研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。非正多角形細孔を持つ多孔高分子材料の開拓に成功
非正多角形細孔を持つ多孔高分子材料の開拓に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の江 東林教授らの研究グループは、非正多角形細孔を有する高分子材料の開拓に成功した。 |
1. 研究の成果 | |||
今回研究開発された新種の多孔性高分子は2次元高分子注1) である。2次元高分子は、規則正しい分子骨格構造を有し、無数の細孔が並んでいるため、二酸化炭素吸着、触媒、エネルギー変換、半導体、エネルギー貯蔵など様々な分野で活躍され、新しい機能性材料として大いに注目されている。江教授らは、世界に先駆けて基礎から応用まで幅広い研究を展開し、この分野を先導してきた。
これまでの2次元高分子は、他の多孔性材料と同様に、正多角形を有する細孔だった(図1の1)。例えば、正六角形や正方形、正三角形などを有する2次元高分子が開発され、その細孔サイズや環境を制御することで、様々な機能が発現されている。しかし、規則正しい構造を有し、かつ非正多角形細孔を作り出す2次元高分子は皆無だった。非正多角形を有する細孔は、形が合った特定の分子だけに対して吸着能を示し、また、特定の基質だけに対して触媒するなど特異な形状に基づいた機能の発現が期待されているが、その開発が困難であった。 ![]() 図1.1)従来の正多角形細孔を有する高分子の設計。2)今回開発した非正六角形細孔を有する多孔材料の設計。3)今回開発した非正方形細孔を有する多孔材料の設計。 また、六角形の場合、3組の対辺を長さの異なる2種類の成分で構築することに成功した(図1の2)。この場合、対辺の比率を1:2あるいは2:1に合わせ ることが重要なポイントとなる。いずれの場合も、規則正しい配列構造を有し、サイズの異なる非正六角形細孔を設計してつくることができるようになった。 さらに、本研究では、六角形に加え、四角形にも適用できることを実証した(図1の3)。四角形の場合、対辺が2組になるため、長さの異なる2種類の成分と分岐点の1成分からなる3成分で重合することで、非正方形細孔を有する多孔材料の合成に成功した。 以上の設計原理は、長さの異なる成分に限られることがなく、機能の異なる成分にも適用できることを実証した。例えば、電子ドナーとアクセプターを組み合わせて、特異な電子配列構造を作り出せる。この場合、正多角形材料に比べて、非正多角形材料の電気伝導が1800倍も高くなったことが分かった。これらの多孔性高分子は1グラムで、2000平米という巨大な表面積を持っており、ガス吸着と分離への応用が期待されている。 多成分から構成された多孔性材料は、構造に複雑性をもたらしている。また、材料の多様性にも大きく寄与する。例えば、六角形の場合、従来の正六角形では、分岐点1成分と辺10成分の組み合わせでは、最大10種類の異なる多孔材料が合成できる。これに対して、多成分設計原理を用いれば、何と210種類の異なる多孔材料を作ることが可能となった。 |
|||
2. 今後の展開 |
|||
今回の研究成果は、2次元高分子分野に新たな設計原理を確立し、これまでになかった新種の多孔材料の誕生に繋がった。今後、これらの特異な多孔構造をベースに、ガス吸着や分離、触媒、光・電子などの機能に関して、様々な革新的な材料の開発がより一層促進される。
|
|||
3. 用語解説 |
|||
注1) 2次元高分子:共有結合で有機ユニットを連結し、2次元に規定して成長した多孔性高分子シートの結晶化による積層される共有結合性有機構造体。
|
|||
4. 論文情報 |
|||
掲載誌:Nature Communications
論文タイトル:Multiple-component covalent organic frameworks(多成分共有結合性有機骨格構造体) 著者:Ning Huang(北陸先端科学技術大学院大学博士研究員), Lipeng Zhai(北陸先端科学技術大学院大学特別研究学生), Matthew Addicoat (ドイツ ライプツィヒ大学博士研究員), Thomas Heine (ドイツ ライプツィヒ大学教授), Donglin Jiang(北陸先端科学技術大学院大学教授) 掲載予定日:7月27日18時にオンライン掲載 DOI: 10.1038/NCOMMS12325 |
平成28年7月27日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/07/27-1.html新たな高分子ネットワーク構築の手法を開発

新たな高分子ネットワーク構築の手法を開発
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/物質化学領域の長尾 祐樹准教授らの研究グループは、溶液中の混合分子の特徴を生かし、従来とは異なる構造の高分子ネットワーク(分子どおしのつながり)を作る手法を開発することに成功しました。この成果により、溶液中では合成が難しいとされてきた構造を有する高分子ネットワークの合成に挑戦できるようになりました。本研究は、アメリカ化学会の雑誌Langmuirに近日公開されます。
1. 研究の成果 | ||
人類の夢の一つに二酸化炭素から炭素材料を作り出すことが挙げられます。多くの研究者がこの課題に取り組んでおり、望ましい分子構造についての理解は日々進んでいます。溶液中での合成方法には限界があるために、合成手法自体の多様化が求められていました。 |
||
![]() 溶液混合と基板を足場にした積層合成の高分子ネットワーク構造の比較 |
||
なお、本成果は名古屋大学との共同開発成果であり、名古屋大学「分子・物質合成プラットフォーム」事業(文部科学省ナノテクノロジープラットフォーム事業)の支援を受けました。 |
||
2. 今後の展開 |
||
この成果により、溶液中の合成では得るのが難しい高分子ネットワークの構造を合成するための新しい合成手法を得ることができました。この成果を応用することで将来的には例えば、生物内では合成が可能であることがわかっていても、人の手による合成がまだ難しいとみなされている高分子ネットワークの構造の構築が可能となり、光合成に必要な触媒や燃料電池の触媒の高効率化への応用展開等が期待されます。 |
||
3. 用語解説 |
||
注1)ポルフィリン:環状構造を有する化合物で、誘導体には体の中で酸素を運搬するヘモグロビン等の多くの化合物が知られている。ポルフィリン誘導体は、有機合成化学の触媒や生体化学反応過程の追究に広く利用されている。 |
||
4. 論文情報 |
||
掲載誌:Langmuir |
平成28年6月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/06/17-1.htmlナノマテリアル・デバイス研究領域セミナー
日 時 | 令和5年8月3日(木)14:00~17:00 |
場 所 | マテリアルサイエンス研究棟4棟8階 中セミナー室 |
講演題目 |
(1)「触媒およびその応用に向けたナノ構造材料の微細構造と新奇特性」
Microstructures and novel properties of the nano-structure materials for catalysts and other applications (2)「透過型電子顕微鏡によるVO2の金属-絶縁体転移の制御」
Manipulating metal-insulator transition of VO2 in transmission electron microscopy |
講演者 | 鄭州大学 物理・マイクロエレクトロニクス学院 (1) 教授 郭 海中 (Guo, Haizhong)氏 (2) 教授 程 少博 (Cheng, Shaobo)氏 |
言 語 | 英語 |
お問合せ先 | 北陸先端科学技術大学院大学 共通事務管理課共通事務第三係 (E-mail:ms-secr@ml.jaist.ac.jp) |
物質化学フロンティア研究領域の後藤教授の論文がCarbon誌の表紙に採択

ナノマテリアルテクノロジーセンターの後藤和馬教授(物質化学フロンティア研究領域)の論文が、米国炭素学会機関紙「Carbon」の表紙(front cover)に採択されました。
本研究は、後藤研究室および京都大学、岡山大学による共同研究の成果です。
■掲載誌
Carbon, Vol. 206, Page 84-93.
掲載日:2023年3月25日
■著者
Hideka Ando(特別研究学生、後藤研究室), Katsuaki Suzuki, Hironori Kaji, Takashi Kambe, Yuta Nishina, Chiyu Nakano, Kazuma Gotoh
■論文タイトル
Dynamic nuclear polarization - nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials
■論文概要
炭素材料は、化学反応の触媒や燃料電池・二次電池の電極、バイオマテリアルなど多種多様な分野での応用が期待されている。本研究ではNMR(核磁気共鳴分光法)による炭素材料の表面構造分析の感度を改善するため、信号強度増幅剤を用いた動的核偏極NMRを用いた。これまで不可能と考えられていた炭素表面上の微量のメチル基、水酸基などの表面官能基の検出に成功し、炭素材料の性質に大きな影響を及ぼす表面構造の微細な違いが検出可能となった。
表紙詳細:https://www.sciencedirect.com/science/article/pii/S0008622323001549
論文詳細:https://doi.org/10.1016/j.carbon.2023.02.010
令和5年3月31日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/03/31-1.htmlリチウムイオン2次電池の急速充放電を実現する新しいナノシート系負極活物質の開発

リチウムイオン2次電池の急速充放電を実現する新しいナノシート系負極活物質の開発
ポイント
- リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。
- TiB2(二ホウ化チタン)粉末のH2O2による酸化処理、遠心分離、凍結乾燥により簡便に得られる二ホウ化チタンナノシートをリチウムイオン2次電池の負極活物質として適用した。
- 二ホウ化チタンナノシートを負極活物質としたアノード型ハーフセルで充放電挙動を評価した結果、比較的低い充放電レートの0.025 Ag-1では約380 mAhg-1の放電容量を示した。
- 当該アノード型ハーフセルにおいて、1 Ag-1 (充電時間約10分)の電流密度では、174 mAhg-1の放電容量を1000サイクル維持した(容量維持率89.4 %)。さらに超急速充放電条件(15~20 Ag-1)を適用すると、9秒~14秒の充電で50~60 mAhg-1の放電容量を10000サイクル維持するに至り(容量維持率80%以上)、高い安定性が確認された。
- 急速放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の先端科学技術研究科 松見紀佳教授(物質化学フロンティア研究領域)、ラージャシェーカル バダム元講師(物質化学フロンティア領域)、アカーシュ ヴァルマ元大学院生(博士前期課程修了)、東嶺孝一技術専門員らの研究グループとインド工科大学ガンディナガール校カビール ジャスジャ准教授、アシャ リザ ジェームス大学院生は、リチウムイオン2次電池*1において二ホウ化チタンナノシートの負極活物質への適用が急速充放電能の発現に有効であることを見出した。 |
【研究の内容と背景】
リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。しかしながら、その実現には固体中のリチウムイオンの拡散速度の向上や電極―電解質界面の特性、活物質の多孔性などの諸ファクターの検討を要している。これまで急速充放電用途のナノ材料系負極活物質としては、チタン酸リチウムのナノシートや酸化チタン/炭素繊維コンポジットなどが検討されてきたほか、新しい2次元(2D)材料*2への関心が広がりつつあり、グラフェン誘導体や金属カーバイド系材料にも検討が及んでいる。
本研究においては、TiB2(二ホウ化チタン)のH2O2による酸化処理、遠心分離、凍結乾燥による簡便なプロセスで作製可能なTiB2ナノシートをリチウムイオン2次電池負極活物質として適用し、アノード型ハーフセルを構築して急速充放電能について検討した。
合成は、共同研究者であるインド工科大学准教授カビール氏らが報告している手法*3に従い、TiB2粉末を過酸化水素水と脱イオン水との混合溶液に懸濁させ、24時間の攪拌後に遠心分離し、上澄みを-35oCで24時間凍結させた後に72時間凍結乾燥することにより粉末状のTiB2ナノシートを得た(図1)。得られた材料のキャラクタリゼーションは前述の手法に従い、XRD、HRTEM、FT-IR、XPS等の各測定により行った。
電池セルの作製において、負極の組成としてはTiB2ナノシートを55 wt%、アセチレンブラックを35 wt%、PVDF(ポリフッ化ビニリデン)を10 wt%を用い、NMP(N-メチルピロリドン)を溶媒とした懸濁液から銅箔集電体にコーティングした。電解液としては 1.0 M LiPF6 のEC/DEC (1:1 v/v)溶液を用い、対極にはリチウム箔を用いた。
TiB2ナノシートを負極活物質としたアノード型ハーフセル*4のサイクリックボルタモグラム(図2)においては、第一サイクルにおいてのみ0.65 V (vs Li/Li+)に電解液の分解ピークが現れたが、それ以降は消失した。リチウム脱離に相当するピークは2つ観測され、0.28 Vにおけるピークはリチウムが複数インターカレートしたTiB2からの脱リチウムピーク、0.45VにおけるピークはTiB2の再生に至る脱リチウムピークにそれぞれ相当する。約1.5 Vからの比較的高いリチウム挿入電位は、チタン酸リチウムやホウ素ドープTiO2とほぼ同様であった。
また、このアノード型ハーフセルの充放電挙動では、比較的低い充放電レートの0.025 Ag-1では約380 mAhg-1の放電容量を示した(図3)。
アノード型ハーフセルにおいて、1 Ag-1(充電時間約10分)の電流密度では、174 mAhg-1の放電容量を1000サイクル維持し、容量維持率は89.4 %を示した(図3)。さらに超急速充放電条件である15-20 Ag-1を適用すると、9秒~14秒の充電で50-60 mAhg-1の放電容量を10000サイクル維持するに至り、容量維持率は80%以上であった。
本成果は、ACS Applied Nano Materials (米国化学会)のオンライン版に9月19日に掲載された。なお、本研究は、文部科学省の「大学の世界展開力強化事業」採択プログラムに基づいた北陸先端科学技術大学院大学とインド工科大学ガンディナガール校(JAIST-IITGN)の協働教育プログラム(ダブルディグリープログラム)のもとで実施した。
【今後の展開】
TiB2ナノシートの積極的活用により、急速充放電能を有する次世代型リチウムイオン2次電池の発展に向けた多くの新たな取り組みにつながり、関連研究が活性化するものと期待される。
さらに活物質の面積あたりの担持量を向上させつつ電池セル系のスケールアップを図り、産業的応用への橋渡し的条件においても検討を継続する。
既に日本国内及びインドにおいて特許出願済みであり、今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | ACS Applied Nano Materials(米国化学会) |
題目 | Titanium Diboride-Based Hierarchical Nanosheets as Anode Material for Li-ion Batteries |
著者 | Akash Varma, Rajashekar Badam, Asha Liza James, Koichi Higashimine, Kabeer Jasuja * and Noriyoshi Matsumi* |
WEB掲載日 | 2022年9月19日 |
DOI | 10.1021/acsanm.2c03054 |
図1.TiB2ナノシートの合成とキャラクタリゼーション (a)バルクのTiB2粉末 (b)過酸化水素水(H2O2) (3% v/v)にTiB2を分散した黒色の分散液 (c) 24時間攪拌後のTiB2の溶解と遠心分離後の上澄みの使用 (d)凍結乾燥後の粉末のナノ構造 (e) FESEM像 (f) TiB2 粉末及び TiB2ナノシートのFTIRスペクトル (g)ホウ素のハニカム状平面にチタンがサンドイッチされた結晶構造 (h) Si/SiO2 ウエハに担持させたTiB2ナノシートの光学像 (i) TiB2ナノシートのHRTEM像。ポーラスなシート状構造を示す。 |
図2.TiB2ナノシートを負極活物質としたアノード型ハーフセルのサイクリックボルタモグラム (a) 電圧範囲0.01-2.5V ;掃引速度 0.1 mV/s (b) 電圧範囲0.5-2.5V ;掃引速度 0.1, 0.3, 0.5, 0.7, and 1 mV/s. |
図3.TiB2ナノシートを負極活物質としたアノード型ハーフセルの充放電挙動 (a)レート特性の検討結果 (b)充放電曲線 (c)長期サイクル特性 |
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
グラフェンや遷移金属ジカルコゲニドなどの2次元(2D)層状無機ナノ材料は、その優れた物理的および化学的特性のために最近注目されている化合物で、光触媒や太陽電池、ガスセンター、リチウムイオン電池、電界効果トランジスタ、スピントロニクスなどへの応用が期待されている。
James, Asha Liza; Lenka, Manis; Pandey, Nidhi; Ojha, Abhijeet; Kumar, Ashish; Saraswat, Rohit; Thareja, Prachi; Krishnan, Venkata; Jasuja, Kabeer
Nanoscale (2020), 12 (32), 17121-17131CODEN: NANOHL; ISSN:2040-3372. (Royal Society of Chemistry)
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和4年9月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/09/30-1.htmlリチウムイオン2次電池に高容量化と耐久性を容易にもたらす新型負極活物質(β-シリコンカーバイド系複合材料)の開発

リチウムイオン2次電池に高容量化と耐久性を容易にもたらす
新型負極活物質(β-シリコンカーバイド系複合材料)の開発
ポイント
- リチウムイオン2次電池の高容量化のためシリコン系負極が注目されているが、シリコン粒子の大きな体積膨張・収縮等の問題によって、安定した充放電が困難となっている。
- リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている閃亜鉛鉱型構造を有するβ-シリコンカーバイド/窒素ドープカーボン複合材料の簡易合成法を開発し、リチウムイオン2次電池用負極活物質として検証した。
- 合成した活物質を用いたアノード型ハーフセルでは1195mAhg-1の放電容量を300サイクルまで示し、本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても、高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
- 高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)、先端科学技術研究科 物質化学領域の松見 紀佳教授、バダム ラージャシェーカル講師、並びに東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程)のグループは、リチウムイオン2次電池*1の安定な高容量充放電を可能にする新規負極活物質の開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、近年、従来型負極であるグラファイトよりも大幅に大きな理論容量を示すシリコン系負極が多大な関心を集めている。一方で、シリコン粒子は充放電時の体積膨張・収縮が極めて大きく、充放電の際の粒子の破断や界面被膜の破壊、集電体からの剥離などの多様な問題により、一般に高容量を安定に発現することが非常に困難となっている。このような状況を改善するために、特殊なバインダー材料の開発などのアプローチが本研究グループも含め国内外において検討されてきた。
【研究の内容】
本研究においては、シリコン粒子に代わり、極めて安定な充放電サイクルを汎用のバインダー材料使用時においても示すシリコンカーバイド系活物質を開発した。ダイヤモンド型構造を有するシリコンにおいては、リチウム脱挿入に伴う大幅な体積膨張・収縮は避けがたいものであるが、閃亜鉛鉱型構造の無機化合物においては、リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている。その挙動にヒントを得つつ、閃亜鉛鉱型構造を有するβ-シリコンカーバイドと窒素ドープカーボン*2との複合材料を合成し、新規リチウムイオン2次電池用負極活物質として検証した。
合成法としては、(3-アミノプロポキシ)トリエトキシシランに水溶液中でアスコルビン酸ナトリウムを加え、シリコンナノ粒子分散水溶液を作製した。その後pH8.5においてドーパミンを、引き続いてメラミンを加えてから遠心分離、乾燥し、600oCもしくは1050oCの二通りの条件で焼成した(図1)。
得られた材料について、HRTEM、HAADF-STEM、XPS、XRD、Raman分光法等により構造を確認した(図2)。HRTEMからは、炭素系マトリックスにβ-シリコンカーバイドの結晶が埋め込まれている様子が観測された。HAADF-STEM HRTEMからは、β-シリコンカーバイドの(111)面に相当する0.25 nmの面間距離が観測され、マトリックス内に指紋状に分布する様子が観測された(図2(c))。
次に、合成した活物質を用いて負極を構築し、アノード型ハーフセル*3(Li/電解液/β-SiC)を作製し各種電気化学的評価を行った。サイクリックボルタモグラム*4においては、シャープなリチウムインターカレーションのピークに加えて、シリコン負極の場合と形状は異なるものの0.58 Vのブロードなリチウム脱インターカレーションのピークを共に示した。
また、充放電挙動においては、1050oCの焼成処理により合成した活物質(MAD1050)を用いた系では1195 mAhg-1の放電容量を300サイクルまで示した(図3(b))。本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に2月16日(英国時間)に掲載された。
なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
雑誌名 | Journal of Materials Chemistry A |
題目 | Zinc blende inspired rational design of β-SiC based resilient anode material for lithium-ion batteries |
著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
掲載日 | 2022年2月16日(英国時間) |
DOI | 10.1039/D1TA08516F |
図2.(a,b)合成した活物質(MAD1050)のTEM像
(a)β-SiC粒子のHRTEM像、(c)β-SiC粒子のHAADF-STEM像 (d,e)赤色ボックス部位のFT/IFT、(f)面間距離プロファイル (g,h)黄色ボックス部位のFT/IFT、(i,j)緑色ボックス部位のFT/IFT |
図3.合成した各負極活物質を用いたアノード型ハーフセルの充放電特性(a/b/d)
及び比較データ(c;シリコン負極) |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*3 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/18-1.htmlリチウムイオン2次電池の急速充放電を実現する負極活物質を開発 ~バイオベースポリマー由来高濃度窒素ドープカーボン~

リチウムイオン2次電池の急速充放電を実現する負極活物質を開発
~バイオベースポリマー由来高濃度窒素ドープカーボン~
ポイント
- リチウムイオン2次電池の急速充放電技術の価値が国際的に高まっており、これに適した材料の開発が期待されている。
- 耐熱性バイオベースポリマーであるポリベンズイミダゾールを焼成することにより、高濃度窒素ドープカーボンを得ることに成功した。
- 得られた窒素ドープカーボンを負極活物質としてアノード型ハーフセルを構築し充放電試験を行ったところ、本活物質は急速充放電に対してグラファイトとの比較において大幅に優れた適性を示した。
- 急速充放電に適した電極材料として、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用展開が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 松見 紀佳教授(物質化学領域)、金子 達雄教授(環境・エネルギー領域)、バダム ラージャシェーカル講師(物質化学領域)、東嶺孝一技術専門員、Yueying Peng元研究員、Kottisa Sumala Patnaik(博士前期課程2年)は、リチウムイオン2次電池*1の急速充放電を可能にする新たな負極活物質の開発に成功した。 |
【研究背景と内容】
今日、次世代リチウムイオン2次電池開発においては、高容量化、高電圧化、難燃化など多様な開発の方向性が展開されている。なかでも最も重要性を増しているものとして、急速充放電の実現が挙げられる。現状、ガソリン車にガソリンスタンドで給油するためには数分を要するのみであるため、電気自動車(EV)が要する長い充電時間は、消費者の購買意欲を低減させている主要因の一つと考えられる。そのような状況にもかかわらず、多くの国々は将来的なガソリン車の生産中止の意向を決定しており、今後、急速充電に対応する関連技術の国際的な価値は極めて高いものとなっていくことが予想される。これらの背景のもと、米国エネルギー省(DOE:Department of Energy)においても超高速充電(XFC:extreme fast charging)の目標として15分以内での充電の実現を掲げてきた。
アノード(負極)側の活物質において、充放電速度の向上に適用可能な設計戦略としては、炭素系材料における層間距離の拡張によりイオンの拡散速度を上昇させることに加え、窒素などのヘテロ元素ドープが潜在的に有効な手法として検討されてきた。しかし、層間距離やヘテロ元素濃度を自在に制御する手法は確立されていない。
そのような背景のもと、本研究グループでは、含窒素型芳香環密度が高く高耐熱性を有するバイオベースポリマー*2のポリベンズイミダゾールを前駆体とすることにより、焼成後に高濃度窒素ドープハードカーボン*3を得た(図1)。バイオベースポリマーを前駆体とすることにより、低炭素化技術としての相乗的効果が期待される。得られた材料は17 wt%という高濃度の窒素を有していた。低分子前駆体の場合には焼成過程で多量の含ヘテロ元素成分が揮発してしまうが、高耐熱性高分子を前駆体とすることで大幅に窒素導入率を向上させることができた。
また、ポリベンズイミダゾールを800℃で焼成して得られた窒素ドープカーボンに関してXRD測定で層間距離(dスペーシング)を観測すると3.5Åであり、通常のグラファイトの3.3Åと比較して顕著に拡張した(図2A)。一般に、広いdスペーシングは系内のリチウムの拡散を促し、リチウム脱挿入の速度を向上させる。ラマンスペクトルはId/Ig比が0.98と極めて高く、(通常のグラファイトでは0.18)、効果的な欠陥の導入によりイオン拡散において好影響を有することが期待された(図2B)。また、XPSスペクトル(N1s)においては、窒素がグラファイティック窒素、ピロリジニック構造、ピリジニック構造等としてそれぞれ導入されている様子を観測した(図2C)。
得られた窒素ドープカーボンを負極活物質としてアノード型ハーフセル*4を構築し充放電試験を行ったところ、本活物質は急速充放電に対して優れた適性を示した。同様の充放電条件においてグラファイトと比較して大幅に優れた放電容量を示した(図3)。また、13分充電条件(0.74 Ag-1)においては1,000サイクル後に153 mAhg-1 (容量維持率89%)を示し、1.5分充電条件(7.4 Ag-1)においては1,000サイクル後に86 mAg-1 (容量維持率90%)を示すなど、良好な耐久性を示した。さらにフルセルにおいても好ましい充放電挙動を示した。
なお、本研究は、戦略的イノベーション創出プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
本成果は、Chemical Communications (英国王立化学会)オンライン版に11月25日(英国時間)に掲載された。
【今後の展開】
前駆体である高分子材料においては様々な構造の改変が可能であるほか、焼成条件の相違においても様々な異なる高濃度窒素ドープハードカーボンの化合物が得られ、さらなる高性能化につながると期待できる。
前駆体高分子には様々な有機合成化学的アプローチを適用可能であり、本研究が示すアプローチにより、急速充放電能を示す負極活物質材料における構造―特性相関の研究の進展が期待できる。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開を期待したい。
図2. (A) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)とグラファイトのXRDパターンの比較、(B) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)とグラファイトのラマンスペクトルの比較、(C) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)のXPS N1s スペクトル
図3. (A) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)及びグラファイトを用いて作製した負極型ハーフセルの充放電レート特性、(B) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)及びグラファイトを用いて作製した負極型ハーフセルの長期サイクル特性、(C) 各レートにおける(0.37, 0.74, 3.72, 7.44, 11.16, 18.60 Ag-1 )800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)を負極活物質としたハーフセルの長期サイクル特性
【論文情報】
雑誌名 | Chemical Communications |
題目 | Extremely Fast Charging Lithium-ion Battery Using Bio-Based Polymer-Derived Heavily Nitrogen Doped Carbon |
著者 | Kottisa Sumala Patnaik, Rajashekar Badam, Yueying Peng, Koichi Higashimine, Tatsuo Kaneko and Noriyoshi Matsumi* |
掲載日 | 2021年11月25日(英国時間)にオンライン版に掲載 |
DOI | 10.1039/d1cc04931c |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 バイオベースポリマー:
生物資源由来の原料から合成される高分子材料の総称。低炭素化技術として、その利用の拡充が期待されている。
*3 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*4 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和3年12月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/12/09-1.html学生のHASANさんが国際会議NANOSYM 2021においてBest Student Paper Awardを受賞

学生のHASAN, Md. Mahmudulさん(博士後期課程3年、物質化学領域、長尾研究室)が国際会議Nanotechnology Malaysia Biennial Symposium(NANOSYM 2021)においてBest Student Paper Awardを受賞しました。
NANOSYM 2021は、マレーシアナノテクノロジー協会(MNA)が主催で、10月11日から13日にかけてオンラインにて開催されました。
■受賞年月日
令和3年10月13日
■研究題目、論文タイトル等
Hierarchical Metal Nanostructures: Synthesis, Characterizations, and Electrocatalysis
(階層的金属ナノ構造:合成、特性評価、および電極触媒作用)
■研究者、著者
Md. Mahmudul Hasan, Yuki Nagao
■受賞対象となった研究の内容
The physical and chemical characteristics of hierarchical metal nanostructures have sparked scientific interest in heterogeneous catalysis and electrocatalysis. Recently, the fabrication of well-defined nanostructures has received a lot of attention. In this study, we have successfully fabricated different hierarchical metal nanostructures and applied for Ascorbic acid (AA) electrooxidation. AA, known as vitamin C, is environment-friendly and releases two electrons during electro-oxidation and could be used as an alternative fuel for a direct liquid fuel cell system. Well-defined hierarchical silver dendrite nanostructures were successfully deposited on the glassy carbon electrode (GCE) by the simple electroless deposition method without using any capping agent, current, pressure, or temperature. This integrated electrode is applied for AA electrooxidation in neutral medium to understand the oxidation pathway. The kinetic study revealed the electron transfer process is stepwise at slower scan rates and concerted at faster scan rates. We have also synthesized Christmas-Tree-Shaped palladium nanostructures featuring many sharp edges on the GCE (Pd/GCE) by a controlled electrodeposition technique. These unique nanostructures showed excellent AA electrocatalytic activity in alkaline solution. These new synthesis processes can play an important role in the preparation of hierarchical metal nanostructures for electrocatalysis.
■受賞にあたって一言
We are honored to win the prize for Best Student Paper Award at NANOSYM 2021. First and foremost, I want to express my gratitude to my supervisor Associate Professor Yuki Nagao for his excellent remarks, suggestions, and guidance. I also appreciate Nagao LAB members for their supports. This award encouraged me to explore more in the field of science and technology.
令和3年12月8日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/12/08-1.html学生の筑間さんと渡部さんが2021年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞
学生の筑間 弘樹さん(博士前期課程2年、物質化学領域、谷池研究室)と渡部 康羽さん(博士後期課程3年、生命機能工学領域、藤本研究室)が2021年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞しました。
北陸地区講演会と研究発表会は、毎年秋に、金沢大学、福井大学、富山大学、北陸先端科学技術大学院大学のいずれかの大学にて開催しています。特別講演のほか、ポスター発表があり、200~300名が参加しています。
今回、2021年度北陸地区講演会と研究発表会は、11月12日にオンラインにて開催されました。
■受賞年月日
令和3年11月16日
【筑間 弘樹さん】
■発表題目
触媒ナノ粒子の構造決定を目的としたニューラルネットワークポテンシャルの構築
■発表者名
筑間弘樹、高棹玄徳、BEHLER Jörg、谷池俊明
■研究概要
近年の計算機や第一原理計算の発展によって複雑な材料の高精度なシミュレーションが可能となった一方、第一原理計算の限界は物理化学的な直感や実験結果に基づいて初期構造を推定する経験的な過程にあった。この問題を解決するため、第一原理計算と遺伝的アルゴリズムを組み合わせた非経験的構造決定が試みられてきたが、第一原理計算手法の計算コストが構造決定の律速であった。本研究では、過去研究によって蓄積されたZiegler-Natta触媒一次粒子に関する第一原理計算データセットを用いて、第一原理計算を高精度に再現できるニューラルネットワークポテンシャル(NNP)を構築することで非経験的構造決定を高速に再現することに成功した。
■受賞にあたって一言
この度は、2021年度日本化学会北陸地区講演会と研究発表会におきまして、ポスター賞をいただけたことを光栄に思います。終始熱心なご指導を頂きました谷池俊明教授のご指導なしでは決して得られるものではなかったと思います。共同研究者である高棹玄徳さんには研究の方針や考察の方法など、細部にわたるご指導をいただきました。ゲッティンゲン大学のBEHLER Jörg教授には数々の適切なご助言、ご協力をいただきました。ここに感謝いたします。さらに、谷池研究室の皆様にこの場をお借りして心より御礼を申し上げます。
【渡部 康羽さん】
■発表題目
超高速RNA光架橋反応を用いた16S rRNA検出困難領域を標的とした新規FISH法の開発
■発表者名
渡部康羽、渡辺ななみ、藤本健造
■研究概要
生体内においてRNAは様々な高次構造を形成するため、核酸プローブの侵入を阻害していた。本研究では、複雑な高次構造を形成する大腸菌16S rRNAの検出困難領域を標的とした光操作法の開発を行った。複数の光架橋性核酸プローブを用いることにより、複雑な高次構造を有するRNAに対する光架橋反応を実現した。
■受賞にあたって一言
この度は、2021年度日本化学会北陸地区講演会と研究発表会におきまして、このような賞を頂けたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導いただいている藤本健造教授にこの場をお借りして心より御礼申し上げます。また、多くのご助言やディスカッションに乗って頂いた藤本研究室の皆様に深く感謝いたします。
令和3年11月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/11/25-1.html環境・エネルギー領域の高田助教と物質化学領域の木田助教の研究課題が小笠原敏晶記念財団の研究助成に採択
公益財団法人 小笠原敏晶記念財団の研究助成「一般研究助成」に環境・エネルギー領域の高田 健司助教および物質化学領域の木田 拓充助教の研究課題が採択されました。
小笠原敏晶記念財団では、わが国の産業の発達に寄与することを目的として、理学・工学の領域において健全な発展の一助となる助成活動が行われています。一般研究助成は、高分子分野における、新素材・加工技術・新機能に関する研究開発に対して助成する制度です。
*詳しくは、小笠原敏晶記念財団ホームページをご覧ください。
- 採択期間:令和4年4月~令和5年3月
- 研究課題名:主鎖型ポリ桂皮酸ブロックポリマーのミクロ相分離構造の制御と光変形性の精密制御
- 研究概要:光エネルギーを運動エネルギーへと変換することができる光変形性材料はサスティナブルマテリアルとして注目されており、その変形挙動の制御や機能化法の確立が急務の課題となっています。本研究では、私たちが従来から研究してきた光応答性材料の開発と、有機分子触媒を利用したリビング重合技術を発展させ、ポリマーのミクロ相分離にもとづく多彩な変形挙動を有した新しい光応答材料の創出を目的としています。
- 採択にあたって一言:本研究課題を採択頂き大変嬉しく存じます。また、小笠原敏晶記念財団、および本助成の選考委員会の皆様に深く感謝申し上げます。本研究が、地球の環境・エネルギー問題に資するものになるよう邁進してまいります。また、本研究に関して多大なアドバイスをいただいた金子達雄教授はじめ、様々な知見を頂いた研究室の皆様、および研究協力者の方々にこの場をお借りして厚く御礼申し上げます。
- 採択期間:令和4年4月~令和6年3月
- 研究課題名:重水素化プローブ分子鎖の直接観察による高分子材料の結晶化機構に与える分子量分布の影響の解明
- 研究概要:高分子材料において、分子量分布(分子鎖長分布)は材料物性を決定する最も重要な分子パラメータの一つです。我々の日常生活で多く利用されているポリエチレン(PE)は分子鎖が部分的に結晶化する結晶性高分子に分類され、分子量分布の平均値や分散度の違いで結晶度や結晶厚など結晶構造が著しく変化し、結果として材料物性に大きな違いが現れます。従来の研究においても、分子量分布の形状と結晶構造の関係についてはさまざまな報告が行われてきましたが、具体的にどの分子量成分が、どのように結晶構造の形成に影響を与えているかを理解することができませんでした。本研究では、重水素化プローブ法という技術を用いることで、特定の分子量成分の結晶化挙動を独立かつ直接に観察します。具体的には、母材として用いる分子量分布が広い軽水素化PEに対して、特定の分子量の重水素化PEを微量添加することで、特定の分子量成分のみが重水素化された試料を調製します。分光測定を用いることで軽水素化PEと重水素化PEを別々に検知することができるため、特定の分子量成分の結晶化挙動を直接観察することができ、結晶化機構に対する分子量分布の影響を解明することが期待されます。
令和3年10月26日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/10/26-1.htmlナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発 ―電子顕微鏡とデータ科学による究極の精密測定―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 九州大学 |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発
―電子顕微鏡とデータ科学による究極の精密測定―
ポイント
- 電子顕微鏡とデータ科学を組み合わせることで、局所ひずみを高精度に測定
- 0.2%というわずかな局所ひずみをも検出できる精密さを達成
- 棒状ナノ粒子には表面形状の曲率変化に起因する約0.5%の局所膨張ひずみが生じることを発見
北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の麻生 浩平助教、大島 義文教授と、九州大学・大学院工学研究院のJens Maebe大学院生 (修士課程、当時)、Xuan Quy Tran研究員、山本 知一助教、松村 晶教授は、原子分解能電子顕微鏡法とデータ科学的手法であるガウス過程回帰を組み合わせることによって、ナノメートルサイズの粒子の中のわずか0.2%という局所ひずみを測定できる解析手法の開発に成功しました。開発した手法によって金のナノ粒子を解析したところ、棒状の粒子の内部では、先端付近で長さ方向に0.5%膨張したひずみを見出しました。この膨張ひずみは、粒子の先端部分で表面の形状(曲率)が変化しているために生じたこともわかりました。ナノ粒子の形状に由来して内部に局所ひずみが生じるという新たな発見と、ひずみを精密に捉える新規な手法は、ナノ物質内での原子配列と機能の理解に役立つと期待されます。 本研究成果は、2021年7月7日(米国東部標準時間)に科学雑誌「ACS Nano」誌のオンライン版で公開されました。 本研究は、日本学術振興会(JSPS)科研費基盤研究(B) (25289221、18H01830)と科学技術振興機構(JST)戦略的創造研究推進事業 ACCEL「元素間融合を基軸とする物質開発と応用展開」(研究代表者:北川 宏、研究分担者:松村 晶、プログラムマネージャー:岡部 晃博、研究開発期間:2015年8月~2021年3月、(JPMJAC1501))の支援を受けて行われました。 |
【研究背景と内容】
わずかな原子間距離の局所変化 (局所ひずみ) によって、磁性や触媒特性などといった様々な材料物性が左右されます。そのため、材料の局所ひずみを精密に測定する手法が求められてきました。ここ20年間で走査透過電子顕微鏡(STEM)の空間分解能が大きく向上して、原子状態の観察と解析が可能になりました。ナノメートルサイズの金の粒子をSTEMで観察したのが図1aです。ナノ粒子の内部に原子位置に対応した明るい点が整列して現れて見えます。原子は一見すると結晶構造を作って規則正しく周期的に配列しています。
しかし、図1aのSTEM像から原子の位置を特定して詳しく解析すると、場所によって原子は周期配列からわずかにずれて変位していることがわかりました。それをマップにしたのが図1bです。紙面左方向に大きく変位する原子が暗い青、紙面右方向に大きく変位する原子が明るい黄色でそれぞれ表されています。マップを遠目から見てみると、左から右手に向かって滑らかに、青色から黄色へと変化しているように見えます。しかし局所的には波のような細かい変化が全体を覆っています。この細かな変化は、像から原子位置を正しく特定できなかったために含まれる揺らぎノイズで、変位の変化率に相当するひずみを求めるうえで大きな障害になります。このノイズ成分を低減するには、長い時間 (カメラの露光時間に相当) をかけて計測して像質を改善するのがこれまでの一般的方法でしたが、計測時間が長くなるとその間の装置の機械的・電気的な状態のわずかな乱れの影響で像がゆがんでしまうという問題がありました。
そこで研究グループは、様々な分野で活用されているデータ科学手法のガウス過程回帰に着目しました。ガウス過程回帰では、データの真の姿は滑らかに変化すると仮定して、観測データにはこの真の姿に細かな揺らぎノイズが付加されていると考え、この順序をさかのぼることでデータの真の姿を予測します。ガウス過程回帰を図1bのマップに適用したところ、滑らかに変化する主要な成分だけを取り出すことに成功しました (図1c)。得られた変位の棒の長さ方向の変化率を求めて、局所的なひずみの分布をマップしたのが図1dです。開発した手法の精度を確かめるために、元データから直に、およびガウス過程回帰を適用して求めた場合のひずみ値の分布を比較したのが図1eです。元データでは標準偏差で1.1%の広がりがあるのに対して、ガウス過程回帰を用いることでその広がりが0.2 %に狭くなっており、ノイズ成分の除去によって有意に観測されるひずみ量の下限が大きく改善しました。
図1dに戻って見ると、棒の胴体部分と先端の半球部分の境目付近が明るい黄色になっており、この部分では棒の長さ方向に約0.5%膨張した局所ひずみが生じています。ナノ粒子では、表面積を小さくしようとして表面から内部に向かって力が作用するために、収縮ひずみが生じていると考えられていました。しかし、円筒状の胴体部と半球状の先端部からなる棒状の粒子では、2つの部分の表面曲率が異なることから内部にかかる力の向きと大きさに違いが生まれて、局所的に膨張するひずみ場が生ずることがわかりました。このように、原子位置の精密な解析が可能になって、ナノ粒子の局所形状によって内部のひずみの状態が変化することが発見できました。この新たな発見と、本成果で生み出された精密な解析手法は、ナノ構造材料の原子配置とそれによって引き起こされる機能に関する理解を深めることにつながると期待されます。
(b) 元データから得た原子変位マップ。紙面左方向への大きい変位が暗い青、紙面右方向への大きい変位が明るい黄色で表示される。細かく変化するノイズ成分が目立っている。
(c) ガウス過程回帰によって予測された真の変位。ノイズ成分の除去に成功している。
(d) 紙面横方向の変位の変化率(局所ひずみ)マップ。明るい黄色になっている両端部分では膨張ひずみが生じている。
(e) 元データとガウス過程回帰後のひずみ分布。ガウス過程回帰を用いることで、分布の広がりが1.1%から0.2%にまで狭まっており、微小な局所ひずみの検出が可能になった。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(B)(25289221、18H01830)
・科学技術振興機構(JST)戦略的創造研究推進事業ACCEL (JPMJAC1501)
【論文情報】
雑誌名 | ACS Nano |
題名 | Subpercent Local Strains Due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis |
著者名 | Kohei Aso*, Jens Maebe, Xuan Quy Tran, Tomokazu Yamamoto, Yoshifumi Oshima,Syo Matsumura |
掲載日 | 2021年7月7日(米国東部標準時間)にオンラインで掲載 |
DOI | 10.1021/acsnano.1c03413 |
令和3年7月13日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/07/13-1.htmlリチウムイオン2次電池の長期的耐久性の課題解決に資する超高耐久性バインダーを開発

リチウムイオン2次電池の長期的耐久性の課題解決に資する
超高耐久性バインダーを開発
ポイント
- リチウムイオン2次電池の長期的耐久性の課題の解決に資する超高耐久性負極バインダーの開発に成功した。
- 1700回の充放電サイクルを経ても95%の容量維持率を示した。
- 本バインダー材料を用いた系ではPVDF系で顕著であった電解液の電気分解が抑制された。
- 充放電サイクル後に、本バインダー材料を用いた電池系ではPVDF系と比較して大幅に低い(45%減少)内部抵抗が観測された。
- 各種電気化学測定により、負極内部のリチウムイオンの拡散性に優れていることが分かった。本バインダー系ではイオンの拡散係数がPVDF系を15%上回った。
- ヤング率、引張強度のいずれにおいても本バインダーはPVDFと比較して大幅に優れた力学的強靭さを示した。
- 電極―電解質界面抵抗を低減できる高耐久性バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の先端科学技術研究科 物質化学領域の松見 紀佳教授、環境・エネルギー領域の金子 達雄教授、バダム ラージャシェーカル講師、アグマン グプタ博士後期課程学生、アニルッダ ナグ元博士研究員は、リチウムイオン2次電池*1の耐久性を大幅に向上させる負極バインダー材料(図1)の開発に成功した。 リチウムイオン2次電池は、一般ユーザーが広く認識しているように充放電能力が経年劣化することが知られている。この問題は、EV用途を始めとする高付加価値製品においては更に深刻な課題となる。リチウムイオン2次電池の劣化要因は極めて多岐にわたるが、様々な電極内における副反応によるバインダーを含む電極複合材料の変性、電極/集電体の接着力の劣化が主要因の一つと考えられている。 本バインダー材料は、アセナフテキノンと1,4-フェニレンジアミンとを酸触媒の存在下で重縮合することにより合成した(図2)。 開発したリチウムイオン2次電池用バインダーは、長く検討されてきたポリフッ化ビニリデン(PVDF)と比較すると、LUMO*2,3が低い電子構造的特徴を有し(図3)、その結果として電解液の過剰な分解による厚い被膜形成を効果的に抑制した。 サイクリックボルタンメトリー*4後に見積もられたイオン拡散係数はPVDF系と比較して15%高い値となった。また、リチウム脱挿入ピークの電位差(オーバーポテンシャル)は本バインダー材料系においてPVDF系と比較して100mV減少し、より容易なリチウムイオンの拡散を支持する結果となった。充放電後の電池セルの界面抵抗*5も本バインダーにおいて大幅に低い値を示した(62Ω;PVDF系では110Ω)(図4)。 その結果として本バインダー高分子系では1735回の充放電サイクルを経ても95%の容量維持率を示し、非常に優れた耐久性が明らかとなった(図5)。 長期充放電後の負極のXPS測定より、バインダー材料由来の窒素原子に由来するピークが明瞭に観測されたことから、電極表面に形成されている被膜は極めて薄いことが示唆された。また、バインダー構造の一部が顕著にリチウムドープされていることも明らかとなった。長期充放電後の負極のSEM像では、PVDF系では500サイクル後に大きなクラックの形成と共に集電体から剥離した様子も観測されたが、本バインダー系では1735サイクル後にも僅かなクラックの形成が観測されるにとどまった。 なお、本研究はJST未来社会創造事業の支援を受けて実施された。 |
本成果は「ACS Applied Energy Materials」(米国化学会)オンライン版に2月17日に掲載された。
題目 | Bis-imino-acenaphthenequinone-Paraphenylene-Type Condensation Copolymer Binder for Ultralong Cyclable Lithium-ion Rechargeable Batteries |
著者 | Agman Gupta, Rajashekar Badam, Aniruddha Nag, Tatsuo Kaneko and Noriyoshi Matsumi |
DOI | 10.1021/acsaem.0c02742 |
【今後の展開】
セル構成や充放電条件を最適化し、最も優れた特性を有する蓄電デバイスの創出に結びつける。
更に異なる材料組成から成る高容量負極材料への適用を進めつつある。
電極―電解質界面抵抗を大幅に低減できる機能性高分子バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が見込まれる。
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 LUMO:
電子が占有していない分子軌道の中でエネルギー準位が最も低い軌道を最低空軌道(LUMO; Lowest Unoccupied Molecular Orbital)と呼ぶ。
*3 HOMO:
電子が占有している分子軌道の中でエネルギー準位が最も高い軌道を最高被占軌道(HOMO; Highest Occupied Molecular Orbital)と呼ぶ。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
*5 電極―電解質界面抵抗:
エネルギーデバイスにおいては一般的に個々の電極の特性や個々の電解質の特性に加えて電極―電解質界面の電荷移動抵抗がデバイスのパフォーマンスにとって重要である。交流インピーダンス測定を行うことによって個々の材料自身の特性、電極―電解質界面の特性等を分離した成分としてそれぞれ観測し、解析することが可能である。
令和3年3月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/03/01-1.html環境・エネルギー領域の大平教授の研究課題がNEDO「太陽光発電主力電源化推進技術開発」に採択
環境・エネルギー領域の大平 圭介教授の研究課題が、新エネルギー・産業技術総合開発機構(NEDO)の「太陽光発電主力電源化推進技術開発」の研究開発項目(I)太陽光発電の新市場創造技術開発/(ⅱ)壁面設置太陽光発電システム技術開発に採択されました。
太陽光発電の主力電源化に向けて、需要地に近接しているが従来の技術では太陽光発電の導入が進んでいなかった場所を利用可能にするための太陽光発電システム開発や、長期安定的な事業運営確保として現在顕在化している課題解決のための技術開発が求められています。
NEDOではこれらの開発を推進するため、「太陽光発電主力電源化推進技術開発」において(i)フィルム型超軽量太陽電池の開発、(ii)壁面設置太陽光発電システム技術開発、(iii)移動体用太陽電池の研究開発での公募を実施し、今回、33テーマを採択しました。
*詳しくは、NEDOホームページをご覧ください。
https://www.nedo.go.jp/koubo/FF3_100292.html
■研究課題名
多機能・高品質薄膜の利用による壁面太陽電池モジュールの長寿命化
■研究期間
2020年7月~2023年3月(継続の可能性あり)
■研究概要
建造物の壁面に設置するタンデム型太陽電池モジュールの発電性能および意匠性に関し、建造物と同等の寿命を達成するための要素技術開発を行う。本学で長年研究を行っている、触媒化学気相堆積(Cat-CVD)法で形成する窒化Si膜は、100℃程度の低温製膜でも高い膜密度が得られ、膜自体の長期安定性と、高いガスバリア性能を発揮する。この窒化Si膜をタンデムセル上に形成し、タンデムセルの色調安定化と水蒸気浸入による発電性能低下の抑止を達成するための基盤技術確立を目指す。また、再委託先である岐阜大学では、酸化Si膜を塗布法によりモジュールのカバーガラス上に形成し、防汚性能、反射低減性能等を付与する検討を行う。
■採択にあたって一言
建造物の壁面に設置する太陽電池モジュールの開発は、いわゆるネット・ゼロ・エネルギー・ビル(ZEB)を実現するために、大変重要な研究です。今回、同時に採択された新潟大学、青山学院大学、再委託先である岐阜大学とも連携の上、本学の技術の強みを生かしつつ研究開発を進め、太陽光発電の普及拡大に貢献していきたいと思います。
令和2年7月31日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/07/31-1.htmlリチウムイオン2次電池の長期的安定作動を指向した高耐久性負極バインダーの開発に成功

リチウムイオン2次電池の長期的安定作動を指向した
高耐久性負極バインダーの開発に成功
ポイント
- リチウムイオン2次電池の長期的安定作動を可能にする高耐久性負極バインダーの開発に成功した。
- 500回の充放電サイクルを経ても95%の容量維持率を示した。
- 本バインダー材料を用いた系ではPVDF系で顕著であった電解液の電気分解が抑制された。
- 充放電サイクル後に、本バインダー材料を用いた電池系ではPVDF系と比較して大幅に低い内部抵抗が観測された。
- 各種電気化学測定により、負極内部のリチウムイオンの拡散性に優れていることが分かった。
- SEI被膜が薄く界面抵抗が低いことが示唆され、充放電後に生成するLiFの量がPVDF系の5分の1に減少したことがイオンの拡散性とSEIの力学特性の両面に寄与したと考えられる。
- 電極―電解質界面抵抗*1を低減できる高性能バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・浅野哲夫、石川県能美市)の先端科学技術研究科物質化学領域の松見紀佳教授、ラージャシェーカル バダム助教、テジキラン ピンディジャヤクマール(博士後期課程学生)はリチウムイオン2次電池*2の耐久性を大幅に向上させる負極バインダー材料(図1、図2)の開発に成功した。
リチウムイオン2次電池は一般に長期的な使用に伴い充放電能力が経時的に劣化することは、広く知られており、ユーザーレベルでも広範に問題が認識されている。その原因は極めて多様であるが、様々な電極内における副反応によるバインダーを含む電極複合材料の変性、電極/集電体の接着力の劣化が主要因の一つと考えられる。 本負極バインダーは、市販のポリ(ビニルベンジルクロリド)を1-アリルイミダゾールとジメチルホルムアミド中80oCで48時間反応させてイオン液体構造を形成させた後に、水溶液中でLiTFSIとのイオン交換を行うことにより合成した(図2)。 開発した高分子化イオン液体型のリチウムイオン2次電池用バインダーは、長く検討されてきたポリフッ化ビニリデン(PVDF)と比較すると、 LUMO*3が低い電子構造的特徴を有する(表1)。バインダー材料が有するアリルイミダゾリウム構造は、PVDFやエチレンカーボネート(EC)が負極側で還元分解する前にイミダゾリウム環C2位が還元を受けカルベンを形成する。その結果ECの過剰な分解による厚いSEI被膜の形成は抑制される。また、アリルイミダゾリウム基の存在により、サイクリックボルタンメトリー*4後に見積もられたリチウムイオンの拡散係数はPVDF系と比較して41%高い値となり、結果として充放電レート特性も改善された。また、リチウム脱挿入ピークの電位差(オーバーポテンシャル)は高分子化イオン液体系において200.3 mVとPVDF系と比較して89.6 mV減少し、より容易なリチウムイオンの拡散を支持する結果となった(図3)。充放電後の電池セルの界面抵抗も高分子化イオン液体系において大幅に低い値を示した(36.39Ω;PVDF系では94.89Ω)(図4)。 その結果としてイオン液体系では500回の充放電サイクルを経ても95%の容量維持率を示し、非常に優れた耐久性が明らかとなった(図5)。 原因を解明するため、500回の充放電サイクル後に負極のXPS測定を行ったところ、高分子化イオン液体系では1.5倍のグラファイティックカーボンのピークが観測された。また、充放電後も負極内部のバインダー由来のN1sピークを観測可能であり、これらの結果はいずれも薄いSEI被膜の形成を示唆した。さらに興味深い観測としては、高分子化イオン液体系ではLi2CO3とLiPF6との反応の結果生成するLiFの量がPVDF系と比較して5分の1程度であった。LiF生成の抑制は、負極内のリチウムイオンの拡散性やSEIの力学的安定性の改善において、重要な結果に結び付いたと考えられる。 なお本研究は、文部科学省元素戦略プロジェクト拠点形成型(京都大学) JPMXP0112101003の支援のもと実施された。 |
成果はACS Applied Energy Materials (米国化学会)オンライン版に2月11日に掲載された。
題目: Allylimidazolium-Based Poly(ionic liquid) Anodic Binder for Lithium Ion Batteries with Enhanced Cyclability
著者: Tejkiran Pindi Jayakumar1, Rajashekar Badam1 and Noriyoshi Matsumi1, 2 *
(1: JAIST, 2: 京大触媒・電池元素戦略)
<今後の展開>
セル構成や充放電条件を最適化し、最も優れた特性を有する蓄電デバイスの創出に結びつける。
イオン液体構造の多様性の視点から、構造をさらに検討し最善の特性の発現に向けたチューニングを行う。
電極―電解質界面抵抗を大幅に低減できる機能性高分子バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が見込まれる。
図1.Liイオン2次電池における負極バインダー
図2. 高分子化イオン液体バインダーの合成法
Chemical Moiety (Octameric units except EC) | ELUMO (eV) | EHOMO (eV) | Bandgap (eV) |
PVBCAImTFSI (PIL) | -11.75 | -16.28 | 4.53 |
PVDF | 0.27 | -8.76 | -9.03 |
EC | 0.63 | -8.23 | -9.03 |
表1.高分子イオン液体(PIL)、PVDF、ECのHOMO*5、LUMOエネルギー準位
図3.BIAN型高分子(左)及びPVDF(右)を用いて構築したハーフセルのサイクリックボルタモグラム*4(第一サイクル)
図4.BIAN型高分子(左)及びPVDF(右)を用いて構築したハーフセルの充放電サイクル後の内部インピーダンススペクトル
図5.(a) 1st、100th、300th、500thサイクルにおける高分子化イオン液体系の充放電曲線、(b) 高分子化イオン液体系及びPVDF系のサイクル特性
<用語解説>
*1 電極―電解質界面抵抗
エネルギーデバイスにおいては一般的に個々の電極の特性や個々の電解質の特性に加えて電極―電解質界面の電荷移動抵抗がデバイスのパフォーマンスにとって重要である。交流インピーダンス測定を行うことによって個々の材料自身の特性、電極―電解質界面の特性等を分離した成分としてそれぞれ観測し、解析することが可能である。
*2 リチウムイオン2次電池
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*3 LUMO
電子が占有していない分子軌道の中でエネルギー準位が最も低い軌道を最低空軌道(LUMO; Lowest Unoccupied Molecular Orbital)と呼ぶ。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム)
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
*5 HOMO
電子が占有している分子軌道の中でエネルギー準位が最も高い軌道を最高被占軌道(HOMO; Highest Occupied Molecular Orbital)と呼ぶ。
令和2年2月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/02/17-1.html学生の熊倉さんが2019年度第68回高分子学会北陸支部研究発表会において優秀研究賞を受賞
学生の熊倉 拓哉さん (博士前期課程 2 年、環境・エネルギー領域、金子達雄研究室) が2019年度第68回高分子学会北陸支部研究発表会において優秀研究賞を受賞しました。
高分子学会北陸支部では、北陸地域を中心に幅広い分野における高分子科学を基軸として研究を展開する研究者・学生らの学術交流として、毎年、研究発表会を開催しています。
優秀研究賞は、高分子学会北陸支部研究発表会の「高分子化学部門」と「高分子構造・高分子物理部門」、「高分子機能部門」のそれぞれにおいて、優秀な研究発表を行った学生に授与されます。
今回、第68回高分子学会北陸支部研究発表会は、11月30日~12月1日にかけて石川県金沢市で開催されました。
■受賞年月日
令和元年11月30日
■発表者名
熊倉拓哉、高田健司、金子達雄
■発表題目
2,5-ビス(アミノメチル)フランを用いたバイオベースポリウレアの合成と熱応答性の評価
■研究概要
本研究では、実際に微生物生産されたバイオ由来 2,5-ビス(アミノメチル)フランを原料として、熱により自己修復性を示すポリウレアゲルの合成法を確立した。主鎖に反応性を有するフランが配置されたポリウレアは、ビスマレイミド類と共存させることで Diels-Alder 反応を起こしゲル化する。このゲルは加熱することで溶融し、冷却することで固化する熱可塑的な挙動を示すことを明らかにした。さらに、ゲルを切断した後、切断面を張り合わせ加温することで接着するという自己修復能力も見出した。以上の成果は、新たなバイオベースポリマー材料を開発しただけでなく、高機能樹脂への展開も可能であるなど、バイオベースポリマーの汎用性を拡大するものである。
■受賞にあたって一言
この度は、第68回高分子学会北陸支部研究発表会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている金子達雄教授、桶葭興資講師、高田健司特任助教、Kumar Amit特任助教にこの場をお借りして心より御礼を申し上げます。さらに、多くのご助言をいただきました研究室のメンバー、およびバイオモノマー原料を提供していただいた株式会社日本触媒さまに深く感謝いたします。
令和元年12月13日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/12/13-1.html学生の熊倉さんが第68回高分子討論会にて優秀ポスター賞を受賞
学生の熊倉 拓哉さん (博士前期課程2年、環境・エネルギー領域、金子研究室) が第68回高分子討論会にて優秀ポスター賞を受賞しました。
高分子学会では、幅広い分野における高分子科学を基軸として研究を展開する研究者らの学術交流として、毎年、5月に年次大会、9月に討論会を全国にて開催しており、今年は福井大学にて開催されました。近年の高分子学会では、大学のみならず企業の参加者も増加し、様々な分野における口頭発表、ポスター発表、展示会、共同研究のディスカッションなどの交流が行われています。このうち、ポスター発表では、特に優れた発表を行った学生に対しポスター賞が授与されます。
■受賞年月日
令和元年10月9日
■発表者名
熊倉拓哉、Kumar Amit、高田健司、金子達雄
■発表題目
バイオマス由来2,5-ビス(アミノメチル)フランをベースとしたポリウレアの合成
■研究概要
本研究では微生物の糖代謝により得られるバイオベース 2,5-ビス(アミノメチル)フラン (AMF) を原料としたポリウレアの合成手法の確立および物性評価、機能化を目的とした。本研究により主鎖にフランを有したポリウレアの合成に成功し、フランの反応性を利用した可逆性ゾル-ゲル反応に基づく、自己修復性を示すゲルを開発した。これにより、バイオ由来AMFから新規ポリマーの合成法を確立するだけでなく、材料の機能化の幅を拡大することが可能となった。
■採択にあたって一言
この度は、第68回高分子討論会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、厳格かつ熱心にご指導を頂きました金子達雄教授、桶葭興資講師、高田健司特任助教、Kumar Amit特任助教にこの場をお借りして心より御礼を申し上げます。さらに、多くのご助言をいただきました研究室のメンバー、およびバイオモノマー原料を提供していただいた株式会社日本触媒に深く感謝いたします。
令和元年10月23日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/10/23-3.html