成分が二酸化ケイ素(SiO2)であることがわかった。一方、PP製のろ過材は91%割合のPPで構成されていた。また、セラミックス製のろ過材と麦飯石には、細菌やウイルスといった病原性微生物を排除するのによく利用される光触媒[酸化チタン(TiO2)]が微量に含まれていることがわかった。従って、「このTiO2がAUNの抗がん性能の向上に寄与しているのではないか」、という仮説を立てた。
本仮説を検証するために、TiO2を内包する多孔質のポリジメチルシロキサン(PDMS)(TiO2-PDMS)から成るろ過材を調製した。予想した通り、TiO2-PDMSろ過材を用いて培養したAUN(AUN@TiO2-PDMS)は、セラミックス製ろ過材を用いて培養したAUNと同様に単回投与で腫瘍が完全に消失した(図1A、1B)。比較対象として TiO2を含有していないPDMS 製の足場材料で培養した AUN では、2日以内にマウスが死亡することがわかった。一方、コントロール群(AUN未投与群)は腫瘍退縮や生存率の改善に全く効果が見られなかった。また、AUN@TiO2-PDMSの優れた抗がん作用により、マウスの生存率も有意に延長された(図1C)。以上の結果から、光触媒TiO2を内包した多孔質高分子複合材料によってAUNの抗がん性能を大幅に改善できることがわかった。
図1.AUN@TiO2-PDMSの抗腫瘍効果に係る写真(腫瘍が完全消失)(A)、
腫瘍体積の経時変化(B)、ならびにマウス生存率(C)。
次に、何故、TiO2-PDMS複合材料がAUNの治療機能を向上できるのか、そのメカニズムを明らかにするために各種ろ過材でAUNを培養した後の細菌濃度を比較検証した(図2A)。この結果、TiO2-PDMSは、5日間培養した後のAUNの濃度を有意に減少させた。実際、TiO2を含有する3種類のろ過材(TiO2-PDMS、セラミックス製ろ過材、麦飯石)は、ハロゲンランプの光を3時間照射したところ細菌を弱体化させる効果のある活性酸素種(ROS)を検出した(図2B)。以上の結果をまとめると、光照射したTiO2-PDMS複合材料から発生するROSは、AUNの生体機能に影響を与えるため、毒性の低減化を引き起こしていると考えられる。
図2. 各種ろ過材で培養した5日後の細菌濃度(A)と各種ろ過材から発生したROS(B)
次に、このようなAUNの高い抗腫瘍メカニズムを解析するために定量的ポリメラーゼ連鎖反応(qPCR)アッセイ、フローサイトメトリー解析、および免疫組織化学(IHC)染色を用いてAUN@TiO2-PDMSを静脈内投与した24時間後の固形腫瘍内の免疫細胞やサイトカインの挙動を調査した。この結果、AUN@TiO2-PDMSを投与すると腫瘍内の炎症性サイトカインTNF-αが増加し、T細胞、NK細胞、およびマクロファージが活性化されることが明らかになった(図3A、3B)。また、ヘマトキシリンとエオシン(H&E)染色では、非治療群と比較して、AUN@TiO2-PDMSの強力な抗がん効果による腫瘍組織の破壊も確認された(図3C)。さらに、AUN@TiO2-PDMS投与後の腫瘍切片におけるアポトーシスマーカー(カスパーゼ-3および末端デオキシヌクレオチジルトランスフェラーゼ[TdT]を介した2'-デオキシウリジン、5'-三リン酸[dUTP]ニックエンドラベリング[TUNEL])およびTNF-α染色により、腫瘍内では大規模なアポトーシスが発現しており、強い炎症反応が誘発されていることもわかった(図3C)。以上の結果より当該薬効メカニズムを図3Dにまとめる。最後に、大型動物モデル(ビーグル犬)を用いたAUN@TiO2-PDMSの安全性評価(血液学的、組織学的検査)を実施したところ、複合細菌AUN投与による重篤な副作用は無いことがわかった。
図3. 免疫細胞と炎症系サイトカインの発現挙動に係るqPCRの結果(A)と
フローサイトメトリーの結果(B)、ならびに組織学的染色の結果(C)。(D)薬効メカニズム。
本研究は、将来の悪性乳癌の臨床治療に向けて光触媒を内包したろ過材がAUNの機能増強のための有望な材料の一つに成り得ると期待している。
本成果は、2024年10月7日に生物・化学系のトップジャーナル「Chemical Engineering Journal」誌(エルゼビア社発行)のオンライン版に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、JST次世代研究者挑戦的研究プログラム(未来創造イノベーション研究者支援プログラム)(JPMJSP2102)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
【論文情報】
掲載誌 | Chemical Engineering Journal(エルゼビア社発行) |
論文題目 | Photocatalytic scaffolds enhance anticancer performances of bacterial consortium AUN |
著者 | Mikako Miyahara, Yuki Doi, Naoki Takaya, Eijiro Miyako* |
掲載日 | 2024年10月7日にオンライン版に掲載 |
DOI | https://doi.org/10.1016/j.cej.2024.156378 |
令和6年10月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/10/09-1.html機械学習を用いた太陽電池用シリコン薄膜堆積条件の新たな最適化手法を開発

![]() ![]() |
国立大学法人 国立研究開発法人理化学研究所 |
機械学習を用いた太陽電池用シリコン薄膜堆積条件の
新たな最適化手法を開発
ポイント
- 実用で頻出する制約(膜厚制限や実現不可能な実験条件排除)を考慮した「制約付きベイズ最適化」を開発
- 制約内の実験条件範囲でキャリア再結合抑止能力が最良となる薄膜堆積を少ない実験回数で実現
- 太陽電池製造や薄膜堆積に限らず広く応用可能な手法として期待
北陸先端科学技術大学院大学 (JAIST)(学長・寺野稔、石川県能美市)の大橋亮太大学院生(博士前期課程)、Huynh, Thi Cam Tu特任助教(サスティナブルイノベーション研究領域)、東嶺孝一技術専門員(ナノマテリアルテクノロジーセンター)、大平圭介教授(サスティナブルイノベーション研究領域)と、理化学研究所革新知能統合研究センターの沓掛健太朗研究員は、結晶シリコン太陽電池に用いられる薄膜のシリコン堆積条件を最適化する新たな手法を開発した。 |
本研究グループではこれまで、触媒化学気相堆積(Cat-CVD)法*1を用いた太陽電池用薄膜形成に取り組んできた。特に、非晶質シリコン膜と結晶シリコン基板との接合からなるシリコンヘテロ接合太陽電池*2は、低損傷での膜堆積が可能なCat-CVDの優位性が生かせることから、有用な応用先として注力している。この製膜においては、多数の製膜パラメータが存在するため、太陽電池出力を最大化する最適製膜条件の発見には、一般に膨大な実験回数(試行錯誤)を要する。
このような実験条件の最適化問題に対して、「ベイズ最適化」*3と呼ばれる、機械学習を応用した逐次最適化法が、最近よく使用されている。しかし、太陽電池出力の最大化のみを目的とした単純なベイズ最適化では、次の実験条件で得られる膜の厚さを規定する機能は無く、デバイス動作上問題が生じるような厚膜が形成されうる。また、ベイズ最適化によって提示される実験条件が、実現不可能な組み合わせ(例えばガス流量と製膜装置のポンプの排気能力の不整合)となる可能性がある。
本研究では、これらのベイズ最適化における実践的な問題を解決するための、「制約付きベイズ最適化」を開発した。この手法では、未実施の実験条件のうち、製膜装置の仕様上実現が困難な実験条件を機械学習による予測に基づいてあらかじめ排除し、残りの条件の中からキャリア再結合抑止性能を最良化する可能性のある実験条件を提示させるよう工夫した。さらに、一定の製膜時間における予測膜厚を提示させる機能を持たせ、所望の膜厚を得るための製膜時間を逆算できるよう設計した。これらの制約を組み込むことで、製膜装置が実現可能な条件の範囲内でかつ一定の膜厚を有し、キャリア再結合抑止性能を最良化するベイズ最適化の手順を進行させることが可能となった。開発した「制約付きベイズ最適化」を用いることで、わずか8回のサイクルにより最適な製膜条件に到達し、20回のサイクルでベイズ最適化工程が完了した。また、本ベイズ最適化の提示に従って複数の製膜パラメータを広い範囲で変化させた結果、高いキャリア再結合抑止性能の実現には、製膜時の基板温度と原料ガスであるSiH4の流量の組み合わせが重要であることも見出した。
本研究で得られた手法は、太陽電池製造や薄膜堆積に限らず、幅広い分野や試料作製に適用可能な手法として期待される。
「制限付きベイズ最適化」の流れ
【論文情報】
雑誌名 | ACS Applied Materials and Interfaces(米国化学会) |
題目 | High Passivation Performance of Cat-CVD i‑a-Si:H Derived from Bayesian Optimization with Practical Constraints |
著者 | Ryota Ohashi, Kentaro Kutsukake, Huynh Thi Cam Tu, Koichi Higashimine, and Keisuke Ohdaira |
掲載日 | 2024年2月8日 |
DOI | 10.1021/acsami.3c16202 |
【用語説明】
加熱触媒体線により原料ガスを分解し、薄膜を堆積する手法。原料ガスの分解時にイオンが生成されないため、イオンの衝突による結晶シリコン表面への損傷が起こらず、良好な薄膜/基板界面が得られる。
結晶シリコンウェハと非晶質シリコン膜の接合を基本構造とする太陽電池。非晶質シリコン膜により、結晶シリコン表面に存在する結晶欠陥が有効に不活性化され、キャリア再結合が抑えられる結果、汎用の結晶シリコン太陽電池と比べて高い電圧が得られる特長がある。
形状が不明な関数の最大値や最小値を得るための手法の一種。既知である実験条件(入力)とその結果(出力)のデータセットから、未実施の実験条件における結果の予測値を、不確かさ(標準偏差)とともに推定し、不確かさも含めて予測値が最良となる条件で次の実験を行う。その実験で得られた結果を含めて予測値を推定し直す。これを繰り返し、少ない実験回数で最適な実験条件を得る。
令和6年2月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/02/19-1.html精密な高分子設計による能動的電子輸送が終始可能に -高分子が触手のように電子を授受-

精密な高分子設計による能動的電子輸送が終始可能に
-高分子が触手のように電子を授受-
ポイント
- 精密に合成された高分子が能動的に電子を輸送するナノシステムを設計
- 実際の葉緑体に倣った光エネルギー変換システムの構築が期待
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)、サスティナブルイノベーション研究領域の、博士前期課程大学院生 萩原礼奈、桶葭興資准教授、物質化学フロンティア研究領域の西村俊准教授らは、「電子を輸送する」高分子-金属ナノ粒子の複合組織を設計した。ここでは、三元系のヘテロ高分子が触媒ナノ粒子表面に結合しており、能動的な電子輸送システムとして機能する。従来の研究では、電子伝達には2 nm以内で著しく効率的になることが分かっていたが、この距離を制御する能動的なシステムは無かった。本研究の高分子は電子の授受に伴って相転移を起こし、能動的に触媒粒子との距離を変化させる。このようなナノシステムは、可視光エネルギーによる水の分解や水素生成の触媒作用のみならず、電池など電気化学反応を伴う系や人工酵素の系に展開することで、様々なエネルギー変換システムに有用と期待される。 |
桶葭准教授らの研究グループはこれまでに、持続可能社会の実現に向けて人工光合成[用語解説1]の高分子によるシステム構築に挑戦してきた。実際の光合成を行う葉緑体が持つ電子伝達組織、および電子移動に関するマーカス理論[用語解説2]に学び、今回、2 nm以内の電子輸送を能動的に起こす系を高分子の精密な合成を通して構築した。まず、三元系のヘテロ高分子を精密に合成し、これが結合した触媒ナノ粒子を作製した(図)。この高分子は、相転移[用語解説3]を起こす部位、ナノ粒子と結合する部位、そして電子を授受する部位から構成される。ここで、高分子中のビオロゲン分子[用語解説4]が電子を得ると、触媒の白金ナノ粒子まで迅速に運び水素生成する仕組みである。プロセスとしては、I) 電子を得たビオロゲン分子近傍の高分子が収縮する。II) この高分子の一部はナノ粒子表面に固定されているため、電子を得たビオロゲンをナノ粒子表面へ触手のように引き寄せられる。III) ビオロゲンが電子をナノ粒子に渡した後、この高分子は伸長して元に戻る。他方、このナノ粒子は水素生成の触媒として働く。このI~IIIがサイクリックに進む。従来の研究では、拡散律速に依存した受動的な電子移動が介在してしまっていたが、今回のシステムでは、高分子がナノ粒子表面に固定されたことでその能動的な電子輸送が終始可能となった。2 nm以内での電子移動において、著しく高い有効性が認められることは、理論だけでなく実証実験でも報告されていたが、この距離を制御する能動系はこれまで無かった。今回、高分子が触手の様に電子を捉えて触媒が電子を食べるような、アクティブなナノシステムが提案された。
上図:三元系のヘテロ高分子Poly(NIPAAm-co-AAm-co-Viologen) (PNAV)。相転移を起こす部位N、ナノ粒子と結合する部位A、そして電子を授受する部位Vから構成される。 下図:高分子PNAVが結合した白金ナノ粒子。光捕集分子などから電子を得たPNAV (PNAV+)は収縮し白金ナノ粒子に近づき電子を渡す。その際、PNAV2+となると伸長してナノ粒子表面から離れる。この能動的な電子の授受を繰り返す。 |
本成果は、2023年12月13日(英国時間)に科学雑誌「Chemical Communications」誌(RSC社)のオンライン版で公開された。なお、本研究は、文部科学省科研費 挑戦的研究(萌芽)(JP21K18998)の支援のもと行われた。
【論文情報】
掲載誌 | Chemical Communications (The Royal Society of Chemistry) |
論文題目 | Precise design of copolymer-conjugated nanocatalysts for active electron transfer |
著者 | Reina Hagiwara, Shun Nishimura, Kosuke Okeyoshi |
DOI | 10.1039/d3cc05242g |
掲載日 | 2023年12月13日付、オンライン版 |
【今後の展開】
高分子の相転移を用いた電子の能動輸送は、エネルギー変換系(光エネルギーから水素生成等)だけでなく、次世代バッテリーなど様々な先端材料にとって有用なナノシステムと期待される。
【用語解説】
令和5年12月13日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/12/14-1.html令和7年度TeSH GAPファンドプログラム『ステップ1』に本学から5名が採択されました
令和7年度TeSH GAPファンドプログラム『ステップ1』の採択者が決定し、本学からは以下5件の研究開発課題が採択されました。
テック分野 | |
人間情報学研究領域 鵜木 祐史 教授 |
音声なりすまし対策のための深層情報ハイディング法/検出法の開発 |
物質化学フロンティア研究領域 西村 俊 准教授 |
小規模で効率的な反応評価システムが担う触媒インフォマティクスの事業展開 |
物質化学フロンティア研究領域 上田 純平 准教授 |
傷も付かない半永久高輝度透明蓄光セラで究極の低環境負荷光材料を実現! |
環境分野 | |
バイオ機能医工学研究領域 廣瀬 大亮 講師 |
酸化物薄膜トランジスタ型センサとAIの融合技術による"誰でもできる"食品のかんたんスマート品質チェックシステムの提供 |
加藤 裕介 博士後期課程学生 | 革新的凍結保存技術による豚精液の凍結保存事業 |
(参考)TeSH HP>R7年度 TeSH GAPファンドプログラム『ステップ1』採択者
TeSHは、2024年2月にJSTの"大学発新産業創出基金事業(2023-2027)スタートアップ・エコシステム共創プログラム"の"地域プラットフォーム"の一つに選ばれました。TeSHが支援するGAPファンドは、基礎研究の成果をビジネスとしての可能性を評価できる段階まで引き上げる「ステップ1」と、概念実証からスタートアップ組成までを支援する「ステップ2」からなります。
令和7年5月27日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/05/27-1.htmlナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発 ― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―

ナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発
― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―
【ポイント】
- 高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発
- 欠陥を多く含むメタチタン酸ナノ粒子の三次元結晶構造の決定に成功
- 多様な結晶構造をとり得る金属オキシ水酸化物ナノ粒子の構造解明に役立つと期待
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市) ナノマテリアル・デバイス研究領域の麻生浩平講師、大島義文教授、宮田全展講師 (研究当時)、同大学ナノマテリアルテクノロジーセンターの東嶺孝一技術専門員、日本製鉄株式会社 技術開発本部の神尾浩史主幹研究員らの研究グループは、高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発しました。これにより、従来のX線回折法(XRD)*1などでは困難だった、欠陥を多く含むメタチタン酸ナノ粒子の結晶構造を決定することに成功しました。メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました。酸素と金属で構成される金属酸化物や、さらに水素が加わった金属オキシ水酸化物は、多様な結晶構造をとり、それに応じて多彩な物性を発現することが知られています。格子相関解析は、このような材料の構造解明に弾みをつける新たな手法であり、多彩な物性の理解に貢献すると期待されます。 本研究成果は、2025年4月28日 (英国標準時間)に科学雑誌「Communications Chemistry」誌のオンライン版で公開されました。 |
【研究の背景及び概要】
酸素と金属で構成される金属酸化物ナノ粒子や、水素が加わった金属オキシ水酸化物ナノ粒子は、現代社会に欠かせない触媒、エネルギー変換、吸着材として注目されています。これらのナノ粒子は、組成が同じでも異なる構造をとり、異なる物性を示します。つまり、物性を真に理解する上で、合成されたナノ粒子の形状や構造の解明は欠かせません。典型的な構造解析として、X線回折法やラマン分光法*2があります。しかし、サイズが数ナノメートル (nm, 十億分の一メートル) 程度のナノ粒子の場合、ピークが明瞭でないため解析が困難です。また、今回の研究対象とした、金属オキシ水酸化物のひとつであるメタチタン酸は、欠陥を多く含むため構造解析がより困難となっていました。一方、透過電子顕微鏡 (TEM)*3や走査TEM (STEM)*4は、原子配列を可視化できますが、得られる情報は投影した二次元像です。
そこで、三次元の結晶構造を明らかにするため、多数のメタチタン酸ナノ粒子のTEM像を異なる様々な方位から取得しました。様々な方位から多数の像を得るのは、生物分野で利用される単粒子解析と類似していますが、本研究では異なる解析手法を採用しています。単粒子解析では、対象物の形状が均一であると仮定し、多数の像を観察方位ごとに分類して足し合わせることで、像の質を高めます。しかし、メタチタン酸ナノ粒子の場合、形状が均一ではないため、従来の方法をそのまま応用することはできませんでした。そこで、今回開発した手法では、像の足し合わせではなく、周期性や格子定数に敏感な結晶格子の間隔や異なる格子間の角度に着目しました。本手法は、間隔や角度の相関を統計的に解析することで、結晶構造の特徴を抽出しようとした点に新規性があります。
メタチタン酸ナノ粒子は、TEM試料用の支持膜上にランダムな方位を向いて分散するので、様々な方位からの粒子の原子分解能TEM像が得られます (図1a)。得られたTEM像から、画像処理によって個々のナノ粒子を検出し (図1b)、そのナノ粒子にガウス関数のマスクをかけて高速フーリエ変換 (FFT) パターンを得ました(図1c)。FFTパターンで観察されるスポットは、ナノ粒子の結晶格子の周期を反映します。異なるスポットの配置から、格子の間隔や角度の相関 (格子相関) が分かります。この処理を、500枚のTEM像で撮影された1300個のナノ粒子に対して行うことで、メタチタン酸ナノ粒子がもつ特徴的な格子相関を統計的に得ることが出来ました (図1d)。異なる観察方位に対する格子相関を組み合わせて解析することで、構造に関する三次元情報が得られます。
解析の結果、メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました(図1e)。この構造は、密度汎関数理論による計算*5でも安定であることが確認されました(図1f)。また、原子の個数や原子番号をより直接的に反映する環状暗視野STEM像*6(図1g)とも整合しており、提案する構造は妥当であると判断しました。
本研究で開発した格子相関解析は、従来と比べて1/20から1/500程度の低い電子線照射量で、三次元的な結晶構造の解明を可能とします。今後は、電子線に敏感なため解析が困難だった、金属オキシ水酸化物ナノ粒子や有機物を含むナノ材料への展開が期待されます。新規材料探索は理論計算による研究が多いなかで、本手法は解析の自動化が可能であり、実験による新たなアプローチを提示できると考えています。これにより、より適切な材料設計や高性能デバイスの開発に弾みがつくと期待されます。
図1 (a) HRTEM像。暗いコントラストで示されるメタチタン酸ナノ粒子が見られる。(b) 画像処理によって粒子領域を検出した図。粒子ごとに色分けして塗りつぶしている。(c) b中の中央下、白い丸とバツでマークされた粒子のFFT図形。(d)格子相関マップの一例。ここでは(004)面と(110)面、(002)面と(110)面の組み合わせがスポットとして現れている。(e)解析から提案された結晶模型。(f)結晶模型について計算した環状暗視野STEM像。(g)メタチタン酸ナノ粒子の環状暗視野STEM像。 |
【論文情報】
雑誌名 | Communications Chemistry |
論文名 | Three-dimensional atomic-scale characterization of titanium oxyhydroxide nanoparticles by data-driven lattice correlation analysis |
著者 | Kohei Aso, Koichi Higashimine, Masanobu Miyata,Hiroshi Kamio,and Yoshifumi Oshima |
掲載日 | 2025年4月28日 |
DOI | doi.org/10.1038/s42004-025-01513-2 |
【用語説明】
物質の平均的な結晶構造を調べる代表的な技術。X線を試料に照射してプロファイルを取得し、回折ピークの配置を解析することで試料の平均的な結晶構造が得られる。
物質にレーザー光を照射し、散乱された光の波長変化(ラマン散乱)を解析することで、物質の化学結合や結晶構造を得る手法。
電子線を試料に透過させ、得られた投影像から結晶構造を観察する手法。電子線を使うことを除いて、原理的には一般的な光学顕微鏡と同様。
0.1 nm程度に絞った電子線を試料上で走査し、試料各点からの信号によって結像する手法。
原子や分子の電子状態を理論に基づき計算する手法。ここでは、結晶構造のサイズ(格子定数)や原子位置をわずかに変化させながら計算を繰り返し、構造の安定性を評価した。
STEMのうち、前方散乱された電子をマッピングした像。原子番号や厚みの違いをより直接的に反映した像が得られる。
令和7年4月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/04/30-1.html高分子ネットワークで人工光合成

高分子ネットワークで人工光合成
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域の萩原礼奈大学院生(博士後期課程)、桶葭興資准教授、東京大学(総長・藤井輝夫、東京都文京区)大学院工学系研究科の吉田亮教授の研究グループは、人工光合成ゲルの研究について特集論文を発表しました。 |
これまでの人工光合成[用語解説1]の研究では、有機/無機にかかわらず様々な物質群の探索と電子移動の向上に注力されてきました。しかし、その反応が起こる液相では、分子集団としての振る舞いが無秩序のため、拡散律速によるエネルギー損失が問題でした。一方、実際の光合成を行う葉緑体では、その内部に在るチラコイド膜によって区画されたナノ空間があります。この膜上では複数の分子団の位置関係が絶妙に制御されており、化学反応場として必要不可欠です。このような空間制御を可能とするシステムとしてゲル相は有用であり、ハイドロゲル[用語解説2]の網目構造は高いポテンシャルを持ちます(図)。事実、光エネルギー捕集分子、電子伝達分子、触媒分子など複数の機能団に高分子の網目構造を精密に導入することで、能動的な電子輸送が可能となります。例えば、光エネルギーによる水の分解には、同時に複数の電子が輸送される必要があり、多数の酸化還元反応が伴います。この化学反応が起こる場に、刺激応答性高分子[用語解説3]の網目を導入することで、反応に伴った高分子の伸び縮みを利用することができます。これによって電子の能動輸送が実現します。実際、光エネルギーによって水を分解して酸素発生や水素発生するゲルシステムが提案されました。
この人工光合成ゲルは、外界からのエネルギーや物質の授受が可能な開放系マテリアルで、生物に倣った物質システムです。今後も、高分子ネットワークを活用した機能性材料の設計は、様々なエネルギー変換システムの構築など、持続可能な社会の実現に資するものと考えられます。
本成果は、2024年11月1日(英国時間)に科学雑誌「Chemical Communications」誌(RSC社)のオンライン版で公開されました。また、本研究は、日本学術振興会科研費 挑戦的研究(萌芽)(JP21K18998)の支援のもと行われました。
図:葉緑体にヒントを得た人工光合成ゲルの概念図。A. 葉緑体の内部では、チラコイド膜に4つのタンパク質が連携して酸化還元反応を起こし、電子伝達が達成されている。B. 水の可視光分解に必要な4つの機能団を高分子ネットワークに組み込んだ概念図。 |
【論文情報】
掲載誌 | Chemical Communications (The Royal Society of Chemistry) |
論文題目 | Bioinspired hydrogels: polymeric designs towards artificial photosynthesis |
著者 | Reina Hagiwara, Ryo Yoshida, Kosuke Okeyoshi* |
DOI | 10.1039/d4cc04033c |
掲載日 | 2024年11月1日付、オンライン版(オープンアクセス) |
【関連論文】
精密な高分子設計による能動的電子輸送が終始可能に
-高分子が触手のように電子を授受-(2023.12.14 プレスリリース)
https://www.jaist.ac.jp/whatsnew/press/2023/12/14-1.html
高分子の"伸び縮み"で「人工光合成」を加速する!
-電子伝達を制御する高分子の相転移(2019.6.12 Academist Journal)
https://academist-cf.com/journal/?p=11128
高分子の相転移を利用した人工光合成に成功
-可視光エネルギーによる高効率な水素生成を達成-(2019.5.15 プレスリリース)
https://www.jaist.ac.jp/whatsnew/press/2019/05/15-1.html
【用語解説】
令和6年11月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/11/06-1.html高密度なイオン液体構造を持つ新高分子材料の創出

高密度なイオン液体構造を持つ新高分子材料の創出
ポイント
- バイオベース化合物であるポリフマル酸の高分子反応により、高密度にイオン液体構造を有する高分子化イオン液体の合成に成功しました。
- 作製したアノード型ハーフセルは、リチウムイオン二次電池における1Cにおいて297 mAhg-1、ナトリウムイオン二次電池において60 mAg-1で250 mAhg-1の放電容量を示しました。
- いずれの電池系も高い耐久性を示し、リチウムイオン二次電池では750サイクル後に80%、ナトリウムイオン二次電池においては200サイクル後に96%の容量維持率を示しました。
- 高密度イオン液体構造を有するバインダーは、リチウムイオン二次電池系の急速充放電能において適性を示し、5CにおいてPVDF系の約2倍の85 mAhg-1を示しました。
- また、同バインダーは、ナトリウムイオン二次電池のハードカーボン負極バインダーとして、ナトリウムイオンの負極における拡散を改善しつつ、PVDF系の約2倍の放電容量を発現させました。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の松見紀佳教授、Amarshi Patra大学院生(博士後期課程)は、バイオベースポリマーであるポリフマル酸から高密度にイオン液体構造を有する新たな高分子化イオン液体を開発しました。開発した本高分子材料をリチウムイオン二次電池[*1]用グラファイト負極バインダーとして適用することにより、急速充放電能が促されました。また、ナトリウムイオン二次電池[*2]用ハードカーボン負極バインダーとして適用することにより、PVDFバインダー系の2倍の放電容量を観測しました。これらは、いずれも本バインダーが負極内における円滑な金属カチオンの拡散を促した結果です。また、構築した電池系はいずれも高い耐久性を示しました。 高分子化イオン液体は極めて多様な応用範囲を有する材料群であり、高密度なイオン液体構造を有する新材料の創出は、多様な分野における研究を活性化させる可能性を有しています。 |
【研究背景と内容】
今日、高分子化イオン液体は、各種エネルギーデバイス向けの材料や生医学用材料、センシング用材料、環境応答性材料、触媒の担持体等の広範な分野で、極めて活発に研究されている重要な機能性材料となっています。
本研究では、バイオベースポリマー[*4]であるポリフマル酸の高分子反応によって、高密度にイオン液体構造を有する新たな高分子化イオン液体を合成しました。また、得られた材料をリチウムイオン二次電池及びナトリウムイオン二次電池の負極バインダーとして適用しました。その結果、負極内の金属イオンの拡散が促進され、それぞれの電池系の特性の改善につながることを見出しました。
本高分子化イオン液体の合成においては(図1)、まずフマル酸[*3]エステルをAIBNを開始剤としてラジカル重合し、ポリフマル酸エステルを得ました。その後、ポリマーをKOH水溶液で100oCにおいて12時間処理し、透析を行うことでポリフマル酸を得ました。一方、アリルメチルイミダゾリウムクロリドをAmberlite樹脂によりイオン交換することで、アリルメチルイミダゾリウムヒドロキシドを調整し、これを常温でポリフマル酸と中和させることにより、高密度なイオン液体構造を有する高分子化イオン液体(PMAI)を合成しました。ポリマーの構造は、1H-、13C-NMR及びIR等により決定しました。
まず、本ポリマー(PMAI)のグラファイトとのコンポジット(PMAI/Gr)、ハードカーボンとのコンポジット(PMAI/HC)について、銅箔への接着性を引き剝がし試験により評価したところ、いずれの系もPVDFとのコンポジット系よりも大幅に改善された接着力を示しました。PMAI/Grは10.9 Nを要し、PMAI/HCは11.0 Nを要し、いずれもPVDF/Grの9.8 N、PVDF/HCの9.9 Nを上回りました。
次に、本ポリマー(PMAI)のリチウムイオン二次電池用負極バインダーとしての性能を評価しました。アノード型ハーフセル[*5]における電荷移動界面抵抗はPMAI/Grにおいて21.9Ωであり、PVDF/Gr系の125.9Ωを大幅に下回りました。これは、高密度なイオン液体構造が負極内におけるLiイオン拡散を促す結果と考えられます。また、PMAI/Gr系においてはSEI抵抗も11.08Ωと低く、PVDF/Gr系の29.97Ωよりも顕著に低いことがわかりました。(図2)。
さらにLi+拡散係数をインピーダンススペクトルにおける低周波数領域から解析したところ、PMAI/Gr系では1.03 x 10-10 cm2/s、PVDF/Grでは3.08 x 10-12 cm2/sとなり、前者において著しく低くなりました。結果として、作製したアノード型ハーフセル(図2)はリチウムイオン二次電池における1Cにおいて297 mAhg-1の放電容量を示し、750サイクル後に80%の容量維持率を示しました。また、本バインダー系は、急速充放電能において適性を示し、5CにおいてPVDF系の約2倍の85 mAhg-1を示しました。
本ポリマー(PMAI)のナトリウムイオン二次電池用負極バインダーとしての性能に関しても評価しました。アノード型ハーフセルにおける電荷移動界面抵抗はPMAI/HCにおいて31.38Ωであり、PVDF/HC系の83.09Ωを大幅に下回りました。さらにNa+拡散係数をインピーダンススペクトルにおける低周波数領域から解析したところ、PMAI/HC系では3.35 x 10-13 cm2/s、PVDF/HCでは1.01 x 10-13 cm2/sとなり、前者において3倍以上の拡散性を示しました。ナトリウムイオン二次電池の負極ハーフセルにおいて、60 mAg-1で250 mAhg-1の放電容量を示し、200サイクル後に96%の容量維持率を示しました。結果としてPVDF系の約2倍の放電容量を発現させました。
また、充放電後の負極をSEM観察したところ、PVDF系と比較して大幅に負極マトリックス上のクラックが少なく、安定化している様子が観察されました。(図3)
本成果は、Advanced Energy Materials(WILEY - VCH)(IF 24.4)のオンライン版に9月12日に掲載されました。
【今後の展開】
本高分子材料においては、種々なカチオン構造の改変が可能であり、さらなる高性能化につながると期待できます。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して、将来的な社会実装を目指します。(特許出願済み)。また、高耐久性リチウムイオン二次電池、ナトリウムイオン二次電池の普及を通して、社会の低炭素化に寄与する技術への展開が期待できます。
集電体への接着力が高く、高耐久性を促すバインダー材料として、広範な蓄電デバイスへの応用展開が期待されるほか、新たな高分子化イオン液体材料として、エネルギーデバイス以外の広範な分野における応用も期待できます。
図1.高密度高分子化イオン液体の合成法
図2.PMAI/Gr、PVDF/Gr系の充放電サイクル特性(リチウムイオン二次電池、負極型ハーフセル) (a) 1C(800サイクル)(b) 5C(1000 サイクル);SEI抵抗の電圧依存性(RSEI vs. V) (c)リチウム挿入反応中の電圧 (d)リチウム脱離反応中の電圧
図3.(a)(d) PMAI/HC、PVDF/HC 系の充放電前のSEM像;(b) PMAI/HC (e) PVDF/HC系の充放電後のTop View像;(c) PMAI/HC (f) PVDF/HCの充放電後の断面像
【論文情報】
雑誌名 | Advanced Energy Materials |
題目 | Densely Imidazolium Functionalized Water Soluble Poly(ionic liquid) Binder for Enhanced Performance of Carbon Anode in Lithium/Sodium-ion Batteries |
著者 | Amarshi Patra and Noriyoshi Matsumi* |
掲載日 | 2024年9月12日 |
DOI | 10.1002/aenm.202403071 |
【用語説明】
電解質中のリチウムイオンが電気伝導を担う二次電池。従来型のニッケル水素型二次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
電解質中のナトリウムイオンが電気伝導を担う二次電池。従来型のリチウムイオン二次電池と比較して原料の調達の利便性やコスト性に優れることから、各種ポータブルデバイスや環境対応自動車への適用が期待されている。
フマル酸は無水マレイン酸(バイオベース無水マレイン酸を含む)を原料として工業的に生産されるが、糖類に糸状菌を作用させて製造することも可能である。さらに、最近ではCO2を原料とした人工光合成によりフマル酸を生産する技術も脚光を浴びている。CO2もしくは糖類、バイオベース無水マレイン酸から誘導可能なフマル酸を用いた高付加価値な化成品の製造は、カーボンニュートラルへの貢献において魅力あるアプローチといえる。
生物資源由来の原料から合成される高分子材料の総称。低炭素化技術として、その利用の拡充が期待されている。
例えば、ナトリウムイオン二次電池の場合には、アノード極/電解質/Naの構成からなる半電池を意味する。
令和6年9月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/09/17-1.html学生の大橋さんが第14回半導体材料・デバイスフォーラムにおいて最優秀口頭発表賞を受賞

学生の大橋亮太さん(博士前期課程2年、サスティナブルイノベーション研究領域、大平研究室)が第14回半導体材料・デバイスフォーラムにおいて最優秀口頭発表賞を受賞しました。
第14回半導体材料・デバイスフォーラムは、熊本高等専門学校が主催し、令和5年12月9日、九州工業大学にてハイブリッド開催されました。同フォーラムは半導体材料・関連デバイス研究分野に重点を置き、研究発表や討論を通じて、高専学生と大学(院)生との学生間交流を図り、高専学生の教育・研究力向上への貢献を目指しています。
最優秀口頭発表賞は、同フォーラムにおいて、半導体デバイスの発展に貢献しうる最も優秀な口頭発表をした筆頭著者に贈られるものです。
※参考:第14回半導体材料・デバイスフォーラム
■受賞年月日
令和5年12月9日
■研究題目
ベイズ最適化を適⽤したCat-CVD i-a-Si およびn-a-Siの堆積条件探索
■研究者、著者
大橋亮太、Huynh Thi Cam Tu、東嶺孝一、沓掛健太朗、大平圭介
■受賞対象となった研究の内容
現在、太陽電池市場の大部分を占めているSi系太陽電池において、特に高効率なSiヘテロ接合(SHJ)太陽電池に着目し、高効率化を目指し研究を行っている。SHJ太陽電池の作製にあたり、我々は触媒化学気相堆積(Cat-CVD)法を用いて結晶Siウエハ上に非晶質Si(a-Si)を堆積している。しかし、堆積時のパラメータが多いため、高性能なSHJ太陽電池の作製条件の探索に膨大な時間がかかる。そこで、ベイズ最適化を用いて効率よく高い性能を示す条件探索を行っている。
本講演では、ベイズ最適化を用いて真性非晶質Si(i-a-Si)層とn型非晶質Si(n-a-Si)層の堆積条件探索について発表した。i-a-Si層及びn-a-Si層の探索を、それぞれ20回、21回とかなり少ない回数で完了することができ、高いパッシベーション性能と十分な導電性を兼ね備えるa-Si膜の堆積条件を確立した。
■受賞にあたって一言
この度、第14回半導体材料・デバイスフォーラムにおいて、最優秀口頭発表賞を賜り、大変光栄に思います。高専生が多い会議でしたので、自分の研究の面白さやJAISTの良さが少しでも伝わっていれば嬉しいです。本研究の推進にあたり、ご指導、ご協力いただいた大平圭介教授、HUYNH, Tu Thi Cam特任助教をはじめとした大平研究室メンバーの皆様に、この場を借りて厚く御礼申し上げます。また、ベイズ最適化のご指導をいただいた沓掛健太朗研究員(理化学研究所)、透過型電子顕微鏡にて試料の観察をご担当いただいた技術専門員の東嶺孝一様にも、心より感謝申し上げます。
令和6年1月22日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/01/22-1.html動的核偏極磁気共鳴法による炭素材料表面の微細構造の解析に世界で初めて成功 -次世代の炭素材料の開発と利用促進に貢献-

![]() ![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 国立大学法人京都大学 国立大学法人岡山大学 |
動的核偏極磁気共鳴法による炭素材料表面の微細構造の解析に世界で初めて成功
-次世代の炭素材料の開発と利用促進に貢献-
ポイント
- 次世代の炭素材料として、グラフェンや薄膜炭素といった材料が注目されている。炭素材料は、化学反応の触媒や燃料電池等の電極触媒としてだけでなく、ドラッグデリバリーシステムなどのバイオマテリアル分野を含め、多種多様な分野での応用が期待されている。
- NMR(核磁気共鳴分光法)による炭素材料の表面構造分析の感度を改善するため、信号強度増幅剤を用いた動的核偏極磁気共鳴法により、これまで同手法では不可能と考えられていた炭素表面の微量なメチル基、水酸基などの表面官能基の検出に成功した。
- これにより、炭素材料の性質に大きな影響を及ぼす表面構造の微細な違いが検出可能となった。
- 今後の炭素材料の表面構造制御ならびに様々な用途に応じた炭素材料の開発とその炭素材料の利用促進に貢献できる。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)ナノマテリアルテクノロジーセンターの後藤和馬教授、岡山大学大学院自然科学研究科の安東映香大学院生は、京都大学化学研究所の梶弘典教授、鈴木克明助教ならびに岡山大学学術研究院自然科学学域の神戸高志准教授、異分野融合先端研究コアの仁科勇太研究教授らと共同で、動的核偏極磁気共鳴法(DNP-NMR)による炭素材料の微細表面構造解析に成功した。これまで不可能とされていたDNP-NMR法による炭素表面のメチル基や水酸基などの表面官能基の信号の大幅な増幅に成功し、炭素材料の性質に大きな影響をおよぼす微量のメチル基、水酸基の観測に成功した。今後の炭素材料の表面構造制御ならびに様々な用途に応じた炭素材料の開発とその炭素材料の利用促進に貢献できる。 |
【研究の背景】
次世代炭素材料の一つとしてグラフェンや薄膜炭素が注目されており、その応用に関して数多くの研究が行われています。グラフェンや薄膜炭素材料の作製にはいくつかの方法があり、黒鉛を化学的に酸化して炭素層を剥離することで、酸化グラフェンを得る方法などが知られています。この酸化グラフェンは触媒となる金属ナノ粒子を担持する[用語解説]ことや、ポリマーやカーボンナノチューブなどと複合化ができるため、化学反応の触媒、燃料電池等の電極触媒としてだけでなく、ドラッグデリバリーシステムなどのバイオマテリアル分野を含め、多種多様な分野での応用が期待されています。
このような炭素材料の表面には数多くの欠陥構造があり、そこには水酸基やカルボキシル基、エポキシ基、メチル基などの表面官能基が存在していることが知られています。炭素材料の性質はこの表面官能基の種類や結合量により、大きく変わることも知られています。よって、この表面官能基の状態を把握し、制御することが材料開発において重要となります。従来、炭素材料の表面官能基についてはX線光電子分光法(XPS)や昇温脱離法(TPD)といった分析手段により解析されてきましたが、これらの方法では分析の感度は良いものの、精度に課題がありました。一方、本研究で用いた核磁気共鳴分光法(NMR)[用語解説]では、官能基の種類の分析は高精度で行えるものの、従来の方法では検出感度が低いという問題があり、高精度かつ高感度な炭素材料の表面構造の分析手段が望まれていました。
【研究の内容】
本研究では、NMR による分析の感度を改善するために、近年溶液中の分子の水素(1H)原子や炭素(13C)原子を高感度で観測する技術として注目されている、動的核偏極(DNP)[用語解説]という手法を用いた分析を試みました。NMRは、磁場中に置かれた原子核が特定の周波数の電磁波(ラジオ波)を吸収する現象を利用することによって、対象原子の状態を観測する分析手段で、化学物質の同定や病院のMRI検査などに広く用いられています。DNP-NMRは、測定したい試料にマイクロ波(MW)を同時に照射することで、試料中に含まれる信号強度増幅に用いるラジカル分子[用語解説]の磁化を原子核に移し、NMRの信号強度を最大で200倍以上に増幅させる画期的手法です。しかし、炭素材料はマイクロ波を吸収し効率的な磁化移動を阻害する上に、マイクロ波吸収による温度上昇も生じることからDNP効果が減少するという問題があるため、これまでDNP-NMRを用いた炭素材料の信号強度増幅は不可能とされてきました。
これに対し、本研究では、DNPによる信号強度増幅を可能にするため、DNP測定で用いられる信号強度増幅用のラジカルと溶媒の組み合わせを、従来のTEKPol/有機溶媒系からAMUPol/水系に変更し、水酸基やカルボキシル基の存在により親水性が増していると考えられる炭素表面へラジカル分子の接近を可能とすることで、DNPによる信号強度増幅を実現しました。また、炭素材料自体がその欠陥構造内に所有している内在ラジカルを用いたDNP信号強度増幅現象を発現することも観測しました。この手法により、従来の一般的NMR測定ではほとんど観測できなかった酸化グラフェン末端のメチル基を、1H-13C CP/MAS 固体NMR法[用語解説]にて明確に観測することに成功しました。このとき、信号強度増幅は10倍以上となります。また、スクロースを焼成して作製した無定形炭素材料[用語解説] においても、水酸基の信号強度の10倍以上の増幅を達成しました。
本研究により、今後DNP-NMRを用いて炭素材料の微細表面構造の解析が進むことが期待されます。DNP-NMRを用い、炭素材料の表面構造に残存する微少量の表面官能基の存在を明らかにすることで、それぞれの炭素材料の表面状態の違いを解明することができ、これにより、各種触媒元素の担持への適合性などを知ることができるようになると期待されます。適合性が判明することによって、多種多様な分野の各種用途に最適化した薄膜炭素材料の開発に大きく貢献できることが期待されます。
本研究成果は、2月14日にElsevier社が発行する学術雑誌「Carbon」のオンライン版に掲載されました。また、3月25日に出版予定の当該誌206号において、表紙(front cover)に採択されることになりました。
【論文情報】
論文題目 | Dynamic nuclear polarization - nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials |
雑誌名 | Carbon |
著者 | Hideka Ando, Katsuaki Suzuki, Hironori Kaji, Takashi Kambe, Yuta Nishina, Chiyu Nakano, Kazuma Gotoh |
WEB掲載日 | 2023年2月14日 |
出版予定日 | 2023年3月25日 |
DOI | 10.1016/j.carbon.2023.02.010 |
図 DNP-NMRによる観測(信号強度増幅は10倍以上となる。)
【用語説明】
担持:他の物質を固定する土台となる物質のことを担体といい、担持は、その土台に金属などの物質を付着させること。金属をグラフェン上に担持した触媒は、水酸化触媒や酸化触媒として工業的にも利用されている。
NMR (Nuclear Magnetic Resonance) :核磁気共鳴分光法。試料を磁場中に置き、電磁波を照射すると、元素ごとに特定の周波数を吸収する「共鳴」現象が生じる。周波数を観測することで水酸基、カルボキシル基、メチル基などを分別して検出が可能なため、有機化合物の分析などに広く用いられている。
DNP (Dynamic Nuclear Polarization):動的核偏極。NMR測定時にマイクロ波を照射することで測定核近傍のラジカルの磁化を測定対象原子核に移動させる手法。NMRでの共鳴信号検出の際のエネルギー準位間の電子の占有数差を大きく変化させることにより、通常のNMR信号に比べて数倍から最大で200倍以上の信号強度を得ることができる。
ラジカル:不対電子を持つ原子や分子。共有電子対を形成していないため、極めて不安定かつ反応性が高い状態である。
1H-13C CP/MAS 固体NMR:体交差分極(CP)マジック角回転(MAS)NMR法。1H元素の磁化を13C元素に特定条件下で移動させ、さらに試料全体を数kHz以上の超高速回転で回転させることにより、炭素のNMR信号を高感度、高精度で検出する実験手法。
無定形炭素材料:黒鉛やダイヤモンド、カーボンナノチューブなどのような規則的構造をもつ炭素材料とは異なり、結晶構造を持たない非結晶性炭素。但し、非結晶性ではあるが完全に規則構造が無い訳ではなく、ある程度炭素の層状構造や内部細孔などが存在することが知られている。無定形炭素の一種である難黒鉛化性炭素(ハードカーボン)はリチウムイオン電池・ナトリウムイオン電池の負極として用いられている。
令和5年3月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/03/07-1.html学生の浅井さんが第70回高分子討論会において優秀ポスター賞を受賞
学生の浅井 優作さん(博士後期課程融合科学共同専攻1年、物質化学領域、松見研究室)が第70回高分子討論会において優秀ポスター賞を受賞しました。
高分子討論会は、高分子科学に携わる研究者・技術者が研究成果の発表を行い、発表内容に関し、参加者と充実した討論およびコミュニケーションができる場を提供することを開催の基本方針としています。
優秀ポスター賞は、高分子討論会において優れたポスター発表を行った発表者を表彰するため授与されるもので、もって発表を奨励し、高分子科学ならびに同会の発展に資することを目的としています。
第70回高分子討論会は、9月6日~8日にかけてオンラインで開催されました。
■受賞年月日
令和3年9月8日
■発表題目
共役系高分子によるIrO2の電子構造制御と酸素発生反応触媒性能への効果
■研究者、著者
〇浅井優作、Rajashekar Badam、松見紀佳
■受賞対象となった研究の内容
電気化学的水分解による水素製造法はシンプルで有望な方法である。しかし、アノードにおける酸素発生反応(OER)は電気化学的水分解の律速段階であり、効率的な触媒が求められる。本研究ではIrO2の電子構造をポリチオフェン系高分子によって制御することで、先行研究と比較して電流密度10 mAcm-2における過電圧を10~70 mV低下させるOER触媒を見出すに至った。
■受賞にあたって一言
この度は、2021年度第70回高分子討論会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、厳格かつ熱心にご指導を頂きました松見紀佳教授、Rajashekar Badam講師にこの場をお借りして心より御礼を申し上げます。さらに、多くのご助言をいただきました研究室の皆様にこの場をお借りして心より御礼を申し上げます。


令和3年11月4日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/11/04-2.html物質化学領域のBADAM講師が田中貴金属記念財団 萌芽賞を受賞

物質化学領域のBADAM, Rajashekar講師(松見研究室)が一般財団法人田中貴金属記念財団 萌芽賞を受賞しました。
田中貴金属記念財団は、貴金属に関する研究への助成を行い、貴金属の新分野を開拓醸成し、学術、技術ならびに社会経済の発展に寄与することを目的としています。
本助成金制度は、「貴金属が拓く新しい世界」へのさまざまなチャレンジを支援するため、1999年度から毎年実施されています。第22回目となる今回は、貴金属が貢献できる新しい技術や研究・開発に対して、あらゆる分野から研究を募集し、その結果、合計171件の応募があり、この中から合計26件の研究に対し、総額1,610万円の研究助成金を授与しています。
■受賞年月日
令和3年3月31日
■研究題目
水分解に適した効率的酸素発生触媒活性を有する強い金属―基盤相互作用を伴うIrO2系有機・無機ハイブリッド触媒
■受賞対象となった研究の内容
Dr Rajashekar Badam, has been working on various energy materials especially electrocatalysts for oxygen redox reactions for fuel cell and electrolyser applications to name a few. His passion to mitigate environmental issues lead to the research in green hydrogen production using water electrolysis. Water electrolysis is one of the cleanest ways to produce hydrogen. Oxygen evolution reaction (OER) at anode being kinetically and thermodynamically more demanding, need an efficient catalyst. IrO2 is the best-known catalyst which is stable in acidic medium but with high overpotential (~330 mV). Changing the morphology and electronic structure of IrO2 by alloying with other metals was found to reduce the overpotential but poor stability due to agglomeration of nanoparticles and leaching of alloying metal are the key problems to be answered. In this regard, they are working on a novel strategy of anchoring IrO2 nanopartlcles to electrochemically stable conducting polymer with coordination sites. The strong metal substrate interaction between IrO2 nanoparticles and high heteroatom content in the polymer lead to high durability and reduced overpotential making water electrolyser a viable method for green hydrogen production.
ラージャシェーカル バダム博士は様々なエネルギー関連材料、とりわけ電気化学触媒(燃料電池用の酸素還元触媒や水分解反応触媒)に注力した研究を行っています。グリーンな水分解反応など、環境問題の解決を指向した研究を進めています。水分解反応は水素を得るための最もクリーンな反応であり、アノード電極側での酸素発生反応が速度論的にも熱力学的にも技術課題になっています。IrO2は酸性条件でも安定ですが、高い過電圧を有しています。IrO2を他の金属と組み合わせることでモルフォロジーや電子構造を改変でき、過電圧を低下させることができますが、同時にナノ粒子の凝集や、合金触媒からの脱離が問題となります。この点に関して、彼らはIrO2を電気化学的に安定な導電性高分子中の配位子に配位させることに取り組んでいます。強い金属―基板相互作用がIrO2と高ヘテロ元素濃度を有するポリマー間で起こることは高い触媒の安定性と過電圧の低下につながり、水分解反応をグリーンな水素製造法として実現可能なものにすることにつながると期待しています。
■受賞にあたって一言
I would like to thank Tanaka Kikinzoku Memorial Foundation and the selection committee for bestowing me with this prestigious award. I would like to thank Professor Matsumi for all the guidance, Matsumi lab members and my family for the support. I take this opportunity to dedicate this award to the almighty God.
令和3年5月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/05/25-1.html次世代燃料電池のアニオン交換薄膜において水酸化物イオン伝導度の評価法を確立

次世代燃料電池のアニオン交換薄膜において
水酸化物イオン伝導度の評価法を確立
ポイント
- 高分子薄膜状のアニオン交換膜の水酸化物イオン伝導度と含有水分子量の評価法を確立
- サンプルの合成から評価まで、空気中の二酸化炭素の影響を排除
- 0.05 S cm-1の高い水酸化物イオン伝導性(Br-型のアニオン交換薄膜の2倍以上)
- 次世代燃料電池の性能向上への貢献が期待
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科 物質化学領域の長尾 祐樹准教授、オウ ホウホウ 大学院生(博士後期課程在籍)、ワン ドンジン 大学院生(博士前期課程修了)らは、次世代燃料電池で注目されるアニオン交換薄膜において、空気中の二酸化炭素の影響を受けない状態で、水酸化物イオン伝導度と含有水分子量の評価法を確立することに成功しました。長年求められてきたこの評価法の確立は、当該分野において世界初の成果になります。本成果により、次世代燃料電池の性能向上に関する研究の加速が期待されます。 本研究成果は、2021年4月29日(英国時間)にWiley社刊行のChemSusChem誌のオンライン版で公開されました。なお、本研究は日本学術振興会(JSPS)科研費基盤(C)、科研費基盤(B)、科研費 新学術領域研究「ハイドロジェノミクス」の支援を受けて行われました。 |
【研究背景と内容】
資源の少ない日本が脱炭素化を進めながら持続的な発展をするためには、多様なエネルギー資源を確保することが喫緊の課題です。長尾准教授らは、これまで水素社会に貢献する燃料電池の性能向上に関する研究を推進してきました。
長尾准教授らは、現在の燃料電池に利用されるプロトン交換膜に加え、次世代燃料電池で利用が検討されているアニオン交換膜における、水酸化物イオン伝導性の研究に取り組んでいます。この次世代燃料電池は、従来必要とされてきた白金などの貴金属触媒に依存せずに動作が可能であることから、世界的に研究報告例が増加しています。アニオン交換膜とは、陰イオンが膜の内部を移動可能な材料であり、特に水酸化物イオンが高速に移動する材料はこの燃料電池に欠かせません。水酸化物イオンが内部を移動するアニオン交換膜は、空気中の二酸化炭素と容易に反応する特徴があり、燃料電池の性能を低下させることが知られています。アニオン交換膜の水酸化物イオン伝導性を評価するためには、膜を水に浸漬することで空気中の二酸化炭素の影響を排除する必要がありました。しかし、実際の燃料電池では、アニオン交換膜は水に浸った状態で動作していないため、二酸化炭素の影響を排除した、より燃料電池の動作環境に近い加湿状態での評価法が求められてきました。
アニオン交換膜のもう一つの重要な役割は、燃料電池の反応場である電極触媒界面に薄膜状で存在することにより、アニオン交換膜から電極触媒へ水酸化物イオンを高速に輸送することです。しかし、これまでは水酸化物イオン型のアニオン交換薄膜の水酸化物イオン伝導性と含有水分子量を評価する方法がありませんでした。今回、長尾准教授らは、モデル高分子として合成したアニオン交換膜を基板上に薄膜化し、薄膜の作成から各種物性評価の終了までの間、空気中の二酸化炭素の影響を受けない評価方法を確立し、世界で初めてアニオン交換薄膜における水酸化物イオン伝導性と含有水分子量を明らかにしました。
研究成果として、水酸化物イオン型のアニオン交換薄膜(OH-型、図1)は、0.05 S cm-1と比較的高い水酸化物イオン伝導性を示すことや、臭化物イオン型のアニオン交換薄膜(Br-型)と比較すると約2倍のイオン伝導度を有することがわかりました(図2)。さらに、厚膜状のアニオン交換膜と270nmの厚さの薄膜では、水酸化物イオン伝導度が同程度であることも明らかにしました。この結果はプロトン交換膜で知られている、厚さが薄くなるにつれてイオン伝導度が低下する傾向と異なる知見となりました。
図1 アニオン交換膜(Poly[9,9-bis(6'-(N,N,N-trimethylammonium)-hexyl)-9H-fluorene)-alt-(1,4-benzene)] (PFB+), X = OH and Br)
図2 アニオン交換薄膜におけるイオン伝導度の比較
【今後の展開】
空気中の二酸化炭素の影響を受けない状態で、アニオン交換薄膜の水酸化物イオン伝導度と含有水分子量の相関に関する知見を得た例は世界初となります。これらの研究成果は、次世代燃料電池の反応場を設計する上で重要な知見となりえます。今後長尾准教授らは、確立した評価手法を利用して、分子構造の異なる複数のアニオン交換膜の評価を推進することで、得られた知見が普遍性を有するのかどうかを含め検討していく予定です。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(C)(JP18K05257)
・日本学術振興会(JSPS)科研費 基盤研究(B)(JP21H01997)
・日本学術振興会(JSPS)科研費 新学術領域研究「ハイドロジェノミクス」(JP21H00020)
【論文情報】
雑誌名 | ChemSusChem |
題名 | OH- Conductive Properties and Water Uptake of Anion Exchange Thin Films |
著者名 | Fangfang Wang, Dongjin Wang, and Yuki Nagao* |
掲載日 | 2021年4月29日(英国時間)にオンライン版に暫定版が掲載 |
DOI | 10.1002/cssc.202100711 |
令和3年5月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/05/07-1.html高分子の相転移を利用した人工光合成に成功-可視光エネルギーによる高効率な水素生成を達成-

高分子の相転移を利用した人工光合成に成功
-可視光エネルギーによる高効率な水素生成を達成-
ポイント
- 実際の光合成に習った光エネルギー変換システムの構築
- 高分子の可逆的相転移挙動を利用して高効率な水素生成に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、先端科学技術研究科環境・エネルギー領域の桶葭興資講師らは東京大学大学院の吉田亮教授と共同で、電子伝達分子を持つ刺激応答性高分子を合成し、高分子の相転移によって電子伝達を加速させる人工光合成システムを構築した。
石油ショック以来、持続可能社会の実現に向けて人工光合成*1が注目を浴び、様々なシステムが考案されてきた。しかし、実際の葉緑体が持つ光合成システムにあるような、水分子との連動的な電子伝達組織の構築が未だ提案されてこなかった。これに対し本研究では、機能分子間の電子伝達に駆動力が生じるよう、高分子の相転移を利用した人工光合成システムを設計した。 まず、刺激応答性高分子*2のポリ(N-イソプロピルアクリルアミド)(poly(NIPAAm))*3に電子伝達分子ビオロゲン*4を導入すると、その酸化/還元*5状態によって高分子の相転移*6温度が異なることを見出した。この高分子poly(NIPAAm-co-Viologen) は一定温度下で酸化/還元変化により可逆的なコイル - グロビュール転移*7を伴い、加速的に電子伝達して水素を生成する。光エネルギーが与えられた際、光励起電子をビオロゲン分子が受けると、その周辺の高分子は疎水的となる。これが、界面活性剤で分散された触媒ナノ粒子近傍の疎水的な空間に潜り込み、電子を渡して水素生成する。実際、可視光エネルギーを用いた水素生成は、相転移温度付近で10%を超え、高い量子効率が達成された。 従来の溶液システムによる人工光合成では、液相中で機能性分子や触媒ナノ粒子が乱雑な分散状態のため電子伝達も乱雑となり、反応が進むにつれて分子凝集による機能低下が問題であった。これとは大きく異なり、粒子間に高分子が介在することで粒子凝集を抑制すると同時に、高分子の相転移によって電子伝達の加速が得られた。 高分子相転移現象は、ソフトアクチュエータ*8やドラッグデリバリーシステム*9の開発に広く利用されてきたが、今回の光エネルギー変換への利用は画期的である。本成果により、可視光エネルギーによる人工光合成システム「人工葉緑体」の構築が期待される。 ![]() 本成果は、4月25日付WILEY発行Angewandte Chemie International Edition (オンライン版) に掲載された。なお、本研究は科学研究費補助金などの支援を受けて行われた。 |
<今後の展開>
可視光エネルギーにより水を完全分解 (2H2O + hν → 2H2 + O2) する反応場として、高分子網目中に機能分子を配置した光エネルギー変換システムを構築することが期待される。
<論文情報>
掲載誌 | Angewandte Chemie International Edition (WILEY) |
論文題目 | Polymeric Design for Electron Transfer in Photoinduced Hydrogen Generation through a Coil-Globule Transition |
著者 | Kosuke Okeyoshi, Ryo Yoshida |
掲載日 | 2019年4月25日付、オンライン版 |
DOI | 10.1002/anie.201901666 |
<用語解説>
*1. 人工光合成
光合成を人為的に行う技術のこと。自然界での光合成は、水・二酸化炭素と、太陽光などの光エネルギーから化学エネルギーとして炭水化物などを合成するものであるが、広義の人工光合成には太陽電池を含むことがある。自然界での光合成を完全に模倣することは実現していないが、部分的には技術が確立している。
*2. 刺激応答性高分子
温度やpHなど外部刺激に応答して可逆的に親・疎水性など物理化学的性質を変化させる高分子のこと。
*3. ポリ(N-イソプロピルアクリルアミド)
この高分子水溶液は、32度付近で下限臨界温度型の相転移挙動を示す。最も広く研究されている刺激応答性高分子。
*4. ビオロゲン
4,4'-ビピリジンの窒素原子上をアルキル化したピリジニウム塩のこと。農薬の他、生物学や光触媒反応、エレクトロクロミック材料などの研究で使用されている。
*5. 酸化/還元
酸化還元反応とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のこと。
*6. 相転移
ある系の相が別の相へ変わることを指す。熱力学または統計力学的において、相はある特徴を持った系の安定な状態の集合として定義される。
*7. コイル - グロビュール転移
分子鎖が広がったランダムコイル状態から凝集したグロビュール状態をとること。またその逆の状態変化のこと。今回の場合、高分子がランダムコイル状態で親水的、グロビュール状態で疎水的な性質を持つ。
*8. ソフトアクチュエータ
軽量で柔軟な材料が変形することによりアクチュエータとして機能する材料、素子、デバイスのこと。
*9. ドラッグデリバリーシステム
体内の薬物分布を量的・空間的・時間的に制御し、コントロールする薬物伝達システムのこと。
令和元年5月15日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/05/15-1.html修了生のRajashekar Badamさんと物質化学領域の松見教授らの論文がSpringer-Nature刊行のPolymer Journal誌のFront Coverに採択
修了生のRajashekar Badamさん(平成28年9月博士後期課程修了、物質化学領域・松見研究室)と物質化学領域の松見 紀佳教授らの論文がSpringer-Nature刊行のPolymer Journal誌のFront Coverに採択されました。
■掲載誌
Polymer Journal (Springer-Nature)
■著者
Rajashekar Badam、Raman Vedarajan、Noriyoshi Matsumi
■論文タイトル
3D-Polythiophene Foam on a TiO2 Nanotube Array as a Substrate for Photogenerated Pt Nanoparticles as an Advanced Catalyst for the Oxygen Reduction Reaction
■論文概要
燃料電池やリチウム―空気電池における律速段階として効率の改善が図られている酸素還元反応においては、炭素/白金系触媒を中心にした検討が進められている。しかし、炭素系材料の電気化学的安定性は概してあまり高いものではなく代替系の開発が期待されている。今回は二酸化チタンナノチューブ上にイオン液体をベクターとしてチオフェンを電解重合させることにより二酸化チタンナノチューブを鋳型としたハニカム状ポリチオフェンを生成させた。得られた有機・無機ハイブリッド電極上に犠牲試薬を用いない光還元法により白金ナノ粒子を生成させ、複合電極の酸素還元触媒活性について検討した。得られた材料は優れた酸素還元触媒活性を示し、インピーダンス測定結果の解析からとりわけ低い電極―電解質界面の電荷移動抵抗を有することが明らかとなった。
参考URL : https://www.nature.com/pj/volumes/50/issues/2
平成30年2月15日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2018/02/16-1.html世界最高の検出感度を示すフッ化物イオンセンシング材料 ポリボロシロキサンの創出に成功

世界最高の検出感度を示すフッ化物イオンセンシング材料
ポリボロシロキサンの創出に成功
ポイント
デンタルケアなどライフサイエンス分野で高い有用性を有しながら人体に有害なフッ化物イオンのセンシングにおいては、数十年来世界中で活発な研究が進められ、これまで一定以上の検出感度が得られていなかったが、このたび松見研究グループは、新たにポリボロシロキサンを創出し、一般的な商用系(LaF3)センシング材料を用いた検出感度(10-6 Mオーダー)程度を大幅に上回る、世界最高の検出感度(10-10 Mオーダー)を水溶液系において達成することに成功した。
本材料は、塩化物イオン、臭化物イオン等の負イオンへの検出能力と比較して、フッ化物イオンに対して極めて高い検知能力を示した。
また、ケイ酸ガラス構造に対応した一次元構造高分子としてポリシロキサンが広く知られているが、本研究ではケイホウ酸ガラスに対応した一次元構造高分子の合成に成功した。
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科 /物質化学領域 の松見紀佳教授、 ラーマン ヴェーダラージャン助教、プーフップ プニート博士らの研究グループでは、世界最高の検出感度を示す フッ化物イオンセンシング材料の創出に成功した。(図1) |
図1 出発物質(左)と合成したポリボロシロキサンの化学構造(右)
図2 SiOB型モデル化合物のDFT計算結果
【参考】
<開発の背景と経緯>
3級ホウ素原子は空のp軌道の存在を活用して様々な機能材料の創出研究に用いられてきた。ユニークな軌道間相互作用を利用した新規共役系高分子の創出のほか、ホウ素の高いアニオントラップ能を活用して高いリチウムイオン輸送選択性を有するリチウムイオン2次電池用電解質材料の創出にも結び付いてきた。ホウ素の高いアニオン受容能はイオンセンシング分野においても期待を集め、とりわけフッ化物イオンやシアン化物イオンなどの環境的に有害なアニオンの検出能の向上のための分子設計が望まれてきた。
3級ホウ素原子を主鎖に有する機能性高分子材料の合成法として、ヒドロボラン種をモノマーとしたヒドロボレーション重合や脱水素カップリング重合が有効であることが知られているが、本系においてはロジウムまたはパラジウム触媒を用いてジフェニルシランジオールとメシチルボランとの脱水素カップリング重合を行うことにより、目的の新規ポリボロシロキサンの合成を試みることとした。
<合成方法・評価方法>
合成はTHF溶液中、ロジウムもしくはパラジウム触媒存在下で等モル量のメシチルボランとジフェニルシランジオールを48時間反応させることにより行われた。重合物をヘキサンで抽出して精製し、数平均分子量40000を超えるポリマーが80%の収率で得られた。構造は1H-, 11B-, 29Si-NMRにより決定した。また、重合の交互性に関してはモデル化合物の生成挙動から明らかにした。
フッ化物イオンセンシング能はポテンショメトリー法により評価した。ポリボロシロキサンをTHF溶液からグラッシーカーボン電極上にキャストし、これを作用極とした。Ag/AgClを参照極、白金を対極、Na2HPO4 0.1 M水溶液を電解液として室温で測定を行った。
<今回の成果>
生成ポリマー及びモデル化合物のNMR構造解析により、交互共重合型ポリシロキサンが生成していることが支持された。ポリマーとモデルのいずれにおいても11B-NMR、29Si-NMRは単一のピークを示したほか、メシチルボランとトリフェニルシラノールとの反応では、両化合物間の縮合生成物が93%の収率で得られた。
ポテンショメトリー測定においては、10-10 Mのフッ化物イオンをセンシング可能であることに加え(図3)、フッ化物イオンの10倍の濃度変化に対して-23 mVの勾配で系の開放電圧が広範囲で変化し、フッ化物イオン検出の良好な検量線を与えることが分かった(図4)。
また、他のアニオン種に対する選択性も極めて高い(塩化物イオンに対して約60倍、臭化物イオンに対して約30倍の選択性)ことが選択性係数の算出結果(KF,ClSSM = 0.0161, KF,BrSSM = 0.0376)から明らかとなった(図4)。
【用語】
*ポテンショメトリー測定・・・ボルタンメトリー、クーロメトリーと同様に電気化学の主たる測定法の1つで、一定電流(もしくは電流なし)の条件下で電位を測定する手法
*DFT計算・・・電子系のエネルギーなどの物性を電子密度から計算する理論(密度汎関数理論)に基づく計算法
図3.フッ化物イオンの滴定におけるポテンショメトリー測定結果
(Disodium Hydrogen Phosphate, RE: Ag/AgCl, WE: GC, CE: Pt)
図4.様々なアニオンの滴定におけるポテンショメトリー測定結果
(Disodium Hydrogen Phosphate (pH=8), RE: Ag/AgCl, WE: GC, CE: Pt)
平成28年9月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/09/28-1.html