研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。物質化学領域の長尾准教授の研究課題が村田学術振興財団の研究助成に採択
公益財団法人 村田学術振興財団の研究助成に物質化学領域 長尾 祐樹准教授の研究課題が採択されました。
村田学術振興財団では、エレクトロニクスを中心とする自然科学の研究及び国際化にともなう法律、経済、社会、文化等に係る諸問題に関する人文・社会科学の研究に対して研究助成が行われています。
*詳しくは、村田学術振興財団ホームページをご覧ください。
■研究者名
物質化学領域 長尾 祐樹准教授
■採択期間
令和3年7月~令和4年6月
■研究課題名
分子配向制御による全固体電池の界面デザイン
■研究概要
高分子は柔軟さや自己修復性が付与可能なため、将来的には、折り曲げ可能な固体電池の開発が期待されています。この実現には、電解質に対する電極および活物質の界面設計が不可欠です。界面の特徴の1つに、高分子特有の主鎖や官能基の分子配向等の構造変化がイオン伝導性に強い影響を与えるケースが報告され始めています。長尾准教授の研究グループでは、燃料電池に応用可能なプロトン伝導性高分子薄膜の界面におけるプロトン伝導性と分子配向の相関について研究を行ってきました。例えば、高プロトン伝導性高分子であるNafionは、界面の影響を受けた薄膜では配向構造を示すことが明らかにされています。さらに、酸化物界面と金属界面ではその配向構造が異なります。その構造の違いによってプロトン伝導度も異なります。これらの研究はまだ体系的に実施されておらず、特にデバイスや電池において重要な知見となる金属系材料や炭素系材料などの導電性表面における、高プロトン伝導性高分子界面のプロトン伝導性は十分に明かにされていない状況です。
本研究では、全固体蓄電界面のイオン伝導性や分子配向を同定することで、全固体電池の性能向上と共に課題となるイオンの拡散律速を抑制する次世代蓄電池の界面をデザインすることを目指します。
令和3年7月12日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/07/12-1.html学生のGUPTAさんとPATNAIKさんが第70回高分子学会年次大会において優秀ポスター賞を受賞
学生のGUPTA, Agmanさん(博士後期課程3年、物質化学領域、松見研究室)とPATNAIK, Kottisa Sumalaさん(博士前期課程1年、物質化学領域、松見研究室)が第70回高分子学会年次大会において優秀ポスター賞を受賞しました。
高分子学会は、高分子科学と技術及びこれらに関連する諸分野の情報を交換・吸収する、さまざまな場を提供しています。会員はこれらの場を通じ、学術的向上や研究の新展開のみならず会員相互の人間的な触れ合いや国際的な交流を深めています。
優秀ポスター賞は、高分子学会年次大会において、優れたポスター発表を行った発表者に授与されるもので、もって発表を奨励し、高分子科学ならびに同会の発展に資することを目的としています。
第70回高分子学会年次大会は、5月26日~28日にかけてオンラインで開催されました。
■受賞年月日
令和3年5月28日
【GUPTA, Agmanさん】
■発表題目
リチウムイオン二次電池のシリコン系アノードを安定化する架橋型BIAN系共役系高分子
Crosslinked BIAN Polymer Matrices to Stabilize Silicon Anode in Lithium Ion Secondary Batteries
■研究者、著者
〇Agman Gupta, Rajashekar Badam, and Noriyoshi Matsumi
■受賞対象となった研究の内容
従来型のグラファイトの約10倍の理論放電容量を有しているシリコンは次世代リチウムイオン二次電池用の負極として多大な注目を集めており、活発な研究が展開されている。一方、充放電におけるシリコン粒子の大幅な体積膨張・収縮により粒子の破壊や表面被膜の破壊、集電体からの剥離が問題となり、実用に適した系の創出には至っていない。本研究ではBIAN型共役系高分子を1,6-ジブロモヘキサンとの四級化反応により架橋した高分子材料を負極バインダーとして検討した。その結果、1000サイクル以上にわたって約2500 mAhg-1(Si)の放電容量を維持し、卓越した特性を発現した。
■受賞にあたって一言
I am full of gratitude towards my Prof. Noriyoshi Matsumi for providing me with his immense support, encouragement, and guidance throughout my studies. Also, I am thankful to Senior lecturer Dr. Rajashekar Badam for his motivation and worthy insights that always encouraged me to work hard. I would like to thank MEXT and JST-Mirai (Grant Number: JP18077239) for providing financial support. I am thankful to all JAIST staff (teaching and non-teaching) for providing a healthy scientific environment with good facilities so that students like me can comfortably conduct quality research work. I am deeply motivated from within to pursue my passion for science and contribute to society by using my scientific endeavors for public benefit. In this regard, I have been studying and conducting research that is aimed towards developing Li-ion batteries with high energy density for future applications in portable electronic devices, electric vehicles (EVs), hybrid electric vehicles (HEVs), etc.


【PATNAIK, Kottisa Sumalaさん】
■発表題目
高速充放電能と長期耐久性を併せ持つバイオベース型リチウムイオン二次電池負極活物質
Bio-derived Lithium-ion Battery Anode Material for Fast Charging and Long-cycle Life
■研究者、著者
〇Kottisa Sumala Patnaik, Yueying Peng, Rajashekar Badam, Tatsuo Kaneko, and Noriyoshi Matsumi
■受賞対象となった研究の内容
今日、リチウムイオン二次電池研究において急速充放電技術の開発は最も重要な側面の一つとなっています。ガソリンスタンドでの数分の停車で給油可能なガソリン車と比較して、EV車の充電に要する長い充電時間は消費者心理に多大に影響し、技術の広範な普及への足かせとなっています。本研究では耐熱性のバイオベースポリマーであるポリベンズイミダゾールを焼成することにより得られた高濃度窒素ドープハードカーボンをリチウムイオン二次電池の負極活物質として用いることにより9分間での充電と1000サイクル以上のサイクル耐久性を同時に実現できることが見出されました。見出された知見を活かしつつさらなる系の発展が期待されます。
■受賞にあたって一言
At the outset, I want to express my heartfelt gratitude to Prof. Noriyoshi Matsumi for his invaluable guidance in my research work. I thank Prof. Tatsuo Kaneko for opportunity of collaboration under SIP project. I also want to thank Senior lecturer Dr. Rajashekar Badam for incessantly providing me with his suggestions at every step of my research work. I believe research has been very interesting for me especially because of extremely supportive lab mates. I am very grateful to every member of Matsumi Lab for helping me in many small and big ways to carry out my research work smoothly. Lithium ion batteries have brought a lot of convenience and comfort into our everyday life. Any research in this field adds a significant impact at large. I believe lithium-ion batteries have the potential to impact human life at even greater scale than they currently do. Fast charging batteries with long cycle life is one of the fields in maximum demand owing to their applicability in electric vehicles. The prospect of using a vehicle not powered by fossil fuel but delivering equivalent capability to a fossil fuel powered vehicle inspired me to carry out my research in this field of 'Fast Charging Lithium-ion Batteries". I intend to dedicate my future research endeavors in this field.


令和3年7月6日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/07/06-1.html新型コロナウイルスの重症化に関与するタンパク質ORF8の特異な性質を発見

![]() ![]() |
石川県公立大学法人 石川県立大学 国立大学法人 北陸先端科学技術大学院大学 |
新型コロナウイルスの重症化に関与するタンパク質ORF8の特異な性質を発見
新型コロナウイルスの重症化に関与するタンパク質ORF8は、過酷な環境下でも高い安定性、復元力を保つという特異な性質を持つことを発見しました。ORF8は、70度においても天然状態を保持し、70度以上で変性させても、温度が下がると天然状態に戻ること、酸性条件で変性するが、弱アルカリ条件にすると天然状態に戻ることを明らかにしました。 |
【概要】
石川県立大学 森正之准教授が中心となり、今村智弘講師、東村泰希准教授、松本健司教授および北陸先端科学技術大学院大学 生命機能工学領域の大木進野教授と共同で、新型コロナウイルス(SARS-CoV-2)の重症化関与タンパク質ORF8の特異な性質を発見しました。本研究成果は、速報誌「Biochemical and Biophysical Research Communications」に公開されました。
SARS-CoV-2が引き起こす新型コロナウイルス感染症(COVID-19)は、基礎疾患や肥満の罹患者が重篤化しやすく、全世界で大問題となっています。新型コロナウイルスが持つORF8タンパク質は、SARS-CoV-2において特徴的なタンパク質です。これまでの解析により、ORF8は、免疫機能に重要な役割を持つMHCクラスIタンパク質の働きを抑え、細胞障害性T細胞を介した免疫応答を損なう働きがあることが報告されております。さらに、ORF8遺伝子領域が欠失したSARS-CoV-2株や1つのアミノ酸残基が変異したORF8(L84S)を持つウイルス株では、重症化しにくいことが報告されています。このことから、ORF8タンパク質は、COVID-19の重症化に関与することが示唆されています。
ORF8タンパク質は分子内に3か所のジスルフィド結合(S-S結合)を持ち、さらにS-S結合で二量体になる複雑なタンパク質です。そのため大腸菌での均一なORF8の合成は極めて困難です。しかし、我々は、タバコ培養細胞(タバコBY-2細胞)を用いて均一なORF8タンパク質の大量合成に成功しました(図1)。
タンパク質は一般的に、熱や酸、アルカリの影響を受けると、ひもが絡まったような変性という状態になって沈殿します。通常は、生卵が加熱されるとタンパク質が変性しゆで卵になるように、いったん変性したタンパク質は元の状態に戻りません。ORF8タンパク質がどのような条件で変性するかはその機能を知るうえで重要です。そこで、本研究では、タバコBY-2細胞で合成した野性型ORF8と変異型ORF8(L84S)の温度およびpHを変化させORF8の状態変化を核磁気共鳴(NMR)装置で解析しました。その結果、ORF8は耐熱性がとても高く70度付近まで天然状態を保持し、70度以上で変性しました。しかし、一般的なタンパク質と異なり、温度を下げると天然状態に戻ることがわかりました(図2)。またORF8は、弱酸性条件で変性してしまうこと、中性条件に戻すと元の天然状態に戻ることがわかりました。これらの結果は、ORF8が特別安定なタンパク質であることを意味します。また、興味深いことに、変異型ORF8(L84S)はORF8に比べて熱および酸への耐性がより高いことがわかりました(図2)。これらの特異な性質は、OFR8の機能と関係していることが予想されます。今後、この知見をもとにした解析を行うことにより、COVID-19の重症化をおさえる治療法が確立する可能性が期待されます。
【発表論文】
論文タイトル | Similarities and differences in the conformational stability and reversibility of ORF8, an accessory protein of SARS-CoV-2, and its L84S variant |
論文著者 | Shinya Ohki; Tomohiro Imamura; Yasuki Higashimura; Kenji Matsumoto; Masashi Mori |
雑誌 | Biochemical and Biophysical Research Communications |
図1 タバコ培養細胞を用いたORF8タンパク質の大量生産
タバコBY-2細胞で生産したORF8タンパク質は全て二量体を形成する。(A) ORF8タンパク質を合成するタバコBY-2細胞 (B)タバコBY-2細胞の大量培養 (C)培養液中に放出されたORF8タンパク質 (D)精製しNMR解析に用いたORF8タンパク質。WT:野生型ORF8タンパク質、L84S: 変異型ORF8タンパク質、矢じり:ORF8タンパク質、M:分子量マーカー
図2 ORF8 (wild type)とその変異体L84Sの各温度での1H-NMRスペクトルのメチル基領域の拡大図 *印は、昇温後に再びその温度に戻したことを表す。
ORF8、L84Sともに70度くらいまではスペクトルに大きな変化が見られない。これは、立体構造が保持されていることを示している。ORF8では70度、L84Sでは75度のときにピークが広幅化し、特に0 ppm付近ではピークが消失しかかっている。これは、試料が多量体化もしくは会合により熱変性状態になったことを示している。ところが、両試料ともに温度を下げたときのスペクトルは実験開始時のスペクトルと一致している。これは、変性状態の試料が天然状態に戻ったことを示している。
【用語説明】
細胞傷害性T細胞:リンパ球T細胞の一種。異物となる異常細胞(ウイルス感染細胞、がん細胞など)を認識し、それらを攻撃して破壊する細胞。
MHCクラスIタンパク質:免疫応答に関わるタンパク質。細胞内のタンパク質に由来するペプチド断片を細胞表面に輸送し、細胞障害性T細胞に提示するタンパク質。
ジスルフィド結合(S-S結合):2つのシステインによって形成される共有結合で、タンパク質の立体構造形成に重要な役割をはたす。
二量体:2個のタンパク質が、物理的・化学的な力によって形成した分子。
核磁気共鳴(NMR)装置:強力な磁場中に置いた試料に電磁波を照射して応答信号を得る装置。信号を解析することで、試料の構造や運動性を知ることができる。
令和3年6月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/06/09-1.htmlリチウムイオン2次電池の長期的耐久性の課題解決に資する超高耐久性バインダーを開発

リチウムイオン2次電池の長期的耐久性の課題解決に資する
超高耐久性バインダーを開発
ポイント
- リチウムイオン2次電池の長期的耐久性の課題の解決に資する超高耐久性負極バインダーの開発に成功した。
- 1700回の充放電サイクルを経ても95%の容量維持率を示した。
- 本バインダー材料を用いた系ではPVDF系で顕著であった電解液の電気分解が抑制された。
- 充放電サイクル後に、本バインダー材料を用いた電池系ではPVDF系と比較して大幅に低い(45%減少)内部抵抗が観測された。
- 各種電気化学測定により、負極内部のリチウムイオンの拡散性に優れていることが分かった。本バインダー系ではイオンの拡散係数がPVDF系を15%上回った。
- ヤング率、引張強度のいずれにおいても本バインダーはPVDFと比較して大幅に優れた力学的強靭さを示した。
- 電極―電解質界面抵抗を低減できる高耐久性バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の先端科学技術研究科 物質化学領域の松見 紀佳教授、環境・エネルギー領域の金子 達雄教授、バダム ラージャシェーカル講師、アグマン グプタ博士後期課程学生、アニルッダ ナグ元博士研究員は、リチウムイオン2次電池*1の耐久性を大幅に向上させる負極バインダー材料(図1)の開発に成功した。 リチウムイオン2次電池は、一般ユーザーが広く認識しているように充放電能力が経年劣化することが知られている。この問題は、EV用途を始めとする高付加価値製品においては更に深刻な課題となる。リチウムイオン2次電池の劣化要因は極めて多岐にわたるが、様々な電極内における副反応によるバインダーを含む電極複合材料の変性、電極/集電体の接着力の劣化が主要因の一つと考えられている。 本バインダー材料は、アセナフテキノンと1,4-フェニレンジアミンとを酸触媒の存在下で重縮合することにより合成した(図2)。 開発したリチウムイオン2次電池用バインダーは、長く検討されてきたポリフッ化ビニリデン(PVDF)と比較すると、LUMO*2,3が低い電子構造的特徴を有し(図3)、その結果として電解液の過剰な分解による厚い被膜形成を効果的に抑制した。 サイクリックボルタンメトリー*4後に見積もられたイオン拡散係数はPVDF系と比較して15%高い値となった。また、リチウム脱挿入ピークの電位差(オーバーポテンシャル)は本バインダー材料系においてPVDF系と比較して100mV減少し、より容易なリチウムイオンの拡散を支持する結果となった。充放電後の電池セルの界面抵抗*5も本バインダーにおいて大幅に低い値を示した(62Ω;PVDF系では110Ω)(図4)。 その結果として本バインダー高分子系では1735回の充放電サイクルを経ても95%の容量維持率を示し、非常に優れた耐久性が明らかとなった(図5)。 長期充放電後の負極のXPS測定より、バインダー材料由来の窒素原子に由来するピークが明瞭に観測されたことから、電極表面に形成されている被膜は極めて薄いことが示唆された。また、バインダー構造の一部が顕著にリチウムドープされていることも明らかとなった。長期充放電後の負極のSEM像では、PVDF系では500サイクル後に大きなクラックの形成と共に集電体から剥離した様子も観測されたが、本バインダー系では1735サイクル後にも僅かなクラックの形成が観測されるにとどまった。 なお、本研究はJST未来社会創造事業の支援を受けて実施された。 |
本成果は「ACS Applied Energy Materials」(米国化学会)オンライン版に2月17日に掲載された。
題目 | Bis-imino-acenaphthenequinone-Paraphenylene-Type Condensation Copolymer Binder for Ultralong Cyclable Lithium-ion Rechargeable Batteries |
著者 | Agman Gupta, Rajashekar Badam, Aniruddha Nag, Tatsuo Kaneko and Noriyoshi Matsumi |
DOI | 10.1021/acsaem.0c02742 |
【今後の展開】
セル構成や充放電条件を最適化し、最も優れた特性を有する蓄電デバイスの創出に結びつける。
更に異なる材料組成から成る高容量負極材料への適用を進めつつある。
電極―電解質界面抵抗を大幅に低減できる機能性高分子バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が見込まれる。
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 LUMO:
電子が占有していない分子軌道の中でエネルギー準位が最も低い軌道を最低空軌道(LUMO; Lowest Unoccupied Molecular Orbital)と呼ぶ。
*3 HOMO:
電子が占有している分子軌道の中でエネルギー準位が最も高い軌道を最高被占軌道(HOMO; Highest Occupied Molecular Orbital)と呼ぶ。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
*5 電極―電解質界面抵抗:
エネルギーデバイスにおいては一般的に個々の電極の特性や個々の電解質の特性に加えて電極―電解質界面の電荷移動抵抗がデバイスのパフォーマンスにとって重要である。交流インピーダンス測定を行うことによって個々の材料自身の特性、電極―電解質界面の特性等を分離した成分としてそれぞれ観測し、解析することが可能である。
令和3年3月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/03/01-1.html学生の中村さんが令和2年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞

学生の中村 航大さん(博士前期課程1年、環境・エネルギー領域、大平研究室)が令和2年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。
北陸・信越支部発表奨励賞は、応用物理学会北陸・信越支部が開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的として授与されるものです。
今回、令和2年度応用物理学会北陸・信越支部学術講演会は、11月28日にオンラインで開催されました。
■受賞年月日
令和2年11月28日
■発表題目
封止材無しn型フロントエミッタ型結晶Si太陽電池モジュールの電圧誘起劣化
■講演の概要
近年、太陽光発電システムの導入が急増しているが、そのほとんどは、モジュールに封止材を有している。封止材を有した結晶シリコン(c-Si)太陽電池モジュールは、いくつか問題点があり、その一つである電圧誘起劣化(PID)は、太陽電池モジュールのアルミフレームとセル間の電位差に起因して性能が低下する現象である。PIDは、Na+侵入や電荷蓄積が封止材を経由して起きるため、封止材を無くせばこの問題は解決できると考えられる。本研究では、今後の普及が期待される、n型c-Siを基板に用い、光入射側にp型エミッタ層があるn型フロントエミッタ型c-Si太陽電池モジュールを作製し、封止材の有無がPIDにおよぼす影響を調査した。封止材の無いモジュールでは、SiNx膜からの電子移動やNa+の侵入の経路が存在しないため、性能低下が抑制できた。また、わずかに電荷蓄積型のPIDが見られたのは、リーク電流の経路を介してSiNx膜から電子が流出することにより正電荷が蓄積し、表面再結合が増大したためと考えられる。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。ご指導いただいた、大平圭介教授、Huynh Thi Cam Tu特任助教ならびに研究室のメンバーには厚く御礼申し上げます。本受賞を励みに、今後もより一層精進して参りたいと思います。
令和2年12月7日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/12/7-2.html世界初 キヌアからブラッダー細胞形成遺伝子を発見

世界初 キヌアからブラッダー細胞形成遺伝子を発見
石川県立大学 森 正之准教授、今村 智弘特任講師、古賀 博則客員教授、高木 宏樹准教授、北陸先端科学技術大学院大学先端科学技術研究科、生命機能工学領域の大木 進野教授らは、(公財)岩手生物工学研究センターなどの機関と共同で、塩生植物キヌア(Chenopodium quinoa)からブラッター細胞の形成に関わる遺伝子を発見しました。 本研究成果は、「Communications Biology」で公開されました。
<ポイント>
- キヌアからブラッダー細胞形成に関わる新規WD40タンパク質をコードするREBC遺伝子を発見
- REBC遺伝子は、ブラッダー細胞形成のみならず葉緑体形成にも関与していることを発見
- ブラッダー細胞の茎頂保護機能を発見
<発表論文>
論文タイトル | A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa |
論文著者 | Tomohiro Imamura, Yasuo Yasui, Hironori Koga, Hiroki Takagi, Akira Abe, Kanako Nishizawa, Nobuyuki Mizuno, Shinya Ohki, Hiroharu Mizukoshi, and Masashi Mori |
雑誌 | Communications Biology (DOI: 10.1038/s42003-020-01249-w) |
<研究の背景>
国連大学の報告によると、世界の灌漑地の約1/5が塩害にさらされています。その被害は、年間およそ273億USドルの経済損失を引き起していることが報告されており、今後さらに広がることが予想されています。一方、世界の人口は、2050年までに97億人に達することが予想されております。そのため、この人口の爆発的な増加に耐えうる食糧生産は、早急に解決すべき大きな課題となっております。しかし、主要穀物である小麦やイネなどは、塩に弱いで植物であり、これらの主要穀物に対する塩害は、食糧生産において大きな問題となります。キヌアは、非常に高い耐乾燥性と耐塩性を併せ持ち、他の植物では生育困難な厳しい環境で生育できる塩生擬似穀物です。さらに、キヌアの種子は、必須アミノ酸・ミネラル・植物繊維を豊富に含み高い栄養価を持つことから、国際連合食糧農業機関(FAO)では、世界の食糧問題解決の切り札になり得るスーパーフードとして注目されています。
キヌアを含めたアカザ属植物は、植物体の表面に球状の表皮細胞(ブラッダー細胞)を形成します(図1)。ブラッダー細胞は、通常細胞の1000倍以上の大きさがあり、細胞内に高濃度の塩を蓄積することが知られています。このブラッダー細胞の性質は、キヌアの高い塩耐性の一因と考えられています。独自の形態と機能を持つブラッダー細胞ですが、その形成メカニズムは全く分かっていませんでした。
本研究では、塩生植物のキヌアに形成されるブラッダー細胞の形成機構を明らかにするために、ブラッダー細胞の形成に関わる遺伝子の単離を試みました。その結果、EMS処理の変異原処理により、ブラッダー細胞が著しく減少したrebc変異体を獲得し、次世代シークエンサーを用いた解析により、ブラッダー細胞形成に関わるrebc変異体の原因遺伝子(REBC)の単離に成功しました。その単離したREBC遺伝子は、ブラッダー細胞を形成しない植物には存在しないことが明らかとなりました。このことから、ブラッダー細胞の形成機構は、同じ植物の表皮細胞であるトライコームの形成機構とは異なることが示唆されました。さらに、rebc変異体はブラッダー細胞の形成のみならず葉緑体の形成にも影響を及ぼしていることが明らかとなりました。また、rebc変異体を用いた環境ストレス実験により、ブラッダー細胞は、塩を蓄積するだけでなく、その細胞を密集させることにより茎頂などの組織を環境ストレスから保護していることが明らかとなりました。
<研究の内容>
1.ブラッダー細胞が減少した変異体の作出
ブラッター細胞の形成に関わる遺伝子を単離するために、約8000粒のキヌア種子ついて、EMSを用いた変異原処理を実施しました。その結果、大部分のブラッダー細胞が欠失した変異体を得ることができました(図2)。この変異体を reduced epidermal bladder cells (REBC)変異体と命名しました。rebc変異体の分離比を確認しましたところ、野生型とrebc変異の割合が3:1に分離しました。興味深いことに、キヌアは異質4倍体の植物にもかかわらず、rebcの形質は、一遺伝子支配の劣勢形質であることがわかりました。
2.環境ストレス試験
キヌアは、ブラッダー細胞に塩を高濃度に蓄積することにより、高塩環境においても正常に生育できることが知られています。そこで、大部分のブラッダーが欠失したrebc変異体について、塩ストレス実験を実施しました。その結果、rebc変異体は、野生型に比べて高濃度の塩条件において生育が阻害されていることがわかりました。さらに、別の環境ストレスとして、茎頂に風を当て続けたところ、野生型では問題なく生育したのですが、rebc変異体では風によって茎頂にダメージを受けていることが明らかとなりました(図3)。これらの実験からブラッダー細胞は、塩を蓄積する機能のほかに、茎頂などの特定の組織に密集して存在することにより、風などの環境ストレスから組織を保護していることが新たに明らかとなりました。
3.rebc変異体の原因遺伝子の特定
rebc変異体の原因遺伝子を明らかにするために、次世代シークエンサーを用いたin silico subtraction 法を利用して変異箇所の特定を試みました。その結果、rebc変異体は、新規なWD40ドメインタンパク質遺伝子の変異が原因であることを明らかにし、その遺伝子をREDUCED EPIDERMAL BLADDER CELLS (REBC)遺伝子と名付けました(図4)。他植物の表皮細胞であるトライコームでは、その形成に関与する遺伝子が同定されており、その中でWD40ドメインタンパク質としてTTG1遺伝子が重要な役割をしています。REBCとTTG1を比較したところ、これらのタンパク質は、別の機能を持つタンパク質であることが示唆されました(図5)。またトライコームを形成する植物体には、REBC遺伝子のオルソログが存在しませんでした。これらの結果より、ブラッダー細胞の形成は、トライコームとは異なる機構の存在が示唆されました。
4.rebc変異体における葉緑体形成
rebc変異体について、網羅的な発現解析を実施したところ、発現が変動した遺伝子の多くが葉緑体局在タンパク質をコードする遺伝子でありました。さらに、クロロフィル含量を測定したところ、rebc変異体のクロロフィル含量が有意に低下していることが明らかとなりました。そこで、rebc変異体の葉緑体の形態について、電子顕微鏡を用いて観察しました。その結果、rebc変異体の葉緑体は、内部構造の約1/3が欠失していることが明らかとなりました(図6)。さらに、ブラッダー細胞の葉緑体を観察した結果、rebc変異体のブラッダー細胞の中の葉緑体は、野生型に比べクロロフィルの自家蛍光の強度が低下し、さらにブラッダー細胞あたりの葉緑体数が減少していることが明らかとなりました。以上の結果より、rebc変異体は、ブラッダー細胞の形成のみならず、葉緑体の形成にも影響を及ぼしていることが明らかになりました。
<今後の展望>
本研究成果によって、キヌアのブラッダー細胞形成に関する分子メカニズムの一端を明らかにすることができました。今後、ブラッダー細胞の形成に関する分子メカニズムの全容が明らかになることが期待できます。さらに、ブラッダー細胞形成の知見を利用することによって、キヌアの塩耐性機構を組み入れた新たなコンセプトの環境ストレス耐性作物を作出することが期待できます。
図1 キヌアのブラッダー細胞 (a)キヌア植物体、(b)キヌアの葉(裏側)、(c)キヌアの葉(拡大)、
(d-f) キヌアブラッダー細胞 BC:ブラッダー細胞、SC: 柄細胞
図2 rebc変異体について (a-c)キヌア芽生え (d-f)キヌア芽生え(茎頂付近)
(a, d)野生型、(b, e)rebc1変異体、(c, f)rebc2変異体
図3 風ストレス処理による影響 (a)野生型、(b)rebc1変異体、(c)rebc2変異体
・rebc変異体は風ストレスによって、茎頂が枯死している。
図4 REBC遺伝子の単離 (a) REBC遺伝子の概略図 赤矢印はrebc変異体の変異箇所
(b)rebc1×rebc2交配後代(F1)の解析
・rebc1×rebc2交配個体も、rebc変異の形質を示したことから、REBCが原因遺伝子であることが明らかとなった。
図5 (a) REBCとTTG1との比較(系統樹解析)、(b) アラビドプシスttg1変異体を用いた相補実験
上段:ベクターコントロール、中段:REBC過剰発現体、下段:AtTTG1過剰発現体
・REBCタンパク質は、TTG1タンパク質とは別のグループに属し、TTG1の機能を相補することができない。
図6 rebc変異体の葉緑体について (a-c) 走査型電子顕微鏡像 (b-f)透過型電子顕微鏡像
(a, d)野生型、(b, e)rebc1変異体、(c, f)rebc2変異体
・rebc変異体では、葉緑体の膜構造1/3が欠失している。
<用語説明>
- キヌア
ヒユ科アカザ亜科アカザ属の植物。南米アンデス原産の穀物で必須アミノ酸・ミネラル・植物繊維を豊富に含み高い栄養価を持ち、さらに、環境適応能力が高く、非常に高い耐乾燥性と耐塩性を合わせ持ち、国際連合食糧農業機関(FAO)は、世界の食糧問題解決の切り札になり得る作物として注目している。近年、我々のグループとその他のグループによってキヌアゲノムが解読され、キヌアが持つ環境ストレス耐性および高栄養価についての遺伝子研究が進められている。 - 擬似穀物
米や麦などのイネ科(禾穀類)や、大豆や小豆などのマメ科(菽穀類)ではないが、見た目がイネ科の穀物に類似した食べられる種子を形成する植物(ソバ、キヌア、アマランサスなど)を指す。 - in silico subtraction法
次世代シークエンサーのシークエンスデータを用いて、サンプル間の塩基配列の違い(多型、変異箇所)を特定する方法。異質倍数体の植物(キヌアは異質4倍体)でも検出が可能。本研究では、親から分離した後代について、野生型形質を示す個体群と、rebc変異形質を示す個体群を、それぞれまとめてゲノムを抽出し、次世代シークエンサーによって、それぞれの形質を示す個体群のシークエンスリードを獲得。その後、二形質間のシークエンスリードを比較することにより、形質を支配する遺伝子を特定した。
令和2年9月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/09/17-1.htmlNEDO「ムーンショット型研究開発事業」研究開発プロジェクトに採択
![]() |
国立大学法人北陸先端科学技術大学院大学 |
このたび、北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)ら8機関による提案研究が、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の「ムーンショット型研究開発事業※」におけるムーンショット目標4「2050年までに、地球環境再生に向けた持続可能な資源循環を実現」の達成を目指す研究開発プロジェクトに採択されました。
1)ON型光スイッチ:陸域の生活圏では材料として安定ですが、投棄後に海洋流出するまでの過程で生じる表面損傷などにより太陽光がプラスチック内部に届き生分解が始まる(ON)スイッチです。 2)OFF型光スイッチ:蛍光灯や太陽光暴露のある状態では生分解が抑制(OFF)され、海中・海底・コンポストなどの暗所の環境で生分解が始まるという「光スイッチ」です。 3)また、これらを具有させたON/OFF型という理想的システムも同時に提案します。 さらには、海洋生物が誤飲したり周りまわって人間の食料中に混ざり込んでも消化管内で物理的障害や化学的毒性を生じない「食せるプラスチック」の開発も目指します。 2030年にはこれらの海洋実環境における分解性を証明し衣料品やビニール袋などの試作品を作製します。さらに、上記のシステムは広範囲のプラスチックに適用できるため、2050年までにはさらに多くのプラスチックへと展開し様々な種類や形態の光スイッチ型分解性プラスチック製品へと展開します。本プロジェクトは、二酸化炭素の固定化、炭素循環および窒素循環などの概念を取り入れた統合的な地球環境保全・再生に資するものです。加えて、本プロジェクトは、成熟期に差し掛かってきた我が国の石油化学産業をバイオ化学産業に業態転換せしめ、新たな成長に向けたパラダイムチェンジ型イノベーションの一端を担う可能性を有します。 |
<参 考>
1 ムーンショット型研究開発制度
本制度の詳細については、以下を参照
https://www8.cao.go.jp/cstp/moonshot/index.html
2 ムーンショット目標
2020年1月CSTIにおいてムーンショット目標1~6が決定。2020年7月には健康・医療戦略推進本部においてムーンショット目標7が決定
目標1:2050年までに、人が身体、脳、空間、時間の制約から解放された社会を実現
目標2:2050年までに、超早期に疾患の予測・予防をすることができる社会を実現
目標3:2050年までに、AIとロボットの共進化により、自ら学習・行動し人と共生するロボットを実現
目標4:2050年までに、地球環境再生に向けた持続可能な資源循環を実現
目標5:2050年までに、未利用の生物機能等のフル活用により、地球規模でムリ・ムダのない持続的な
食料供給産業を創出
目標6:2050年までに、経済・産業・安全保障を飛躍的に発展させる誤り耐性型汎用量子コンピュータを実現
目標7:2040年までに、主要な疾患を予防・克服し100歳まで健康不安なく人生を楽しむための
サステイナブルな医療・介護システムを実現
3 NEDOムーンショット型研究開発事業の採択結果
https://www.nedo.go.jp/news/press/AA5_101346.html
令和2年9月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/09/7-1.html物質化学領域の都准教授らの論文がAngewandte Chemie International Edition誌の表紙に採択

物質化学領域の都 英次郎准教授らの論文がAngewandte Chemie International Edition誌の表紙に採択されました。なお、本研究成果は日本学術振興会科研費[基盤研究A、基盤研究B、国際共同研究加速基金(国際共同研究強化)]、フランス国立研究機構、グラフェンフラッグシップ、スペイン財務省、バレンシア州自治政府の支援のもと、フランス国立科学研究センターと行われた共同研究によるものです。
■掲載誌
Angewandte Chemie International Edition
■著者
Matteo Andrea Lucherelli, Yue Yu, Giacomo Reina, Gonzalo Abellán, Eijiro Miyako*, Alberto Bianco*
■論文タイトル
Rational chemical multifunctionalization of graphene interface enhances targeting cancer therapy
■論文概要
本研究は、三種類の機能性分子(近赤外蛍光プローブ、抗ガン剤、腫瘍マーカー認識分子)をグラフェン表面上に一度に化学修飾できること、そしてその合理的な分子設計に基づいた効果的なガン分子標的治療技術への応用の可能性を示した。なお、本研究成果は、JAISTホームページからプレスリリースしている。
論文詳細:
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201916112
表紙詳細:
https://doi.org/10.1002/anie.202007535
プレスリリース:
https://www.jaist.ac.jp/whatsnew/press/2020/04/23-1.html
令和2年6月25日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/06/25-1.html物質化学領域の都准教授らの研究成果がCell Pressよりプレスリリース

物質化学領域の都 英次郎准教授の「シャボン玉を利用した花粉交配」に係る研究成果が、iScience誌(Cell Press)に掲載されました。また、本研究成果は、Cell Pressから独創的な技術としてプレスリリースされ、Science、CNN、BBC、New York Timesといった数多くの情報メディアに注目の記事として取り上げられました。なお、本研究成果は日本学術振興会科研費[基盤研究A、基盤研究B、国際共同研究加速基金(国際共同研究強化)]の支援のもと行われたものです。
図. カンパニュラのめしべ柱頭に付着している機能性シャボン玉の写真。
シャボン玉の膜表面に花粉粒子が搭載されている。
■掲載誌
iScience
■著者
Xi Yang, Eijiro Miyako*
■論文タイトル
Soap bubble pollination
■論文概要
近年、作物の授粉を担うミツバチ等の花粉媒介昆虫の減少が、食糧危機に関わる世界規模の社会問題になっている。昆虫による生物花粉交配の代替手段として、人の手による人工授粉が行われているが、手間と労力が掛かる。本研究では、花粉粒子を活性化させ、かつ使用花粉量を削減可能な機能性シャボン玉と自律制御可能なロボット技術(ドローン)を組み合わせた人工花粉交配法の開発に取り組んだ。
論文詳細:
https://www.sciencedirect.com/science/article/pii/S2589004220303734
Science:
https://www.sciencemag.org/news/2020/06/drone-delivered-soap-bubbles-could-help-pollinate-flowers
CNN:
https://edition.cnn.com/2020/06/17/world/soap-bubble-robotic-pollination-study-scn/index.html
BBC:
https://www.bbc.com/news/science-environment-53081194
New York Times:
https://www.nytimes.com/2020/06/17/science/bubbles-pollinating-bees.html
令和2年6月18日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/06/18-1.html"三種の神器"を備えた多機能性グラフェンの開発 -ガン分子標的治療技術を目指して-

国立大学法人北陸先端科学技術大学院大学
フランス国立科学研究センター
"三種の神器"を備えた多機能性グラフェンの開発
-ガン分子標的治療技術を目指して-
ポイント
- 三種類の機能性分子(近赤外蛍光プローブ、抗ガン剤、腫瘍マーカー認識分子)をグラフェン表面上に一度に化学修飾することに成功
- 多機能性グラフェンの合理的な分子設計によって選択的かつ効果的なガン細胞死を誘導することに成功
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科物質化学領域の都 英次郎准教授らはフランス国立科学研究センター(所長、アントワーヌ・プチ、フランス・パリ)のアルベルト・ビアンコ博士ら(同センター、細胞分子生物学研究所、フランス・ストラスブール)と共同で、多機能性グラフェン*1を活用した新しいガン分子標的治療技術の開発に成功した(図1)。
本研究は、グラフェンに様々な機能性分子を一度に化学修飾できること、そしてその合理的な分子設計に基づいた効果的なガン分子標的治療技術への応用の可能性を示した。今後は、この技術を応用して、マウスやラット等の実験動物の体内における抗ガン作用を詳細に調べていく予定である。 本成果は、2020年4月21日にWiley-VCH発行「Angewandte Chemie International Edition」のオンライン版に掲載された。なお、本研究は、日本学術振興会科研費[基盤研究A、基盤研究B、国際共同研究加速基金(国際共同研究強化)]、フランス国立研究機構、グラフェンフラッグシップ、スペイン財務省、バレンシア州自治政府の支援を受けて行われた。 |
図1. 多機能性グラフェンの分子構造
【論文情報】
掲載誌 | Angewandte Chemie International Edition (Wiley-VCH) |
論文題目 | Rational chemical multifunctionalization of graphene interface enhances targeting cancer therapy |
著者 | Matteo Andrea Lucherelli, Yue Yu, Giacomo Reina, Gonzalo Abellán, Eijiro Miyako*, Alberto Bianco* |
掲載日 | 2020年4月21日にオンライン版に掲載 |
DOI | 10.1002/anie.201916112 |
【用語説明】
*1 グラフェン
炭素原子だけで構成される二次元シート状のナノ炭素材料。厚さが炭素一個分に相当し、炭素原子が蜂の巣のような六角形に連結した構造を持つ。優れた電気伝導性、熱伝導性、機械的強度、化学的安定性などを持っており、幅広い分野での応用が期待されている。
*2 インドシアニングリーン(ICG)
医療診断で使用されるシアニン色素の一種である。生体透過性の高い近赤外波長領域の光が利用できるため生体深部の診断や治療に有用と考えられている。
*3 葉酸
葉酸はビタミンB群の一種。ガンマーカー認識素子として葉酸受容体を標的にしたドラッグデリバリーシステムが開発され、ガンの診断や治療に応用されつつある。
*4 ドキソルビシン(Dox)
抗ガン剤の一種である。腫瘍細胞の核内の遺伝子に結合することで、DNAやRNAを合成する酵素の働きを阻害することで抗腫瘍効果を示す。
令和2年4月23日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/04/23-1.html水田教授らが太陽誘電社とグラフェン超高感度においセンサの共同開発を発表

環境・エネルギー領域の水田 博教授らの研究グループは、 太陽誘電株式会社(本社:東京都、代表取締役社長:登坂正一、以下太陽誘電)と、グラフェンを用いた超高感度においセンサの共同開発を発表しました。
<発表の概要>
水田教授らの研究グループは、原子層材料グラフェンを用いた独自のNEMS(Nano-Electro-Mechanical Systems: ナノ電子機械システム)技術を用いて、グラフェン表面に物理吸着した単一CO2ガス分子によるグラフェンの微小な電気抵抗変化を、室温で検出時間<1分で高速検出する抵抗検出方式の単分子レベル気相センサの原理検証に成功しています。この抵抗検出方式グラフェンセンサはグラフェンとガス分子間の化学反応を用いておらず、吸着を加速する目的で印加している基板電界を切れば吸着分子は自然に脱離します。つまりセンサのリフレッシュ動作は必要なく、それゆえ素子のライフタイムを飛躍的に長くできます。最近では、この基盤技術を応用展開し、室温大気圧雰囲気下で濃度~500 pptの極薄アンモニアガスに対して、検出時間<10秒で高速検出することにも成功しています。また、グラフェンRF振動子を用いた質量検出方式グラフェンセンサの基盤技術も開発済みです。現在のQCM(Quartz Crystal Microbalance:水晶振動子マイクロバランス)センサの質量検出限界が数ピコグラム(10-12 g)レベルであるのに対して、本研究では、濃度~数ppbのH2/Arガス中で、グラフェン振動子表面に吸着した分子による質量の増加を、室温で100ゼプトグラム(1zg = 10-21 g)レベルで検出することに成功しています。これは、従来のQCMセンサと比較して約7桁の質量感度向上にあたります。
一方、太陽誘電は、これまでQCMを用いたにおいセンサの開発を行ってきました。開発中のセンサシステムは、①QCMセンサアレイモジュール、②センサコントロールユニット、③クラウド処理の3つの構成要素からなっており、①QCMセンサモジュールは、水晶振動子、水晶発振回路、周波数検出回路、流路、ポンプ、BLE(無線)等から構成されています。②センサコントロールユニットは、①QCMセンサモジュールと同時複数(最大32台)接続し、センサデータを取得するとともに、そのデータをクラウドへアップするゲートウェイ機能を有しています。③クラウド処理は、②センサコントロールユニットを介してアップされたセンサデータをニューラルネットワークの機械学習で処理し、においの種類や危険予知、故障予測など人にとって意味のある結果を出力します。しかし、①のQCMセンサの感度は人の嗅覚感度にも達しておらずppm程度の濃度が検出限界であることが課題となっています。
本共同開発においては、両グループの相補的な世界的卓越技術を融合させ(図1参照)、犬や線虫の嗅覚能力に迫るpptレベルの超高感度(図2参照)を可能とするマルチセンサアレイ方式パターン分析超低濃度・超微小量においセンシング技術を開発します。これは太陽誘電の高感度化ロードマップ(図3参照)において、最高感度フェーズの技術として位置づけられています。
図1 太陽誘電株式会社と水田教授グループの共同開発チーム概念図
図2 匂いセンサの応用分野と既存センサの性能および共同開発する超高感度グラフェンセンサのターゲット
図3 太陽誘電株式会社の高感度化ロードマップにおける本共同開発の位置付け
図4 共同開発チームの主メンバー:
左から水田博教授、太陽誘電株式会社開発研究所・機能デバイス開発部の服部将志課長、下舞賢一次長
<今後の展開>
生体・環境などのにおいをシングルppb~pptレベルで識別するグラフェンセンサアレイを室温・高速で動作させ、真のe-Nose技術の実現を目指します。また、これを、①皮膚ガス検知によって未病検出や精神的ストレスモニタを可能とする高機能ヘルスチェックシステムや、②シックハウス症候群の原因となっているVOC(揮発性有機化合物)など生活環境汚染モニタリングシステム開発に発展させ、新たな産業・市場開拓に挑んでまいります。
図5 超高感度グラフェンにおいセンサシステムによる応用展開例
本共同開発事業は、10月23日開催の、粉体粉末冶金協会2019年度秋季大会(第124回講演大会)講演特集『スマートソサイエティを支える高機能電子部品材料』において発表予定です。
*参考:粉体粉末冶金協会2019年度秋季大会(第124回講演大会)ホームページ
令和元年10月23日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2019/10/23-2.html物質化学領域の都准教授らの論文がNanoscale Advances誌の表紙に採択

物質化学領域の都 英次郎准教授、YU, Yue特任助教(物質化学領域、都研究室)、YANG, Xi研究員(同領域、同研究室)らの論文がNanoscale Advances誌の表紙に採択されました。なお、本研究成果は日本学術振興会科学研究費補助金[基盤研究A、基盤研究B、国際共同研究加速基金(国際共同研究強化)]の支援のもと、株式会社ダイセルと行われた共同研究によるものです。
■掲載誌
Nanoscale Advances
■著者
Yue Yu, Xi Yang, Ming Liu, Masahiro Nishikawa, Takahiro Tei, Eijiro Miyako
■論文タイトル
Anticancer drug delivery to cancer cells using alkyl amine-functionalized nanodiamond supraparticles
■論文概要
ナノスケールの薬物担持体はドラッグデリバリーシステム(DDS)への応用が期待されている。本研究では、アルキルアミンを表面化学修飾したナノダイヤモンド(直径約5 nmの球状粒子)が自己組織化現象によりナノ集合体に変形することを見出した。また、形成されるナノ集合体の粒子径は、導入するアルキルアミンの鎖長を変えることで、およそ20 nmから90 nmの範囲内で容易に調整できることがわかった。一方、当該ナノダイヤモンド集合体に抗ガン剤(カンプトテシン)を封入し、薬物担持体としての機能を調査したところ、ポリエチレングリコールを修飾したポリマーミセルやリン脂質系のナノエマルジョンといった従来からDDSに良く利用されているナノキャリアと比較して、より効果的な抗がん活性を示すことが細胞やマウスを用いた実験より明らかとなった。
本研究成果により、がん医療に向けたナノダイヤモンド集合体を活用する機能性ナノメディシンの実現が期待される。
論文詳細はこちら
令和元年9月12日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2019/09/12-1.htmlシリセンと六方晶窒化ホウ素の積層構造を実現 -シリセンの性質に影響しない絶縁性酸化防止膜の実証-

シリセンと六方晶窒化ホウ素の積層構造を実現
-シリセンの性質に影響しない絶縁性酸化防止膜の実証-
ポイント
- シリセンはケイ素版グラフェンと言える原子層物質。このシリセンと絶縁性の原子層物質である六方晶窒化ホウ素の積層構造を二ホウ化物薄膜上で実現。
- 世界で初めて、絶縁性の六方晶窒化ホウ素シートにより、シリセンの構造や電子状態に影響を及ぼすことなく、大気中での酸化防止に成功した。
北陸先端科学技術大学院大学(JAIST)(学長・浅野 哲夫、石川県能美市)の先端科学技術研究科応用物理学領域のアントワーヌ・フロランス講師、高村 由起子准教授らは、トゥウェンテ大学、ウォロンゴン大学と共同で、シリセンと六方晶窒化ホウ素(hBN)の積層構造を二ホウ化ジルコニウム薄膜上に形成し、シリセンの構造と電子状態を乱さずに、大気中で一時間以上の酸化防止が可能であることを世界で初めて実証しました。 |
<今後の展開>
六方晶窒化ホウ素(hBN)がシリセンの電子的特性に影響せずに良好な界面を形成することが実験的に明らかとなり、加えて、一原子層厚みにも関わらず、短時間とはいえ大気中での酸化防止効果があることが実証されました。今後は、このhBNシート上にさらに厚く保護層を形成することでシリセンを大気中で安定的に取り扱うことが可能になり、従来困難であった大気中での評価や加工、ひいてはデバイス作製へと発展することが期待できます。
<論文>
"Van der Waals integration of silicene and hexagonal boron nitride" (シリセンと六方晶窒化ホウ素のファン・デル・ワールス積層)
DOI: https://iopscience.iop.org/article/10.1088/2053-1583/ab0a29/
F. B. Wiggers, A. Fleurence, K. Aoyagi, T. Yonezawa, Y. Yamada-Takamura, H. Feng, J. Zhuang, Y. Du, A.Y. Kovalgin and M. P. de Jong
2D Materials 6, 035001 (2019).
平成31年4月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/04/08-1.html学生の鈴木さんが応用物理学会北陸・信越支部において発表奨励賞を受賞

学生の鈴木 友康さん(博士前期課程1年、環境・エネルギー領域・大平研究室)が、平成30年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
「応用物理学会」は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。またこの賞は、応用物理学会北陸・信越支部の学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手会員に対し「北陸・信越支部発表奨励賞」を授与し、その功績を称えることを目的としています。
■受賞年月日
平成30年12月1日
■講演題目
「n型フロントエミッター型太陽電池モジュールの電圧誘起劣化におけるSiO₂膜の効果」
■講演概要
近年、大規模太陽光発電所などで、太陽電池モジュールのアルミフレームとセル間の電位差に起因して性能が劣化する電圧誘起劣化(PID)が問題となっている。本研究では、今後の普及が期待される、基板にn型結晶Siを用い、光入射側にp型エミッター層があるn型フロントエミッター型(n-FE)結晶Si太陽電池モジュールに関し、セル中のSiO₂膜がPIDにおよぼす影響を、SiO₂膜がないn-FEセルを用いたモジュールへのPID試験との比較により検証した。SiO₂膜の無いモジュールでは、表面の窒化Si膜への正電荷蓄積に起因する初期の劣化が確認できなかったが、Na+侵入に起因するその後の劣化に関しては、劣化の程度が大きく、発現する時間も早まった。以上のことから、n-FEモジュールのSiO₂膜は、窒化Siに蓄積する正電荷のSi側への放出を抑止するため初期のPIDを引き起こす一方、Na+侵入によるPIDを遅延する効果があると考察した。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。ご指導いただいた、産業技術総合研究所増田淳様、大平圭介教授、D3山口世力氏ならびに研究室のメンバーには厚く御礼申し上げます。また、今回の実験を行うに当たり、n-FEセルを作製いただいた、豊田工業大学の中村京太郎教授にも厚く御礼申し上げます。今後もこれを励みにし、研究に精一杯取り組んでいきたいと思います。
平成30年12月12日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2018/12/12-1.html応用物理学領域の富取教授と修了生の野上さんらが応用物理学会において優秀論文賞を受賞
応用物理学領域の富取 正彦教授と修了生の野上 真さん(平成28年6月博士後期課程修了)らが応用物理学会において優秀論文賞を受賞しました。
応用物理学会は、応用物理学および関連学術分野の研究の促進ならびに成果の普及に関する事業を行い、もって社会の発展に寄与することを目的として設立された日本の学会です。70年以上の歴史があり、会員数は2万人を越えています。
優秀論文賞は、応用物理学会が刊行する学術誌において発表された応用物理学の進歩向上に寄与する優秀な原著論文に与えられる賞です。
■受賞年月日
平成30年9月18日
■著者
Makoto Nogami, Akira Sasahara, Toyoko Arai and Masahiko Tomitori
■論文タイトル
Atomic-scale electric capacitive change detected with a charge amplifier installed in a non-contact atomic force microscope
■受賞理由
本論文は、非接触原子間力顕微鏡(nc-AFM) にチャージアンプ(CA) を導入することによって、探針-試料間の静電容量(CTS) と接触電位差(CPD) を起源とした電荷移動を計測する、という著者らが独自に提案した手法について述べたものである。同手法の導入により、走査型プローブ顕微鏡(SPM)が持つ原子レベルの高い空間分解能を生かしながら表面電子状態を解析することが可能となるものと期待される。特にCAは、電荷量の変化に対して高い感度を持つと同時に通常の電流増幅アンプと比べて非常に高速に応答することから、SPMの走査速度を落とすことなく、CTSやCPDの変化を計測できるものと考えられる。実際、CAを利用することで原子像に対応したCPD像の獲得に成功しており、原子レベルの空間分解能像を有する計測にCAが利用できることを本論文が初めて実証した。 また、CAによる電荷計測は、nc-AFMだけではなく、他のSPM計測法にも導入できることから、その利用が広がる可能性は高く、本研究の成果は、表面・界面の電子トンネル現象、各種相互作用力や電荷移動現象などの統合的な評価手法の発展に寄与するものと期待される。
■受賞にあたって一言
40年も続いている歴史ある論文賞を頂くことができ、大変光栄です。これを励みに、今後とも物理的センスを核に、開拓者精神を忘れずに教育研究に努めたいと思います。
平成30年9月26日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2018/09/26-1.htmlイムノクロマト診断薬の高感度化、迅速診断化に有効な金属ナノ粒子-ラテックスナノコンポジット微粒子を創製

イムノクロマト診断薬の高感度化、迅速診断化に有効な
金属ナノ粒子-ラテックスナノコンポジット微粒子を創製
ポイント
- 金および白金ナノ粒子をラテックス粒子にそれぞれ約200個、25,000個担持させた金属ナノ粒子-ラテックスナノコンポジット微粒子の合成に成功
- 合成した金属ナノ粒子-ラテックスナノコンポジット微粒子を用いたイムノクロマトは、金コロイドとの比較において最大64倍の感度向上を示した。
- 金属ナノ粒子-ラテックスナノコンポジット微粒子は、ビオチン-アビジン結合を利用することにより、様々な抗体、バイオマーカーを粒子表面にコーティング可能であることを示唆した。
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、物質化学領域の前之園 信也 教授らは、新日鉄住金化学株式会社総合研究所(新日鉄住金化学株式会社と新日鉄住金マテリアルズ株式会社は経営統合し、2018年10月1日より日鉄ケミカル&マテリアル株式会社となります)と連携し、医療診断薬(イムノクロマト)の高感度化・迅速診断化に有効な金属ナノ粒子-ラテックスナノコンポジット微粒子を創製しました。 イムノクロマト注)は、特別な設備が不要なハンディータイプのデバイスであり短時間に目視判定ができるため、 その簡便性・迅速性をメリットとして先進国から発展途上国まで世界の様々な医療現場において重要な検査手法として利用されています。しかしながら、イムノクロマトの感度は十分とは言えず、現状では検体中の抗原やバイオマーカーが比較的豊富に存在する検査項目に限定されています。また、検査項目の中には、発症初期の抗原濃度が低い場合、判定が不十分なものもあるため、検出感度の向上は非常に重要な課題となっています。このイムノクロマトの感度向上には、標識粒子の発色性が大きく影響します。すなわち、標識粒子の発色性を強くすることにより、イムノクロマトの感度を向上することが可能となります。 この様な背景の中、我々は従来標識粒子として利用されている金や白金ナノ粒子をラテックス粒子に数百~数万個担持させることにより粒子1個当たりの発色性が極めて強い金属ナノ粒子-ラテックスナノコンポジット微粒子を合成しました。さらに粒子サイズや金属ナノ粒子の担持量を最適化することでイムノクロマトの感度と検出時間を飛躍的に向上することに成功しました。本成果は、アメリカ化学会が発行するACS Applied Materials and Interfaces 誌に2018年9月5日に掲載されました。 本研究の一部は文部科学省ナノテクノロジープラットフォーム事業(分子・物質合成)の支援により北陸先端科学技術大学院大学で実施されました。 |
<今後の展開>
本研究で合成した金属ナノ粒子-ラテックスナノコンポジット微粒子の実用化を推進していきます。また、磁性粒子の担持など新しい機能化も検討していきます。一方、この粒子は、イムノクロマトでの利用のみに留まらず多種多様な応用の可能性を持っています。今後、様々な分野での適用検討を行うことで、この粒子の新しいアプリケーションの創製に繋がることを期待しています。
図1 金ナノコンポジット微粒子(左)と白金ナノコンポジット微粒子(右)のSEM写真
図2 金ナノコンポジット(Au-P2VP:青)と白金ナノコンポジット(Pt-P2VP:赤)の吸収スペクトル。 比較として、担体であるラテックス(P2VP:灰)および金コロイド(AuNP:緑)の吸収スペクトルもプロット。 挿入した写真は、Au-P2VPおよびPt-P2VPの水分散液。尚、Au-P2VP、Pt-P2VP、P2VP(1×109)は同じ粒子数で測定し、AuNPは100倍の粒子数(1×1011)で測定した。
図3 (A)インフルエンザA型で評価した結果。(上)Au-P2VP、(中)Pt-P2VP、および(下)Pt-P2VPを用いたイムノクロマト(640 HAU/mlの抗原を1.0×102〜1.024×105倍に希釈)。左の列はイムノクロマトのカラー写真を示し、右の列はコントラストを強調した黒と白のネガ画像を示す。 NC、C lineおよびT lineは、それぞれネガティブコントロール、コントロールラインおよびテストラインを示す。(B)抗原希釈倍率と吸収スペクトル強度の相関を示したグラフ。
<論文>
掲 載 誌 | ACS Applied Materials and Interfaces |
論文題目 | Metal (Au, Pt) Nanoparticle-Latex Nanocomposites as Probes for Immunochromatographic Test Strips with Enhanced Sensitivity |
著 者 | Yasufumi Matsumura,† Yasushi Enomoto,† Mari Takahashi,‡ Shinya Maenosono‡ †新日鉄住金化学株式会社 総合研究所 ‡北陸先端科学技術大学院大学 マテリアルサイエンス系 物質化学領域 |
DOI | 10.1021/acsami.8b11745 |
掲 載 日 | 2018年9月5日にオンライン掲載(Just Accepted Manuscript) |
<用語説明>
注)イムノクロマト
抗原抗体反応を利用した迅速検査方法。イムノクロマトは目視で結果を判定することができるため、簡便な方法として、主に細菌やウイルスなどの病原体の検出に用いられています。日本国内では、妊娠検査薬やインフルエンザ検査薬として多く利用されています。
平成30年9月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2018/09/21-1.html