研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功 ~高度な機器不要でPCR品質の検査を15~30分で可能に~

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 BioSeeds株式会社 |
高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功
~高度な機器不要でPCR品質の検査を15~30分で可能に~
ポイント
- 41℃でのワンポット等温RNAおよびDNA増幅反応(器具不要)
- 迅速かつ高感度(RT-PCRと同じように検出)
- シンプルで瞬時の検出(ラテラルフローストリップ)
- 非常に費用対効果が高い(テストあたりの推定コスト500円未満)
【概要】
北陸先端科学技術大学院大学(JAIST)とJAIST発のベンチャー企業であるBioSeeds(バイオシーズ)株式会社(石川県能美市)、および複数の研究機関からなる研究者チームは、唾液から直接、極めて微量のSARS-CoV-2を検出できる高度な等温核酸増幅法(RICCAテスト)を開発しました。この方法は、シンプルなワンポット(一つの容器だけを用いる)方式のRNAウイルスの等温核酸増幅検出法で、高度な機器や、特別な実験室・検査室を必要としません。そのため、検査室にサンプルを送る必要が無く、総測定時間15~30分で、その場で即時に検出結果を得られます。これまでに、唾液中の低コピー数のSARS-CoV-2の直接検出に成功しております。研究者チームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。 |
【背景・研究成果】
COVID-19の感染を食い止めるための最も効果的な方法は、症状のあるなしにかかわらず、感染の疑いのある人を特定して隔離することです。SARS-CoV-2のアルファからデルタまでの4種の懸念される変異株(VOC:variant of concern)およびイータからミューまでの5種の注目すべき変異株(VOI:variant of interest)が数カ月のうちに世界中に広まったように、新しい感染性ウイルス株が急速に出現しているため、COVID-19の迅速かつ高感度で信頼性の高い検査法の利用は、病気、さらにはパンデミックの制御に不可欠です。現在、世界的に流行しているCOVID-19では、主にRT-PCRによる検査が行われています。しかし、この検査室を必要とする方法は、サンプルの前処理が必要であることや、高価な装置(蛍光光度計付きサーマルサイクラー)が必要なことから、現場での検査は難しく、また短時間での大量検査にも課題があります。PCRに類似した分子検査を行う方法として、LAMP (Loop-mediated Isothermal Amplification) やSDA (Strand Displacement Amplification) などの様々な等温核酸増幅法が現在使用されています。しかし、これらの方法は、PCRと比較して特異性や感度が低いことが報告されています。また、これらの方法の多くは、実験室でのウイルスRNAの分離、溶解、精製、増幅など、面倒な前処理を必要とします。
この問題を解決するために、JAISTのマニッシュ ビヤニ特任教授率いるチームは、ウイルスRNAの標的配列を、特別な装置を必要とせず、現場で正確に検出できる高感度かつ超高速な方法を開発し、この検出法をRICCA(RNA Isothermal Co-assisted and Coupled Amplification)と名付けました。
現在、RICCAを使用して、既にSARS-CoV-2のアルファ株とデルタ株の2つの変異株を検出しており、他の変異株にも適応可能と考えられます。RICCAアッセイに必要なものは、ヒートブロック(恒温槽)と、25種類の試薬を含む混合液があらかじめ入ったチューブだけであり、RNA特異的増幅とDNA特異的増幅を同時に行うことができます。RICCAのコストは現在のRT-PCR法等と比較しても安価であり、より広範囲な用途に適用可能と考えられます。したがって、RICCAにより、COVID-19分子診断の「ラボフリー、ラボクオリティー」のメガテストプラットフォーム(医療検査室レベルの集団検診に向けた基本的な方法)も実現できる可能性があります。また、将来的には、このプラットフォームを使って他の感染性ウイルスを検査することも可能です。
RICCAは、COVID-19の検査に必要な設備を簡単に調達できない発展途上国では特に有用です。ビヤニ特任教授のチームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。また、RICCAのロボット化およびモバイルプラットフォームの設計を行っています(卓上プロトタイプはBioSeeds株式会社で開発中)。このプラットフォームが実現すれば、サンプル輸送の負担を軽減し、COVID-19診断を消費者が直接実施することも可能となり、遠隔地や資源の乏しい環境で大規模な集団検査を行うことが可能となります。
この最新の研究成果の一部は、国際的な科学誌(Scientific Reports)において、京都大学(保川清教授)、大阪母子医療センター(柳原格部長)、関西学院大学(藤原伸介教授)、東北大学(児玉栄一教授)、JAIST(ビヤニ特任教授、高木昌宏教授、高村禅教授)の研究者チームと共同で行った研究成果として紹介されています。
図:SARS-CoV-2ウイルスを、直接その場で検査する新規な方法(RICCA)(A)とそれによる熱不活化SARS-CoV-2ウイルスの検出結果(A')。 閉鎖的なサンプル保持容器(B)とそれを用いた、10%ヒト唾液中での熱不活性化SARS-CoV-2ウイルスの検出例 (B')。
【謝辞】
本研究成果の一部は、AMED(日本医療研究開発機構)新興・再興感染症に対する革新的医薬品等開発推進研究事業 JP20fk0108143、AMEDウイルス等感染症対策技術開発事業 JP20he0622020、JST(科学技術振興機構) 研究成果展開事業研究成果最適展開支援プログラム A-STEP 産学共同 (育成型)JPMJTR20UU の支援を受けたものです。
【参考文献】
論文名 | Development of robust isothermal RNA amplification assay for lab-free testing of RNA viruses |
雑誌名 | Scientific Reports |
著者名 | Radhika Biyani, Kirti Sharma, Kenji Kojima, Madhu Biyani, Vishnu Sharma, Tarun Kumawat, Kevin Maafu Juma, Itaru Yanagihara, Shinsuke Fujiwara, Eiichi Kodama, Yuzuru Takamura, Masahiro Takagi, Kiyoshi Yasukawa and Manish Biyani |
掲載日 | 2021年8月6日 |
DOI | https://doi.org/10.1038/s41598-021-95411-x |
令和3年9月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/08-1.html生体分子モーターで動く人工筋肉、光で自在に作製可能 ― マイクロ・ソフトロボットの3Dプリントの実現に期待 ―

![]() ![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人東海国立大学機構 岐阜大学 国立大学法人 大阪大学 |
生体分子モーターで動く人工筋肉、光で自在に作製可能
― マイクロ・ソフトロボットの3Dプリントの実現に期待 ―
ポイント
- 光照射した場所に自在な形状に作製できる人工筋肉の開発に成功
- 遺伝子工学的に改変した生体分子モーターからなる光応答性の分子システムを開発
- ミリメートルスケールの微小機械の駆動を実証
- マイクロロボットやソフトロボットの3Dプリントの実現に期待
北陸先端科学技術大学院大学・先端科学技術研究科 生命機能工学領域の平塚祐一准教授、杜釗 大学院生(博士前期課程)は、岐阜大学・工学部の新田高洋准教授、大阪大学・大学院工学研究科 機械工学専攻の森島圭祐教授、王穎哲 大学院生(博士後期課程/特任研究員)との共同研究で、筋肉のような収縮性のファイバー(以下、人工筋肉)を、光照射した場所に自在に形成させることに成功した。この人工筋肉は、生物の動きに関わるタンパク質である生体分子モーターを遺伝子工学的に改変することにより実現した。光の照射形状を変えることで自由な形状・大きさの人工筋肉が造形でき、ミリメートルスケールの微小機械の動力に利用できることを実証した。この成果は将来、これまで困難であったマイクロロボットやソフトロボットの3Dプリンタによる製造への応用が期待される。 本研究成果は、2021年4月19日(英国時間)に科学雑誌「Nature Materials」誌のオンライン版で公開された。なお、本研究は新エネルギー・産業技術総合開発機構(NEDO)「次世代人工知能・ロボット中核技術開発」(JPNP15009)、日本学術振興会(JSPS)科研費 新学術領域研究「分子ロボティクス」の支援を受けて行われた。 |
【研究背景と内容】
生物のエンジン「筋肉」は、モータータンパク質[*1]と呼ばれる生体分子モーターから構築されており、数百マイクロメートル(マイクロは100万分の1)から数十メートルまでスケーラビリティにとんだアクチュエータである。生物のエネルギー源(アデノシン三リン酸 (ATP))を用いて高い効率で力学的仕事を行うという、従来のアクチュエータと比べ質的に異なる特性を持ち、これまでには無い産業分野での応用が期待されている。しかし、筋肉自体または筋肉細胞をアクチュエータとして利用する試みは基礎研究レベルでは報告されているが、筋肉細胞の安定性・保存性の問題やアクチュエータとして組み込む技術が未発達のため、実用化には至っていない。また、筋肉組織の構成分子はほぼ同定されているが、それら構成分子から筋肉を再構築する技術は知られていなかった。
本研究では、生体内の収縮性ファイバーの形成過程に着想を得て、人工筋肉を自在に形成させる分子システムを開発した。モータータンパク質の一種であるキネシンを遺伝子工学的に改変し、フィラメント状にすることにより、レールタンパク質である微小管[*2]と混ぜるだけで、モータータンパク質の動的な機能により自己組織的に人工筋肉を形成させることができた。さらに、光照射によりモーター分子のフィラメント化を開始させ、照射した部位のみに人工筋肉を形成させることを可能とした(図1)。この人工筋肉を大きさ数ミリメートルの機械構造内に形成させることにより微小機械を駆動させることに成功した(図2)。
筋肉のような柔軟で低エネルギー・低環境負荷なアクチュエータの産業応用は期待されているが、上述のように実用化には至っていない。本研究では、生体の運動素子であるモータータンパク質分子を数ミリメートル以上の組織に構築することにより、生物の筋肉に似た機能・性質を持つ人工筋肉の製造を可能とした。特に光照射により人工筋肉の形成を開始可能なことから、たとえば光造形型の3Dプリンタに組み込めば人工筋肉の光造形などが可能になることが将来期待でき、生体材料で駆動するマイクロロボットやソフトロボットの3Dプリント技術の基盤技術となる可能性が高い。
【今後の展開】
本研究で開発された人工筋肉は、現時点では形成・収縮が同時に起こり、かつ収縮は一回のみで用途も限定される。今後、制御用の分子システムを開発することにより、可逆または振動可能な人工筋肉を開発しマイクロロボットやソフトロボットへの実装を目指す。
図1.光照射による人工筋肉形成のコンセプト図
モータータンパク質の一種キネシンを遺伝子工学的に改変し、光照射によりキネシンがフィラメント状になるように設計(K456m13とCaMLMM)。キネシンフィラメントは自身の運動能により微小管を引っ張り、自己組織的に筋肉に似た収縮性の繊維を形成する。
図2. 人工筋肉の応用例
大きさ数ミリメートルのシリコンゴム製の微小構造の周囲に、光照射により人工筋肉を形成させ、その構造を駆動させた。右上)マイクログリッパ:光照射後に人工筋肉(オレンジ色)が形成し、20秒後にグリッパが閉じる。右下)昆虫型デバイス:人工筋肉により左右に動く。左上)ロボットアーム型デバイス。左中)微小歯車の組み立て。左下)細胞サイズの微小ビーズの集積。
【研究資金】
・新エネルギー・産業技術総合開発機構(NEDO)「次世代人工知能・ロボット中核技術開発」(JPNP15009)
・日本学術振興会(JSPS)科研費 新学術領域研究「分子ロボティクス」(JP24104004)
・日本学術振興会(JSPS)科研費 基盤研究(B)(JP18H01407)
【論文情報】
雑誌名 | Nature Materials |
題名 | "A printable active network actuator built from an engineered biomolecular motor" |
著者名 | Takahiro Nitta, Yingzhe Wang, Zhao Du, Keisuke Morishima and Yuichi Hiratsuka* |
掲載日 | 2021年4月19日(英国時間)にオンライン版に掲載 |
DOI | 10.1038/s41563-021-00969-6 |
【用語解説】
[*1] モータータンパク質(motor protein)
生体の動きに関与するタンパク質の総称。大きさ数ナノメートル〜数十ナノメートルの分子で、代表的なものとして筋収縮に働くミオシン、細胞内の物質輸送に働くキネシン、鞭毛運動等に働くダイニンなどが挙げられる。これらは繊維状のタンパク質であるアクチンまたは微小管の上を生体のエネルギーであるATP(アデノシン三リン酸)の加水分解エネルギーを利用して一方向に動く。
[*2] 微小管(microtubule)
細胞骨格を構成する繊維状タンパク質のひとつ。大きさ数ナノメートルのチューブリンが筒状に重合することにより直径25ナノメートルの管状の繊維を形成する。キネシンやダイニンなどモータータンパク質が動くレールとして働く。
令和3年4月20日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/04/20-1.htmlNEDO「官民による若手研究者発掘支援事業」に2件の研究開発テーマが採択
新エネルギー・産業技術総合開発機構(NEDO)の「官民による若手研究者発掘支援事業」に本学から以下の2件の研究開発テーマが採択されました。
「官民による若手研究者発掘支援事業」は、実用化に向けた目的指向型の創造的な基礎又は応用研究を行う大学等に所属する若手研究者を発掘し、若手研究者と企業との共同研究等の形成を促進するプロジェクトです。次世代のイノベーションを担う人材を育成するとともに、我が国における新産業の創出に貢献することを目的として実施します。
本事業のうち「共同研究フェーズ」は、研究者が企業と共同研究等の実施に係る合意書を締結し、企業から大学等に対して共同研究等費用が支払われることを条件として、実用化に向けた研究を助成するもので、事業期間は最大5年です。
また、「マッチングサポートフェーズ」は、企業との共同研究等の実施を希望する研究者が実施する、産業界が期待する研究を助成するもので、事業期間は最大2年です。
*詳しくは、NEDOホームページをご覧ください。
「官民による若手研究者発掘支援事業 共同研究フェーズ」
- 研究開発テーマ名:イオン注入を用いた裏面電極型Siヘテロ接合太陽電池の製造技術開発
「官民による若手研究者発掘支援事業 マッチングサポートフェーズ」
- 研究開発テーマ名:全自動花粉交配マシンの創出
令和2年12月2日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/12/02-1.html科学技術振興機構(JST)「研究成果最適展開支援プログラム(A-STEP)」に3件が採択
科学技術振興機構(JST)の「研究成果最適展開支援プログラム(A-STEP)産学共同(育成型)」及び「研究成果最適展開支援プログラム(A-STEP)トライアウト」に本学から以下の3件の研究課題が採択されました。
A-STEPは、大学・公的研究機関等で生まれた科学技術に関する研究成果を国民経済上重要な技術として実用化することで、研究成果の社会還元を目指す技術移転支援プログラムで、大学等が創出する社会実装志向の多様な技術シーズの掘り起こしや、先端的基礎研究成果を持つ研究者の企業探索段階からの支援を、適切なハンズオン支援の下で研究開発を推進することで、中核技術の構築や実用化開発等の推進を通じた企業への技術移転を行います。
また、大学等の研究成果の技術移転に伴う技術リスクを顕在化し、それを解消することで企業による製品化に向けた開発が可能となる段階まで支援することを目的とし、研究開発の状況に応じて、リスクの解消に適した複数のメニューを設けています。
*詳しくは、JSTホームページをご覧ください。
「研究成果最適展開支援プログラム(A-STEP)産学共同(育成型)」
- 研究課題名:高感度FETと等温増幅法によるウイルス・病原菌センサー開発
- 研究課題名:分離回収可能なタンパク質凝集抑制ナノ構造体
- 研究概要:機能性タンパク質の凝集抑制高分子ナノ構造体を創生し、バイオ医薬品の製造効率の向上を目指すとともに、長期保存、安定化剤としての応用展開を目指す。バイオ医薬品は、製造工程において凝集などによる効率低下や長期保存性が問題となっている。我々は双性イオン高分子がタンパク凝集抑制などの安定化作用を示すことを報告してきている。本申請ではこの化合物の分子設計の最適化を行い、磁性ナノ粒子やナノゲルの様なナノ構造体とする事で、分離回収可能な保護デバイスを創出する。この高分子は、凝集してしまったタンパク質をリフォールディングする事も可能であり、応用面のみならず学術面からの重要性も高い。
- 採択にあたって一言:世界の医薬品の主流が低分子医薬品からバイオ医薬品へシフトしている中で、抗体医薬などの安定性の問題を解決するための凝集抑制高分子の開発を行っています。今回採択された研究課題では、添加した状態でタンパク質医薬品を安定化させ、必要な時には完全に分離回収できる安全かつ高性能な凝集抑制構造体を開発します。この成果により、これまで不安定で産業化できなかった効果の高いバイオ医薬品の開発やその長期保存技術に貢献したいと考えています。
「研究成果最適展開支援プログラム(A-STEP)トライアウト」
- 研究課題名:襲雷予測システムのためのグラフェン超高感度電界センサの開発
- 研究概要:雷の事故による世界の死者は年間2万4千人にのぼり、我が国の電気設備における雷被害額は年間2千億円にのぼっている。雷雲の接近により、地表では電界が発生し、変化する。従って、正と負の電界センシングが雷の予測に極めて重要である。既存の超小型電界センサは、極性判定ができないため、これまで、雷に伴う事故について、落雷後の分析はあるが、落雷前の検知は出来ていなかった。グラフェン電界センサは負の電界を検出することができ、超高感度化と正・負が実現できれば、襲雷を予測することができる。
- 採択にあたって一言:襲雷を予測するためには、ピンポイント性、リアルタイム性が要求されます。今回、グラフェン電界センサの超高感度化の研究を進め、音羽電機工業株式会社と共同で、学校、消防、自治体などに襲雷予測システムを設置し、地域社会の持続的な発展に貢献していきたいと思います。
令和2年11月20日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/11/20-1.html学生の米澤さんが笹川科学研究助成に採択
学生の米澤 隆宏さん(博士後期課程3年、応用物理学領域、高村研究室)が公益財団法人・日本科学協会笹川科学研究助成に採択されました。
笹川科学研究助成は、課題の設定が独創性・萌芽性をもつ研究、発想や着眼点が従来にない新規性をもつ若手の研究を支援しています。
■採択期間
2019年4月1日~2020年2月10日
■研究課題
界面状態の理解に基づく半導体/絶縁体基板上へのシリセン成長と物性・形成機構の解明
■研究概要
Siの二次元結晶である「シリセン」は理論的に新奇量子現象の発現やそれを利用した次世代電子デバイスへの応用が期待されていますが、合成報告されたシリセンの殆どが金属基板を用いているため、シリセン自体の物性の殆どが未解明のままとなっています。本研究では半導体/絶縁体基板上へのシリセン合成を試み、電子線/X線を用いた分析や原子分解能顕微鏡観察、計算による解析などの多角的な評価を通じて、シリセンの物性・形成機構の解明を目指します。
■採択にあたって一言
私のシリセンに関する研究が伝統のある笹川科学研究助成に採択されたことを大変嬉しく思います。シリセンの物性解明、実用化に向け、本助成を通し、その取り組みを一層と加速したく思います。本研究課題を採択して下さった公益財団法人日本科学協会に心より感謝申し上げます。また、本研究を進めるにあたり多くのご助言を頂きました主指導教員の高村由起子准教授、アントワーヌ・フロランス講師、研究室のメンバー及びスタッフの方々にも深く感謝致します。
令和元年5月10日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2019/05/10-1.htmlイムノクロマト診断薬の高感度化、迅速診断化に有効な金属ナノ粒子-ラテックスナノコンポジット微粒子を創製

イムノクロマト診断薬の高感度化、迅速診断化に有効な
金属ナノ粒子-ラテックスナノコンポジット微粒子を創製
ポイント
- 金および白金ナノ粒子をラテックス粒子にそれぞれ約200個、25,000個担持させた金属ナノ粒子-ラテックスナノコンポジット微粒子の合成に成功
- 合成した金属ナノ粒子-ラテックスナノコンポジット微粒子を用いたイムノクロマトは、金コロイドとの比較において最大64倍の感度向上を示した。
- 金属ナノ粒子-ラテックスナノコンポジット微粒子は、ビオチン-アビジン結合を利用することにより、様々な抗体、バイオマーカーを粒子表面にコーティング可能であることを示唆した。
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、物質化学領域の前之園 信也 教授らは、新日鉄住金化学株式会社総合研究所(新日鉄住金化学株式会社と新日鉄住金マテリアルズ株式会社は経営統合し、2018年10月1日より日鉄ケミカル&マテリアル株式会社となります)と連携し、医療診断薬(イムノクロマト)の高感度化・迅速診断化に有効な金属ナノ粒子-ラテックスナノコンポジット微粒子を創製しました。 イムノクロマト注)は、特別な設備が不要なハンディータイプのデバイスであり短時間に目視判定ができるため、 その簡便性・迅速性をメリットとして先進国から発展途上国まで世界の様々な医療現場において重要な検査手法として利用されています。しかしながら、イムノクロマトの感度は十分とは言えず、現状では検体中の抗原やバイオマーカーが比較的豊富に存在する検査項目に限定されています。また、検査項目の中には、発症初期の抗原濃度が低い場合、判定が不十分なものもあるため、検出感度の向上は非常に重要な課題となっています。このイムノクロマトの感度向上には、標識粒子の発色性が大きく影響します。すなわち、標識粒子の発色性を強くすることにより、イムノクロマトの感度を向上することが可能となります。 この様な背景の中、我々は従来標識粒子として利用されている金や白金ナノ粒子をラテックス粒子に数百~数万個担持させることにより粒子1個当たりの発色性が極めて強い金属ナノ粒子-ラテックスナノコンポジット微粒子を合成しました。さらに粒子サイズや金属ナノ粒子の担持量を最適化することでイムノクロマトの感度と検出時間を飛躍的に向上することに成功しました。本成果は、アメリカ化学会が発行するACS Applied Materials and Interfaces 誌に2018年9月5日に掲載されました。 本研究の一部は文部科学省ナノテクノロジープラットフォーム事業(分子・物質合成)の支援により北陸先端科学技術大学院大学で実施されました。 |
<今後の展開>
本研究で合成した金属ナノ粒子-ラテックスナノコンポジット微粒子の実用化を推進していきます。また、磁性粒子の担持など新しい機能化も検討していきます。一方、この粒子は、イムノクロマトでの利用のみに留まらず多種多様な応用の可能性を持っています。今後、様々な分野での適用検討を行うことで、この粒子の新しいアプリケーションの創製に繋がることを期待しています。
図1 金ナノコンポジット微粒子(左)と白金ナノコンポジット微粒子(右)のSEM写真
図2 金ナノコンポジット(Au-P2VP:青)と白金ナノコンポジット(Pt-P2VP:赤)の吸収スペクトル。 比較として、担体であるラテックス(P2VP:灰)および金コロイド(AuNP:緑)の吸収スペクトルもプロット。 挿入した写真は、Au-P2VPおよびPt-P2VPの水分散液。尚、Au-P2VP、Pt-P2VP、P2VP(1×109)は同じ粒子数で測定し、AuNPは100倍の粒子数(1×1011)で測定した。
図3 (A)インフルエンザA型で評価した結果。(上)Au-P2VP、(中)Pt-P2VP、および(下)Pt-P2VPを用いたイムノクロマト(640 HAU/mlの抗原を1.0×102〜1.024×105倍に希釈)。左の列はイムノクロマトのカラー写真を示し、右の列はコントラストを強調した黒と白のネガ画像を示す。 NC、C lineおよびT lineは、それぞれネガティブコントロール、コントロールラインおよびテストラインを示す。(B)抗原希釈倍率と吸収スペクトル強度の相関を示したグラフ。
<論文>
掲 載 誌 | ACS Applied Materials and Interfaces |
論文題目 | Metal (Au, Pt) Nanoparticle-Latex Nanocomposites as Probes for Immunochromatographic Test Strips with Enhanced Sensitivity |
著 者 | Yasufumi Matsumura,† Yasushi Enomoto,† Mari Takahashi,‡ Shinya Maenosono‡ †新日鉄住金化学株式会社 総合研究所 ‡北陸先端科学技術大学院大学 マテリアルサイエンス系 物質化学領域 |
DOI | 10.1021/acsami.8b11745 |
掲 載 日 | 2018年9月5日にオンライン掲載(Just Accepted Manuscript) |
<用語説明>
注)イムノクロマト
抗原抗体反応を利用した迅速検査方法。イムノクロマトは目視で結果を判定することができるため、簡便な方法として、主に細菌やウイルスなどの病原体の検出に用いられています。日本国内では、妊娠検査薬やインフルエンザ検査薬として多く利用されています。
平成30年9月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2018/09/21-1.html学生の石川さんが平成29年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞

学生の石川 達也さん(博士前期課程1年、応用物理学領域・村田研究室)が平成29年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス,新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的としています。
■受賞年月日
平成29年12月9日
■講演題目
フレキシブル有機圧力センサの作製
■講演概要
有機圧力センサは人の体や曲面にフィットするようなフレキシブルセンサとして期待されています。その中で有機電界効果トランジスタ(OFET)を用いたアクティブ型有機圧力センサはヘルスケア分野などへの応用を目指して活発に研究が進められています。圧力センサでは低電圧駆動と大きな圧力応答の両立が実用化に向けた課題でしたが、我々はガラス基板上に低電圧駆動OFETを作製し、感圧部と組み合わせるDual-gate型有機圧力センサの開発を行い、低電圧駆動と大きな圧力応答の両立を達成しました。しかし、ガラス基板では期待されるようなフレキシブルな応用ができません。そこで本研究ではPEN基板を用いたDual-gate型フレキシブル有機圧力センサの作製に取り組み、動作を確認することができました。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。研究するにあたり、ご指導頂きました村田英幸教授、酒井平祐助教、ならびに研究室のメンバーに深く御礼申し上げます。受賞を励みに、これからも研究に精一杯取り組んでいきたいと思います。
平成29年12月21日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2017/12/21-3.html学生の平田さんが第66回高分子学会年次大会において優秀ポスター賞を受賞
学生の平田雄大さん(博士前期課程2年、物質化学領域・松見研究室)が第66回高分子学会年次大会において優秀ポスター賞を受賞しました。
高分子学会年次大会優秀ポスター賞は高分子学会年次大会で優れたポスター発表を行った発表者を表彰し、さらなる研究発表を奨励しつつ高分子科学ならびに高分子学会の発展に資するために設けられています。高分子学会年次大会の運営委員会内に優秀ポスター発表賞の選考委員会が設置されており、発表の予稿原稿をもとに第一次審査、ポスター発表をもとに第二次審査が行われ、選考委員会の審議により受賞者が決定されます。
■受賞年月日
平成29年6月21日
■ポスタータイトル
RuOxおよびWOxを複合させたTiO2ナノチューブを用いた光電気化学的水分解
■ポスター概要
水素エネルギーは発電時のエネルギー変換効率が高く、燃料として使用してもCO2などの温室効果ガスを排出しないクリーンなエネルギーとして注目されています。しかし、水分解に必要な反応開始電圧が高いため、広範な実用化には未だ至っていません。本研究では陽極に合成したTiO2ナノチューブ上にRuOxおよびWOxを同時に担持させることで効率的な電荷分離を促進させ、より反応開始電圧の低い光触媒電極の開発に成功しました。
■受賞にあたって一言
この度は高分子学会年次大会におきまして、このような栄誉ある賞を頂き大変嬉しく思います。本研究において熱心にご指導して頂いた松見教授、Raman助教、ならびに研究室の皆様に深く感謝いたします。


環境・エネルギー領域 金子達雄教授の研究課題が、 環境省の平成28年度バイオマスプラスチックの二酸化炭素削減効果及び信頼性等検証事業に採択
環境・エネルギー領域 金子達雄教授の研究課題が、 環境省の
平成28年度バイオマスプラスチックの二酸化炭素削減効果及び信頼性等検証事業に採択
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域 金子達雄教授の研究課題が、環境省の平成28年度バイオマスプラスチックの二酸化炭素削減効果及び信頼性等検証事業に採択されました。
本事業は、エネルギー起源CO2削減に資すると想定されるバイオマスプラスチックの用途におけるCO2削減効果や信頼性を検証し、バイオマスプラスチック導入に当たってのコスト面、調達面、規制面等における課題とその対策を検討するなど、バイオマスプラスチックの活用を促進する事業です。平成28年度は7件の応募のうち、2件が採用されました。
■事業名
芳香族系超高耐熱バイオマスプラスチックの二酸化炭素削減効果及び信頼性等検証事業
■事業期間
平成28年10月1日~平成31年3月31日(予定)
■事業概要
4-アミノ桂皮酸を原料とした芳香族系超高耐熱バイオマスプラスチックにより、300℃程度以上の高い耐熱性が求められる自動車の金属部材等に取って代わるプラスチック材料を開発することで、軽量化による燃費の削減など省エネルギー効果、二酸化炭素削減効果をねらいます。具体的には、硬い分子骨格を持つ芳香族系高分子を用いて超高耐熱バイオマスプラスチックの改良と性能の最適化を行い、その用途抽出、信頼性評価、二酸化炭素削減効果の定量化、社会実装に当たっての課題抽出・方策提案を行います。
■コメント
われわれの先導する研究である高耐熱植物由来プラスチックに関し、その実用化を後押しする研究プロジェクトが環境省により採択され、本研究の重要性が広く認識されつつあることを喜ばしく思います。地球環境改善に貢献できるようより一層尽力する所存です。
平成28年9月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/09/27-1.html