研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。タンパク質分子モーターで駆動する微小機械
タンパク質分子モーターで駆動する微小機械
バイオ分子機械工学 研究室
Laboratory on Bio-Molecular Mechanical Engineering
准教授:平塚 祐一(HIRATSUKA Yuichi)
E-mail:
[研究分野]
生命分子工学、機械工学、タンパク質工学、ナノバイオテクノロジー、生物物理学
[キーワード]
分子ロボティクス、MEMS/マイクロマシン、分子モーター、遺伝子工学
研究を始めるのに必要な知識・能力
平塚研究室ではタンパク質を使って人工の機械を作るという全く新しい研究分野を開拓しています。そのため分野を超えた幅広い知識が必要となりますが最も重要なことは「新しいものを作りたい!」という強い意識と「科学的な思考」です。専門的な知識は研究室で学ぶことができます。
この研究で身につく能力
本研究室では、バイオ・化学・微細加工技術・機械工学などを組み合わせた融合的な研究を進めています。融合研究を行うためには異なった専門分野を学んでいく必要があり、多くの学生は躊躇するかもしれません。しかし本研究室での研究開発の経験を通し融合領域では新しい発見や新しい可能性がたくさんあることを学び、専門分野間の垣根が低く感じることになるでしょう。もちろん基礎的な知識なくして融合分野に取り組むことはできません。本研究室では大きさ数ナノメータのタンパク質を人類が利用できるマイクロまたはミリメータサイズの機械として組み立てる研究をしています。そのためにタンパク質や化学物質の分子レベルの構造やナノメータ空間での挙動を理解し、分子レベルから設計できる能力を身につけます。
【就職先企業・職種】 化学メーカー、機械メーカー、IT企業、公務員など
研究内容

図1.光造形可能な人工筋肉で動く微小機械

図2.モータータンパク質で駆動する世界初のディスプレイ

図3.バクテリアで駆動する回転モーター
細胞は、大きさ数ナノメートルのタンパク質がその内部で働くことでさまざまな生命現象を生み出しています。タンパク質は一般に知られているような単なる栄養素の一つではなく「非常に精巧な分子機械」であり「細胞を構成する多彩な部品」です。本研究室では、タンパク質を分子部品として使うことによって、これまで人類が作り出してきた人工機械とは全く異なる夢の微小機械(マイクロマシン、微小ロボット)の創製に挑んでいます。本研究室ではタンパク質の中でも特に「動く」という機能をもった面白いタンパク質「モータータンパク質」に注目し、モータータンパク質で駆動するさまざまな微小な機械の開発に取り組んでいます。
1)光で自在に作製可能な生体分子モーターで動く人工筋肉
筋肉のような収縮性のファイバー(人工筋肉)を、光照射した場所に自在に形成させることに成功しました。光の照射形状を変えることで自由な形状・大きさの人工筋肉が造形でき、ミリメートルスケールの微小機械の動力に利用できます。将来、マイクロロボットやソフトロボットの3Dプリンタによる製造への応用が期待されます。
2)タンパク質により駆動するバイオディスプレイ
生き物には周囲の環境に合わせて体色を変化させる「保護色機能」を持つものがいます。これらの現象はモータータンパク質によって引き起こされています。本研究では微細加工技術とタンパク質工学を組み合わせ、保護色の分子機構を模倣した人工細胞を生体外に作り、世界初のタンパク質で駆動するディスプレイの開発に成功しました。
3) モータータンパク質・バクテリアで動く回転モーター
大きさ数十μmの微小な回転モーターもモータータンパク質やバクテリアを使って作製することに成功しています。これらは従来の人工モーターとは異なり糖や ATP といった化学物質を燃料として動くユニークなモーターとして注目を集めています。
主な研究業績
- Takahiro Nitta, Yingzhe Wang, Zhao Du, Keisuke Morishima & Yuichi Hiratsuka A printable active network actuator built from an engineered biomolecular motor Nature Materials 20, 1149–1155 (2021)
- Susumu Aoyama, Masahiko Shimoike, and Yuichi Hiratsuka Self-organized optical device driven by motor proteins Proc. Nati. Acad. Sci. (PNAS) 110, 16408-16413 (2013).
- Y. Hiratsuaka, M. Miyata, T. Tada and T. Q.P. Uyeda, Micro-rotary motor powered by bacteria, Proc. Nati. Acad. Sci. (PNAS) 103, 13618-13623 (2006).
使用装置
レーザー直接描画装置フォトリソグラフィ装置
タンパク質精製および解析装置高感度
蛍光顕微鏡
細胞培養装置
研究室の指導方針
本研究室の学生には誰もが見たことがない・驚かれるような研究に挑戦してもらいたいと考えています。しかし、そのような研究を成功させるためには基礎的な知識はもちろんのこと論文による学習が必須となります。また自分自身で考え失敗にめげず何度も挑戦し、そして何よりも研究を楽しんでもらいたいと考えています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/hiratsuka/
高分子材料の機能化、高性能化をレオロジー的な手法で行います
高分子材料の機能化、高性能化を
レオロジー的な手法で行います
材料レオロジー研究室 Laboratory on Materials Rheology
教授:山口 政之(YAMAGUCHI Masayuki)
E-mail:
[研究分野]
高分子レオロジー、成形加工
[キーワード]
インテリジェントポリマー、バイオマスポリマー、マテリアルリサイクル
研究を始めるのに必要な知識・能力
マテリアルサイエンス(材料科学)系分野に関する基礎知識があれば、これまでの専門は気にせずとも結構です。むしろ意欲ある学生を希望します。
この研究で身につく能力
高分子はひとつの分子が線状で長いことが最大の特徴です。このような分子形状であるため、高分子は“からみ合い”相互作用を示します。その結果、例えば液体状態でも弾性を示し、さまざまな成形加工が適用できるようになります。からみ合いは高分子らしさを表す最も適切な特性であると言え、レオロジーではその「からみ合い」により示される特性や、それによって形成される構造を取り扱います。当研究室ではレオロジー的な考え方や成形加工の技術を取り入れることで、新しい機能材料や、ポリマー系材料の高性能化へ取り組み、世の中の役に立つ新規材料を創出しています。これらの研究で身につく材料設計に対する考え方は、企業における研究でも大いに役立ちます。
【就職先企業・職種】 高分子材料を扱う樹脂メーカー、加工メーカー、ユーザーなど(詳細はHPに記載)
研究内容
当研究室では、レオロジー特性の新しい制御技術、成形加工技術、ブレンド・アロイやコンポジットなどの樹脂複合化の独自技術を「武器」として、新しい材料設計を化学反応に頼ることなく創出しています。
対象とする材料は、ポリ乳酸やセルロースなどのバイオマス系ポリマー、ポリエチレンやポリプロピレンなどの汎用高分子、ポリメタクリル酸メチルやポリカーボネートなどの光学ポリマー、各種エラストマーなど、ほとんどの高分子材料であり、さらにカーボンナノチューブなどのナノ粒子、各種樹脂添加剤を幅広く取り扱っています。また、高分子以外にも、化粧品や食品などを研究対象とすることがあります。これらの材料の組み合わせや改質、さらには成形により、さまざまな機能を付与し、また、高性能化を行っています。
応用分野はさまざまですが、自動車関係の材料や次世代のディスプレイなど、日本の技術力が強い分野を中心にした研究開発が多くなっております。得られた研究成果の一部は既に工業的にも応用されています。また、成形加工のトラブルや高速成形に対する研究も進め、高分子加工を技術的にサポートしております。以下、研究例の一部を紹介します。
【高分子系複合材料の研究開発】
分子レベルで異種物質の凝集状態を高度に制御することにより、ポリマー系複合材料の高性能化を目指す研究です。次世代気自動車などへの用途展開が期待できる透明樹脂や内装材向け樹脂、透明かつフレキシブルな導電性ポリマーフィルム、植物由来の原料を用いた革新的な光学デバイスなどの開発に取り組んでいます。また、ポリ乳酸の革新的な高性能化など低環境負荷材料を用いた研究も積極的に推進しています。
【レオロジー制御による機能性ソフトマテリアルの材料設計】
レオロジーの考え方はポリマーのみならず、さまざまな分野で必要とされます。特に、ソフトマテリアルである食品や生体材料、化粧品などではレオロジー特性の把握が必要不可欠です。本テーマでは、これら機能性ソフトマテリアルの材料設計をレオロジーの観点から進めています。切断しても再び元通りに治癒する自己修復性材料、形状記憶材料などの設計指針をこれまでに提案しています。
【成形加工技術の深化・構築】
優れた高分子材料でも、成形加工できなければ世の中で使用されません。そのため高分子産業では、成形加工に必要不可欠なレオロジーの専門家を常に必要としています。その基礎となる研究を実施すると共に、新材料のレオロジー特性を明らかにすることで実用化へ貢献しています。
主な研究業績
- 環境問題に立ち向かうポリオレフィンの成形加工技術,山口政之, 成形加工, 32(9), 301 (2020).
- 低分子添加による複屈折制御,山口政之,工業材料,66(4), 33-37 (2018).
- 成形加工性向上のための高分子レオロジー制御技術,山口政之,機能材料,38(4), 4-12 (2018).
使用装置
レオロジー測定装置
成形加工機
分光分析装置
力学特性評価装置
研究室の指導方針
当研究室では、主として高分子物性に関する知見に基づいて、材料の設計から成形技術に至るまで、さまざまな研究テーマを設定し活動しています。また、実際に役立つ研究を行うために、企業との共同研究を積極的に進めています。私自身の企業経験も活かしながら就職活動へのサポートも行い、総合的な力を伸ばしてもらいたいと考えています。
ポリマー材料の研究開発に興味をお持ちの方は、是非、当研究室を訪問してください。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/yamaguchi/
エレクトロニクスの機能的多様化を目指す化合物半導体デバイス技術
エレクトロニクスの機能的多様化を目指す
化合物半導体デバイス技術
化合物半導体エレクトロニクス研究室
Laboratory on Compound Semiconductor Electronics
教授:鈴木 寿一(SUZUKI Toshi-kazu)
E-mail:
[研究分野]
化合物半導体エレクトロニクス
[キーワード]
化合物半導体デバイス、異種材料融合技術、超高速デバイス、省エネルギーデバイス、デバイス計測技術
研究を始めるのに必要な知識・能力
必要な知識・能力ということではありませんが、ものごとの本質を理解したいという意欲、数学や物理学の基礎力とそれを支える論理性は、研究を進める際に重要であると考えています。
この研究で身につく能力
化合物半導体電子デバイスの作製技術および測定解析技術を身に付けながら、デバイス内の電子の挙動を物理的に考察して理解することができるようになると思います。こうした能力は、将来エレクトロニクスの広い分野で活躍するための素地となると考えています。また、産学連携を通じて産業界の問題意識を感じてもらうことも期待しています。さらに、日本語および英語によるプレゼンテーション能力の向上も目指します。
【就職先企業・職種】 総合電機、半導体・電子部品、半導体製造装置、通信機器、輸送機器、自動車
研究内容

化合物半導体高速トランジスタ

デバイスの周波数応答特性

異種材料基板上化合物半導体デバイス

異種材料閉じ込めによる二次元電子状態
<エレクトロニクスの機能的多様化に向けて>
現在のディジタルエレクトロニクスの主役であるSiデバイスは、微細化による性能向上を続けてきました。しかし、こうした「More Moore」の軸に沿った進歩の限界が意識されるようになっています。今後のエレクトロニクスの発展のためには、「More than Moore」の視点に基づく機能的多様化が必要であり、それに向けて重要な役割を果たすのが化合物半導体デバイスです。
<化合物半導体とは?>
III-V 族を中心とした化合物半導体は多彩な材料系であり、これまでもSi では不可能な様々な機能を有するデバイスに応用されてきました。特に、高い電子移動度と高い電子飽和速度を有する化合物半導体は高速電子デバイス応用に、また、直接遷移型の化合物半導体は光デバイス応用に好適であるため、化合物半導体を用いたデバイスは、高速アナログ・ミックスドシグナルエレクトロニクス、光エレクトロニクス分野で利用されてきました。これまで、GaAs 基板上格子整合材料が化合物半導体の第一世代として、InP 基板上格子整合材料が第二世代として大きな役割を果たしてきましたが、今後は、高In 組成InGaAs、InAs、Sb 系材料などのナローギャップ化合物半導体と、GaN、AlN などのワイドギャップ化合物半導体の重要性が高まると考えられます。これらナローギャップ半導体は中赤外光に対応するエネルギーギャップを、ワイドギャップ半導体は紫外光に対応するエネルギーギャップを有しており、それぞれの波長域における光デバイス応用に重要です。また、電子有効質量は概ねエネルギーギャップと比例関係にあり、ナローギャップ化合物半導体は小さい電子有効質量を有しています。電子有効質量が小さければ、高い電子移動度と高い電子飽和速度が得易いため、ナローギャップ半導体は超高速デバイス応用に有用です。ただし、高耐圧化に適したワイドギャップ半導体に対し、ナローギャップ半導体の耐圧は低く、充分なパワー性能を得ることが困難です。一方、GaN は電子有効質量が大きく、この点ではデバイス高速化に有利ではないように思われますが、大きい光学フォノンエネルギーと特有のバンド構造により、電子移動度こそ低いものの、高い電子飽和速度を有しているため、高速性能とパワー性能を併せ持ったデバイスへの応用が期待されます。
<本研究室の取り組み>
こうした特長を有する化合物半導体を適材適所にデバイス応用することは、エレクトロニクスの機能的多様化に向けて極めて重要です。さらに、化合物半導体と異種材料を融合集積する技術によって、より高度な機能的多様化の可能性も期待できます。こうした背景のもと、本研究室では、ナローギャップ/ ワイドギャップ化合物半導体エレクトロニクスの研究に取り組んでいます。次世代の超高速デバイスや省エネルギーデバイスを目指し、ナロー/ ワイドギャップ化合物半導体デバイス技術とそれらの異種材料融合技術の研究を進めながら、デバイス動作を深く理解するためのデバイス計測技術も開拓しています。
主な研究業績
- Low-frequency noise in AlTiO/AlGaN/GaN metal-insulator-semiconductor field-effect transistors with non-gate-recessed or partially-gate-recessed structures, D. D. Nguyen, Y. Deng, and T. Suzuki, Semicond. Sci. Technol. 38, 095010 (2023).
- Mechanism of low-temperature-annealed Ohmic contacts to Al-GaN/GaN heterostructures: A study via formation and removal of Ta-based Ohmic-metals, K. Uryu, S. Kiuchi, T. Sato, and T. Suzuki, Appl. Phys. Lett. 120, 052104 (2022).
- Electron mobility anisotropy in InAs/GaAs(001) heterostructures, S. P. Le and T. Suzuki, Appl. Phys. Lett. 118, 182101 (2021).
使用装置
分子線エピタキシー装置
電子線・紫外線リソグラフィー装置
パラメータアナライザ
ネットワークアナライザ
ダイナミックシグナルアナライザ
研究室の指導方針
・理学の心で工学を。ものごとの本質を理解することを大切にします。
・少しづつであっても、自分でよく考え、納得しながら前進することが重要であると考えています。
・学生と教員がよき共同研究者となり、お互いに成長することを目指します。
・毎週行う研究報告会・日本語輪講・英語輪講を通じ、エレクトロニクス分野で活躍するための基礎を固めます。
[研究室HP] URL:https://www.jaist.ac.jp/nmcenter/labs/suzuki-www/
光を知り、光で分析する ~分光学への誘い~
光を知り、光で分析する ~分光学への誘い~
基礎物理化学・超微量ラマン分光分析研究室
Physical Chemistry, Ultrasensitive Raman Spectroscopy Laboratory
准教授:山本 裕子(YAMAMOTO Yuko S.)
E-mail:
[研究分野]
物理化学境界領域・超微量ラマン分光、量子光学
[キーワード]
ラマン分光学、表面増強ラマン散乱、ナノマテリアル
研究を始めるのに必要な知識・能力
「光について学びたい」「光について詳しくなりたい」「光を使った分析手法を身につけたい」など、「光」あるいは「分光学」に興味を持ち学ぶ意欲があること。これが当研究室で研究を始めるにあたって必要な能力(意欲) です。実現に必要な知識や、技術の修得の仕方は教えます。
大発見したい・ノーベル賞を取りたい・大きな成果を上げたいなどの大きな野望を持つ学生さん・社会人学生さんも大歓迎です。
この研究で身につく能力
光を使った各種分析手法について、基礎~応用までが一貫して身につきます。特に、①ラマン分光法・超微量ラマン分光法(表面増強ラマン散乱, Surface-enhanced Raman scattering)、②紫外可視吸収分光法などの各種吸収分光法。また、可視光レーザーの取り扱いや、光学顕微鏡やミラー・レンズなど各種光学部品の取り扱い・装置の組み立て、分光器の基礎知識や取り扱い方も身につけることができます。
【就職先企業・職種】 化学系企業、起業等
研究内容
私たちは、光を使った検出方法を軸としながら世界最先端の研究を進めています。光検出は、マテリアル研究を行う上で最も基本的かつ重要な手法のひとつです。

図. 表面増強ラマン散乱法測定の概略図
1.強結合 新しい光学現象を生み出すナノスケール創成場
1970年代に、表面増強ラマン散乱 (Surface-enhanced Raman scattering,SERS) という現象が発見されました。これは、物質に光を当てたときにごくわずかに現れる「ラマン散乱光」が飛躍的に増強する現象のことです。SERS効果は当初、銀のナノ構造体表面で発見されました。そして、発見から50年経ち、なぜラマン散乱効果が飛躍的に増強するのか、そのメカニズムがおおよそ明らかになりました。
私たちは2014年に、ラマン散乱効果が飛躍的に増強する「ホットスポット」では「強結合」という現象が起きており、この「強結合」状態が別の新しい光学現象をも生み出していることを発見しました。
ホットスポットは、ナノ世界の光が作り出す未知のフロンティアの一つです。その発見以来、私たちは銀ナノ粒子がつくるホットスポットでの強結合をさらに深く、詳しく調べ、数々の新現象を発見し続けています。
2.超微量ラマン分光(表面増強ラマン散乱, SERS)
上記の通り、SERSは1970年代に発見され既に50年経っています。しかし未だ目立った実用化例がないことから「Sleeping Giant (眠れる巨人)」と呼ばれています。一方で SERSは人のこころをどこか魅了するのでしょう、巨人を眠りから覚まそうと SERS研究へ新規参入してくる研究者は後を絶ちません。
私たちの研究グルーブでは、銀ナノコロイド粒子を使って SERSを研究しています。銀ナノコロイド粒子は1997年に初めて1分子だけのSERS測定に成功した、極めて重要な実験系です。
その銀ナノコロイド粒子を使って、私たちの研究グループメンバーの一人が2024年に「希土類元素のSERS」という新しい研究分野の開拓に成功したので、次に説明します。
3.希土類元素とSERS
希土類元素(レアアース) は原子番号57番~71番に位置する非常に重い元素で、地球上にほとんど存在しないことから希土類元素と呼ばれています。希土類元素は最外殻の電子配置が互いに似通っているため、化学的な手法でその種類を同定することが難しい問題があります。
当研究室では2024年、希土類元素を含むキレート分子の SERSを測定することで、間接的に希土類元素であるLa(ランタン) とGd(ガドリニウム) を互いに識別することに成功しました。これは世界的に見て非常にユニークかつ重要な研究成果です。とても難しい研究ですが、研究に新たに参画する挑戦者をお待ちしています。
4.金属材料と電気化学
当研究室ではまた、物理化学分野、特に金属材料科学と電気化学の境界領域での研究もスタートしています。まだ詳しくお伝えすることができませんが、世界に大きなインパクトを与える大きな研究成果を期待しながら日々研究を続けています。
参考文献・これまでの研究業績や論文にご興味がある方は、お気軽に指導教員までメール(
)または指導教員室M4-40へお越しください。論文の別刷(論文のコピーのこと)を差し上げます。
主な研究業績
- Jin Hao, Tamitake Itoh and Yuko S. Yamamoto, “Classification of La3+ and Gd3+ rare earth ions using surface-enhanced Raman scattering”, Journal of Physical Chemistry C, 128, 5611 (2024)
- Tamitake Itoh and Yuko S. Yamamoto, “Basics and Frontiers of Electromagnetic Mechanism of SERS Hotspots” In Book: Procházka, M., Kneipp, J., Zhao, B., Ozaki, Y. (eds) “Surface- and Tip-Enhanced Raman Scattering Spectroscopy” Springer, Singapore (2024)
- 山本裕子 , “ プラズモンと分子の電磁相互作用の基礎 ”, 応用物理学会フォトニクスニュース , 9(2), 68-72 (2023)
使用装置
表面増強ラマン顕微鏡(自作)
ラマン顕微鏡
紫外可視吸収測定器
密度汎関数(DFT)計算装置
研究室の指導方針
世界トップレベルで基礎研究を行うための、自由闊達な研究環境を提供しています。当研究室にはコアタイムがありません。各自が自由な時間で研究を組み立てており、そのスタイルを奨励しています。研究室内のメンバーとの情報交換・互いの進捗の確認は、週一回の全体ミーティングおよび輪講セミナーにて行います。そのため、自律的にしっかりと研究生活を組み立てられるタイプの学生の方に適した環境です。
自らの研究成果を世に発信するため、年1回程度の学会発表を推奨しています。研究テーマの設定は、指導教員が提示する研究テーマを参考に、個々の学生さんの興味範囲・方向性を取り入れつつ最大限希望に添う形で行います。基本的に、研究成果は国際論文(英語)という形で世に広く発表することを目指していきます。プロの研究者を志望する方にお勧めです。
もちろん、指導教員による個別指導を随時行います。指導教員の持つ知識や経験をどんどん活用してください。
画像処理と電子顕微鏡を組み合わせて原子レベルでの物質の不思議を発見する
画像処理と電子顕微鏡を組み合わせて
原子レベルでの物質の不思議を発見する
ナノ物性顕微探索研究室
Laboratory on Microscopic Nano-Characterization
講師:麻生 浩平(ASO Kohei)
E-mail:
[研究分野]
原子スケール材料解析
[キーワード]
無機材料、固体物性、ナノ物質、ナノ計測、計測技術、画像処理、電子顕微鏡
研究を始めるのに必要な知識・能力
研究テーマと真剣に向き合う意思、周囲の声を聞き入れる素直さ、研究を進める日々を楽しむ気持ちが大切です。固体材料、電子顕微鏡、画像処理、確率統計のいずれかへの興味があると良いです。知識があればなお良いですが、必須ではありません。
この研究で身につく能力
一連の研究(材料の知識獲得、電子顕微鏡の操作技術、Pythonによる画像処理、結果の解釈、文章化、自研究室や他研究室とのディスカッション、成果としてのまとめ)を通じて、各項目の技術と知識、および研究をやり通す経験が身につきます。
一般的な技術としては、自分の考えを掘り下げて分かりやすく表現できるよう、文章力の向上に重点を置きます。進捗報告会など、日々の研究に関する交流を文章によって行います。将来的に、企業や大学において書類をまとめる際や、近年成長が目覚ましい生成AIを思い通りに動かすうえで、文章力は重要だと考えています。
【就職先企業・職種】 電気・材料メーカー、材料分析会社、大学の研究者や技術職員など
研究内容
原子レベルで起こる物質の不思議なふるまいを発見するために、画像処理と電子顕微鏡を駆使した手法開発を進めています。電子顕微鏡データは、そのままでは単なる数値の配列です。画像処理による解析を通して初めて、粒子サイズ、結晶構造、原子位置といった有益な情報が得られます1,2。また、最近では、動作中のデバイスの動画観察にも取り組んでいます3。時刻ごとの多数の画像で構成される動画を効率的に解析するうえでも、画像処理は欠かせません。
具体的な研究テーマとして、以下が挙げられます。
1. リチウムイオン電池材料の動作下ナノ解析
2. ナノ粒子を統計的・3次元的に解析する手法開発
3. 原子位置を精密解析する手法開発1−3
ここでは3に絞って紹介します。
原子位置を精密解析する手法開発
図1aは、棒状の金ナノ粒子の電子顕微鏡像です。像で明るく見える点は、奥行き方向にならぶ金原子の列です。一見すると、輝点は画像内で規則正しく並んでいるように見えますが、これが本当かを解析しました。
規則正しい周期位置からの原子のずれ、つまり原子変位を測定しました。従来の方法では、変位量が小刻みに変化して見えます (図1b)。これは原子変位の情報ではなく、解析の邪魔をする統計ノイズ成分です。
そこで、信号処理手法のひとつであるガウス過程回帰を用いることで、原子変位の情報を抽出することに成功しました(図1c)。測定可能な最小の原子変位は0.7 pm(ピコメートル、1兆分の1メートル)ときわめて小さく、材料のなかで生じる2.4 pmの原子変位を検出することに成功しました。
解析によって、粒子の先端部分に位置する原子列は、軸に沿って外側へと変位していることが発見されました。考察の結果、棒状粒子の先端と胴体で曲率が異なるため表面張力に差が生じ、局所的な変位が生じると示唆されました1。

図1 (a) 金ナノロッドの電子顕微鏡像。奥行き方向にならぶ金原子の列が明るい点として見えています。(b) 従来手法で測定した原子変位と (c) データ科学で処理した原子変位。原子が正常な位置から左にずれるほど暗い青色、右にずれるほど明るい黄色で示されます。
主な研究業績
- K. Aso, J. Maebe, XQ. Tran, T. Yamamoto, Y. Oshima, and S. Matsumura, “Subpercent Local Strains due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis”, ACS Nano 15 (2021) 12077
- K. Aso, H. Kobayashi, S. Yoshimaru, XQ. Tran, M. Yamauchi, S. Matsumura, and Y. Oshima, “Singular behaviour of atomic ordering in Pt–Co nanocubes starting from core–shell configurations”, Nanoscale 14 (2022) 9842
- J. Liu, J. Zhang, K. Aso, T. Arai, M. Tomitori, and Y. Oshima, “Estimation of local variation in Young’s modulus over a gold nanocontact using microscopic nanomechanical measurement methods”, Nanotechnology 36 (2025) 015703
使用装置
走査透過電子顕微鏡、解析用ワークステーションPC、集束イオンビームつき走査電子顕微鏡、電子顕微鏡用特殊ホルダー、電気化学測定装置、グローブボックス
研究室の指導方針
共同研究を活発に行っています。責任をもって自らの研究を進め、研究協力者も納得できる成果を挙げれば、自信につながります。加えて、自らの好みや賛否にとらわれず、多種多様な考えを受け止める幅広い視野が育まれます。個々の研究内容については、日常的に議論をおこない、必要があれば柔軟に軌道修正します。当初は想像しなかった面白いテーマが見つかるのも魅力です。学生の皆さんが大学院を終えるとき、研究を通して「ベストを尽くし、満足いく成果を挙げ、入学当初は想像もできない良い未来を迎えられた」と思えるよう、最大限サポートします。
[研究室HP] URL:https://www.jaist-oshima-labo.com/
新しいプロセス技術を駆使してシリコン系次世代太陽電池を開発しよう
新しいプロセス技術を駆使して
シリコン系次世代太陽電池を開発しよう
次世代シリコン太陽電池研究室
Laboratory on Next-Generation Silicon Photovoltaics
教授:大平 圭介(OHDAIRA Keisuke)
E-mail:
[研究分野]
太陽電池、半導体工学、薄膜形成
[キーワード]
結晶化、パッシベーション、モジュール耐久性
研究を始めるのに必要な知識・能力
学部もしくは高専で習う固体物理、半導体の基礎知識がある方が望ましい。
地球環境問題、エネルギー問題への関心は研究を進める原動力となる。
この研究で身につく能力
各学生の研究テーマを遂行することで、真空装置の取扱いの他、薄膜形成およびその物性評価技術、デバイス作製・評価技術が身につきます。また、データの解析や日々のディスカッション、ゼミ活動などを通じて、特に半導体や太陽電池に関する基礎学力を習得できます。さらに、学生の自主性を重んじる研究室の方針から、いわゆる「指示待ち人間」にならない、問題解決能力の高い人間に成長できます。国内・国際学会での発表や、展示会でのブース展示などを通して、プレゼンテーション能力や、英語も含めたコミュニケーション能力も鍛えられます。
【就職先企業・職種】 大学研究教育職、企業研究職(電機、精密機器メーカー)など
研究内容
地球上に豊富に存在するシリコンを用いた太陽電池は、現在でも市場の大部分を占めており、また今後も、太陽光発電技術の主役であり続けることが期待されています。一方で、さらなる低コスト化、高効率化、長寿命化が求められており、より一層の技術的なブレークスルーが必要です。当研究室では、以下の新技術に着目し、シリコン系高性能太陽電池実現のための基盤技術の確立を目指します。
1.瞬間熱処理による太陽電池用多結晶シリコン薄膜形成
キセノンランプにおけるミリ秒台の瞬間放電を利用したフラッシュランプアニール(FLA)は、数十J/㎠という、瞬間的には地上における太陽光の数万倍の強度のパルス光を照射できます。当研究室では、この手法を、安価なガラス基板上への多結晶シリコン薄膜の形成に応用する検討を行っています。非晶質シリコン膜をガラス基板上に形成し、一度のFLA光照射を行うだけで、膜厚4µm以上の多結晶シリコン膜が形成できます。水素を含有した非晶質シリコン膜を前駆体に用いると、結晶化後も膜内に多量の水素原子が残留し、シリコンの未結合手が終端されるため、低欠陥の多結晶シリコン膜が形成でき、高効率薄膜太陽電池用材料としての利用が期待されます。このFLAによる非晶質シリコン膜の結晶化の現象解明および制御と、形成される多結晶シリコン薄膜の太陽電池応用について研究を行っています。

FLA装置の発光の様子(左)と
Cat-CVD装置の触媒体(右)
2.触媒化学気相堆積(Cat-CVD)の太陽電池応用
加熱触媒体線での接触分解反応により原料ガスを分解して薄膜を形成するCat-CVD法は、膜堆積時の基板材料への損傷を低減でき、結晶シリコン表面でのキャリアの再結合を大幅に抑制可能な高品質パッシベーション膜を形成できます。触媒分解により生成するラジカルを用いたCatドーピングとともに、高効率バルク結晶シリコン太陽電池への応用を目指しています。
3.結晶シリコン太陽電池モジュールの耐久性と新構造開発
多数のモジュールが直列に接続される大規模太陽光発電所などで、モジュールのフレームとセルの間にかかる高電圧が原因で発電特性が低下する、いわゆる電圧誘起劣化(PID) の問題が顕在化しています。当研究室では、結晶シリコン太陽電池モジュールのPIDの機構を解明し、抑止技術を開発する研究を行っています。また、現行の太陽電池モジュールは、各部材が封止材で固められています。そのため、封止材由来の各種劣化が発生し、モジュールを廃棄する際の部材分別やリサイクルも困難です。この問題を解決するため、封止材を用いない新概念モジュールの開発にも取り組んでいます。
主な研究業績
- K. Ohdaira, M. Akitomi, Y. Chiba, and A. Masuda, Potential-induced degradation of n-type front-emitter crystalline silicon photovoltaic modules — comparison between indoor and outdoor test results, Sol. Energy Mater. Sol. Cells 249, 112038 (2023).
- R. Ohashi, K. Kutsukake, H. T. C. Tu, K. Higashimine, and K. Ohdaira, High passivation performance of Cat-CVD i‑a-Si:H derived from bayesian optimization with practical constraints, ACS Appl. Mater. Interf. 16, 9428 (2024).
- Z. Wang, H. T. C. Tu, and K. Ohdaira, Formation of n-type polycrystalline silicon with controlled doping concentration by flash lamp annealing of catalytic CVD amorphous silicon films, Jpn. J. Appl. Phys. 63, 105501 (2024).
使用装置
フラッシュランプアニール装置
触媒化学気相堆積(Cat-CVD)装置
太陽電池特性評価装置
太陽電池モジュール作製および信頼性評価装置
各種薄膜物性評価装置
研究室の指導方針
研究活動は自主性を重んじる方針で、学生自身の発想が研究に活かせます。毎朝一度、研究室メンバー全員が集まるミーティングを行い、その日の各自の活動を報告します。ミーティングでは、簡単な研究の相談もでき、メンバー間のコミュニケーションも十分行えるシステムです。当番の学生が文献紹介を行う勉強会では、細部にわたる質問への回答が求められ、しっかりとした基礎学力が身につきます。学術会議などでの外部発表は、積極的に行います。また、博士前期課程期間中に、英語の論文を執筆し投稿できるよう指導します。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/ohdaira/
結晶が成長する様子を観察してメカニズムを探る
結晶が成長する様子を観察してメカニズムを探る
次世代シリコン太陽電池研究室
Laboratory on Next-Generation Silicon Photovoltaics
講師:前田 健作(MAEDA Kensaku)
E-mail:
[研究分野]
結晶成長、太陽電池、非線形光学
[キーワード]
その場観察、結晶粒界、双晶
研究を始めるのに必要な知識・能力
学部や高専で習う基礎的な物理や数学の知識
思い込みで実験結果を判断せず、公平な視点で研究に取り組む姿勢
この研究で身につく能力
研究活動を通して、実験装置(ガス制御機構、加熱機構、顕微鏡など)の使い方やデータの収集と解析方法が身につきます。
また、定期的なゼミ活動や随時のディスカッションを通して、コミュニケーション能力や問題解決能力が鍛えられます。
失敗と思えるような実験から新しい発見が生まれることはよくあります。普通は気付けないような特徴を注意深く読み取る力や俯瞰的かつ合理的に考察する力など、修了後に社会で活躍する際にも役立つ能力を鍛えて欲しいと願っています。
【就職先企業・職種】 製造業など
研究内容
エレクトロニクス、オプトエレクトロニクスの発展を進めるには、材料となる結晶の高品質化や高性能化が不可欠です。結晶とは原子が規則正しく整列した固体であり、融液や溶液などの環境相から徐々に大きく成長することで形成されます。「成長」という言葉は主に生物に対して使われますが、立派な人間に成るには成長過程が重要であることと同様に、高性能な結晶を得るには成長過程が重要となります。この成長過程を注意深く観察することでメカニズムを解明し、高機能結晶を育てる技術を開発します。
1.薄膜多結晶シリコンの形成過程のその場観察
太陽電池の基板材料には半導体のシリコンが広く用いられています。薄膜多結晶シリコンはガラス基板上の非晶質シリコンにパルス光(フラッシュランプアニール光)を当てることで作ることができ、インゴットを薄くスライスして作る結晶基板よりも生産性とコスト面で優れています。非晶質シリコンが多結晶化する過程を観察することで、太陽電池の劣化の原因となる組織の形成機構を解明し、その形成を抑制する技術を開発します。
2.レーザー波長変換素子(周期双晶結晶)の作製

Li2B4O7の双晶成長過程(左)、顕微鏡観察炉(右)
半導体リソグラフィの極微細化やレーザー加工の超高精度化に伴い、高エネルギー効率で小型の全固体レーザー光源の短波長化が求められています。全固体レーザーは固体レーザーを非線形光学結晶により波長変換することで実現でき、光源にガスを用いるよりも安定で小型な装置となります。
非線形光学結晶の分極を周期的に反転することで変換効率を向上でき、強誘電体に電界印加することで生産されています。本研究では非強誘電体においても周期構造を導入するために、双晶形成を用いた反転技術の開発に取り組んでいます。
3.化合物半導体の融液成長過程の観察
シリコンSiは地殻中で酸素に次いで2番目に多い元素であり、単結晶シリコンは半導体デバイスの基板材料として世界中で広く生産されています。化合物半導体(InSb, GaSb, GaAsなど)の生産量は少ないですが、これからのエレクトロニクスの発展に無くてはならない結晶であり、単結晶育成技術の開発は重要です。結晶が成長する様子を観察して、双晶や粒界などの欠陥がどのように形成されるのか、そのメカニズムを解明することを目指しています。
主な研究業績
- K. Hu, K. Maeda, H. Morito, K. Shiga, K. Fujiwara, In situ observation of grain-boundary development from a facet-facet groove during solidification of silicon, Acta Materialia, 153, 186(2018).
- K. Maeda, A. Niitsu, H. Morito, K. Shiga, K. Fujiwara, In situ observation of grain boundary groove at the crystal/melt interface in Cu, Scripta Materialia, 146, 169(2018).
- K. Maeda, S. Uda, K. Fujiwara, J. Nozawa, H. Koizumi, S. Sato, Y. Kozawa, T. Nakamura, Fabrication of Quasi-Phase-Matching Structure during Paraelectric Borate Crystal Growth, Applied Physics Express, 6, 15501(2013).
研究室の指導方針
研究活動は自主性を重んじる方針で、学生自身の発想が研究に活かせます。毎朝一度、研究室メンバー全員が集まるミーティングを行い、その日の各自の活動を報告します。ミーティングでは、簡単な研究の相談もでき、メンバー間のコミュニケーションも十分行えるシステムです。当番の学生が文献紹介を行う勉強会では、細部にわたる質問への回答が求められ、しっかりとした基礎学力が身につきます。学術会議などでの外部発表は、積極的に行います。また、博士前期課程期間中に、英語の論文を執筆し投稿できるよう指導します。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/ohdaira/
化学と生物の融合による新たな人工タンパク質の創製
化学と生物の融合による
新たな人工タンパク質の創製
人工タンパク質合成研究室
Laboratory on Nonnatural Protein Biosynthesis
教授:芳坂 貴弘(HOHSAKA Takahiro)
E-mail:
[研究分野]
遺伝子工学・タンパク質合成・ケミカルバイオロジー
[キーワード]
遺伝暗号拡張、人工タンパク質、非天然アミノ酸、無細胞翻訳系、蛍光分析
研究を始めるのに必要な知識・能力
タンパク質や遺伝子に興味を持っていること。生物化学・有機化学に関する基礎的な知識や実験技術が必要になりますが、入学後に修得することも可能です。
この研究で身につく能力
遺伝子工学・タンパク質合成・有機合成・蛍光分析などに関する専門的な知識と実験技術を修得することができます。また研究活動を通じて、実験計画の立案・関連研究の調査・実験データの取得と分析・研究成果のまとめとプレゼンテーション、に至る一連の研究プロセスを学ぶことができます。これらの能力は、技術者・研究者としていずれも必要不可欠なものです。
【就職先企業・職種】 化学・生物関連企業、研究機関
研究内容
遺伝子工学・タンパク質合成などの生物化学的手法と、有機合成などの化学的手法を組み合わせることで、新たな人工タンパク質の創製を目指して研究を行っています。具体的には、以下のような研究テーマを進めています。また、研究室で得られた成果を企業と共同で実用化するための研究も行っています。

図1.4塩基コドンを用いた非天然アミノ酸のタンパク質への導入

図2.抗原分子を検出できる蛍光抗体センサーの例
1.遺伝暗号の拡張による非天然アミノ酸のタンパク質への導入
タンパク質はDNAの遺伝暗号に従ってアミノ酸が連なって合成され、それが精密な立体構造を形成することで、高度な機能を発揮しています。しかし生物が使用しているのはわずか20種類のアミノ酸のみです。私たちは、この20種類の制限を超えて、人工的に合成した「非天然アミノ酸」をタンパク質の特定部位に導入することのできる、新たな技術の開発に成功しています。これは、4塩基コドンなどの拡張遺伝暗号に非天然アミノ酸を割り当てる(図1)、という新しい概念によって達成されています。
2.新たな機能を持つ人工タンパク質の創製
上記の技術を利用することで、新たな機能を持った人工タンパク質の創製を進めています。例えば、抗体などの特定の分子を認識して結合するタンパク質に、蛍光分子を付加した非天然アミノ酸を導入することで、蛍光により標的分子を検出できるタンパク質センサーを合成できます(図2)。また、非天然アミノ酸の導入技術を利用することで、新しいタンパク質医薬品の合成も試みています。これらの研究の一部は、企業・研究機関との共同研究により進めています。
3.生物の潜在能力を利用した新たなバイオ技術の開発
非天然アミノ酸のタンパク質への導入技術は、生物がもともと持っている潜在能力を、人工的に引き出して活用したものと言えます。私たちは、そのような生物の持つ潜在能力を新たに見つけ出し利用することで、人工タンパク質などの有用物質を合成することのできる、新たなバイオ技術の開発にも挑戦しています。
主な研究業績
- A. Yamaguchi, T. Hohsaka, Synthesis of novel BRET/FRET protein probes containing light-emitting proteins and fluorescent nonnatural amino acids, Bull. Chem. Soc. Jpn., 85, 576-583 (2012).
- R. Abe, H. Ohashi, I. Iijima, M. Ihara, H. Takagi, T. Hohsaka, H. Ueda, “Quenchbodies”: Quench-based antibody probes that show antigen-dependent fluorescence, J. Am. Chem. Soc., 133, 17386-17394 (2011).
- 芳坂貴弘、非天然アミノ酸のタンパク質への導入技術-バイオメディカル応用に向けて、メディカルバイオ別冊, 72-77 (2010).
使用装置
蛍光分析装置(分光光度計・蛍光寿命測定・蛍光スキャナなど)
遺伝子解析装置(DNAシーケンサー・リアルタイムPCRなど)
質量分析装置
研究室の指導方針
人工タンパク質に関連した研究テーマに対して、実験を通じて新たな成果を挙げるとともに、その研究プロセスを修得することを目標としています。具体的には、各自の研究テーマに対して、実験を試行錯誤的に繰り返す過程を通じて、実験計画の立案、結果の解釈と問題点の把握、次の実験計画へのフィードバック、などを独力で遂行できる能力を鍛錬します。そのために、研究室ゼミでは定期的に研究報告会を開催して、進捗状況の確認と指導・助言を行います。また、研究成果は積極的に学会等で発表する機会を設けています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/hohsaka/
自然環境と生体物質の歴史に学ぶー高分子の世界に挑戦!ー
自然環境と生体物質の歴史に学ぶ
ー高分子の世界に挑戦!ー
DRY & WET ソフトマテリアル研究室
Laboratory on DRY & WET Soft Materials
准教授:桶葭 興資(OKEYOSHI Kosuke)
E-mail:
[研究分野]
高分子科学、光化学、ソフトマター
[キーワード]
ゲル、水、ソフトマテリアルの幾何学、光機能材料、エネルギー変換材料、バイオミメティクス
研究を始めるのに必要な知識・能力
高分子科学、物理化学、材料科学、光化学、ソフトマターの基礎知識や経験を持っていると望ましいでしょう。そして何より、チャレンジングスピリットを強く持っている人、好奇心の強い人、思考の持久力を高めたい人と研究を始めたいと考えています。
この研究で身につく能力
論理説明能力・解釈能力、科学的な仮説検証・立案力、高精度なディスカッション能力、発表能力、英語コミュニケーション力
学問分野:高分子科学、光化学、コロイド科学、界面化学、幾何学、非線形科学など
【就職先企業・職種】 化学メーカー、医療機器メーカー、自動車関連、材料全般、食品関連、化粧品関連など
研究内容
自然界を見渡すと、目に見えるレベルで綺麗なパターンがたくさんあります。たとえば生体組織は小さな分子から「自己組織化」 によって創り上げられています。これは、物質そのものにだけ由来している訳ではなく、外的な環境が強く作用した結果です。変化する環境に適応できるように生命が進化した結果、多様な空間 パターンやリズムが生まれています。
一方、人工的に合成された分子から物理環境を制御してパターンを創り出す研究は歴史的に長くなされています。しかし、合成分子のままでは医療や工業的に材料化する上で困難を極め、生体組織との調和や自然との共生には幾つものハードルがあります。これに対して我々は直近の研究で、天然分子の多糖が自らパターンを再構築する現象を発見しました。ここで、「なぜ」「どのように」パターンをつくるのかを解明できれば、生体適合性と環境適応性を合わせ持つマテリアルを手に入れることができます。
1.DRY でWET な天然多糖の自己組織化
天然から抽出された多糖は、どのようにcmスケールの幾何学パターンを生み出すのか、特に、乾燥環境下で多糖が見せる「空間認識」の法則性を検証しています。DRY でWET な非平衡環境下、ミクロにもマクロにも高分子が組織化して析出してきます。実際の生体組織が常に乾燥環境におかれながらもWETなからだを維持していることを振り返ってみれば、水中から陸上進出した生体高分子の進化を紐解く鍵があるはずです。
2.ソフトマテリアルのパターン制御
生体高分子、合成高分子に関わらず多くのソフトマテリアルは、界面の応力制御によって形態の制御が可能です。ほんの小さな環境の違いや僅かな力学的エネルギー負荷によって、多様な構造や形態を見せます(自己集積、自己相似、フラクタルなど:図参照)。これを利用してDRY でWET な環境に適応した医療用材料の設計法を見出したいと考えています。
これら「自然美の追求」を基に現象の法則性を導くことが究極目標です。そして、生物がなぜパターンを創るようになったのか?自然科学の大命題に挑戦しています。

主な研究業績
- Bioinspired gels: polymeric designs towards artificial photosynthesis. Hagiwara R, Yoshida R, Okeyoshi K, Chemical Communications 60, 13314-13324 (2024).
- Recognition of spatial finiteness in meniscus splitting through evaporative interface fluctuations. Wu L, Saito I, Hongo K, Okeyoshi K, Advanced Materials Interfaces 10, 2300510 (2023).
- DRY & WET: meniscus splitting from a mixture of polysaccharides and water. Okeyoshi K, Polymer Journal 52, 1185 (2020).
使用装置
各種光学顕微鏡、各種光学装置(偏光、蛍光など)、画像解析装置、粘度計、密度計、動的光散乱、電子顕微鏡
研究室の指導方針
社会で働くトレーニング期間として、個人個人の能力を最大限に発揮できるようにサポートします。我々のグループは研究・文化の両面で多様な環境に在り、多角的な視野を構築する上で日本でも稀に見る貴重なチャンスです。突出した先端研究をみなさんと進めたいと考えています。そのためにも以下1−3の基礎を実践していきます。
1. 実験とディスカッションを通して論理的思考力と先見性の能力を養う。
2. 仮説と検証を繰り返し大目標にアプローチする。
3. 学会発表、学術論文発表を念頭に科学的言語を使う。
これらの積み重ねを自信にして創造力を高めていきたいと考えています。熱いハートのみなさん、ぜひ21世紀のパイオニアを目指して一緒にチャレンジしましょう!
[研究室HP] URL:https://sites.google.com/oke-acgroup.com/web/home-j
次世代の細胞計測技術を創り、ニューロン情報処理の秘密に迫る
次世代の細胞計測技術を創り、
ニューロン情報処理の秘密に迫る
神経情報生理学研究室
Laboratory for Neural Information Physiology
准教授:筒井 秀和(TSUTSUI Hidekazu)
E-mail:
[研究分野]
分子生物学、生理学、生物物理学、細胞計測
[キーワード]
神経細胞、分子センサー、次世代計測技術
研究を始めるのに必要な知識・能力
予備知識:分子・細胞生物学や電気回路の基礎などを理解しているとスムーズに研究を開始できますが、初学者にも丁寧に指導します。
求める人材:新しい技術を創出したい人。実験が好きで、試行錯誤や寄り道の楽しさを理解している方。
この研究で身につく能力
分子・細胞生物学、基礎生理学、生物物理学に関する基本的な研究方法や実験手技を理解し、体得します。さまざまな生命現象の仕組みや分子的基礎が詳細に解明されてきましたが、その一方で、広大な領域が未だに謎に包まれたまま残されています。本研究室では、新しい技術を創出し、今までアクセス不可能だった領域に踏み入る意義や楽しさを学びます。こうした新規技術を創り出すための創意工夫、粘り強い探求や試行錯誤を通じて身に付く能力は、学術の世界のみならず、社会や産業の発展を牽引する上で大いに役に立ちます。
【就職先企業・職種】学術、医工学・電気、情報・バイオなど
研究内容
【ニューロン回路の不思議】
柔軟さ、堅牢さ、緻密さを兼ね備えていることが細胞・組織・器官の機能の特徴の一つです。生き物の仕組みを知りたい!そんな素朴な疑問を大切に研究を行っています。具体的には、ニューロン回路における情報処理の秘密に迫るための、新しい細胞計測技術の創出に取り組んでいます。ニューロン回路は究極の生体組織です。0.1ボルト、1ミリ秒程度の電圧信号が回路網を高速に流れ、情報の表現や処理を司っています。この過程を詳細に理解することができれば、疾患の理解や新しい情報処理様式の発見のほか、想像もできない展開も期待できます。しかし、この挑戦は、数多くの障壁に阻まれています。例えば、既存の細胞計測技術では、複雑なニューロン回路の中を伝播する電気信号を十分に詳細に追跡することは困難で、実験的な立場における大きな課題の一つです。研究室では、主に二つの異なるアプローチでこの課題に取り組んでいます。
【次世代の電気生理計測法の探求】

(上)ニューロンの配線メカニズムを用いて作成した微小電極との接合構造
電気生理計測とは、金属やガラス管の微小電極を用いて、細胞の電気的現象を調べる手法の総称です。長い歴史のある計測法ですが、今日の最先端研究でも欠かすことのできない、強力な手法です。しかしながら、細胞認識能を原理的に備えていない、などの本質的な欠点が残されています。研究室では、脳内でニューロンが配線される分子メカニズムと微細加工技術を融合させることで、この課題の解決に取り組んでいます。これまでに、分子生物学的に人工設計したシナプス誘導因子を用いて、特定種のニューロンを特定の電極に接続する基本原理の実証など成功しています。ニューロン活動を読み取る次世代の電気生理技術の創出に向けて、皆さんと様々な工夫をこらし、探求をしていきます。
また、思いもよらぬ方向から、研究の突破口が開けることも多くあります。既成概念にとらわれず、不思議・楽しい!を大切にし、色々な技術や考え方を学際的に学び、日々の研究に活かしていくことを心掛けています。
【ニューロン活動を可視化する分子センサー】

(左)分子センサーの性能試験の様子
(中央)分子センサーを発現した神経細胞
(右)試作した次世代電気生理技術の原理実証用の微小電極
ある種の細胞には膜電位の変化(電圧信号)を感知するための分子が備わり、電圧信号を増幅し、細胞外環境に応じて細胞内の環境を変化させています。こうした分子を部品として使うことで、電圧信号を光の信号として可視化するセンサー分子を創ることが出来ます。研究室ではこれまでに単一細胞の単一スパイクを可視化することなどに成功してきています。皆さんといろいろなアイディアを持ち寄り、センサーのさらなる高速・高感度化を目指したいと考えています。また、細胞に備わるそうした分子が、そもそもどのような仕組みで電圧信号を感知しているのか?といった基礎的な問題にも興味を持って研究を進めています。
主な研究業績
- K. Sekine, et al., Neuron-microelectrode junction induced by an engineered synapse organizer, Biochem. Biophys. Res. Commun. p149935, 2024.
- W. Haga, et al., Development of artificial synapse organizers liganded with a peptide tag for molecularly inducible neuron-microelectrode interface, Biochem. Biophys. Res. Commun., vol. 699, 2024.
- S. Kim, et al., Formation of neuron-microelectrode junction mediated by a synapse organizer, Appl. Phys. Express, vol. 16, 2023.
使用装置
各種光学顕微鏡・走査型電子顕微鏡
電気生理・電気化学計測関連機器
薄膜作成・微細加工装置
細胞・組織培養関連機器
分子生物学関連機器
研究室の指導方針
研究は自由で楽しいものであるべきと考えますが、それもバックグラウンドの正しい理解や確かな実験技術に基づくはずです。まずは正確な実験や観察が行えるようになる事に努めます。研究結果の定期的な発表(プログレスレポート)および論文紹介(ジャーナルクラブ)を通じてプレゼンテーション力を身につけます。英語専門書を一つ選定して、輪読を行い、研究の背後にある概念や文化を理解する事にも重点を置きます。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/tsutsui/wordpress/
エネルギー変換の最先端 ―未利用廃熱の高効率回収―
エネルギー変換の最先端 ―未利用廃熱の高効率回収―
R7年10月以降に入学する学生の受け入れは行いません
小矢野研究室 KOYANO Laboratory
教授:小矢野 幹夫(KOYANO Mikio)
E-mail:
[研究分野]
固体物性、熱電変換
[キーワード]
物理・実験系、低次元伝導体、熱電変換の物理、熱電材料、エネルギーの有効利用、エネルギーハーベスティング
研究を始めるのに必要な知識・能力
物理の実験系の研究室ですが、出身分野にはこだわりません。今までにも物理系、電子・電気系、機械系、化学系の学生が本研究室に来て活躍しています。JAISTに入学してから、応用物性数学、量子力学、固体物理学など自然科学系の講義を受講してもらうことをお願いしています。
この研究で身につく能力
物理系のみならず多様な分野から来た学生が、総合的な科学技術としての熱電変換の研究を行うことにより、修了後に企業や研究機関で社会に貢献することを目指しています。私たちの研究室で身につけられる能力は、具体的には以下のとおりです。
- 実際に手を動かしてものを作る面白さを知ること。
- 先端的な実験機器を用いた物理研究と実験手法の習得。
- 物理的または科学的な考え方の習得、ものごとを定量的に捉える力の獲得。
- プレゼンテーション能力、科学的な論文(主として日本語)の作成の方法。
【就職先企業・職種】 製造業ほか
研究内容

テトラヘドライト

硫化物熱電材料

ポストグラフェン材料
ゼーベック効果やペルチェ効果などを利用した『熱電変換技術』を使うと、熱エネルギーと電気エネルギーの相互変換が出来るため、廃熱から直接発電を行う『熱電発電』が可能となります。私たちの研究室では、【はかる】【つくる】【さがす】という3本の柱で熱電変換に関する研究を行っています。
【はかる】微小スケールの熱電性能の測定
「はかる」とは熱電材料の特性をはかるための評価手法の開発という意味です。近年、微細な構造を持った新規熱電素子が開発されていますが、システム自体が小さく測定が難しいため、新しい評価手法の開発が望まれています。
私たちの研究室では、3ω法(スリーオメガ法)と呼ばれる熱伝導率測定法を改良して、Bi-Te 系熱電ナノ粒子凝集体の熱伝導率を測定することに成功しました。さらにこの3ω法を改良することにより、遷移金属トリカルコゲナイドナノワイヤーの熱伝導率測定にもチャレンジしています。またポイントコンタクト型局所熱電性能測定法も開発しており、将来的にはグラフェンやポストグラフェンなど先端材料のフォノン物性を解明することを目指しています。
【つくる】インクジェット技術を用いた新規熱電モジュールの開発
実際に熱電発電を行うためには、Bi-Te 系熱電素子を多数配列させた熱電モジュールを作製しなければなりません。われわれは、LCD 用カラーフィルターの製造に利用されているインクジェット技術を熱電モジュール作製に応用するという、新たな製造プロセスの開発を行いました。
インクジェット印刷を用いることにより、従来作製が難しかった微小サイズモジュールや、ポリイミドをはじめとするフレキシブルな基板を用いたモジュールの試作に成功しました。今後は、焼成後の素子の密度と粒子配向性の向上といった課題を解決し、既存の分野およびエネルギーハーベスティングなど新しい分野への応用展開を図ることを予定しています。
【さがす】新しい熱電変換材料の創製
現在実用化されている熱電材料(Bi-Te 系材料)は、構成元素のTe が希少・高価であるという問題を抱えています。この問題を解決するため、私たちはTe の代替元素として硫黄(S)を用いた化合物、すなわち新しい硫化物熱電材料の開発を行っています。
最近、私たちはテトラヘドライトと呼ばれる熱電鉱物Cu12Sb4S13が、実用化されている材料と比べても遜色ない性能を示すことを発見しました。この材料は母体のままでも良好な熱電性能を示しますが、さらに、Cu サイトをNi で置換することにより熱電性能を約1.4倍向上させることに成功しました。
これ以外にも、多様な硫化物の低次元伝導体や、熱電材料と磁性体のハイブリッド材料の合成・開発を行い、その基礎物性や熱電性能を調査しています。
主な研究業績
- Development of thermal conductivity measurement system using the 3ω method and application to thermoelectric particles, S. Nishino, K. Suekuni, K. Ohdaira, and M. Koyano, Journal of Electronic Materials (2014), DOI: 10.1007/s11664-014-2993-9.
- High-performance thermoelectric mineral Cu12-xNixSb4S13 tetrahedrite, K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, Journal of Applied Physics 113, 043712 (2013)
- 廃熱も電気に変える熱電発電,小矢野幹夫,Ohm Bulletin, 2014年 VOL.49 冬号(通巻200号)pp. 02.
使用装置
物理特性測定装置 PPMS(熱電性能、電気伝導の測定)
ラマン散乱分光装置(固体中の素励起のエネルギー分析)
管状電気炉・マッフル炉(無機材料の合成)
ホットプレス装置(粉体試料の加圧焼結・配向制御)
研究室の指導方針
『多様な物性に多様な価値観で挑む』をモットーに、今まで誰も知らなかった新しい現象を発見したり、新規材料を創製することを目指しています。小矢野研は『エネルギーに興味がある人』『無機材料を自分で作ってみたい人』『科学や物理が好きな人』 を歓迎します!
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/kotai/koyano/index.html
材料とバイオを使ってゲームチェンジングテクノロジーを生み出す!
材料とバイオを使ってゲームチェンジング
テクノロジーを生み出す!
先進生物工学研究室 Laboratory on Advanced Bioengineering
教授:都 英次郎(MIYAKO Eijiro)
E-mail:
[研究分野]
生物工学、材料化学、ナノテクノロジー、ナノメディシン
[キーワード]
ナノロボット、ナノバイオ、ナノ材料、生体機能材料、バイオテクノロジー、バイオミメティクス
研究を始めるのに必要な知識・能力
研究を始めるにあたり特別な知識・能力は問いません。本物の科学者や世界で活躍できる第一線の研究者に本気でなりたいと考えている学生を募集しています。特に新しい技術や新分野を開拓しようと柔軟性、協調性、好奇心、志を持った熱心な学生を求めています。
この研究で身につく能力
私たちの研究室では色々な研究手法を組み合わせた学際的な研究を行っているので多くのことを学ぶことができます。例えば、有機合成、生化学、遺伝子工学、細胞や動物実験に係る手技、ナノ材料、医療用デバイス、ロボットなどの様々な知識や技術を習得することができます。
研究内容

図1. 革新的ナノバイオシステム創出を目指したナノロボットの一例(生体内で光と磁場で駆動するナノトランスポーター)。

図2. 全自動人工花粉交配を目指したミツバチ型ロボット(プロトタイプ)。効率的に花粉を運ぶために粘着性ゲルを塗布した動物体毛を極小ドローンの下部に取り付けている。
私たちの研究室の興味は、生物工学、材料化学、ナノテクノロジー、ナノメディシンの領域にあります。
例えば、我々の研究室では、ナノ材料の様々な物理化学的特性を活用することで、ナノスケールレベルで体の中の生物学的な活性や健康状態をモニターし、制御可能な革新的ナノバイオシステムの開発に挑戦しています(図1)。また、本研究目的のために高性能ナノロボットの合成、それらの表面工学、集合体を研究し、作製したナノロボットを上記の研究領域に統合することに注力しています。さらに、合成したナノロボットの構造と機能の関係における根本的な理解にも努めています。これらの研究はナノテクノロジー等の基礎研究としても重要ですが、とりわけ医学・薬学の分野において有用な知見と病気の治療法を提供できると期待しています。
一方、我々は食品産業や農業分野のためにも社会を一変させる革新的な技術(ゲームチェンジングテクノロジー)を創出しようと奮闘しています。現在、農作物の生産量に直結するミツバチなどの花粉媒介昆虫の減少が世界規模の問題となっています。昆虫を使った花粉交配法の代替手段として古来より羽毛や筆を用いた人の手による人工的な受粉が行われていますが、この方法は手間と労力が掛かる上、実際に作業を行う農家の方々の高齢化と人手不足が深刻な状況になっています。そこで我々の研究室では、全自動の人工花粉交配技術を構築すべく、自然から着想を得て設計するネイチャーインスパイアード材料とロボット工学を融合した研究を行っています(図2)。
このように我々の研究は、化学、物理、生物、材料科学、工学といった多くの研究分野から成る学際的な性質によって成り立っています。
過去の代表的な研究テーマ
- 体の中で光発電するナノデバイス
- 液体金属ナノトランスフォーマー
- 超分子ナノ電車
- 細胞を刺激するナノモジュレーター
- ナノ材料の光発熱を利用した遺伝子発現制御
- 光と磁場で駆動するナノトランスポーター
- 材料工学を駆使した花粉交配用ミツバチロボット
これらは単なる一例にすぎません。自然科学を理解・開拓し、革新的な新技術、ひいては新分野そのものを一緒につくりましょう!
主な研究業績
- Yue Yu, Xi Yang, Sheethal Reghu, Sunil C. Kaul, Renu Wadhwa, Eijiro Miyako*, "Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes" Nature Communications 11, 4117 (2020).
- Svetlana A. Chechetka, Yue Yu, Xu Zhen, Manojit Pramanik, Kanyi Pu, Eijiro Miyako*, “Light-driven liquid metal nanotransformers for biomedical theranostics” Nature Communications 8, 15432 (2017).
- Eijiro Miyako*, Kenji Kono, Eiji Yuba, Chie Hosokawa, Hidenori Nagai, Yoshihisa Hagihara “Carbon nanotube-liposome supramolecular nanotrains for intelligent molecular-transport systems” Nature Communications 3, 1226 (2012).
使用装置
レーザー、蛍光顕微鏡、電子顕微鏡、紫外-可視-近赤外分光光度計、蛍光光度計など
研究室の指導方針
ディスカッション、雑誌会、定期ミーティング、学会などを通じて、実験の解析技術、独立した思考能力、論理的な表現力などが身に付くように指導します。特に、博士後期課程への進学希望者には、最新かつ国際的な研究環境を提供し、産業やアカデミアの研究ポジションが得られるように育成します。研究室のコアタイムは基本的には1時間の休憩を除いた9時から17時です。このため効率的、効果的、スピーディに作業をしなければいけません。メリハリをもって研究も余暇もエンジョイしましょう。
[研究室HP] URL:https://miyakoeijiro.wixsite.com/eijiro-miyako-lab
リチウムイオン電池の劣化原因をナノスケールで可視化 ― 新手法「ケプストラム照合解析」で電池現象の解明に貢献 ―
![]() ![]() |
北陸先端科学技術大学院大学 東京科学大学 |
リチウムイオン電池の劣化原因をナノスケールで可視化
― 新手法「ケプストラム照合解析」で電池現象の解明に貢献 ―
【ポイント】
- リチウムイオン電池の劣化につながる正極の結晶構造変化をナノメートルスケールで可視化
- 新開発の「ケプストラム照合解析」により、高空間分解能・広視野・低損傷を同時に実現
- 電池劣化の原因となる界面での構造変化を解明し、高性能電池開発への貢献に期待
| 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域の麻生浩平講師、掛谷尚史大学院生(博士後期課程)、土田拓夢大学院生(博士前期課程)、大島義文教授、東京科学大学 物質理工学院応用化学系の伊藤広貴大学院生(博士前期課程)(研究当時)、淺野翔大学院生(博士後期課程)(研究当時)、渡邊健太助教、平山雅章教授、物質・材料研究機構 マテリアル基盤研究センターの三石和貴副センター長、木本浩司センター長、蓄電池基盤プラットフォームの篠田啓介エンジニア、エネルギー・環境材料研究センターの増田卓也センター長の研究グループは、リチウムイオン電池の結晶構造変化をナノメートル (nm:10億分の1メートル)スケールで可視化する新手法「ケプストラム照合解析」を確立しました。 新手法によって、従来の分析手法では困難だった、高空間分解能(約1 nm)・広視野(数百nm)・試料低損傷の三点を同時に実現しました。そして、この手法をエピタキシャル薄膜*1として作製したコバルト酸リチウム(LiCoO2)正極に応用することで、電解質との界面付近において、電池劣化の原因となるナノスケールの構造変化を可視化することに成功しました。今回、開発された手法は、電池における構造変化の理解を加速することで、電池の劣化原因解明や高性能化に役立つと期待されます。 本研究成果は、2025年10月21日(米国東部標準時間)に科学雑誌「Nano Letters」誌のオンライン版で公開されました。 |
【研究概要】
スマートフォンや電気自動車にはリチウムイオン電池(LIB)が欠かせません。その正極として広く用いられている材料が、層状の結晶構造(原子の並び方)を有するリチウム遷移金属酸化物(以下、層状正極)です。LIBの長時間稼働を実現するには、より高電圧で動かすことが重要となります。一方、高電圧で充放電を繰り返すと、液体電解質と接する界面において、層状正極がスピネル構造や岩塩構造*2に変化して、LIBの劣化を引き起こします。界面を起点として数nm のスケールで進行する構造変化を理解するために、解析が求められてきました。
従来の光やX線を使った観察では、空間分解能が数十〜数百nmに限られます。電子顕微鏡なら原子スケールで観察できますが、観察視野が約50×50 nm2に制限される課題と、多量の電子照射によって観察中に試料が損傷する課題がありました。つまり、「ナノ空間分解能」「広視野」「低試料損傷」の三つを両立して、層状正極の構造を解析できる手法がありませんでした。
本研究グループでは、層状正極の代表例であるコバルト酸リチウム(LiCoO2)の構造(図1a)を調べるために、先進的な電子顕微鏡手法の一つである走査ナノビーム電子回折*3に注目しました (図1b)。これは、直径約1 nmの電子線をスキャンさせながら試料に照射し、結晶構造を反映する電子回折図形を得て、高速カメラに記録する手法です。高電圧で100サイクル充放電させたエピタキシャルLiCoO2について、あるスキャン位置での回折図形(図1c)と、結晶構造モデルから計算した回折図形(図1d)とで差異が認められます。電子回折図形には、結晶構造の情報に加えて、試料の厚さや僅かな傾きに依存するスポットの強度変化が含まれるため、比較が困難です。
そこで、音声信号処理で用いられるケプストラム解析*4に着目しました。ケプストラムは、回折図形の強度を対数変換してフーリエ変換し、その振幅を得ることで求められます。実験と計算のケプストラム(図1e、f)では、試料の厚さや傾きを反映する成分は中心スポットに、結晶構造の周期性を反映する成分は周囲のスポットにそれぞれ分離されます。構造由来のスポットは実験と計算でよく一致するため、この領域が層状構造だと分かります。この一致度は、相互相関関数(2つの画像が似ているほど高い値を示す関数)を用いることで、数値として評価できます。層状構造に加えて、スピネルや岩塩構造についても同様の解析を行い、試料各位置での構造を調べました。独自に開発した一連の解析を「ケプストラム照合解析」と名付けました。
結晶構造の合成マップ(図1g)では、LiCoO2正極の大部分はもとの層状構造を保持していましたが、電解質との界面から正極側へ約3 nmにかけてスピネル・岩塩構造が観察されました。本手法は、約1 nmの高空間分解能と、正極の内部と界面の両方をカバーする約300×100 nm2の広視野を同時に達成しました。さらに、原子分解能電子顕微鏡など電子線を多用する他の手法と比べ、本手法の照射量は2ケタ以上低いことが分かりました。観察中の試料損傷を低減でき、従来手法よりも信頼性の高い結果が得られます。
界面での構造変化に対して、LiCoO2正極を別の物質でコーティングして保護する対策や、異なる元素をわずかに添加する対策が提案されています。さらに、次世代デバイスとして注目を集めている全固体LIBでも、ナノスケールの構造変化が生じると報告されています。今後、本手法を活用することで、劣化メカニズムの詳細な解明や、コーティングや添加などの効果の検証を計画しています。本成果は、LIBの現象解明を目指す学術研究や、高性能LIB開発に広く貢献すると期待されます。

| 図1(a)[100]方位から見た層状LiCoO2の結晶構造モデル。(b)走査ナノビーム電子回折の模式図。(c)実験と(d)計算の電子回折図形。(e)実験と(f)計算のケプストラム。中心以外の明るいスポットが結晶構造に由来します。(g)結晶構造の合成マップ。青、緑、赤色が強いほど、層状、岩塩、スピネル構造であることを示します。 |
【研究資金】
本研究の一部は、日本学術振興会(JSPS) 科研費(JP22K14473、JP25K18108、JP24H00042)、科学技術振興機構(JST) 革新的GX技術創出事業(GteX)プログラム(JPMJGX23S5、JPMJGX23S6)、同 戦略的創造研究推進事業 先端的低炭素化技術開発(ALCA)、物質・材料研究機構(NIMS) 連携拠点推進制度、三谷研究開発財団、澁谷学術文化スポーツ財団、池谷科学技術振興財団、中部電気利用基礎研究振興財団、旭硝子財団、北陸先端科学技術大学院大学 研究拠点形成支援事業の支援を受けて実施されました。本研究の一部は、NIMS蓄電池基盤プラットフォーム、マテリアル先端リサーチインフラ(JPMXP1222JI0007、JPMXP1223JI0012、JPMXP1224JI0005)にて実施されました。
【論文情報】
| 雑誌名 | Nano Letters |
| 論文名 | Low-Dose Nanoscale Visualization of Crystal Phases in Epitaxial Cathodes via Cepstral Matching of Scanning Nanobeam Electron Diffraction |
| 著者 | Kohei Aso, Takafumi Kakeya, Takumu Tsuchida, Hiroki Ito, Sho Asano, Kenta Watanabe, Kazutaka Mitsuishi, Koji Kimoto, Keisuke Shinoda, Takuya Masuda, Masaaki Hirayama, and Yoshifumi Oshima |
| 掲載日 | 2025年10月21日 |
| DOI | 10.1021/acs.nanolett.5c03692 |
【用語説明】
目的の物質を、基板の結晶構造に合わせて成長させた薄膜。本研究ではチタン酸ストロンチウム(SrTiO3)(111)基板上に成長させたLiCoO2薄膜を用いています。結晶方位や露出表面を制御できるため、通常の粉末多結晶正極よりも観察が容易になります。
おおむね、層状LiCoO2からリチウム(Li)が抜けて、そこに一部のコバルトが入り込んだ構造。層状構造ではLiイオンが(003)面内を2次元的に移動できますが、スピネル構造や岩塩構造ではその経路が失われるため、Liイオン伝導性が低下します。さらに、一度これらの構造に変化すると層状構造には戻りにくくなります。そのため、高電圧で充放電を繰り返すとLIBの劣化につながります。特に、充電の最大電圧が4.2V(vs Li/Li+)超えたときに現れやすいです。
細く絞った電子線を試料上で走査し、各位置で電子回折図形を記録する手法。回折波の配置を解析することで、試料の結晶構造を求めることができます。実空間2次元と逆空間2次元に対する強度を示す、複雑かつ膨大な4次元データが得られるため、適切なデータ処理を施して情報を抽出する必要があります。
音声を解析するために開発された、信号の細かく変化する成分となだらかに変化する成分を分離する信号処理手法。音声分野では、声帯での原音成分と、口や鼻での共鳴によって原音から変化した成分とを分離する目的で用いられます。
令和7年10月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/10/28-2.html令和7年度 第2回 超越バイオメディカルDX研究拠点 ネオ・エクセレントコアセミナー(科研費「新規細胞内氷晶形成測定法の開発と次世代三次元組織凍結保存」共催セミナー)
下記のとおりセミナーを開催しますので、ご案内します。
| 日時 | 令和7年10月24日(金) 13:30~16:55 |
| 場所 | JAISTイノベーションプラザ 2F シェアードオープンイノベーションルーム |
| 概要 | 本セミナーでは、凍結保存の新展開を切り拓く先端センシング技術を紹介します。高分子凍結保護剤の開発から、高磁場DNP-MAS-NMRやダイヤモンド量子センサー、スーパーコンピュータを活用した計算科学、さらにX線・中性子散乱による微細構造解析、液化窒素式機器の開発まで、量子・高磁場・放射光・計算科学の最前線研究を結集し、凍結保存の未来を展望します。 |
| プログラム | 13:30 開始 開会あいさつ 13:35 「高分子凍結保護剤の開発と凍結状態センシングへの挑戦」 松村 和明 教授 (北陸先端科学技術大学院大学) 14:05 「高磁場DNP-MAS-NMR法の装置と方法論の開発」 松木 陽 准教授 (大阪大学) 14:35 「ダイヤモンド量子センサーのバイオ応用概観」 安 東秀 准教授 (北陸先端科学技術大学院大学) 15:05-15:20 コーヒーブレーク 15:20 「JAISTスパコンを活用したデータ駆動型材料研究」 本郷 研太 准教授 (北陸先端科学技術大学院大学) 15:50 「X線/中性子散乱による凍結保存における細胞微細構造センシング」 中田 克 氏 (株式会社東レリサーチセンター) 16:20 「液化窒素式凍結保存機器の開発」 吉村 滋弘 氏 (太陽日酸株式会社) 16:50 終了 閉会あいさつ |
| 使用言語 | 日本語 |
| 参加申込 | ・参加費無料 ・要予約(定員30名) 下記の担当へ前日までにメールにてお申し込みください。 【本件担当・予約申込先】 北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点 拠点長 松村 和明 (mkazuaki |
ユネスコ無形文化遺産「金沢金箔」の薄さと輝きを生む謎を解明 ―伝統工芸と材料科学が出会う、新たな発見―
![]() |
北陸先端科学技術大学院大学 大阪大学 |
ユネスコ無形文化遺産「金沢金箔」の薄さと輝きを生む謎を解明
―伝統工芸と材料科学が出会う、新たな発見―
【ポイント】
- 金沢金箔は、打ち延ばす工程によって箔全体を立方晶{001}集合組織(結晶粒の結晶方位が特定の方位に集中している状態)に配向させていることを解明。
- 金箔の上下に和紙を挟んで叩くことで温度上昇を防ぎ、再結晶化や回復を阻止。
- 通常は働かない{110}すべり系(原子の層がずれて動く仕組み)が特別に活性化し、箔全体の均一な薄さと輝きを実現。
| 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域のXU, Yuanzhe大学院生(博士後期課程)、麻生浩平講師、村田英幸教授、大島義文教授、大阪大学 超高圧電子顕微鏡センターの市川聡特任教授(常勤)の研究グループは、最新の電子顕微鏡技術により、ユネスコ無形文化遺産に登録されている金沢金箔の箔打ち工程で「再結晶や回復を防ぐ工夫」や「特殊な滑り面の働き」を確認することに成功し、金沢金箔の薄さと輝きを保つ仕組みを世界で初めて解明しました。この成果は、金沢金箔の保存・継承に貢献するだけでなく、将来的にナノ材料や高機能薄膜の開発にもつながる可能性があります。 本研究成果は、2025年9月26日 (英国標準時間)に科学雑誌「npj Heritage Science」誌のオンライン版で公開されました。 |
【研究概要】
金沢金箔(図1(a))は、寺社仏閣や伝統工芸品を飾るだけでなく、文化財の修復に不可欠な素材です。その特徴は「世界で最も薄い金属箔」(わずか100ナノメートル=髪の毛の約1/1000)という極薄性と、変わらない光沢にあります。この魅力から、ユネスコ無形文化遺産に登録されました。これまでの研究では、金沢金箔が安定した{001}集合組織を形成することは知られていましたが、その過程は不明でした。通常の金属では、箔打ちにより{110}集合組織が発達しますが、同時に再結晶や回復が起き、面内の結晶方位はランダムになると考えられていました。したがって、なぜ金沢金箔が均一で安定した{001}集合組織を示すのかは長年の謎でした。この謎を解き明かすことは、伝統工芸の継承と材料科学の進展の双方にとって重要な課題です。本研究では、最先端の技術である、電子後方散乱回折(EBSD)*1と世界最高加速電圧の超高電圧透過電子顕微鏡(UHVEM)*2 (加速電圧 2MV)を用いて、無加工で系統的に金沢金箔の分析を行いました。その結果、従来の金属学では予想されなかった「非八面体すべり系」という特殊な変形が室温の槌打ち工程で活性化し、金箔の結晶配向を整えることを明らかにしました。
本研究では、製造の中間段階にあたる「金澄(約1 μm)」と最終段階の「金箔(約100 nm)」を対象とし、電子後方散乱回折(EBSD)*1および超高電圧透過電子顕微鏡(UHVEM)*2を用いて局所的な結晶性の調査を行いました。その結果、金澄は、面内の結晶方位はランダムな{110}集合組織となっていましたが、転位密度が高く、再結晶が起きていないことがわかりました。一方、最終段階の金箔は、面内の結晶配向も高い{001}集合組織となっていました(図1(b))。ただし、転位密度は著しく増加しており、回復や再結晶が生じていないことを示唆していました。加えて、{110}面に平行な多数のすべり帯があり、その多くが直交していることを観察しました(図1(c))。この事実は、非八面体的な{110}-<110>すべり系が活性化していることを示唆しています。通常の面心立方晶(FCC)金属では、このような非八面体のすべり系が動くことはなく、金箔が特殊な変形状態にあることがわかりました。
以上の結果から考察を行い、金沢金箔は従来のFCC金属とは異なる変形メカニズムによって特異な集合組織を形成することが分かりました。具体的には、熱間圧延や焼鈍処理を施した金属材料と異なり、金沢金箔は再結晶や回復を伴わずに加工が進行しています。そのため、箔打ち過程において転位が絡み合うため、通常活性化する{111}-<110>すべり系が抑制されます。また、膜厚が転位ループのサイズに近い200 nm程度になると、転位ループの一部が表面を突き抜けるため、薄膜全体を貫通するらせん転位が多数残存します。これらのらせん転位は動きやすいため、交差すべりが生じやすくなります。この交差すべりが進化した結果、非八面体的な{110}-<110>すべり系が活性化します。この{110}-<110>すべり系は、箔打ち方向に対し、結晶方位を[110]から[001]へ徐々に回転させることができます。なお、加工時に金箔の上下に和紙を挟んで叩くことで、表面摩擦を低減するとともに温度上昇を防いでいました。つまり、この温度制御によって再結晶や回復が抑制され、上述したような特殊な変形が実現したと説明できます。
本研究の成果は、金沢金箔という無形文化遺産の科学的理解を深め、伝統技術の保存・継承に確かな裏付けを与えるものです。これにより、文化財修復における信頼性の向上や、安定供給に向けた技術支援が可能になります。さらに、極薄金属膜における特殊な変形メカニズムの知見は、構造敏感な次世代のナノ材料や高機能薄膜デバイスの開発にも応用が期待されます。具体的には、電子材料、センサー、装飾材など、従来にない性能やデザイン性を備えた新しい製品の創出につながる可能性があります。

| 図1 (a) 金沢金箔の写真。(b)金沢金箔の電子後方散乱回折(EBSD)から得た方位マップ。色は、箔打ち方向に対する結晶方位を示します(赤は、[001]方位)。(c) 最終段階の金沢金箔のTEM像。黒い帯に対応する[110]方位に沿ったすべり帯は、お互いに直交しています。 |
【論文情報】
| 雑誌名 | npj Heritage Science |
| 論文名 | Deformation mechanism behind the unique texture of Kanazawa gold leaf |
| 著者 | Yuanzhe Xu, Satoshi Ichikawa, Kohei Aso, Hideyuki Murata, and Yoshifumi Oshima |
| 掲載日 | 2025年9月26日 |
| DOI | 10.1038/s40494-025-02055-5 |
【用語説明】
材料表面で後方に散乱した電子回折の菊池パターンを解析し、ナノメートルの分解能で結晶方位、組織、転位密度のマップを得ることができます。
通常の透過電子顕微鏡の加速電圧が100-200 kVであるのに対し、超高電圧透過電子顕微鏡の加速電圧は、2MVと一桁大きい。そのため、入射電子の透過能が高く、厚い試料の内部構造を観察することができます。本研究の金箔、金澄を観察用に薄片加工することなくそのまま観察することができます。
令和7年10月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/10/07-1.html特殊なダイヤモンドの針を開発し超高速で変化する電場の局所計測に成功
![]() ![]() ![]() |
| 国立大学法人筑波大学 国立大学法人 慶應義塾大学 |
特殊なダイヤモンドの針を開発し
超高速で変化する電場の局所計測に成功
NV中心と呼ばれる格子欠陥を導入したダイヤモンドを原子スケールの空間分解能を持つ原子間力顕微鏡(AFM)の探針(プローブ)に用い、二次元層状物質の表面近傍の電場をフェムト秒(1000兆分の1秒)・ナノメートル(10億分の1メートル)の時空間分解能で計測することに成功しました。
| ダイヤモンドの結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがあります。これをNitrogen-Vacancy(NV)中心と言います。そして、NV中心を導入したダイヤモンドに電界を加えると、その屈折率が変化するようになります。これは電気光学(EO)効果と呼ばれる現象で、ダイヤモンド単体では実現していませんでした。 本研究チームはこれまでに、NV中心を導入した高純度ダイヤモンドに1000兆分の1秒という極めて短時間だけパルス光を放出するフェムト秒レーザーを照射し、ダイヤモンドのEO効果を計測することで、ダイヤモンドの格子振動ダイナミックスを動的に高感度に検出することに成功しています。このことは、ダイヤモンドが超高速応答するEO結晶として利用可能で、電場を検出する探針(ダイヤモンドNVプローブ)となり得ることを示しています。 そこで本研究では、NV中心を導入したダイヤモンドの超高速EO効果と、原子スケールの空間分解能を有する原子間力顕微鏡(AFM)技術とを融合し、フェムト秒(fs=1000兆分の1秒)の時間分解能とナノメートル(nm=10億分の1メートル)の空間分解能で局所的な電場のダイナミックスを測定できる、時空間極限電場センシング技術を開発しました。そして、このセンシング技術を用いることで、二次元の原子層が層状に重なった二次元層状物質であるセレン化タングステン(WSe2)試料の表面近くの電場を500 nm以下かつ100 fs以下の時空間分解能でセンシングできました。 ダイヤモンドNVプローブはスピンや温度の変化にも感度があるため、本研究成果は、電場の検出に加え、磁場や温度を検出するためのセンシング技術としても展開されることが期待されます。 |
【研究代表者】
筑波大学数理物質系
長谷 宗明 教授
北陸先端科学技術大学院大学ナノマテリアル・デバイス研究領域
安 東秀 准教授
慶應義塾大学理工学部
ポール フォンス 講師(研究当時、同大学同学部電気情報工学科教授)
【研究の背景】
ダイヤモンド中の不純物には窒素やホウ素などさまざまな種類があります。その中でも、点欠陥に電子や正孔が捕捉され、発光を伴う種類のものはダイヤモンドを着色させるため、「色中心:カラーセンター」と呼ばれます。色中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、温度や電場を読み取る量子センサー注1)として用いられています。
量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心注2)と呼ばれる複合欠陥を用いたセンサーは、まだまだ発展途上の技術ですが、高空間分解能・高感度が要求される細胞内計測やデバイス評価装置のセンサーへの応用など、新しい可能性が期待されています。
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬くフェムト秒超短パルスレーザー注3)を用い、NV中心を導入したダイヤモンドの電気光学(EO)効果注4)を実時間分解計測することで、ダイヤモンドの格子振動ダイナミックスを動的に高感度に検出することに成功しています参考文献 a)。このことは、ダイヤモンドが超高速応答するEO結晶になり、電場検出の探針(プローブ)となり得ることを示すものです。
これまでもダイヤモンドを原子間力顕微鏡(AFM)注5)と組み合わせた電場センシングの試みはなされていましたが、局所ダイナミックスを動的に評価できる手法はほとんどありませんでした。特に時間分解能に関しては、発光測定に基づく従来の手法ではナノ秒程度が限界であり、ピコ秒以下の超高速時間分解能に関しては、全く開拓されていませんでした。
【研究内容と成果】
本研究では、量子光学(フェムト秒超短パルスレーザーを用いたダイヤモンドのEO効果)と走査プローブ顕微鏡(SPM)の一種である原子間力顕微鏡(AFM)技術を融合することで、光の回折限界を超える空間分解能に加えて、今までの検出限界を超える超高速時間分解能で局所的な電場計測を実現することを目指しました(図1)。
極めて不純物が少ない高品質のダイヤモンド結晶の表面近傍(深さ40nm)に、密度を制御したNV中心を導入し、そのダイヤモンド結晶をレーザーカットおよび集束イオンビーム(FIB)技術注6)を駆使することで、先端径が500 nm以下のダイヤモンドNVプローブに加工することに成功しました。このダイヤモンドNVプローブを、フェムト秒超短レーザーを組み込むことが可能な、ピエゾ抵抗効果注7)に基づく自己センシング方式注8)のAFMのカンチレバーに取り付けました(図2)。
このシステムを用いて、まずガリウムヒ素(GaAs)半導体基板の表面電場を調べました。フェムト秒超短パルスレーザーの出力光をビームスプリッタで約10対1に分岐し、強い方を励起のためのポンプ光、弱い方を探索のためのプローブ光とします。電子が電流を運ぶn型GaAs試料は高強度のポンプ光で励起され、プローブ光はダイヤモンドNVプローブに入射されます(図3a)。まず、ダイヤモンドNVプローブの有無による時間分解EO信号の検出感度を確認するため、ダイヤモンドNVプローブを用いないマクロ計測により時間分解EO信号を計測したところ、励起直後(Time delay=時間遅延0 ps)に立ち上がり、数ps(ps=1兆分の1秒)以内に緩和しポンプ光を当てる前に戻る信号が得られました(図3b)。またNVセンターを導入したダイヤモンドNVプローブを通じて、n型GaAsの表面電場を検出することに成功しました(図3c)。ダイヤモンドNVプローブの導入によりEO信号の大きさは約1/42に減少しましたが、局所計測に成功したと言えます。
さらに二次元層状物質注9)であるセレン化タングステン(WSe2)単結晶をシリコン基板上に転写した試料を用いて実験を行いました。このWSe2試料では、場所によって結晶の厚さが異なっていますが、光学顕微鏡で銀白色のバルク(Bulk)結晶(厚さが10原子層以上の結晶)を見つけ、このバルク結晶と接する紫色の単層(1 ML)部分との界面に着目しました(図4a)。この厚さの異なる界面を用いて、局所的な表面電場の計測を行ったところ、単層部分とバルク部分のキャリア特性を反映した表面電場信号を、500 nm以下かつ100 fs以下の時空間分解能でセンシングすることに成功しました(図4a,b)。また時間分解EO信号の減衰を指数関数を用いてフィッティング(モデル化)したところ、単層部分では約200フェムト秒で緩和する成分のみが観測されました。一方、バルク部分では、この成分に加えて、約2psで緩和する遅い成分の寄与があることが分かりました(図4c)。このことは、単層部分では電場は基板との相互作用などで高速に緩和するのみなのに対し、バルク部分では、表面電場と結合したキャリアのバンド内緩和やバレー間緩和注10)が寄与していることを示しています。n型GaAsの時間分解EO信号による電場検出感度を見積もると、約100 V/cm/
(Hzは周波数)となりました。これは発光測定に基づく従来の手法で得られたマイクロ秒時間領域でのDC(直流)電場センシングと同等の検出感度を達成したことになります。最近のマイクロ秒時間領域でのAC(交流)電場センシングに関する検出感度には2桁及びませんが、本手法ではDC(直流)電場センシングと同等の検出感度で500 nm以下かつ、100フェムト秒というマイクロ秒を遙かに凌ぐ高い時空間分解能が得られることが示されたと言えます。
【今後の展開】
今回開拓した時空間極限センシング技術は、例えば炭化ケイ素(SiC)などのパワー半導体材料や燃料電池材料内での局所電場検知、トポロジカル絶縁体における局所電場検知など、基礎物理・化学のための基盤技術となることが期待されます。また、NV中心を含むダイヤモンドNVプローブはスピンや温度の変化にも感度があるため、本研究のアプローチは、電場の検出に加え、磁場や温度を検出するためのセンシング技術としても展開可能であると言えます。例えばレーザー医療や分子レベルでの細胞の計測や制御を通じて、癌の治療をはじめとする量子生命科学の分野にも波及しうる革新的な展開が期待されます。
【参考図】

| 図1 本研究で行なった実験の概要図 ダイヤモンドNVプローブを用いた超高速ポンプ・プローブ電場センシング測定の概略図。試料上の各指定点においてAFMプローブを垂直に接近・後退させる「ピンポイントモード」で測定を行った。また試料はピエゾスキャナーを用いてx-y方向に走査される。 |

| 図2 本研究で作製したダイヤモンドNVプローブ概要図 (a) FIBで作製したダイヤモンドNVプローブ(探針)の走査型イオン顕微鏡像。マイクロメートルサイズに加工されたダイヤモンド結晶の一部が探針となっている。(b) ダイヤモンドNVプローブの探針部分のフォトルミネッセンス画像。赤色の部分から探針の直径が500 nm以下であることが分かる。(c)カンチレバーに取り付けたダイヤモンドNVプローブの光学顕微鏡像。カンチレバーは自己センシング方式用の回路部分の上部に位置しており、その先端に探針部分を含むダイヤモンドNVプローブが取り付けられている。 |

| 図3 ダイヤモンドNVプローブを用いたn型GaAs表面の電場センシング (a)ダイヤモンドNVプローブ先端近傍の表面バンド曲げと接触モードの配置図。表面状態はフェルミエネルギー(EF)を示すベル形状の破線で表され、下側のバンドは電子(-)で占有されている。VBは価電子帯、CBは伝導帯を示す。(b)ダイヤモンドNVプローブを用いないマクロ計測によるn型GaAsウェハーからの時間分解電気光学信号。(c)ダイヤモンドNVプローブを用いたn型GaAsからの局所的時間分解電気光学信号。(b)のマクロ計測の場合に比べてEO信号の大きさは約1/42になっているが、検出感度が十分であることが確認された。 |

| 図4 WSe2のEO信号の時空間測定 (a) ダイヤモンドNVプローブを用いた60 µm ×60 µm領域のトポグラフ画像。色の薄い部分がバルク(Bulk)結晶である。左上の挿入図は光学顕微鏡像であり、銀白色の部分はバルク(Bulk)結晶である。 局所計測では、単層(1ML)領域(P4)からバルク(Bulk)領域(P11)までを500 nmステップで計測する。(b)ダイヤモンドNVプローブを用いて得られた局所的な時間分解電気光学信号。P4からP11に行くに従い、単層(1ML)からバルク(Bulk)領域を測定している。図(b)の黒実線は、単一指数関数(単層=1ML領域のデータについて)または二重指数関数(バルク領域のデータについて)を用いたフィッティング(モデル化)を示す。(c) P4からP11の異なる位置における500 nmステップで得られた時間分解電気光学信号へのフィッティングにより得られた緩和時間定数。エラーバーは標準偏差を示す。 |
【用語解説】
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」はダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NV中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒(1000兆分の1秒)以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
物質に電場を加えると、電場の強度に応じて物質の屈折率が変化する効果のこと。
先端が鋭い探針で試料の表面を走査し、探針と表面との間に働く微少な力を測定して表面構造を原子スケールの高分解能で観察することができる顕微鏡のこと。AFM探針は、バネのようにしなるカンチレバーの先端に取り付けられており、コンタクトモードでは、この探針と試料表面を微小な力で接触させ、カンチレバーのたわみ量が一定になるように探針・試料間距離をフィードバック制御しながらX―Y方向(水平方向)に走査することで、表面形状を画像化できる。
イオンビーム(荷電しているイオンを高電界で加速したもの)を細く絞ったものである。物質の微細加工、蒸着、観察などの用途に用いられる。
半導体材料などに機械的なひずみ(力による変形)を与えたとき、材料の電気抵抗が変化する効果のこと。
通常のAFMでは、レーザー光をカンチレバー背面に照射し、反射したレーザービームの位置変化を位置センサーで計測することで、カンチレバーのたわみ量(表面構造によりたわんだ量)を読み取る。カンチレバーのたわみ信号を光で読み取ることから、これを光てこ方式と呼ぶ。一方、自己センシング方式のAFMでは、光てこ方式のようにレーザーと一センサーを必要とせず、ピエゾ抵抗効果などのカンチレバー自身の物理量の変化からカンチレバーのたわみ量を読み取ることができる。
共有結合が二次元方向だけに伸びている結晶のこと。原子一層レベルの二次元原子層が、ファンデルワールス力で積層して三次元結晶を形成している。炭素の二次元原子層であるグラフェンが積層したグラファイト、近年盛んに研究されるようになった遷移金属カルコゲナイドなどがある。本研究で調べたセレン化タングステン(WSe2)も遷移金属カルコゲナイドである。
半導体などにおいて、バレーとは電子バンドの極小点を指す。異なるバレー間にキャリアが散乱(遷移)することでエネルギーを失う緩和過程をバレー間緩和と呼ぶ。
【研究資金】
本研究は、科研費による研究プロジェクト(25H00849, 22J11423, 22KJ0409, 23K22422, 24K01286, 24H00416, 23H00264)、および国立研究開発法人 科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)(JPMJCR1875)の一環として実施されました。
【参考文献】
a) T. Ichikawa, J. Guo, P. Fons, D. Prananto, T. An, and M. Hase, 2024, Cooperative dynamic polaronic picture of diamond color centers. Nature Communications. 15, 7174 (10.1038/s41467-024-51366-x).
【掲載論文】
| 題名 | An ultrafast diamond nonlinear photonic sensor. (超高速ダイヤモンド非線形光センサー) |
| 著者名 | D. Sato, J. Guo, T. Ichikawa, D. Prananto, T. An, P. Fons, S. Yoshida, H. Shigekawa, and M. Hase |
| 掲載誌 | Nature Communications |
| 掲載日 | 2025年9月25日 |
| DOI | 10.1038/s41467-025-63936-8 |
令和7年9月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/09/26-1.html





