研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。リチウムイオン2次電池の急速充放電を促すリチウムボレート型のバイオマス由来バインダーを開発
リチウムイオン2次電池の急速充放電を促す
リチウムボレート型のバイオマス由来バインダーを開発
ポイント
- リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。
- リチウムイオン2次電池のグラファイト負極用バインダーとして、カフェ酸*1とLiBH4(水酸化ホウ素リチウム)との脱水素カップリング重合によりリチウムボレート型水溶性ポリマーを合成した。
- 本負極バインダーを適用した系では、低い最低被占軌道(LUMO)を持つポリマーによりホウ素を含むSEI(固体電解質界面)が形成され、界面抵抗が低減することが分かった。また、同バインダーを用いることにより、負極内におけるリチウムイオンの拡散係数の向上が観測された一方、リチウム挿入反応の活性化エネルギーは減少することが観測された。
- このことから、従来負極バインダーとして使用されているPVDF(ポリフッ化ビニリデン)やCMC-SBR(カルボキシメチルセルロース-スチレン - ブタジエンゴム)をバインダーとした系と比較して急速充放電条件において顕著な適性を示した。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の物質化学フロンティア研究領域 松見紀佳教授、ラージャシェーカル バダム元講師、アヌシャ プラダン研究員、宮入諒矢元大学院生、高森紀行大学院生(博士後期課程2年)は、リチウムイオン2次電池*2の急速充放電を促すリチウムボレート型バイオベースバインダーの開発に成功した。 |
【研究の内容と背景】
リチウムイオン2次電池の開発においては、高容量化やサイクル耐久性の向上、高電圧化など様々な開発課題解決に向けた取組みが行われているが、それと同時に急速充放電の実現に向けた技術開発についても高い関心が集まっている。しかしながら、その実現には固体中のリチウムイオンの拡散速度の向上や電極―電解質界面の特性、活物質の多孔性などの諸ファクターの検討を要している。
今回、本研究においては、カフェ酸とLiBH4(水酸化ホウ素リチウム)をテトラヒドロフラン溶液中で脱水素カップリング重合することによって、リチウムボレート型バイオベースポリマーを合成した(図1)。合成によって得られたポリマーは水溶性であり、環境負荷の少ない水系スラリーからの負極作製が可能であった。また、得られたポリマーの構造はNMR、XPS、SEM等の各測定によって決定した。
まず、合成によって得られたポリマーを負極バインダーとして用い、アノード型ハーフセル*3を構築し、性能を評価した。本バインダーを用いた系においては、PVDF(ポリフッ化ビニリデン)やCMC-SBR(カルボキシメチルセルロース-スチレン - ブタジエンゴム)を用いた系と比較して、リチウム挿入反応のピークにおけるオーバーポテンシャルが20 mV-100 mV低下し、よりスムーズな電極反応が示唆された。また、Randles-Sevcik式から、負極におけるリチウムイオンの拡散係数を算出すると7.24 x 10-9 cm2s-1であり、PVDFやCMC-SBR系バインダーと比較して有意に高い値であった。
さらに、インピーダンス測定を経て算出したリチウム挿入反応の活性化エネルギーは、本バインダー系において22.6 kJ/molであり、PVDF(28.78 kJ/mol)やCMC-SBR系(58.34 kJ/mol)バインダーと比較して有意に低下した。
次に、充放電試験の結果、1C*4条件において100サイクル時点で放電容量は本バインダー系では343 mAhg-1であり、PVDFで278 mAhg-1、CMC-SBRで188 mAhg-1であった(図2)*5。さらに、急速充電条件(10C)においては、本バインダー系では73 mAhg-1、PVDFで40 mAhg-1、CMC-SBRで17 mAhg-1であり、本バインダーの急速充放電条件における適性が示された(図2)。本バインダー系では1200サイクル(10C)まで安定した充放電挙動を示し、1200サイクル時点の容量維持率は93%であった。
また、動的インピーダンス(DEIS)測定を行ったところ、本バインダー系におけるSEI(固体電解質界面)抵抗はPVDFやCMC-SBR系バインダーと比較して有意に低下した(図3)。これは、充放電試験後に電池セルを分解し負極を分析したところ、XPSによる測定においてホウ素を含有したSEI形成が観測されたことから、SEI抵抗の低減に大いに寄与していると考えられる(図3)。
1200サイクル(10C)充放電後においても、負極を分解し、SEM(走査型電子顕微鏡)の断面像を観察したところ、PVDFバインダーの場合の体積膨張は15.49%であったが、本バインダー系では8.50%に抑制された。さらに本負極バインダーを用いたフルセルにおいても良好に作動した。
本成果は、ACS Materials Letters (米国化学会)のオンライン版に1月9日に掲載された。
本研究は、内閣府の戦略的イノベーション創造プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
【今後の展開】
バインダーを含む負極コンポジットの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業的応用への橋渡し的条件において検討を継続する。
すでに国内特許出願済みであり、今後は、企業との共同研究を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | ACS Materials Letters (米国化学会) |
| 題目 | Extreme Fast Charging Capability in Graphite Anode via a Lithium Borate Type Biobased Polymer as Aqueous Polyelectrolyte Binder |
| 著者 | Anusha Pradhan, Rajashekar Badam*, Ryoya Miyairi, Noriyuki Takamori and Noriyoshi Matsumi* |
| 掲載日 | 2023年1月9日 |
| DOI | 10.1021/acsmaterialslett.2c00999 |

|
図1.(A) 高分子バインダーの合成スキーム
(B) MALDI-TOF MSスペクトル (C) DFT計算によるポリマーの最適化構造 (D) 1H NMR スペクトル (E) 13C NMR スペクトル (F) XPS スペクトル(Li 1s 及びB 1s) |

|
図2.充放電試験結果
(a) 1C. (b) 10 C.種々の負極バインダー使用時の充放電曲線(0.01-2.1V at 1C ) (c) CAB. (d) PVDF (e) CMC-SBR |

|
図3.動的インピーダンススペクトル
(a) 本バインダー使用時 (b) PVDF使用時 (c) フィッティングに用いた等価回路 (d) CMC-SBR使用時 (e) RSEI 抵抗の比較 (f) XPS スペクトルB 1s (g) XPS スペクトルO 1s |
【用語説明】
カフェ酸は、ケイ皮酸のパラ位及びメタ位がヒドロキシ化された構造を持つ芳香族カルボン酸で、フェニルプロパノイドの1種である。カフェ酸はリグニン生合成の重要な中間体であるため、全ての植物に含まれている。
電解質中のリチウムイオンがイオン伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
バッテリー容量に対する充放電電流値の比であり、バッテリーの充放電特性(充放電するときの電流の大きさや放電能力・許容電流)を表す。1Cとは1時間で満充電状態から完全に放電した状態になる時の電流値を表し、この数字が高ければ高いほど大きな電流を出力できる。
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和5年2月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/02/01-1.html学生の龍岡さんが第24回日本糖質学会ポスター賞及び2022年度糖鎖科学中部拠点奨励賞を受賞
学生の龍岡 博亮さん(博士後期課程3年、バイオ機能医工学研究領域、山口拓実研究室)が第24回日本糖質学会ポスター賞及び2022年度糖鎖科学中部拠点奨励賞を受賞しました。
日本糖質学会ポスター賞は、日本糖質学会年会において優れた研究成果発表を行った35歳以下の若手研究者を対象に、選考が行われます。このたび2022年度(第41回年会)の選考結果が発表され、龍岡さんが第24回日本糖質学会ポスター賞を受賞しました。
また、令和5年1月7日に行われた糖鎖科学中部拠点 第18回「若手の力」フォーラムにおいても龍岡さんは成果発表を行い、2022年度糖鎖科学中部拠点奨励賞を受賞しました。
*参考:日本糖質学会ポスター賞
■受賞年月日
令和5年1月7日
(2022年度糖鎖科学中部拠点奨励賞)
■受賞テーマ
溶液NMR法を用いた糖-水および水-水間相互作用の解析
(第24回日本糖質学会ポスター賞)
溶液NMR計測と分子シミュレーションを用いた糖-水および水-水間相互作用の解析
(2022年度糖鎖科学中部拠点奨励賞)
■研究概要
糖鎖の生物機能メカニズムには、糖鎖のコンフォメーションや運動性に加え、水和構造が密接に影響していると考えられます。しかし、糖鎖の水和に関する研究は、あまり進んでいません。本研究では、NMR法や分子シミュレーションを活用して水和挙動の探査に取り組み、糖鎖が、結合様式や水酸基の配向などわずかな構造の違いを利用して、異なる溶媒和環境を形成することを明らかにしました。得られた成果は、糖鎖の化学と生物学をつなぐ重要な知見となるものです。本研究の進展により、糖鎖の関与する生命機能の更なる理解とその応用へ向けた道が開けるものと期待されます。
■受賞にあたって一言
この度は、伝統ある日本糖質学会ポスター賞を受賞できたことを、大変光栄に思います。さらにそこからもう一歩研究を進め、中部地区の多くの若手が参加する糖鎖科学中部拠点「若手の力」フォーラムにおいて奨励賞をいただくことができました。糖鎖には、謎がたくさんあり、様々なアイデアやアプローチを試せる面白さがあります。日頃からご指導いただいている山口拓実准教授をはじめ共同研究者に恵まれ、合成化学や物理化学、計算化学にわたる様々な経験を積み、こうした方法を活かすことができました。研究の成果が、糖鎖研究のますますの発展につながったらと考えています。また、同期をはじめ研究室のメンバーと切磋琢磨することで、ここまで成し遂げることができました。あらためて感謝します。本研究はJAIST次世代特別研究員として支援を受けて実施しました。おかげで研究に集中して取り組むことができました、御礼申し上げます。

糖鎖科学中部拠点奨励賞
受賞の様子
令和5年1月30日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2023/01/30-1.htmlマテリアル先端リサーチインフラ(ARIM)公開講座「質量分析法による試料分析の最前線」受講者募集
本学ナノマテリアルテクノロジーセンター主催で「質量分析法による試料分析の最前線」と題して公開講座を開催いたします。
ただいま受講者を募集しております。皆様のご参加をお待ちしております。
| 日 時 | 令和5年3月14日(火)10:00~17:00 |
| 場 所 | 北陸先端科学技術大学院大学 ナノマテリアルテクノロジーセンター 2F会議室(下記フロアマップのC1-26) キャンパスマップ フロアマップ |
| 講 師 | 山口 拓実:マテリアルサイエンス系・准教授(バイオ機能医工学研究領域) 宮里 朗夫:ナノマテリアルテクノロジーセンター・技術専門職員 闞 凱:ナノマテリアルテクノロジーセンター・技術職員 |
| 内 容 | 質量分析法は、生物学から材料科学まで幅広い分野で利用されています。特徴の異なる様々な測定装置があり、対象試料にあった適切な機器や分析法を選択することが大切です。本講座では、JAISTの先端的な質量分析装置群で何ができるか、何がわかるかを紹介します。さらに高分子の分析を例として、サンプル調製法から質量スペクトルの測定・解析までの実習を予定しています。 |
| 定 員 | 5名程度(先着順) |
| 参加対象者 | 企業・他大学・高専等の研究者・技術者 |
| 受講料 | 6,200 円(税込) |
| 申込方法 | 受講希望の方は、 ①氏名(ふりがな) ②勤務先・職名 ③受講の目的 ④本講座に期待すること ⑤書類送付先 ⑥電話番号 ⑦メールアドレス を明記の上、E-mail (arim@ml.jaist.ac.jp)までお申し込みください。 |
| 申込締切 | 令和5年2月28日(火)【定員に達し次第締切】 |
| 問合せ・ 申込み先 |
国立大学法人北陸先端科学技術大学院大学 マテリアル先端リサーチインフラ 研究補助員 橋本 TEL:0761-51-1449(直通) E-mail:arim@ml.jaist.ac.jp |
炭素1原子層厚のグラフェン膜を使った超低電圧・急峻動作のナノ電子機械スイッチ開発に成功 - 究極の低消費電力エレクトロニクスや集積センサシステム実現に期待 -
炭素1原子層厚のグラフェン膜を使った
超低電圧・急峻動作のナノ電子機械スイッチ開発に成功
- 究極の低消費電力エレクトロニクスや集積センサシステム実現に期待 -
ポイント
- 単層グラフェン膜で作製した両持ち梁を、機械的に上下させて安定動作するNEMS(ナノ電子機械システム)スイッチを世界で初めて実現
- スイッチング電圧<0.5 Vの超低電圧動作と急峻なオン・オフ切替え(電流スイッチング傾き≈20 mV/dec)を実現。従来の半導体技術を用いたNEMSスイッチに比べて約2桁の低電圧化を達成
- 制御電極表面に単層の六方晶窒化ホウ素原子層膜を備えることで、従来のグラフェンNEMSスイッチの問題であったグラフェン膜張り付き(スティクション)を解消し、5万回のオン・オフ繰り返し動作を実現
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域の水田 博教授、マノハラン ムルガナタン元JAIST講師、デンマーク工科大学のゴク フィン ヴァン博士研究員(元JAIST博士研究員)らは、単層グラフェン[用語解説1](原子1層厚の炭素原子シート)膜で作製した両持ち梁を、0.5V未満の超低電圧で機械的に上下させ、5万回繰り返しても安定動作するNEMS(ナノ電子機械システム)[用語解説2]スイッチの開発に世界で初めて成功しました。本デバイスを用いれば、スイッチオフ状態での漏れ電流を原理的にゼロにすることが可能となり、現在のエレクトロニクス分野で深刻な問題となっている集積回路やセンサシステムの待機時消費電力[用語解説3]の飛躍的な低減が実現し、今後のオートノマス(自律化)ITシステムの実現に向けた革新的パワーマネジメント技術として期待されます。 |
【背景と経緯】
現在のIT技術は、シリコン集積回路の基本素子であるMOSFET(金属酸化物半導体電界効果トランジスタ)の堅調な微細化に支えられ発展を遂げてきました。最新のマイクロプロセッサでは、数十億個という膨大な数の高速MOSFETをチップに集積することで、大量のデータを瞬時に計算・処理しています。しかし、この半導体微細化の追求に伴って、MOSFETのオフリーク電流(トランジスタをスイッチオフした状態での漏れ電流)の増大が深刻な問題となっています。オフリーク電流によりシステム待機時の消費電力(スタンバイパワー)は急増し、現代の集積回路システムにおいてはシステム稼動時の消費電力(アクティブパワー)と同等の電力消費となっています。スタンバイパワーを低減するために、現在、デバイス・回路・システム全てのレベルにおいてさまざまな対策が検討されています。このうちデバイスレベルでは、トンネルトランジスタや負性容量電界効果トランジスタなどいくつかの新原理のスイッチングトランジスタが提案され、研究開発が進められていますが、未だ従来のMOSFETを凌駕するオフリーク電流特性を実現するには至っていません。
【研究の内容】
水田教授、マノハラン元講師らの研究チームは、原子層材料であるグラフェンをベースとしたナノメータスケールでの電子機械システム(Nano Electro-Mechanical Systems: NEMS)技術による新原理のスイッチングデバイスを開発してきました。2014年には、2層グラフェンで形成した両持ち梁を静電的に動かし、金属電極上にコンタクトさせて動作するグラフェンNEMSスイッチの原理実験に成功しています。しかし、このスイッチではオン・オフ動作を繰り返すうちにグラフェンが金属表面に張り付く(スティクション)問題が生じ、繰り返し動作に限界がありました。
今回、研究チームは、制御電極表面に単層の六方晶窒化ホウ素[用語解説4]原子層膜を備えることで(図1参照)、グラフェンと電極間に働くファンデルワールス力[用語解説5]を低減させ、スティクションの発生を抑制して安定したオン・オフ動作を5万回繰り返すことに世界で初めて成功しました(図2参照)。また、素子構造の最適化を併せて行うことでスイッチング電圧が0.5 V未満という超低電圧を達成し、従来の半導体技術を用いたNEMSスイッチに比べて約2桁の低電圧化を実現しました。同時に、従来のNEMSスイッチでは不可避であったオン電圧とオフ電圧のずれ(ヒステリシス)の解消にも成功しました。
5万回を超える繰り返し動作を経ても、5桁近いオン・オフ電流比や、電流スイッチング傾き≈20 mV/decの急峻性が維持され、それらの経時劣化が極めて小さいことも確認されました。
本成果は、2022年12月22日にWiley社が発行する材料科学分野のトップジャーナルである「Advanced Functional Materials」に掲載されました。
本成果を含めて、水田教授は「ナノメータスケールにおける電子-機械複合機能素子の研究」の業績で2018年度科学技術分野の文部科学大臣表彰科学技術賞 研究部門を受賞しています。
【今後の展望】
これらの優れた性能と信頼性の高さから、本新型NEMSスイッチは、今後の超高速・低消費電力システムの新たな基本集積素子やパワーマネジメント素子として大いに期待されます。さらに、今回の新型スイッチの作製においては、大面積化が可能なCVD[用語解説6]グラフェン膜とhBN膜を採用しており、将来の大規模集積化と量産への展望も広がります。

図1.開発に成功した超低電圧動作グラフェンNEMSスイッチの(a)作製方法, (b)構造, (c)CVDグラフェン膜とhBN膜のラマンスペクトル, (d)作製した素子のSEM(電子顕微鏡)写真

図2.オン・オフの繰り返し動作測定結果:(a)印加電圧(上)と電流応答(下)、(b)繰り返し測定直後と(c)25,000回繰り返し後のオン・オフ電流特性。特性の経時劣化は極めて小さい。
【論文情報】
| 掲載誌 | Advanced Functional Materials (Volume32, Issue52) |
| 論文題目 | Sub 0.5 Volt Graphene-hBN van der Waals Nanoelectromechanical (NEM)Switches |
| 著者 | Manoharan Muruganathan, Ngoc Huynh Van, Marek E. Schmidt, Hiroshi Mizuta |
| 掲載日 | 2022年12月22日 |
| DOI | 10.1002/adfm.202209151 |
【用語解説】
2004年に発見された、炭素原子が蜂の巣状の六角形結晶格子構造に配列した単原子シート。
半導体集積回路作製技術によって形成されたナノメータスケールの機械的可動構造を有するデバイス。
電源に接続された集積回路・システムが、電源の切れている状態でも消費する電力。
グラフェンのユニットセルの2個の炭素原子の代わりに、窒素原子(N)とホウ素原子(B)で蜂の巣状格子構造を構成する化合物。電気的に絶縁体である。
原子や分子の間に働く力(分子間力)の一種。
さまざまな物質の薄膜を形成する蒸着法の一つで、基板物質上に目的とする膜の成分元素を含む原料ガスを供給し、化学反応・分解を通して薄膜を堆積する方法。
令和5年1月10日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/01/10-1.html微生物合成したバイオマス由来化合物の添加によるリチウムイオン2次電池用正極の安定化
![]() |
国立大学法人北陸先端科学技術大学院大学 国立大学法人筑波大学 |
微生物合成したバイオマス由来化合物の添加による
リチウムイオン2次電池用正極の安定化
ポイント
- リチウムイオン2次電池の正極材料としての活用が活発に検討されているLiNMC系正極は、その安定化のために、有効な添加剤を活用するアプローチが重要である。
- 微生物合成により得られたバイオマス由来のピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))がリチウムイオン2次電池のLiNi1/3Mn1/3Co1/3O2正極の安定化に有効な添加剤であることを見出した。
- 微生物合成を採用することにより、比較的複雑な構造を有する添加剤を簡易かつ低コストに、また低環境負荷な手法で合成することが可能となる。
- DMBAPは汎用の電解液よりも最高被占軌道(HOMO)が高く酸化されやすいため、電解液に先立ち正極表面で酸化され、好ましい界面を形成しつつ、電解液の過度な分解を抑制した。その結果、界面抵抗を顕著に低下させるに至った。SEM(走査型電子顕微鏡)像においてもDMBAPがLiNi1/3Mn1/3Co1/3O2正極の形態の変性を抑制することが示された。
- カソード型ハーフセル (3.0 V-4.5 V)において、DMBAP 2 mg/mlを電解液(EC/DEC/LiPF6)に添加した系においては、1Cの電流密度における100サイクル後の放電容量は83.3 mAhg-1であり、DMBAP非添加系における放電容量の42.6 mAhg-1を大幅に上回った。さらにDMBAPによる電池系の安定化効果はフルセルにおいても顕著であった。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の物質化学フロンティア研究領域 松見紀佳教授、ラージャシェーカル バダム元講師、アグマン グプタ研究員、高森紀行大学院生(博士後期課程2年)、筑波大学生命環境系 高谷直樹教授、桝尾俊介助教、皆川一元大学院生は、微生物合成したピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))がリチウムイオン2次電池のLiNi1/3Mn1/3Co1/3O2正極の安定化に有効な添加剤であることを見出した。 |
【研究の内容と背景】
近年、リチウムイオン2次電池[用語解説1]開発において、高電圧化に有効なLiNMC系正極(LiNixMnyCozO2; x+y+z = 1)の活用が活発に検討されている。一方、正極材料としては比較的不安定なLiNMC系正極を安定化するためには有効な添加剤を活用するなどのアプローチが重要である。北陸先端科学技術大学院大学の松見教授らの研究グループでは、この添加剤の活用について、正極添加剤BIANODAの合理的な設計法[参考文献1,2]について報告したが、有機合成化学的な添加剤の合成においては材料の精製等がやや煩雑であった。
そこで今回は微生物合成によってピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))を合成し、LiNMC系正極用添加剤として検討した。本化合物もBIANODAと同様にHOMOが高く、重合性官能基を持つこと、正極活物質の劣化因子であるフッ化水素(HF)をトラップ可能な構造であること、遷移金属への配位子構造等を併せ持つなど、LiNMC系正極の安定化剤として理想的な構造を有している(図1)。この微生物合成を採用することにより、比較的複雑な構造を有する添加剤を簡易かつ低コストに、また低環境負荷な手法で合成することが可能となる。
また、筑波大学の高谷教授らのグループでは、Pseudomonas fluorescens SBW25の遺伝子クラスターがDMBAPの微生物合成に有用であることを見出しており[参考文献3]、さらにグルコースを原料としてDMBAPを発酵生産する組換え細菌も見出している[参考文献3]。
このような系の積極的活用は、新たなカテゴリーの電池用添加剤ライブラリーを見出すとともに電池材料のバイオマス代替を促進する上で大変魅力的である。
本研究では、まずLiNi1/3Mn1/3Co1/3O2/電解液(エチレンカーボネート(EC)/ジエチレンカーボネート(DEC)/ヘキサフルオロリン酸リチウム(LiPF6))/Li型ハーフセルにおいて、電解液に2 mg/mlのDMBAPを添加し、正極安定化剤としての性能を評価した。カソード型ハーフセルのサイクリックボルタモグラム (3.0 V- 4.5 V)の第一サイクルにおいては、DMBAP添加系においては非添加系には見られない酸化ピークが観測され、添加剤に基づいた被膜形成挙動が示唆された。
添加剤DMBAPの量を変化させつつ充放電特性評価を行うと、電解液への添加量が 2 mg/mlの系において最善の性能が観測された。DMBAP 2 mg/mlを電解液(EC/DEC/LiPF6)に添加した系においては1Cの電流密度における100サイクル後の放電容量は83.3 mAhg-1であり、DMBAP非添加系における放電容量の42.6 mAhg-1を大幅に上回った(図2(b))。また、DMBAP添加系においては、リチウム挿入・脱離反応のオーバーポテンシャルの低下も観測された(図2(d))。さらにDMBAPによる電池系の安定化効果はフルセルにおいても顕著であった。
次に、カソード型ハーフセル[用語解説2]における界面形成挙動の解析のため動的インピーダンス(DEIS)測定を行った。各電圧下におけるそれぞれのインピーダンススペクトルに関する等価回路フィッティングを行い、カソード側の界面抵抗(CEI)を算出したところ、DMBAP添加系においてはすべての測定条件下において非添加系よりも抵抗が低く、DMBAPの界面抵抗低減効果が顕著であることが明らかとなった。
また、LiNi1/3Mn1/3Co1/3O2正極を電解液(EC/DEC/LiPF6)中で保管した系においては、SEM(走査型電子顕微鏡)像において形態の変性が観測されるが、DMBAPを共存させた系においては形態変化は抑制され(図3)、DMBAPによる安定化効果が再び示された。
本成果は、ネイチャー・リサーチ社刊行のScientific Reportのオンライン版に11月25日に掲載された。
本研究は、内閣府の戦略的イノベーション創出プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
【今後の展開】
リチウムイオン2次電池の開発においては、作用機構が異なる他の添加剤との併用により、さらなる相乗効果につながることが期待される。
さらに、遷移金属組成の異なる様々なLiNMC 系正極(LiNixMnyCozO2; x+y+z = 1)を効果的に安定化することが期待できる。
既に国内において特許出願済みであり、今後は、企業との共同研究を通して将来的な社会実装を目指す。特に、電池セルの高電圧化技術の普及と電池材料のバイオマス代替を促進することを通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | Scientific Reports(Springer-Nature) |
| 題目 | Microbial pyrazine diamine is a novel electrolyte additive that shields high-voltage LiNi1/3Co1/3Mn1/3O2 cathodes |
| 著者 | Agman Gupta, Rajashekar Badam, Noriyuki Takamori, Hajime Minakawa, Shunsuke Masuo, Naoki Takaya and Noriyoshi Matsumi* |
| WEB掲載日 | 2022年11月25日(英国時間) |
| DOI | 10.1038/s41598-022-22018-1 |

|
図1.DMBAPによるLiNMC系正極安定化の概念図
重合性官能基(-NH2)を持つこと、フッ化水素(HF)をトラップ可能な構造であること、遷移金属への配位子構造(C₄H₄N₂)等を併せ持つことなど、安定化剤として理想的な構造を有する。 |

|
図2.(a)様々な電流密度におけるカソード型ハーフセル(DMBAP添加物存在下及び非添加系)の充放電挙動
(b) 1Cにおけるカソード型ハーフセル(DMBAP添加物存在下及び非添加系)の充放電挙動 (c) DMBAP添加物存在下及び非添加系の容量維持率の比較 (d) 1CにおけるDMBAP添加物存在下及び非添加系のオーバーポテンシャルの比較 |

|
図3.(a) LiNMC 系正極
(b) 電解液(エチレンカーボネート(EC)/ジエチレンカーボネート(DEC)/ヘキサフルオロリン酸リチウム(LiPF6))処理後のLiNMC系正極 (c) DMBAPを添加した電解液で処理後のLiNMC系正極のSEM像 |
【参考文献】
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、カソード極/電解質/Liの構成からなる半電池を意味する。
令和4年11月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/11/30-1.html学生のZUMILAさんが2022年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞
学生のZUMILA, Haililiさん(博士後期課程2年、バイオ機能医工学研究領域、藤本研究室)が2022年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞しました。
北陸地区講演会と研究発表会は、毎年秋に、金沢大学、福井大学、富山大学、北陸先端科学技術大学院大学のいずれかの大学にて開催しています。特別講演のほか、ポスター発表があり、200~300名が参加しています。
今回、2022年度日本化学会北陸地区講演会と研究発表会は、令和4年11月11日に富山大学にて開催されました。
■受賞年月日
令和4年11月16日
■発表題目
Development of 3-cyanovinylcarbazole induced ultra-fast photocrosslinking mediated DNA circuits
(超高速DNA光架橋反応を用いたユニークなDNA回路開発)
■発表者名
ズミラ ハリリ、セティ シダント、藤本 健造
■受賞対象となった研究の内容
DNAはナノスケールのバイオ高分子として知られており、過去数十年の間に様々なナノスケールの分子デバイスの構築に利用されてきました。今回、研究室オリジナルの超高速DNA光架橋剤である3-シアノビニルカルバゾールを用いて、光エネルギーによって制御可能な新しいDNA回路の設計に挑戦しました。高いDNA架橋率を実現することで、望ましくない複合体を防ぎつつ、高速にDNAの入力順を計算できるような光誘起メモリ回路の構築に成功しました。
■受賞にあたって一言
この度は、2022年度日本化学会北陸地区講演会と研究発表会におきまして、このような賞を頂けたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導いただいている藤本健造教授にこの場をお借りして心より御礼申し上げます。また、多くのご助言やディスカッションにご協力頂いた藤本研究室の皆様に深く感謝いたします。
令和4年11月22日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2022/11/22-1.html下水中の新型コロナウイルス検出・監視により感染拡大防止につなげる下水サーベイランス技術の開発
![]() |
| BioSeeds株式会社 金沢大学 北陸先端科学技術大学院大学 一般財団法人北陸産業活性化センター |
下水中の新型コロナウイルス検出・監視により
感染拡大防止につなげる下水サーベイランス技術の開発
| 北陸先端科学技術大学院大学(以下、JAIST)発のベンチャー企業であるBioSeeds株式会社を代表とする5機関は、この度、内閣官房公募事業「ウィズコロナ時代の実現に向けた主要技術の実証・導入に係る事業」に申請を行い、採択されましたのでお知らせします。 下水中の新型コロナウイルス検出・監視は、患者から直接新型コロナウイルス(以下、コロナウイルス)を検出するよりも早くコロナウイルスの感染拡大を発見できる効率的な方法です。 今回採択されたのは、内閣官房が公募を行う3つの研究開発領域のうち、コロナウイルス感染拡大防止につなげるための【領域3:下水サーベイランス技術の開発】のプロジェクトです。 (参考) 内閣官房事業(株式会社三菱総合研究所が請負) https://pubpjt.mri.co.jp/publicoffer/20220411.html 地域や大規模なコミュニティで下水を活用したコロナウイルスの感染動態監視を実用化する際、下水からのコロナウイルスの抽出(=濃縮)、分析、データの共有等のステップが必須です。今回採択されたプロジェクトでは、現状の実験室レベルでの検出法は利用に制限があるという課題を解決する対策として、検出現場で簡単・迅速・正確に下水監視が可能な革新的技術の開発を行います。 |
本プロジェクトは、BioSeeds株式会社(代表機関)のほか、JAIST、金沢大学、東京大学、一般財団法人北陸産業活性化センターの5機関連携の体制で進めます。
事業予算は、総額で約14,000千円を予定しています。
BioSeeds株式会社が2021年度に開発した高感度コロナウイルス迅速簡便検査法(以下、RICCA)のノウハウをベースに、定量化可能な検出法(定量型RICCA)への改良を行います。さらに、金沢大学本多了教授の下水中に存在するコロナウイルスの検出・分析技術、JAIST高木昌宏教授の下水マイクロバイオーム解析技術、東京大学一木隆範教授の可搬型PCR装置による検出技術、一般財団法人北陸産業活性化センターのユーザビリティ評価といった、優れた技術を有する連携機関と共に本プロジェクトを推進し、付加価値の高い下水サーベーランスサービスを開発、社会実装することで、コロナウイルス感染症等の新規感染症防止対策と、経済活動の両立を目指します。
【プロジェクトの概要】
研究開発プロジェクト名:
集団感染の早期発見と老人ホーム・診療所などを対象とした予防のため、現場で下水を監視する高感度新型コロナウイルス迅速簡便検査法の開発
プロジェクトマネージャー:
BioSeeds株式会社 代表取締役社長 Biyani Manish(ビヤニ マニシュ)
参画機関:
BioSeeds株式会社、JAIST、金沢大学、東京大学、一般財団法人北陸産業活性化センター
事業期間:
令和4年10月から令和5年3月20日まで
研究開発のイメージ:

1)成果
【会社概要】
BioSeeds株式会社
BioSeeds株式会社は、次の2つの主要な目標によって、人々と環境及び健康を維持・強化することを目指しています。
1) マイクロ・ナノテクノロジーによって発明された新しいツールを提供する「ビジネス'D'」
2) アプタマーを用いた診断薬や治療薬の開発「ビジネス'W'」
【本プレスリリースに関する照会先】
BioSeeds株式会社
ビヤニ、上田 TEL:0761-51-1591
令和4年11月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/11/01-1.htmlサスティナブルイノベーション研究領域の水田教授が応用物理学会からフェロー称号を受理
サスティナブルイノベーション研究領域の水田 博教授に公益社団法人応用物理学会からフェローの称号が授与され、表彰を受けました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を行っています。公益性の高い学会として広く活動を展開し、社会連携事業にも取り組んでいます。
*参考:公益社団法人応用物理学会ホームページ
■フェローの概要等
「応用物理学会フェロー表彰」制度は、同学会の会員表彰制度の一環として、2006年に創設されました。この表彰制度は、同学会における継続的な活動を通じて、学術・研究における業績、産業技術の開発・育成における業績、教育・公益活動を通した人材育成や教育における業績などにより、応用物理学の発展に貢献した在籍累計年数10年以上の正会員を対象とし、特に貢献が顕著であると認められた会員を表彰するものです。また、フェローの人数は同学会個人会員数の3%程度と定められています。
*参考:第16回(2022年度)応用物理学会フェロー表彰者
■授与日
令和4年9月20日
■表彰内容
ナノメータスケール電子-機械複合機能素子の研究
■水田教授からの一言
本フェロー表彰の対象となった研究は、企業から大学に異動した2003年頃に「従来の電子デバイスの中に機械的に動くパーツを入れたら面白いことができるのでは?」という単純な発想で開始したものです。約20年にわたり東工大、サウサンプトン大、本学と職場を移しながら継続し、特に本学ではグラフェンなど原子層材料を用いて、気相単分子センシングやナノスケール熱制御素子などの極限機能素子について原理探索から社会実装までを進めてきました。英国で働いた期間も長かったのですが、その間、応用物理学会では200件超の発表、分科会・研究委員会幹事、シンポジウム世話人、また応物主催/共催の国際学会の実行委員長・論文委員長など、微力ながら学会の活動に参画させていただきました。これらはひとえに学内外の多くの方々からいただいた多大なご支援、特に研究室の同僚の方々・学生の皆さんのご協力の賜物です。この場をお借りして心より御礼を申し上げます。
*水田教授は2012年に英国物理学会(IOP)フェローの称号も受理しています。
![]() 表彰を受けた水田教授(左) |
![]() |
![]() |
![]() |
| 記念盾とフェローバッジ | |
令和4年9月21日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/09/21-1.htmlマイクロロボットを"流れ"作業で迅速に作製 -生体分子モーターによる人工筋肉で自在にプリント・動的再構成可能に-
![]() |
国立大学法人 大阪大学 国立大学法人 北陸先端科学技術大学院大学 国立大学法人東海国立大学機構 岐阜大学 |
マイクロロボットを"流れ"作業で迅速に作製
-生体分子モーターによる人工筋肉で自在にプリント・動的再構成可能に-
【ポイント】
- マイクロ流路※1の中で、光に応答する材料を流しながら、マイクロロボット※2のボディと駆動源となるアクチュエータ※3を連続的に生産・組み立てを行う「マイクロロボットその場組み立て法」を開発
- 様々な機能をもつマイクロロボットの迅速な作製に成功
- より高機能なマイクロロボットの実現と、マイクロロボットの量産化に期待
【概要】
| 大阪大学・大学院工学研究科の森島圭祐教授、王穎哲特任研究員(常勤)は、 北陸先端科学技術大学院大学・先端科学技術研究科 バイオ機能医工学研究領域の平塚祐一准教授、岐阜大学・工学部の新田高洋教授との共同研究で、マイクロ流路内で、マイクロロボットの部品をプリント成形し、その場で組み立てることに成功しました。マイクロロボットの機械構造は光応答性ハイドロゲル※4でつくられ、アクチュエータは同じチームが開発した生体分子モーターからなる人工筋肉を利用しました。このアクチュエータと機械部品をマイクロ流路内で組み立てることにより、マイクロロボット製造の柔軟性と効率が向上しました。この方法で、様々な機能のマイクロロボットが実現されました。また、この成果により、これまで困難であった、特に柔軟な構造を持つマイクロソフトロボットの実現や、マイクロロボットの量産化が期待されます。 本研究成果は、2022年8月24日午後2時(米国時間)に発行される科学雑誌「Science Robotics」の表紙を飾りました。 |
【研究の背景】
マイクロロボット、特に柔軟な構造を持つロボットは、生物医学などの分野で非常に幅広い応用の可能性があるものの、小さなロボットにアクチュエータなど様々な機械部品を組み込むことは困難で、高機能のマイクロロボット開発の障害となっています。従来の方法では、通常、機械構造やアクチュエータなど、マイクロロボットの様々な部品を異なる場所で製造し、一つ一つ組み上げていくピック アンド プレース アセンブリによってマイクロロボットがつくられていました。この方法は時間と労力がかかり、また多くの制限があることが課題となっています。
【研究の内容】
本研究では、自然界の生体内システムの自己組織化プロセスに着想を得て、2021年に発表したプリント可能な生体分子モーターからなる人工筋肉(1)(2)に基づき、ロボット部品をその場で加工・組み立てしてマイクロロボットを製造する方法を開発しました。マイクロ流路内で、マスクレスリソグラフィー※5により、ハイドロゲル材料の機械的構造をプリントし、次に生体分子モーターからなる人工筋肉がハイドロゲル機構の狙った位置に直接プリントすることで、機構を駆動して目的の仕事を実施します(図1) 。 このその場組み立てにより、マイクロロボットを迅速に次々と生産することができます。
また、マイクロロボットに新しい人工筋肉を再プリントすることにより、アクチュエータを迅速に動的再構成し、複雑な仕事を行うマイクロロボットを実現しました(図2)。
さらに、生体分子モーターを使用する本研究とは異なる、生きた筋肉細胞を用いるアプローチとして細胞ハイブリッドロボット※6が注目されています。細胞ハイブリッドロボットは、柔軟性が高く、環境負荷が低いという利点があるものの、筋肉細胞の培養に数日かかってしまうという問題があります。本研究では、設計の柔軟性を向上させながら、製造プロセスを大幅に簡素化することに成功しました。今後のオンチッププリンティング技術の向上や人工筋肉の性能向上により、現在の細胞ハイブリッドロボットのボトルネックを打破し、実用化に向けた一歩を踏み出すことが期待される手法であると考えています。
(1) https://www.nature.com/articles/s41563-021-00969-6
(2) https://www.jaist.ac.jp/whatsnew/press/2021/04/20-1.html

図1 マイクロロボットその場組み立て法

図2 その場組み立て法によって製造したマイクロロボットが生体分子モーターからなる人工筋肉によって駆動する様子
【本研究成果が社会に与える影響(本研究成果の意義)】
今回の研究により、自然界の生体分子モーターによって運動が創発する自己組織化現象をオンチップ微小空間上で工学的に制御し、自在にデザインできる加工プロセスをボトムアップ的な発想でより簡便に実現できました。これにより、これまで超微小部品をトップダウン的に組み立てることが大きなボトルネックであったために遅れていた、マイクロロボットの組み立てやマイクロソフト機構のオンデマンド生産が可能になりました。今後、様々な機能を付与したマイクロロボットがオンチップ上で連続的にオンデマンド生産することが可能になり、化学エネルギーだけで駆動する超小型マイクロロボットが健康医療応用など様々な分野に展開、波及していくことが期待できます。
【特記事項】
本研究は、日本学術振興会(JSPS)科研費 基盤研究(S)(課題番号22H04951)、基盤研究(A)(課題番号22H00196)、基盤研究(B)(課題番号19H02106)、学術変革領域研究(A)(課題番号21H05880)、挑戦的萌芽研究(課題番号21K18700)、新エネルギー・産業技術総合開発機構(NEDO)「次世代人工知能・ロボット中核技術開発」(JPNP15009)の支援を受けて行われました。
【論文情報】
| タイトル | In situ integrated microrobots driven by artificial muscles built from biomolecular motors |
| 著者名 | Yingzhe Wang, Takahiro Nitta, Yuichi Hiratsuka ,and Keisuke Morishima |
| DOI | https://www.science.org/doi/10.1126/scirobotics.aba8212 |
【用語説明】
ガラスや高分子材料で作製した数ミリメートルから数マイクロメートルの流路で、効率的に化学反応などを起こすことができる。微小なバイオセンサーや化学分析装置に利用されている。
数ミリメートル以下のサイズのロボットで、医療などへの応用が期待されている。
モーターやエンジンなどのように電気や化学エネルギーなどを利用して、動きや力を発生する装置。
紫外線などの光を照射することでゼリー状に固まる物質。
光照射による微細加工技術で、半導体デバイスなどの製造に利用されている。
培養細胞と機械部品を融合させて作製したロボット。
【SDGs目標】

【参考URL】
森島圭祐教授 研究者総覧URL https://rd.iai.osaka-u.ac.jp/ja/90351526dc15ef59.html
生命機械融合ウェットロボティクス領域URL http://www-live.mech.eng.osaka-u.ac.jp/
令和4年8月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/08/26-1.html物質化学フロンティア研究領域の松見教授の論文がACS Applied Energy Materials誌の表紙に採択
物質化学フロンティア研究領域の松見 紀佳教授の論文が、米国化学会(American Chemical Society :ACS)刊行のACS Applied Energy Materials誌の表紙(Front Cover)に採択されました。
■掲載誌
ACS Applied Energy Materials 2022, 5, 7, 7977-7987 (Highlighted as Front Cover)
表紙掲載日2022年7月25日
■著者
Agman Gupta, Rajashekar Badam, Noriyoshi Matsumi*
■論文タイトル
Heavy-Duty Performance from Silicon Anodes Using Poly(BIAN)/Poly(acrylic acid)-Based Self-Healing Composite Binder in Lithium-Ion Secondary Batteries
■論文概要
本論文では、BIAN(ビスイミノアセナフテキノン)構造を有する共役系高分子とポリアクリル酸を組み合わせた自己修復性コンポジットバインダーをリチウムイオン二次電池用シリコン負極に適用することにより、シリコン負極の大幅な安定化を観測するに至った。600サイクル後にも2100 mAhg-1の放電容量を維持することに成功した。
表紙詳細:https://pubs.acs.org/toc/aaemcq/5/7
論文詳細:https://pubs.acs.org/doi/10.1021/acsaem.2c00278

令和4年8月3日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/08/03-1.htmlダイヤモンド中に10兆分の1秒で瞬く磁化を観測 ~超高速時間分解磁気センシング実現に期待~
![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド中に10兆分の1秒で瞬く磁化を観測
~超高速時間分解磁気センシング実現に期待~
| 磁石や電流が発する磁気の大きさと向きを検出するデバイスや装置を磁気センサーと呼びます。現在では、生体中における微弱な磁気から電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの応用分野が広がりつつあります。磁気センサーの中で最も高感度を誇るのが、超伝導量子干渉素子(SQUID)で、1 nT(ナノテスラ、ナノは10億分の1)以下まで検出可能です。また、ダイヤモンドの点欠陥である窒素−空孔(NV)センターと走査型プローブ顕微鏡(SPM)技術を組み合わせることで、数十nm(ナノメートル)の空間分解能を持つ量子センシングが可能になると期待されています。 このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきましたが、時間分解能はマイクロ秒(マイクロは100万分の1)の範囲にとどまっています。このため、磁場を高い時間分解能で測定できる新しい磁気センシング技術の開発が望まれていました。 本研究では、表面近傍にNVセンターを導入したダイヤモンド単結晶に超短光パルスを照射し、それにより10兆分の1秒で瞬く結晶中の磁化を検出することに成功しました。検出感度を見積もると、約35 mT(ミリテスラ、ミリは1000分の1)となりました。また、計測の時間分解能は、超短光パルスにより磁化を発生させたことにより、約100フェムト秒(フェムトは1000兆分の1)となりました。 本研究成果により、NVセンターでは従来困難だった高速に時間変化する磁気のセンシングも可能であることが示され、高い時間分解能と空間分解能を兼ね備えた新たな磁気センシングの開拓につながることが期待されます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀准教授
【研究の背景】
磁石や電流が発する磁気の大きさと向きを検出するのが磁気センサーです。現在では、生体中における微弱な磁気から、電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの研究開発が進んでいます。磁気センサーには、比較的簡便なトンネル磁気抵抗素子注1)によるものや、超伝導体のリングを貫く磁束の変化を電流で読み取る超伝導量子干渉素子(SQUID)注2)などがあります。その中でも最高感度を誇るのがSQUIDで、1 nT(ナノテスラ)以下の磁場をも検出できるほどです。しかし、超伝導体を用いるSQUIDは電気回路や極低温などの高度な取扱いを要します。このため、近年では、ダイヤモンドの点欠陥である窒素−空孔(NV)センター注3)を用いた磁気センサーの開発が進んでいます。特に、負に帯電したNVスピン状態を利用した全光読み出しシステムが、室温でも動作する量子磁力計として注目されています。また、NVセンターの利用と、走査型プローブ顕微鏡(SPM)注4)技術を組み合わせることで、数十nmの空間分解能注5)で量子センシング注6)を行うことが可能になります。
このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきました。その一方で、時間分解能注7)はマイクロ秒の範囲にとどまっています。このため、磁場をより高い時間分解能で測定できる新しい量子センシング技術の開発が望まれていました。
そうした中、NVセンターを高濃度に含むダイヤモンド単結晶膜において、入射された連続発振レーザーの直線偏光が回転することが分かり、ダイヤモンドにおける磁気光学効果が実証されました。NVセンターに関連する集団的な電子スピンが磁化として機能することが示唆されていますが、この手法では時間分解能を高めることができません。他方、逆磁気光学効果、すなわち光パルスで磁気を作り出すという光磁気効果に対するダイヤモンドNVセンターの研究については、行われてきませんでした。しかし、この光磁気効果を開拓することは、ダイヤモンドの非線形フォトニクスの新しい機能性を追求する上で非常に重要です。また、ダイヤモンドNVセンターのスピンを用いた非接触かつ室温動作の量子センシング技術を、高い時間分解能という観点でさらに発展させるためにも、光磁気効果の開拓が必要だと考えられます。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注8)を円偏光にして、NVセンターを導入した高純度ダイヤモンド単結晶に照射し、結晶中に発生した超高速で生成・消滅する磁化を検出することに成功しました。
実験ではまず、波長800nmの近赤外パルスレーザー光をλ/4波長板により円偏光に変換し、NVセンターを導入した高純度ダイヤモンド単結晶に励起光として照射しました。その結果、磁気光学効果の逆過程(光磁気効果)である逆ファラデー効果注9)により、ダイヤモンド中に磁化を発生できることを見いだしました(参考図1挿入図)。この磁化が生じている極短時間の間に直線偏光のプローブ光を照射すると、磁化の大きさに比例してプローブ光の偏光ベクトルが回転します。これを磁気光学カー回転と呼びます。磁気光学カー回転の時間変化はポンプープローブ分光法で測定しました(図1)。測定の結果、逆ファラデー効果で生じるダイヤモンド中の磁化は、約100フェムト秒の応答として誘起されることが確かめられました(図2左)。NVセンターを導入していないダイヤモンドでも磁化は発生しますが、導入すると、発生する磁化が増幅されることも明らかになりました(図2右)。
次に、励起レーザーの偏光状態を直線偏光から右回り円偏光、そして直線偏光に戻り、次に左回り円偏光と逐次変化させることで、波長板の角度とカー回転角(θ )の関係を調べました。すると、NVセンターを導入する前の高純度ダイヤモンド単結晶では、逆ファラデー効果を示すsin 2θ 成分および非線形屈折率変化である光カー効果を示す sin 4θ 成分のみが観測されました。一方、NVセンターを導入したダイヤモンドでは、それらの成分に加えて、新規にsin 6θ の成分を持つことが明らかになりました(図3a)。さらに、励起光強度を変化させながら各成分を解析したところ、sin 2θ 成分およびsin 4θ 成分は励起光強度に対して一乗で増加しますが(図3b,c)、新規のsin 6θ の成分の大きさは励起光強度に対して二乗で変化することが分かりました(図3d)。これらのことから、 sin 6θ の成分は、NVセンターが有するスピンが駆動力となり、ダイヤモンド結晶中に発生した非線形な磁化(逆コットン・ムートン効果注10))であることが示唆されました。また、この付加的で非線形な磁化により、図2で観測された磁化の増幅が説明できました。この非線形な磁化による磁場検出感度を見積もると、約35 mT(ミリテスラ)となりました。SQUIDの検出感度には及びませんが、本手法では約100フェムト秒という高い時間分解能が得られることが示されたといえます。
【今後の展開】
本研究チームは、今回観測に成功した光磁気効果を用いた量子センシング技術をさらに高感度化し、ダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングに深化させることを目指して研究を進めていきます。今後は、ダイヤモンドNVセンターが駆動力となった逆コットン・ムートン効果を磁気センシングに応用することで、先端材料の局所磁場やスピン流を高空間・高時間分解能で測定することが可能となります。さらに、パワーデバイス、トポロジカル材料・回路、ナノバイオ材料など実際のデバイスの動作条件下で、例えば磁壁のダイナミクスや磁化反転などデバイス中に生じるダイナミックな変化を、フェムト秒の時間分解能で観察できることになり、先端デバイスの高速化や高性能化への貢献が期待されます。
【参考図】

| 図1 本研究に用いた実験手法 パルスレーザーから出たフェムト秒レーザー光はビームスプリッタでポンプ光とプローブ光に分割され、それぞれ波長板と偏光子を通過した後、ポンプ光は光学遅延回路を経由した後レンズで試料に照射される。プローブ光も同様に試料に照射された後、偏光ビームスプリッタにより分割されて二つの検出器で光電流に変換される。その後、電流増幅された後、デジタルオシロスコープで信号積算される。右上の挿入図は、逆ファラデー効果の模式図を示し、右回り(σ+)または左回り(σ-)の円偏光励起パルスによりダイヤモンド結晶中に上向き(H+)または下向きの磁化(H-)が生じる。なおデジタルオシロスコープでは、下向きの磁化が観測されている。 |

| 図2 高純度ダイヤモンド(NVなし)およびNVセンターを導入したダイヤモンド(NVあり)における時間分解カー回転測定の結果。赤色および青色の実線はそれぞれ、右回り円偏光、左回り円偏光により励起した実験結果を示す。 |

| 図3 NVセンターを導入したダイヤモンドにおけるカー回転の解析結果 (a) 下図(青丸)はカー回転角の波長板の角度(θ )に対するプロットである。黒い実線はCsin 2θ + Lsin 4θ による最小二乗回帰曲線(フィット)を示す。上図(赤丸)は下図の最小二乗回帰の残差を示す。太い実線はFsin 6θ による最小二乗回帰曲線(フィット)を示す。また最上部は偏光状態の変化(直線偏光→右回り円偏光→直線偏光→左回り円偏光→直線偏光)を表す。(b) Csin 2θ の振幅Cを励起フルエンスに対してプロットした図。 (c) Lsin 4θ の振幅Lを励起フルエンスに対してプロットした図。(d) Fsin 6θ の振幅Fを励起フルエンスに対してプロットした図。(b)と(c)の実線は一次関数によるフィットを示し、(d) の実線は二次関数によるフィットを示す。 |
【用語解説】
注1)トンネル磁気抵抗素子
2枚の磁性体の間に非常に薄い絶縁体を挟んだ構造(磁性体/絶縁体/磁性体)からなる素子。磁性体は金属であり、電圧を加えると、薄いポテンシャル障壁を通り抜けるという量子力学的なトンネル効果により絶縁体を介したトンネル電流が流れる。各磁性体の磁化の向きが平行な場合と反平行な場合で、素子の電気抵抗が大きく変化する。これをトンネル磁気抵抗効果という。よって、この効果を原理とした素子をトンネル磁気抵抗素子と呼ぶ。
注2)超伝導量子干渉素子(QUID)
超伝導体のリングにジョセフソン接合(二つの超伝導体間にトンネル効果によって超伝導電流が流れるようにした接合のこと)を含む素子を、超伝導量子干渉素子(SQUID)と呼ぶ。リングを貫く磁束が変化すると、ジョセフソン接合を流れるトンネル電流が変化するため、高感度の磁気センサーとして用いられる。
注3)窒素−空孔(NV)センター
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)センター」はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となる。NVセンターには、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。
注4)走査型プローブ顕微鏡(SPM)
微小な探針(プローブ)で試料表面をなぞることにより、試料の凹凸を観察する顕微鏡の総称である。細胞やデバイスなどにおいて、分子や原子などナノメートルの構造を観察するのに用いられる。代表的なものに原子間力顕微鏡(AFM)などがある。
注5)空間分解能
近い距離にある2つの物体を区別できる最小の距離である。この距離が小さいほど空間分解能が高く、微細な画像データの測定が可能になる。
注6)量子センシング
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
注7)時間分解能
観測するデータに識別可能な変化を生じさせる最小の時間変化量である。最小時間変化量が小さいほど時間分解能が高く、高速で変化する画像などのデータ識別が可能となる。
注8)超短パルスレーザー
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注9)逆ファラデー効果
ファラデー効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは平行である。逆ファラデー効果はこれとは逆に、円偏光したレーザー光を物質に入射することで、入射した方向に平行に磁化が生じる現象のことをいう。磁性体に限らず、あらゆる物質で生じる非線形光学過程である。
注10)逆コットン・ムートン効果
コットン・ムートン効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に、光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは垂直である。逆コットン・ムートン効果は、逆に、磁界が印可された物質に直線偏光のレーザー光を入射した際に、入射した方向に垂直に磁化が生じる現象であり、磁性体などで生じる高次の非線形光学過程である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング(JPMJCR1875)」(研究代表者:長谷 宗明)、および独立行政法人 日本学術振興会 科学研究費補助金「サブサイクル時間分解走査トンネル顕微鏡法の開発と応用」(研究代表者:重川 秀実)による支援を受けて実施されました。
【掲載論文】
| 題 目 | Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals. (ダイヤモンド結晶中の窒素空孔センターが誘起する超高速光磁気効果) |
| 著者名 | Ryosuke Sakurai, Yuta Kainuma, Toshu An, Hidemi Shigekawa, and Muneaki Hase |
| 掲載誌 | APL Photonics |
| 掲載日 | 2022年6月15日(現地時間) |
| DOI | 10.1063/5.0081507 |
令和4年6月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/06/16-1.htmlサスティナブルイノベーション研究領域の高田助教の研究課題が三谷研究開発支援財団の研究助成に採択
公益財団法人三谷研究開発支援財団の研究助成にサスティナブルイノベーション研究領域の高田 健司助教の研究課題が採択されました。
三谷研究開発支援財団は、石川県地域の大学、大学院において、研究開発に取組むグループおよび個人を対象に、今後の研究開発と産業の発展に寄与する研究を支援することを目的とし、助成を行っています。
*詳しくは、三谷研究開発支援財団ホームページをご覧ください。
- 採択期間:令和4年4月~令和5年3月
- 研究課題名:「桂皮酸をベースとした光誘起機能化バイオプラスチックの創製」
- 研究概要:本研究では、光(紫外線)によって性状を変化させるバイオ分子「桂皮酸」に着目して、光によって性能を変化させるバイオプラスチックの開発を目的としています。桂皮酸は、光に対して様々な変化をする性質を有していますが、その様々な性質変化が材料設計においてはしばしば問題として挙げられ、光応答材料としての利用は広く行われていませんでした。当研究グループでは、これまでに桂皮酸系高分子の光応答性を厳密に評価し、桂皮酸が光応答材料に有望であることを示しました。本研究課題の達成によってバイオ分子である桂皮酸をベースとした材料が光応答材料として広く普及することが期待できます。
- 採択にあたって一言:本研究課題を採択頂き大変嬉しく存じます。また、三谷研究開発支援財団および本助成の選考委員の皆様に深く感謝申し上げます。本研究成果により得られる材料および現象が、新たな研究分野を開拓できるように邁進してまいります。また、本研究に関して多くのディスカッションとアドバイスをいただいた金子達雄教授はじめ、本研究提案のインスピレーションを与えていただいた研究室の皆様、および研究協力者の方々にこの場をお借りして厚く御礼申し上げます。
令和4年6月8日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/06/08-1.htmlサスティナブルイノベーション研究領域の金子研究室の論文がLangmuir誌の表紙に採択
サスティナブルイノベーション研究領域の金子 達雄教授、高田 健司助教、学生の舟橋 靖芳さん(博士後期課程3年、金子研究室)らの論文が、米国化学会(American Chemical Society :ACS)刊行のLangmuir誌の表紙(Supplementary Cover)に採択されました。
■掲載誌
Langmuir 2022, 38, 17, 5128-5134
掲載日2022年5月3日
■著者
Yasuyoshi Funahashi, Yohei Yoshinaka, Kenji Takada*, and Tatsuo Kaneko*
■論文タイトル
Self-Standing Nanomembranes of Super-Tough Plastics
■論文概要
本研究では、高いタフネスを有するバイオベースプラスチックを用いて自己支持性ナノ薄膜の作製に成功しました。
ナノ薄膜は材料の表面保護からナノデバイスなど幅広い応用が期待されている機能性材料の一つです。特にこれらナノ薄膜を膜として単離するには、タフネス(強度、伸び率の関係)に優れた材料特性が要求されます。本研究では、著者らが従来から研究を進めてきた、高強度、高耐熱バイオベースポリアミドがこれらナノ薄膜作製に適した材料であると着目して、高分子構造の設計と強度の評価、そしてナノ薄膜の作製を試みました。その結果、当該バイオポリアミドは脂肪族ジカルボン酸と共重合化させることで、耐熱性を維持したまま非常に高いタフネスを発揮し、その数値は高強度バイオ繊維として知られるクモの糸にも匹敵するものでした。さらにこの高タフネス性によって、自己支持性のナノ薄膜を単離することができ、これらがナノデバイスやナノロボットへの応用の可能性を広げるものであることが提案されました。
本論文の表紙では、本研究によって得られたポリアミド薄膜の写真が採択され、光の干渉により虹色に見えるほどの薄膜が得られていることが分かります。
論文詳細:https://pubs.acs.org/doi/10.1021/acs.langmuir.1c02193
表紙詳細:https://pubs.acs.org/toc/langd5/38/17

令和4年5月13日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/05/13-2.htmlサスティナブルイノベーション研究領域の高田助教らの研究がPolymer Journal誌の表紙に採択
サスティナブルイノベーション研究領域の高田 健司助教、金子 達雄教授および物質化学フロンティア研究領域の松村 和明教授の共同研究に関する論文が、Springer Nature社刊行のPolymer Journal誌の表紙に採択されました。
■掲載誌
Polymer Journal 2022, 54 (4), 581−589.
掲載日2022年1月14日
■著者
Kenji Takada, Asuka Komuro, Mohammad Asif Ali, Maninder Singh, Maiko Okajima, Kazuaki Matsumura, Tatsuo Kaneko*
■論文タイトル
Cell-adhesive gels made of sacran/collagen complexes
■論文概要
本研究では、超高分子量多糖であるサクランとたんぱく質の一種であるコラーゲンを複合化させることで細胞接着性に優れたゲルを開発しました。
多糖サクランは化粧品分野の他にも医療用材料としての利用が期待されており、その汎用性の拡大が期待されています。中でもバイオマテリアルである細胞足場材料として利用するためには、分子配向性を有すること並びに、細胞との接着性を発揮するたんぱく質配列の存在が重要です。本研究では、サクランの配向性とコラーゲンの細胞接着性に着目してこれらコンポジット化による機能化を試みました。複合化条件を検討した結果、一様な配向性を有したサクラン/コラーゲン複合ゲルが形成される条件を見出しました。サクラン/コラーゲンゲルを用いて細胞培養を行った結果、コントロールとしての培養dishと同様の細胞接着・伸展が確認され、本複合ゲルが細胞足場材料への応用の可能性を広げるものであることが提案されました。
表紙詳細:https://www.nature.com/pj/volumes/54/issues/4
論文詳細:https://doi.org/10.1038/s41428-021-00593-w

令和4年4月27日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/04/27-1.htmlサスティナブルイノベーション研究領域の高田助教の研究課題が旭硝子財団の研究助成に採択
公益財団法人 旭硝子財団の研究助成「研究奨励」プログラムにサスティナブルイノベーション研究領域の高田 健司助教の研究課題が採択されました。
旭硝子財団は、次世代社会の基盤を構築するような独創的な研究への助成事業を通じて、人類が真の豊かさを享受できる社会および文明の創造に寄与することを目的とし、4つのプログラムにおいて研究助成を行っています。
「研究奨励」プログラムでは、若手研究者による基礎的・萌芽的な研究を支援します。
*詳しくは、旭硝子財団ホームページをご覧ください。
- 採択期間:令和4年4月~令和6年3月
- 研究課題名:「コーヒー酸をベースとした高タフネスポリアミド抗菌性接着剤の開発」
- 研究概要:カテコールを有した高分子は、接着材料や、ポリフェノール由来の抗酸化作用、抗菌、抗ウイルス性などの多彩な機能を発揮するため機能材料の官能基として有望です。しかしながら、これらカテコールを多量に有し、かつ強靭性に優れた材料は未だ開発されていません。本研究では、カテコールを有したバイオベース物質である「コーヒー酸」に着目し、その光反応性を精密に制御することで、高強度材料の代表であるポリアミドの新規モノマーの開発に挑戦します。本研究ではコーヒー酸を二量化させジカルボン酸とし、各種ジアミンとの重合により、抗菌・抗ウイルス性を有した接着性の強靭な(高タフネス)ポリアミドを開発することを目的としています。
- 採択にあたって一言:本研究課題を採択頂き大変嬉しく存じます。また、旭硝子財団および本助成の選考委員会の皆様に深く感謝申し上げます。本研究成果により得られる材料が、抗菌&抗ウイルス性の材料として、Withコロナの世の中に貢献できればと考えております。また、本研究に関して多くのディスカッションとアドバイスをいただいた金子達雄教授はじめ、研究室の皆様、および研究協力者の方々にこの場をお借りして厚く御礼申し上げます。
令和4年4月14日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/04/14-1.html物質化学フロンティア研究領域の木田助教とサスティナブルイノベーション研究領域の高田助教の研究課題が池谷科学技術振興財団の研究助成に採択
公益財団法人 池谷科学技術振興財団の研究助成に物質化学フロンティア研究領域の木田 拓充助教とサスティナブルイノベーション研究領域の高田 健司助教の研究課題が採択されました。
池谷科学技術振興財団は、先端材料関連の研究に対する助成によって科学技術の発展を図り、社会経済の発展に貢献することを設立の理念としており、この理念を具体化するため、先端材料や関連する科学技術分野の研究者や研究機関に対して、毎年支援を行っています。
*詳しくは、池谷科学技術振興財団ホームページをご覧ください。
- 採択期間:令和4年4月~令和5年3月
- 研究課題名:分子分光法を用いた延伸過程における重水素化分子鎖の直接観察による分子量分布と力学物性の関係解明への挑戦
- 研究概要:高分子材料において、分子量分布(分子鎖長分布)は材料物性を決定する最も重要な分子パラメータの一つです。従来の研究においても、分子量分布の形状と力学物性の関係についてはさまざまな報告が行われてきましたが、特定の分子量成分の変形挙動のみを観察する手法がなく、未だに分子量分布と力学物性の関係は十分に理解されていませんでした。本研究では、特定の分子量成分のみを重水素化させ、材料の延伸過程におけるin situラマン分光測定を実施することにより、特定の分子量成分の変形挙動を直接観察し、分子量分布と力学物性の関係解明に挑みます。
- 採択期間:令和4年4月~令和5年3月
- 研究課題名:イタコン酸をベースとした光変形・刺激分解性材料の開発
- 研究概要:本研究では、天然に広く存在する桂皮酸と、微生物が生産するイタコン酸に着目して、光によって同時に(協奏的に)変化する部位を有した、新規な光変形材料となるバイオプラスチックの開発を目的としています。光変形材料は外部刺激応答材料として注目されますが、本研究ではこれに加え、光刺激によって自然環境雰囲気下での分解の促進を試みます。これにより、バイオ原料の使用、材料の光機能の面からの環境寄与、そして自然環境下での刺激応答分解性による廃棄材料の消失などの機能を兼ねそろえた、将来的なゼロエミッション型の材料へと展開します。
- 採択にあたって一言:本研究課題を採択頂き大変嬉しく存じます。また、池谷科学技術振興財団および本助成の選考委員会の皆様に深く感謝申し上げます。本研究成果をベースとして世の中のサスティナビリティに貢献できればと考えております。また、本研究に関して多くのディスカッションとアドバイスをいただいた金子達雄教授はじめ、研究室の皆様、および研究協力者の方々にこの場をお借りして厚く御礼申し上げます。
令和4年4月7日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/04/08-2.html







