研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。特別研究学生のトバイアス・ギルさんがRamsay Medalを受賞
特別研究学生のトバイアス・ギルさん(博士後期課程3年、応用物理学領域・高村(由)研究室、UCL-JAIST協働研究指導プログラム在籍中)がRamsay Medalを受賞しました。
Ramsay Medalは、University College London(UCL)のDepartment of Chemistryの博士課程最終学年で学ぶ最優秀の学生に1923年から毎年授与されてきた栄誉あるメダルです。メダルの名前の由来であるSir William Ramsayは、1887年から1913年まで同Departmentで教授を務め、1904年にノーベル化学賞を受賞した化学者です。
参考 https://www.ucl.ac.uk/chemistry/about-us/history/history-ramsaymedal
トバイアス・ギルさんはUCL-JAIST協働研究指導プログラムの一期生で、UCLのCyrus Hirjibehedin先生とJAISTの高村由起子准教授による協働研究テーマ「シリコン及びシリセン上の原子・分子スピントロニクス」のもとに選抜された学生です。
UCL-JAIST協働研究指導プログラムの詳細 http://www.jaist.ac.jp/ms/news/20120725-132457.html
■受賞年月日
平成28年7月1日
(メダルは11月に開催されるannual UCL Chemistry Department Dinnerにおいて授与)
■研究課題
「二次元材料シリセンの電子的・磁気的特性の制御」
"Controlling the electronic and magnetic properties of the two dimensional material silicene"
■研究課題概要
ケイ素版グラフェンと言える新しい二次元材料「シリセン」の上にケイ素や磁性を持つコバルトを蒸着し、それらの原子がシリセンと相互作用することでシリセンの電気的・磁気的な性質がどう変化するのかを走査トンネル顕微鏡を用いた実験から明らかにしました。
■受賞にあたっての一言
To be awarded the Ewing prize, and Ramsay medal for best final year PhD student in the Department of Chemistry at UCL is a great honour. It is recognition of the fantastic work our collaborative team, from UCL and JAIST, has achieved. Our unique insights into the two-dimensional material silicene have only been made possible thanks to the guidance of both Dr Cyrus Hirjibehedin of UCL and Prof Yukiko Yamada-Takamura at JAIST. I owe a great debt to these two for their tutelage, and support over the past four years. I would also like to take this opportunity to thank the M3S centre for doctoral training in the Department of Chemistry at UCL, and the School of Materials Science at JAIST for their financial support. Finally, it has been a wonderful privilege to be part of the two institutes and I am sure many more great things will come from continued collaborations in years to come.
平成28年7月14日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2016/07/14-1.htmlナノバイオテクノロジー


ナノバイオテクノロジー
ナノバイオ研究室 Laboratory on Nanobiotechnology
講師:高橋 麻里(TAKAHASHI Mari)
E-mail:
[研究分野]
ナノ材料科学、細胞生物学
[キーワード]
ナノ粒子、バイオ医療応用
研究を始めるのに必要な知識・能力
探求心があり、努力することを厭わず、向上心がある方ならバックグランドが違っていても研究を楽しむことができます。研究テーマに対して、自分がこの研究を進めるんだという主体的な立場にたつことが必要です。共同研究をすることが多いため、協調性やコミュニケーション能力も必要となります。
この研究で身につく能力
ナノ粒子の合成法、構造・特性評価及び解析方法に関する幅広い知識。金属・磁性・半導体材料とナノ粒子にすることで現れる特徴的な性質に関する一般的な知識。細胞生物学に関する一般的な知識。新たな課題に対して取り組むチャレンジ精神。
【就職先企業・職種】 製造業(化学、精密機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
ナノ粒子のバイオ医療応用に関する注目は年々高まっています。私達は金属・半導体・磁性体をナノサイズにすることで現れるバルクとは異なる性質を利用して、ナノ粒子のバイオ医療応用に関する研究を行っています。応用先は様々ですが、主に下記に示す3つの内容に力を入れており、それぞれの用途に合わせたナノ粒子の合成から構造解析、特性評価、応用までの一連の流れを一人の学生が担当して研究を進めます。
1. 磁性体ナノ粒子を用いた細胞内小器官の磁気分離
正常細胞と機能欠損細胞から細胞内小器官を分離し、タンパク質を解析し比較することは、疾患の分子機構の解明において重要です。超常磁性体ナノ粒子を合成し、表面を生体分子で機能化した粒子を用い、細胞内小器官を迅速かつ温和に磁気分離し、生化学的手法による解析を行います。種々の細胞内小器官の磁気分離法の構築や機能欠損細胞のタンパク質解析を通して、最終的には創薬分野への貢献を目指します。
2. 磁気粒子分光を用いたイムノアッセイ
人生100年時代と言われる現代、私達が健康に長生きするためには、疾病の早期発見のための診断技術・精度の向上がますます重要となります。磁気粒子分光(MPS)を用いたイムノアッセイ(抗原抗体反応を用いた抗原の検出)では、種々の磁性体ナノ粒子を合成しMPSで評価し、感度が高いプローブを複数選択することで同時多抗原検出を目指します。
3. アップコンバージョンナノ粒子による光遺伝学的研究
アップコンバージョンナノ粒子とは、波長が長い入射光を照射した際に波長が短い発光を示す蛍光体ナノ粒子です。光遺伝学とは光受容タンパク質を遺伝学的に細胞に発現させ、光で細胞の応答を制御する技術で、この2つを組わせることで、光による生体組織の制御を行う研究をしております。
主な研究業績
- D. Maemura, T. S. Le, M. Takahashi, K. Matsumura, and S. Maenosono: "Optogenetic Calcium Ion Influx in Myoblasts and Myotubes by Near-Infrared Light Using Upconversion Nanoparticles" ACS Appl. Mater. Interfaces 15 (2023) 42196
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, S. Maenosono: "Quick and Mild Isolation of Intact Lysosomes Using Magnetic–Plasmonic Hybrid Nanoparticles" ACS Nano 16 (2022) 885
- T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono: "Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes" Langmuir 37 (2021) 6566
使用装置
透過型電子顕微鏡(TEM) 超伝導量子干渉磁束計(SQUID)
走査透過型電子顕微鏡(STEM) 動的光散乱測定装置(DLS)
X線回折装置(XRD) 共焦点レーザー顕微鏡(CLSM)
X線光電子分光装置(XPS) 核磁気共鳴装置(NMR)
研究室の指導方針
常に新しい内容の研究を行っており、研究内容に関しては教員が学生へ毎回指示を与えるのではなく、学生自身にも実験と論文調査から次の方向性を決めるといった、一緒に研究を進めていくスタンスで研究を行います。その過程で卒業後の進路(就職希望か進学希望)に合わせて必要な基礎知識と研究力が身につくように指導します。また、分野外の方でも最前線の研究が行えるように効率的な努力の仕方や学習法を身に着けられるように指導しますので、心配なことや研究に関する疑問等は積極的に相談してください。そのためにはコミュニケーション能力も重要であり、卒業後の社会人にとって必要不可欠なスキルが身につくようにサポートします。
[研究室HP] URL:https://www.jaist.ac.jp/~shinya/
半導体ナノワイヤを舞台としたスピントロニクス研究


半導体ナノワイヤを舞台とした
スピントロニクス研究
ナノワイヤ X スピンデバイス研究室
Laboratory on Nanowires X Spin Devices
准教授:赤堀 誠志(AKABORI Masashi)
E-mail:
[研究分野]
半導体エピタキシャル成長、半導体ナノ構造、半導体スピントロニクス
[キーワード]
化合物半導体、強磁性体、微細加工、エレクトロニクス、スピントロニクス、半導体物性、低温物性
研究を始めるのに必要な知識・能力
本研究室で研究を始めるにあたって大事なのは、リアルに「もの」を扱うのが好きであることだと考えています。また、物理学(特に電磁気学、量子力学)の知識はあった方がよく、この他に半導体・固体物理、化学、プログラミングの知識があると研究を進める上で役に立つと考えています。
この研究で身につく能力
本研究室の研究では様々な装置を使います。それらの正しい使用法は論理的思考に基づいて考えられています。したがって、それらを理解し、自ら実践することにより、論理的な思考力が養われると考えています。また、実験的研究にはトラブルがつきもので、想定通りには結果が得られず、上手く進まないことも多々あります。ですが、トラブルの状況や得られている結果に関して、周りと協力しながら分析・考察し、研究が上手く進むように努力することにより、解決すべき課題を発見する力、そして発見した課題を解決する力が養われると考えています。
【就職先企業・職種】 電機・精密機械、IT・通信、素材
研究内容

図1.スピン電界効果トランジスタ

図2.トップダウン手法によるナノワイヤ、
ポイントコンタクト

図3.ボトムアップ手法によるナノワイヤ

図4.電気化学プロセスによるコアシェルナノワイヤ

図5.MnAs/InAs 複合構造

図6.非局所測定
従来のエレクトロニクスでは、チャージ(電荷)の制御により情報処理が行われてきました。これに対してスピントロニクスは、チャージだけでなくスピン(磁性)を制御することにより情報処理を行っていくものです。国際デバイスおよびシステムロードマップにおいても、スピントロニクス素子は重要な次世代デバイスの一つとして位置付けられています。半導体を用いる代表的なスピントロニクス素子は、InAs・InGaAs・InSb・InGaSbなど大きなスピン軌道結合を有する半導体と強磁性体との複合構造からなるスピン電界効果トランジスタです(図1)。この素子においては、半導体ナノワイヤを採用することにより、スピン軌道結合と弾性散乱によるスピン緩和が抑制されると期待されています。そこで本研究室では、以下に示すような、半導体ナノワイヤ構造および半導体- 強磁性体複合構造に関する実験的研究を行っています。
①半導体ナノワイヤ構造の作製
電子ビーム露光とエッチング加工を組み合わせたトップダウン手法(図2)と、分子線エピタキシャル成長を用いたボトムアップ手法(図3)に関する研究を進めています。トップダウン手法では高品質な半導体ヘテロ接合を用いることが可能ですが、コヒーレントな伝導のためにはエッジ形状の最適化や加工ダメージの抑制などの課題があります。ボトムアップ手法では半導体ヘテロ構造の利用は困難ですが、成長条件の最適化によりトップダウン手法では困難な良好な形状・微小な寸法を実現できる可能性があります。
②半導体- 強磁性体複合構造の作製
電気化学プロセスによる半導体(ZnO)/ 強磁性体(Co、Ni)コアシェルナノワイヤの形成(図4)や、分子線エピタキシャル成長による半導体(InAs) / 強磁性体(MnAs) 複合構造の形成(図5)に関する研究も行っています。これらの方法では連続的に半導体/ 強磁性体界面を形成するため、強磁性体から半導体へのスピン注入効率向上が期待されます。
③作製した構造の電気的評価・解析
超伝導マグネット付クライオスタットなどを用いて、低温・強磁場環境下での電気的評価・解析を進めています。面内磁場中での非局所配置における抵抗測定(図6)などにより、スピン注入・輸送・検出に関する知見を獲得することが可能です。これら知見を基に、未踏のスピン電界効果トランジスタの実現を目指します。
主な研究業績
- S. Komatsu, M. Akabori: “Spin-filter device using Zeeman effect with realistic channel and structure parameters” Jpn. J. Appl. Phys., Vol. 63, pp. 02SP14-1-5 (2024).
- Md. T. Islam, Md. F. Kabir, M. Akabori: “Low-temperature grown MnAs/InAs/MnAs double heterostructure on GaAs (111)B by molecular beam epitaxy” Jpn. J. Appl. Phys., Vol. 63, pp. 01SP40-1-5 (2024).
- K. Teramoto, R. Horiguchi, W. Dai, Y. Adachi, M. Akabori, S. Hara: “Tailoring Magnetic Domains and Magnetization Switching in CoFe Nanolayer Patterns with Their Thickness and Aspect Ratio on GaAs (001) Substrate” Physica Status Solidi B, Vol. 259, pp. 2100519-1-9 (2022).
- D. Q. Tran, Md. E. Islam, K. Higashimine, M. Akabori: “Self-catalyst growth and characterization of wurtzite GaAs/InAs core/shell nanowires” J. Crystal Growth, Vol. 564, pp. 126126-1-7 (2021).
使用装置
成膜装置(分子線エピタキシャル成長装置、原子層堆積装置、真空蒸着装置、スパッタ装置)
微細加工装置(電子ビーム露光装置、電界電離ガスイオンビーム装置、反応性イオンエッチング装置)
電気化学プロセス装置
電気計測装置(デバイスアナライザ、ホール効果測定装置、ロックイン計測システム)
極低温・強磁場装置(超伝導マグネット付He4クライオスタット、He3クライオスタット、希釈冷凍機)
研究室の指導方針
本研究室では、様々な装置を使って、半導体や強磁性体など「もの」をつくるところから、主に電気的評価・解析によりつくった「もの」を調べるところまで一貫して実験的研究を行います。まずテーマの近い学生でチームをつくり、毎日チームミーティングをしてもらうとともに、週一でスタッフを交えた全体ミーティングを行って、コミュニケーション力・プレゼンテーション力・判断力の育成・向上を図ります。また、全体ミーティングと同じ日に勉強会も行い、半導体・固体物理分野の知識習得や基礎学力の向上を図ります。
[研究室HP] URL:https://www.jaist-akabori-lab.com/
ナノ粒子工学:機能材料の創製から応用まで


ナノ粒子工学:機能材料の創製から応用まで
ナノ粒子工学研究室 Laboratory on Nanoparticle Engineering
教授:前之園 信也(MAENOSONO Shinya)
E-mail:
[研究分野]
ナノ材料化学、ナノ材料物性、コロイド化学
[キーワード]
半導体ナノ粒子、磁性体ナノ粒子、金属ナノ粒子、バイオ医療、エネルギー変換、センシング
研究を始めるのに必要な知識・能力
基礎学力、コミュニケーション能力、知的好奇心、柔軟な思考
この研究で身につく能力
修士課程では、(1) ナノ材料の化学合成技術、(2) 各種分析機器(透過型電子顕微鏡、X 線回折装置、X 線光電子分光、組成分析装置など)の操作スキル、(3) 基礎学問の知識(無機材料化学、結晶学、コロイド化学、固体物性など)、(4) ナノ材料に関する先端専門知識を身につけて頂きます。博士課程では、1-4に加え、英語によるプレゼンテーション能力、英語論文執筆能力、研究課題設定能力、共同研究遂行能力など、研究者に必要なあらゆる能力を身につけて頂きます。
【就職先企業・職種】 製造業(化学、精密機器、電気機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
物質をナノメートルサイズまで細かくしていくと、種々の物性がサイズに依存する新奇な材料となります。このような新奇材料を一般に「ナノ材料」と呼びますが、我々はその中でも特に「ナノ粒子」に興味を持ち、ナノ粒子に関する基礎から応用に亘る研究を行っています。半導体、磁性体、金属などのナノ粒子を化学合成し、その表面をさまざまな配位子によって機能化し、さらにそれらナノ粒子の高次構造を制御することによって、バイオ・医療分野あるいは環境・エネルギー分野で新たな応用を開拓することを目指しています。
1.磁性体ナノ粒子の合成とバイオ医療分野への応用
超常磁性体のナノ粒子を独自の方法によって合成し、その表面を自在に修飾することによって、バイオ医療分野での様々な応用の道を開拓しています。具体的には、細胞やタンパクの磁気分離、MRI 造影剤、ドラッグデリバリーシステムなどのナノ磁気医療に応用するための技術開発を行っています。
2.半導体ナノ粒子の合成とエネルギー変換素子への応用
狭ギャップ化合物半導体から広ギャップ酸化物半導体のナノ粒子まで、幅広い種類の半導体ナノ粒子を化学合成し、それらを用いて低炭素社会の実現を志向したナノ構造エネルギー変換素子の創製に関する研究を行っています。特に、ナノ構造熱電素子や光機能素子などに興味を持っています。
3.金属ナノ粒子を用いたバイオセンシング技術の開発
近年、金ナノ粒子を用いた様々なバイオセンサが開発され、簡便かつ迅速に DNA 配列検出やタンパク質機能解析などが可能となってきています。我々は、ナノ粒子プローブを用いたバイオセンシング技術の更なる高度化を目指し、異種金属元素からなるヘテロ構造ナノ粒子や合金ナノ粒子のプローブの開発を進めています。
主な研究業績
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, and S. Maenosono, “Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles”, ACS Nano 16 (2022) 885
- J. Hao, B. Liu, S. Maenosono, and J. Yang, “One-Pot Synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) Core-Shell Nanoparticles as Highly Efficient Catalysts for the Reduction of 4-Nitrophenol”, Sci. Rep. 12 (2022) 7615
- T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono, “Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes”, Langmuir 37 (2021) 6566
使用装置
透過型電子顕微鏡 (TEM) 超伝導量子干渉磁束計 (SQUID)
過型電子顕微鏡 (STEM) 動的光散乱測定装置 (DLS)
X 線回折装置 (XRD) 共焦点レーザー顕微鏡 (CLSM)
X 線光電子分光装置 (XPS) 核磁気共鳴装置 (NMR)
研究室の指導方針
就職希望者には、基礎・専門知識はもちろん、コミュニケーション能力、英会話力、論理的思考力および柔軟な対応力を涵養し、不確実性の時代を生き抜くことができる人材となってもらうための指導を行います。企業経験を活かした実践的就職指導も行っています。
博士後期課程への進学希望者については、先端的かつ国際的な研究環境を提供することによって、将来的に大学教員や企業研究者として活躍できるグローバル研究人材を育成します。
[Website] URL:https://www.jaist.ac.jp/~shinya/
磁性-プラズモンハイブリッドナノ粒子を用いて、従来分離が難しかった細胞小器官(オートファゴソームなど)の新たな分離法の開発に成功

磁性-プラズモンハイブリッドナノ粒子を用いて、従来分離が難しかった
細胞小器官(オートファゴソームなど)の新たな分離法の開発に成功
ポイント
- これまで分離が難しかった細胞小器官を磁気分離するためのプローブとして、粒径約15 nmで単分散なAg/FeCo/Agコア/シェル/シェル型磁性-プラズモンハイブリッドナノ粒子を創製した。
- ハイブリッドナノ粒子を哺乳動物細胞に取り込ませ、培養時間を変化させた際、ナノ粒子が細胞内のどの部分に局在するかということをAgコアのプラズモン散乱を利用して可視化することに成功した。
- 培養時間が30分~2時間の間でハイブリッドナノ粒子がオートファゴソームに局在することがわかったため、オートファゴソームをターゲットとして、適切な時間帯で細胞膜を破砕して磁気分離を行うことでオートファゴソームの分離に成功した。
- 単離したオートファゴソームをプロテオミクス/リピドミクス解析に供することで、オートファジーの機能欠損による疾患の創薬へと展開できる可能性がある。
- リガンド結合ハイブリッドナノ粒子を用いた汎用的かつ高選択的な細胞小器官分離技術へと拡張することで、基礎生物学上重要な発見を導く可能性があるほか、肥満や老化を防止する医療技術へと繋がることも期待される。
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、物質化学領域の前之園 信也 教授らは、東京大学、金沢大学ほかと共同で、独自開発の磁性-プラズモンハイブリッドナノ粒子を用いてオートファゴソームのイメージングと磁気分離に成功しました。この手法は、これまで分離が困難であった他の細胞小器官へ拡張可能なため、新たな細胞小器官分離法としての応用が期待されます。 2013年のノーベル生理学・医学賞は、「小胞輸送の分子レベルでの解析と制御メカニズムの解明」という功績に対して、米国の3名の研究者に贈られました。また、2016年のノーベル生理学・医学賞は、「オートファジー注1)の分子レベルでのメカニズムの解明」の功績に対して、東京工業大学・大隅 良典 栄誉教授に贈られたことはまだ記憶に新しいところです。これらの研究はいずれも"細胞内物質輸送"に関するものでした。細胞内物質輸送には多種多様な細胞小器官注2)が関与しており、それらの機能は細胞小器官に存在するタンパク質や脂質によって制御されています。従って、細胞小器官の機能を理解するためには、そこに存在するタンパク質/脂質を調べることが必要不可欠です。そのための有力な手段の一つとして、タンパク質/脂質が機能している小器官ごと単離して解析するという方法があります。細胞小器官の一般的な単離法には超遠心分離注3)がありますが、比重に差が無い異種の小器官の分離は困難であることに加え、分離工程が煩雑で手間がかかるほか、表在性タンパク質注4)の脱離や変性が問題となる場合もあるため、新たな分離法の開発が望まれています。 本成果は、アメリカ化学会が発行するオープンアクセスジャーナルであるACS Omega誌に2017年8月25日に掲載されました。 |
<今後の展開>
単離したオートファゴソームをプロテオミクス/リピドミクス解析に供することで、これまでとは異なる視点からオートファジーを俯瞰でき、オートファジーの機能欠損による疾患の創薬へと展開できる可能性があります。また、ハイブリッドナノ粒子表面に所望のリガンドを結合させることによって、目的の細胞小器官への受容体を介したターゲティングが可能なナノ粒子を作製し、そのリガンド結合ナノ粒子を用いて標的細胞小器官を高選択的に単離する技術を確立することで、基礎生物学上重要な発見を導く可能性があります。さらに、肥満や老化を防止する医療技術へと繋がることも期待されます。
図1 磁性-プラズモンハイブリッドナノ粒子を哺乳動物細胞にトランスフェクションした後、培養時間(図中右に行くに従って培養時間が長いことを意味する)とともにナノ粒子の局在が初期エンドソーム(early endosome)、オートファゴソーム(autophagosome)、オートファゴリソソーム(autophagolysosome)へと移行する様子をプラズモン散乱を利用した共焦点顕微鏡イメージングで確認でき、各々の時間帯で磁気分離を行うとそれぞれ異なる種類の細胞小器官を分離することが可能であることを示した図。
<論文>
掲載誌: | ACS Omega |
論文題目: | "Magnetic Separation of Autophagosomes from Mammalian Cells using Magnetic-Plasmonic Hybrid Nanobeads"(磁性-プラズモンハイブリッドナノ粒子を用いた哺乳動物細胞からのオートファゴソームの磁気分離) |
著者: | Mari Takahashi,1 Priyank Mohan,1 Kojiro Mukai,2 Yuichi Takeda,3 Takeo Matsumoto,4 Kazuaki Matsumura,1 Masahiro Takakura,5 Hiroyuki Arai,2 Tomohiko Taguchi,6 Shinya Maenosono1* 1北陸先端科学技術大学院大学 2東京大学大学院薬学系研究科 衛生化学教室 3大阪大学大学院医学系研究科 4金沢大学医薬保健研究域医学系 5金沢医科大学産科婦人科 6東京大学大学院薬学系研究科 疾患細胞生物学教室 |
DOI: | 10.1021/acsomega.7b00929 |
掲載日: | 2017年8月25日 |
<用語解説>
注1)オートファジー
オートファジー(Autophagy)は、細胞が持っている、細胞内のタンパク質を分解するための仕組みの一つ。自食とも呼ばれる。酵母からヒトにいたるまでの真核生物に見られる機構であり、細胞内での異常なタンパク質の蓄積を防いだり、過剰にタンパク質合成したときや栄養環境が悪化したときにタンパク質のリサイクルを行ったり、細胞質内に侵入した病原微生物を排除することで生体の恒常性維持に関与している。
注2)細胞小器官
細胞の内部で特に分化した形態や機能を持つ構造の総称。細胞内器官やオルガネラとも呼ばれる。細胞小器官が高度に発達していることが、真核細胞を原核細胞から区別している特徴の一つである。
注3)超遠心分離
数万G(重力加速度)以上の遠心力をかける遠心分離法。
注4)表在性タンパク質
疎水性相互作用、静電相互作用など共有結合以外の力によって脂質二重層または内在性膜タンパク質と一時的に結合しているタンパク質。
注5)超常磁性
強磁性体やフェリ磁性体のナノ粒子に現れる。磁性ナノ粒子では磁化の向きが温度の影響でランダムに反転しうる。この反転が起こるまでの時間をネール緩和時間という。外場の無い状態で、磁性ナノ粒子の磁化測定時間がネール緩和時間よりもずっと長い時、磁化は平均してゼロであるように見える。この状態を超常磁性という。
注6)エンドサイトーシス
細胞が細胞外の物質を取り込む過程の一つ。細胞に必要な物質のあるものは極性を持ちかつ大きな分子であるため、疎水性の物質から成る細胞膜を通り抜ける事ができない、このためエンドサイトーシスにより細胞内に輸送される。
注7)オートファゴソーム
オートファジーの過程で形成される二重膜構造を有した袋状の細胞小器官。他の細胞小器官やタンパク質などを囲い込んだ後、リソソームと融合することで内容物を消化する。
注8)プラズモン
プラズマ振動の量子であり、金属中の自由電子が集団的に振動して擬似的な粒子として振る舞っている状態をいう。金属ナノ粒子ではプラズモンが表面に局在することになるので、局在表面プラズモンとも呼ばれる。
注9)トランスフェクション
人為的にDNAやウイルスなどを細胞に取り込ませる手法。
注10)プラズモン散乱イメージング
局在表面プラズモン共鳴に起因した光散乱を利用したイメージング。共焦点顕微鏡を用いたバイオイメージングでは一般的に蛍光色素が用いられるが、長時間観察では光退色が問題となる。しかし、プラズモン散乱を用いたイメージングでは光退色の心配がない。
注11)蛍光免疫染色
抗体に蛍光色素を標識しておき、抗原抗体反応の後で励起光を照射して蛍光発光させ、共焦点顕微鏡などで観察することによって本来不可視である抗原抗体反応(免疫反応)を可視化するための組織化学的手法。
注12)初期エンドソーム
初期エンドソームは、エンドサイトーシスされた物質を選別する場として機能する細胞小器官である。エンドサイトーシスによって細胞内へと取り込まれた物質は、まず細胞辺縁部に存在する初期エンドソームへと輸送される。初期エンドソームを起点として、分解される物質は分解経路へと、細胞膜で再利用される物質はリサイクリング経路へと選別されていく。
注13)オートファゴリソソーム
オートファゴソームとリソソームの融合によってできる細胞小器官。
注14)ウェスタンブロッティング
電気泳動によって分離したタンパク質を膜に転写し、任意のタンパク質に対する抗体でそのタンパク質の存在を検出する手法。
注15)LC3-II
LC3はオートファゴソームマーカーとして広く知られている。オートファジーが開始されると、LC3はプロペプチドとして発現し、直ちにC末端が切断されて細胞質型のLC3-Ⅰとなる。LC3-ⅠのC末端にホスファチジルエタノールアミンが付加され、膜結合型のLC3- IIへ変換する。LC3- IIはオートファゴソーム膜へと取り込まれて安定に結合するため、哺乳動物におけるオートファゴソーム膜のマーカーとして用いられている。
平成29年8月25日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/08/25-1.html表面・界面の理解に基づいたナノマテリアル開発


表面・界面の理解に基づいた
ナノマテリアル開発
先端ナノ材料科学研究室
Laboratory on Advanced Nanomaterials Science
教授:高村 由起子(YAMADA-TAKAMURA Yukiko)
E-mail:
[研究分野]
材料科学、材料工学、表面科学
[キーワード]
ナノマテリアル、二次元材料、薄膜成長、走査プローブ顕微鏡、放射光実験
研究を始めるのに必要な知識・能力
我々の研究室で行っている研究に向いているのは、ナノマテリアルの表面や界面で原子が並んでいる様子を見てみたい、という好奇心が強く、とにかく実験するのが好き、という方です。
この研究で身につく能力
最先端の装置、しかも世界に一台しかないような特殊な装置、を自分で操作して一定の期間内に成果を出すことを要求されますので、自ずとそのような装置の操作に必要な慎重さと大胆さが養われます。また、数多くの実験をこなすことで、効率的な実験計画の立て方が身につくのと同時に、装置の不具合などで実験が思い通りに進まない、といった経験から、想定外の事態に対応する能力も養われます。実験で得られた結果などについて自分でまとめ、考え、理解・学習する能力だけではなく、先輩や教員と一緒に議論することによって、説明する力、論理的に考える力が養われます。
【就職先企業・職種】 電気・電子、機械、医療機器メーカーのエンジニア職、研究職
研究内容

研究室での実験風景
現代の産業の基幹を支える薄膜材料の高品質化には、薄膜-基板界面の高度な制御が欠かせません。特に超薄膜やナノ構造体を対象としたナノマテリアル研究では、表面・界面が全体に占める割合が高くなり、表面・界面構造が成長や機能発現に果たす役割が重要となってきます。本研究室では、新奇ナノマテリアルには表面・界面の理解と高度な制御が必要であるとの認識から、表面・界面の詳細な分析とその制御に基づいたナノマテリアル開発を目指します。より具体的には、薄膜及びナノ構造成長表面のその場観察と異種材料界面構造の解析から得られる知見を有効に成長過程に還元するために、不純物混入の少ない超高真空における薄膜成長に取り組み、電子等のプローブと検出器を導入した装置を使用します。このユニークな装置を用いた薄膜成長とその場観察、放射光施設における表面・界面構造の解析と第一原理計算を組み合わせ、新しいナノマテリアルの創成とその構造・性質の解明に挑みます。
原子層厚みの究極のナノマテリアル、ケイ素版グラフェン「シリセン」の研究
シリコンウェハー上にエピタキシャル成長させた二ホウ化物薄膜表面を、光電子分光を専門とする研究室と第一原理計算を専門とする研究室と共同で詳細に調べている過程でシリセンを思いがけず発見することができました。この成果は国内外の大学や研究機関との共同研究に発展し、最近では、絶縁性の二次元材料である六方晶窒化ホウ素とシリセンを重ねることに成功しました。
二次元フラットバンドマテリアルの研究
ゲルマニウムウェハー上にエピタキシャル成長させた二ホウ化物薄膜を詳細に調べると、上記のシリセンの場合の蜂の巣構造とは異なる二次元的な結晶構造を持つGe層が形成されていました。また、我々の理論研究から、同様の結晶構造を持つ二次元材料の電子状態に「フラットバンド」の発現が期待できることが明らかとなりました。フラットバンドは物質に強磁性や超伝導を付与することがあり、現在、実験と計算の両面から研究を進めています。
カルコゲナイド系二次元材料の研究
セレン化ガリウム(GaSe)は、非線形光学特性を持つ層状物質として古くから研究されてきました。積層多形はこれまで何種類か報告されていましたが、我々の研究室の学生が、結晶多形を新たに発見しました。この従来とは異なる結晶構造を持つGaSe がどんな性質を持つのか、実験と計算の両面から調べています。
主な研究業績
- First-principles study on the stability and electronic structure of monolayer GaSe with trigonal-antiprismatic structure, H. Nitta, T. Yonezawa, A. Fleurence, Y. Yamada-Takamura, and T. Ozaki, Physical Review B 102, 235407 (2020).
- Emergence of nearly flat bands through a kagome lattice embedded in an epitaxial two-dimensional Ge layer with a bitriangular structure, A. Fleurence, C.-C. Lee, R. Friedlein, Y. Fukaya, S. Yoshimoto, K. Mukai, H. Yamane, N. Kosugi, J. Yoshinobu, T. Ozaki, and Y. Yamada-Takamura, Physical Review B 102, 201102(R) (2020).
- Van der Waals integration of silicene and hexagonal boron nitride, F. B. Wiggers, A. Fleurence, K. Aoyagi, T. Yonezawa, Y. Yamada-Takamura, H. Feng, J. Zhuang, Y. Du, A. Y. Kovalgin and M. P. de Jong, 2D Materials 6, 035001 (2019).
使用装置
超高真空走査プローブ顕微鏡、超高真空薄膜成長装置、薄膜材料結晶性解析X線回折装置、X線光電子分光装置、国内外の放射光施設、本学の超並列計算機
研究室の指導方針
我々の研究室では、迷ったらどんどん手を動かして、実験や計算をしてみることを学生さんに勧めています。実際にその実験や計算に従事している学生さんにしか思いつけない、新しいアイデアというのが必ずあります。アイデアとやる気とスキルがあったら、まずは、とことんやってみましょう。教員と先輩ができる限りのサポートをいたします。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/yukikoyt/groupHP/Home.html
エネルギー変換の最先端 ―未利用廃熱の高効率回収―


エネルギー変換の最先端 ―未利用廃熱の高効率回収―
R7年10月以降に入学する学生の受け入れは行いません
小矢野研究室 KOYANO Laboratory
教授:小矢野 幹夫(KOYANO Mikio)
E-mail:
[研究分野]
固体物性、熱電変換
[キーワード]
物理・実験系、低次元伝導体、熱電変換の物理、熱電材料、エネルギーの有効利用、エネルギーハーベスティング
研究を始めるのに必要な知識・能力
物理の実験系の研究室ですが、出身分野にはこだわりません。今までにも物理系、電子・電気系、機械系、化学系の学生が本研究室に来て活躍しています。JAISTに入学してから、応用物性数学、量子力学、固体物理学など自然科学系の講義を受講してもらうことをお願いしています。
この研究で身につく能力
物理系のみならず多様な分野から来た学生が、総合的な科学技術としての熱電変換の研究を行うことにより、修了後に企業や研究機関で社会に貢献することを目指しています。私たちの研究室で身につけられる能力は、具体的には以下のとおりです。
- 実際に手を動かしてものを作る面白さを知ること。
- 先端的な実験機器を用いた物理研究と実験手法の習得。
- 物理的または科学的な考え方の習得、ものごとを定量的に捉える力の獲得。
- プレゼンテーション能力、科学的な論文(主として日本語)の作成の方法。
【就職先企業・職種】 製造業ほか
研究内容

テトラヘドライト

硫化物熱電材料

ポストグラフェン材料
ゼーベック効果やペルチェ効果などを利用した『熱電変換技術』を使うと、熱エネルギーと電気エネルギーの相互変換が出来るため、廃熱から直接発電を行う『熱電発電』が可能となります。私たちの研究室では、【はかる】【つくる】【さがす】という3本の柱で熱電変換に関する研究を行っています。
【はかる】微小スケールの熱電性能の測定
「はかる」とは熱電材料の特性をはかるための評価手法の開発という意味です。近年、微細な構造を持った新規熱電素子が開発されていますが、システム自体が小さく測定が難しいため、新しい評価手法の開発が望まれています。
私たちの研究室では、3ω法(スリーオメガ法)と呼ばれる熱伝導率測定法を改良して、Bi-Te 系熱電ナノ粒子凝集体の熱伝導率を測定することに成功しました。さらにこの3ω法を改良することにより、遷移金属トリカルコゲナイドナノワイヤーの熱伝導率測定にもチャレンジしています。またポイントコンタクト型局所熱電性能測定法も開発しており、将来的にはグラフェンやポストグラフェンなど先端材料のフォノン物性を解明することを目指しています。
【つくる】インクジェット技術を用いた新規熱電モジュールの開発
実際に熱電発電を行うためには、Bi-Te 系熱電素子を多数配列させた熱電モジュールを作製しなければなりません。われわれは、LCD 用カラーフィルターの製造に利用されているインクジェット技術を熱電モジュール作製に応用するという、新たな製造プロセスの開発を行いました。
インクジェット印刷を用いることにより、従来作製が難しかった微小サイズモジュールや、ポリイミドをはじめとするフレキシブルな基板を用いたモジュールの試作に成功しました。今後は、焼成後の素子の密度と粒子配向性の向上といった課題を解決し、既存の分野およびエネルギーハーベスティングなど新しい分野への応用展開を図ることを予定しています。
【さがす】新しい熱電変換材料の創製
現在実用化されている熱電材料(Bi-Te 系材料)は、構成元素のTe が希少・高価であるという問題を抱えています。この問題を解決するため、私たちはTe の代替元素として硫黄(S)を用いた化合物、すなわち新しい硫化物熱電材料の開発を行っています。
最近、私たちはテトラヘドライトと呼ばれる熱電鉱物Cu12Sb4S13が、実用化されている材料と比べても遜色ない性能を示すことを発見しました。この材料は母体のままでも良好な熱電性能を示しますが、さらに、Cu サイトをNi で置換することにより熱電性能を約1.4倍向上させることに成功しました。
これ以外にも、多様な硫化物の低次元伝導体や、熱電材料と磁性体のハイブリッド材料の合成・開発を行い、その基礎物性や熱電性能を調査しています。
主な研究業績
- Development of thermal conductivity measurement system using the 3ω method and application to thermoelectric particles, S. Nishino, K. Suekuni, K. Ohdaira, and M. Koyano, Journal of Electronic Materials (2014), DOI: 10.1007/s11664-014-2993-9.
- High-performance thermoelectric mineral Cu12-xNixSb4S13 tetrahedrite, K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, Journal of Applied Physics 113, 043712 (2013)
- 廃熱も電気に変える熱電発電,小矢野幹夫,Ohm Bulletin, 2014年 VOL.49 冬号(通巻200号)pp. 02.
使用装置
物理特性測定装置 PPMS(熱電性能、電気伝導の測定)
ラマン散乱分光装置(固体中の素励起のエネルギー分析)
管状電気炉・マッフル炉(無機材料の合成)
ホットプレス装置(粉体試料の加圧焼結・配向制御)
研究室の指導方針
『多様な物性に多様な価値観で挑む』をモットーに、今まで誰も知らなかった新しい現象を発見したり、新規材料を創製することを目指しています。小矢野研は『エネルギーに興味がある人』『無機材料を自分で作ってみたい人』『科学や物理が好きな人』 を歓迎します!
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/kotai/koyano/index.html
物質化学フロンティア研究領域の都教授らの論文がSmall Science誌の表紙に採択
物質化学フロンティア研究領域の都 英次郎教授らの「磁石と光で機能制御可能なナノ粒子の開発に成功!-高性能がん診断・治療に向けて-」に係る論文が、生物・化学系のトップジャーナルSmall Science誌の表紙に採択されました。本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、大学発新産業創出基金事業スタートアップ・エコシステム共創プログラム(JPMJSF2318)ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Small Science, Volume 5, No. 5
掲載日:2025年5月4日
■著者
Yun Qi, Eijiro Miyako*
■論文タイトル
Multifunctional Magnetic Ionic Liquid-Carbon Nanohorn Complexes for Targeted Cancer Theranostics
■論文概要
本研究では、カーボンナノホーン表面に磁性イオン液体、近赤外蛍光色素(インドシアニングリーン)、分散剤(ポリエチレングリコール-リン脂質複合体)を被覆したナノ粒子の作製に成功しました。得られたナノ粒子は、ナノ粒子特有のEPR効果のみならず、磁性イオン液体に由来する磁場駆動の腫瘍標的能によって、大腸がんを移植したマウス体内の腫瘍内に効果的に集積し、磁性イオン液体に由来する抗がん作用に加え、生体透過性の高い近赤外レーザー光により、インドシアニングリーンに由来するがん患部の可視化とカーボンナノホーンに由来する光熱変換による多次元的な治療が可能であることを実証しました。さらに、マウスを用いた生体適合性試験などを行い、いずれの検査からもナノ粒子が生体に与える影響は極めて少ないことがわかりました。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待されます。
表紙詳細:https://onlinelibrary.wiley.com/doi/10.1002/smsc.202570019
論文詳細:https://onlinelibrary.wiley.com/doi/full/10.1002/smsc.202400640
プレスリリース詳細:https://www.jaist.ac.jp/whatsnew/press/2025/03/06-1.html
令和7年5月8日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/05/08-2.html磁石と光で機能制御可能なナノ粒子の開発に成功! -高性能がん診断・治療に向けて-

磁石と光で機能制御可能なナノ粒子の開発に成功!
-高性能がん診断・治療に向けて-
【ポイント】
- 磁性イオン液体とカーボンナノホーンから成る複合体の作製に成功
- 当該ナノ粒子の磁場応答性とEPR効果により標的とする腫瘍内に効果的に集積し、マウスに移植したがんの可視化と、抗がん作用、光熱変換によるがん治療が可能であることを実証
- 当該ナノ粒子と近赤外光を組み合わせた新たながん診断・治療技術の創出に期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)物質化学フロンティア研究領域の都 英次郎教授らは、カーボンナノホーン*1表面に磁性イオン液体*2、近赤外蛍光色素(インドシアニングリーン*3)、分散剤(ポリエチレングリコール-リン脂質複合体*4)を被覆したナノ粒子の作製に成功した(図1)。得られたナノ粒子は、ナノ粒子特有のEPR効果*5のみならず、磁性イオン液体に由来する磁場駆動の腫瘍標的能によって、大腸がんを移植したマウス体内の腫瘍内に効果的に集積し、磁性イオン液体に由来する抗がん作用に加え、生体透過性の高い近赤外レーザー光*6により、インドシアニングリーンに由来するがん患部の可視化とカーボンナノホーンに由来する光熱変換による多次元的な治療が可能であることを実証した。さらに、マウスを用いた生体適合性試験などを行い、いずれの検査からもナノ粒子が生体に与える影響は極めて少ないことがわかった。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待される。 |
【研究背景と内容】
がんは世界における死亡の主な原因の1つである。世界保健機関 (WHO) によると、2020年には約1,000万人のがん患者が亡くなっている。とりわけ先進国の人口の高齢化と生活習慣の要因により、症例数は引き続き増加すると予想されている。科学、技術、社会の発展が大きく進歩したにもかかわらず、従来の抗がん剤の特異性の低さ、重篤な副作用、転移性疾患に対する有効性の限界などが相まって、がんは依然として重要かつ世界的な健康課題となっている。従って、より効果的かつ安心・安全な先進がん診断・治療技術の開発は急務である。
イオン液体は、低融点、低揮発性、高イオン濃度、高イオン伝導性などの特長を持つ室温で液体として存在する塩であり、コンデンサ用電解液や帯電防止剤、CO2吸収剤などの様々な産業用途に応用されており、とりわけ環境・エネルギー分野で注目されている。また、近年イオン液体に抗がん作用があることが見出されており、上記の分野のみならず医療分野への応用展開も期待されている。
そもそもイオン液体という物質は、陽イオン分子と陰イオン分子という極めてシンプルな2種類の構成要素で成り立っている。つまり、陽イオン側と陰イオン側の両方に多様な可能性があることから、両者の組み合わせとなるイオン液体には、膨大な種類が存在しうることになる。そのためイオン液体は「デザイナー溶媒」と呼ばれている。例えば、陽イオンが1-ブチル-3-メチルイミダゾリウム、陰イオンが塩化鉄であるイオン液体([Bmin][FeCl4])は、ネオジム磁石程度の磁場に応答する「磁性イオン液体」として知られている。磁石に反応する流体としては、この磁性イオン液体の他に、磁性流体という粉末磁石を懸濁させた油などが知られている。しかし、従来の磁性流体は、固体と液体に分離してしまいやすく不安定であった。磁性イオン液体は極めて安定であり、揮発せず、燃えないなどのイオン液体特有の性質を保持している。このため磁性イオン液体は、固体磁石にはできなかった液体磁石の新しい用途に向けて応用が期待されている。しかし、このような磁性イオン液体の高い潜在能力に反して、これまで報告されている磁性イオン液体の応用例は、化学物質の抽出や分離に限られていた。
一方、ナノ炭素材料の一つであるカーボンナノホーン(CNH)は、高い生体適合性と優れた物理化学的特性を有することが知られており、とりわけバイオメディカル分野で大きな注目を集めている。都教授は、CNHが生体透過性の高い波長領域(650~1100 nm)のレーザー光により容易に発熱する特性(光発熱特性)を世界に先駆けて発見し、当該光発熱特性を活用したがん診断・治療技術の開発を推進している(※1)。また、都研究室では、革新的がん診断・治療技術に向けてCNHのさらなる高性能化・高機能化に取り組んでいる(※2)。
(※1) https://www.jaist.ac.jp/whatsnew/press/2020/08/17_2.html
(※2) https://www.jaist.ac.jp/whatsnew/press/2024/08/22-1.html
本研究では、磁性イオン液体([Bmin][FeCl4])と光発熱素材(CNH)を複合化した新規ナノ粒子を開発し、がん診断・治療技術への可能性を調査した。より具体的には、[Bmin][FeCl4]、近赤外蛍光色素(インドシアニングリーン)、分散剤(ポリエチレングリコール-リン脂質複合体)を被覆したCNH([Bmin][FeCl4]‒PEG‒ICG‒CNH複合体)をがん患部に同時に送り込むことで、[Bmin][FeCl4]に由来する磁場応答性と抗がん作用に加え、生体透過性の高い近赤外レーザー光を用いることで、インドシアニングリーンに由来する近赤外蛍光特性を用いた患部の可視化やCNHに由来する光熱変換を利用した、新たながんの診断や治療の実現を目指した。
当該目標を達成するために、今回開発した技術では、簡便な超音波照射によって[Bmin][FeCl4]、近赤外蛍光色素(インドシアニングリーン)、ポリエチレングリコール-リン脂質複合体をCNH表面に吸着させることで、CNHを水溶液中に分散できるようにした(図1)。この方法で作製した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体は、7日以上の粒径安定性を有していること、細胞に対し高い膜浸透性を有し抗がん作用を発現すること、近赤外レーザー光照射により発熱が起こることが確認できたため、がん患部の可視化と治療効果について試験を行った。
大腸がんを移植して約10日後のマウスに、当該[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体を尾静脈から投与し、医療用バンデージを使って患部に小型のネオジウム磁石を24時間張り付けた後に740~790 nmの近赤外光を当てたところ、がん患部が蛍光を発している画像が得られた(図2A)。また、当該ナノ粒子が、ネオジウム磁石を用いない場合や磁性イオン液体を被覆していないナノ粒子(PEG‒ICG‒CNH複合体)に比較して、がん組織に効果的に取り込まれていることが分かった(図2A)。そこで、当該ナノ粒子([Bmin][FeCl4]‒PEG‒ICG‒CNH複合体 + 磁場)が集積した患部に対して808 nmの近赤外レーザー光を照射したところ、[Bmin][FeCl4]に由来する抗がん作用に加え、CNHの光熱変換による効果で5日後には、がんを完全に消失させることが判明した(図2B)。
一方、腫瘍内における薬効メカニズムを組織学的評価により調査したところ、とりわけ磁場印可とレーザー照射した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体においてがん細胞組織の顕著な破壊が起こることが明らかとなった。
さらに、[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体をマウスの静脈から投与し、生体適合性を組織学的検査、血液検査、体重測定により評価したが、いずれの項目でも[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体が、革新的がん診断・治療法の基礎に成り得ることを示すだけでなく、ナノテクノロジーや光学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、2025年3月3日に生物・化学系のトップジャーナル「Small Science」誌(Wiley発行)のオンライン版に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、大学発新産業創出基金事業スタートアップ・エコシステム共創プログラム(JPMJSF2318)ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
図1.様々な機能性分子を被覆したナノ粒子の作製と本研究の概念。
CNH: カーボンナノホーン、ICG: インドシアニングリーン、[Bmim][FeCl4]: 磁性イオン液体、
DSPE‒PEG2000‒NH2: ポリエチレングリコール-リン脂質複合体。
図2. ナノ粒子をがん患部に集積・可視化(A)し、光照射によりがんを治療(B)
(赤色の囲いは腫瘍の位置、赤色の矢印は消失した腫瘍の位置をそれぞれ示している)。
【論文情報】
掲載誌 | Small Science |
論文題目 | Multifunctional magnetic ionic liquid-carbon nanohorn complexes for targeted cancer theranostics |
著者 | Yun Qi, Eijiro Miyako* |
掲載日 | 2025年3月3日にオンライン版に掲載 |
DOI | 10.1002/smsc.202400640 |
【用語説明】
飯島澄男博士らのグループが1998年に発見したカーボンナノチューブの一種。直径は2~5 nm、長さ40~50 nmで不規則な形状を持つ。数千本が寄り集まって直径100 nm程度の球形集合体を形成している。とりわけ、薬品の輸送用担体として期待されており、バイオメディカル分野で注目を集めている。
磁気力によってイオンが移動する液体。
肝機能検査に用いられる緑色色素のこと。近赤外レーザー光を照射すると近赤外蛍光と熱を発することができる。
ポリエチレングリコールとリンを含有する脂質(脂肪)が結合した化学物質。脂溶性の薬剤を可溶化させる効果があり、ドラッグデリバリーシステムによく利用される化合物の一つ。
100nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみ、がん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
令和7年3月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/06-1.htmlダイヤモンド中に10兆分の1秒で瞬く磁化を観測 ~超高速時間分解磁気センシング実現に期待~

![]() ![]() ![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド中に10兆分の1秒で瞬く磁化を観測
~超高速時間分解磁気センシング実現に期待~
磁石や電流が発する磁気の大きさと向きを検出するデバイスや装置を磁気センサーと呼びます。現在では、生体中における微弱な磁気から電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの応用分野が広がりつつあります。磁気センサーの中で最も高感度を誇るのが、超伝導量子干渉素子(SQUID)で、1 nT(ナノテスラ、ナノは10億分の1)以下まで検出可能です。また、ダイヤモンドの点欠陥である窒素−空孔(NV)センターと走査型プローブ顕微鏡(SPM)技術を組み合わせることで、数十nm(ナノメートル)の空間分解能を持つ量子センシングが可能になると期待されています。 このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきましたが、時間分解能はマイクロ秒(マイクロは100万分の1)の範囲にとどまっています。このため、磁場を高い時間分解能で測定できる新しい磁気センシング技術の開発が望まれていました。 本研究では、表面近傍にNVセンターを導入したダイヤモンド単結晶に超短光パルスを照射し、それにより10兆分の1秒で瞬く結晶中の磁化を検出することに成功しました。検出感度を見積もると、約35 mT(ミリテスラ、ミリは1000分の1)となりました。また、計測の時間分解能は、超短光パルスにより磁化を発生させたことにより、約100フェムト秒(フェムトは1000兆分の1)となりました。 本研究成果により、NVセンターでは従来困難だった高速に時間変化する磁気のセンシングも可能であることが示され、高い時間分解能と空間分解能を兼ね備えた新たな磁気センシングの開拓につながることが期待されます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀准教授
【研究の背景】
磁石や電流が発する磁気の大きさと向きを検出するのが磁気センサーです。現在では、生体中における微弱な磁気から、電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの研究開発が進んでいます。磁気センサーには、比較的簡便なトンネル磁気抵抗素子注1)によるものや、超伝導体のリングを貫く磁束の変化を電流で読み取る超伝導量子干渉素子(SQUID)注2)などがあります。その中でも最高感度を誇るのがSQUIDで、1 nT(ナノテスラ)以下の磁場をも検出できるほどです。しかし、超伝導体を用いるSQUIDは電気回路や極低温などの高度な取扱いを要します。このため、近年では、ダイヤモンドの点欠陥である窒素−空孔(NV)センター注3)を用いた磁気センサーの開発が進んでいます。特に、負に帯電したNVスピン状態を利用した全光読み出しシステムが、室温でも動作する量子磁力計として注目されています。また、NVセンターの利用と、走査型プローブ顕微鏡(SPM)注4)技術を組み合わせることで、数十nmの空間分解能注5)で量子センシング注6)を行うことが可能になります。
このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきました。その一方で、時間分解能注7)はマイクロ秒の範囲にとどまっています。このため、磁場をより高い時間分解能で測定できる新しい量子センシング技術の開発が望まれていました。
そうした中、NVセンターを高濃度に含むダイヤモンド単結晶膜において、入射された連続発振レーザーの直線偏光が回転することが分かり、ダイヤモンドにおける磁気光学効果が実証されました。NVセンターに関連する集団的な電子スピンが磁化として機能することが示唆されていますが、この手法では時間分解能を高めることができません。他方、逆磁気光学効果、すなわち光パルスで磁気を作り出すという光磁気効果に対するダイヤモンドNVセンターの研究については、行われてきませんでした。しかし、この光磁気効果を開拓することは、ダイヤモンドの非線形フォトニクスの新しい機能性を追求する上で非常に重要です。また、ダイヤモンドNVセンターのスピンを用いた非接触かつ室温動作の量子センシング技術を、高い時間分解能という観点でさらに発展させるためにも、光磁気効果の開拓が必要だと考えられます。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注8)を円偏光にして、NVセンターを導入した高純度ダイヤモンド単結晶に照射し、結晶中に発生した超高速で生成・消滅する磁化を検出することに成功しました。
実験ではまず、波長800nmの近赤外パルスレーザー光をλ/4波長板により円偏光に変換し、NVセンターを導入した高純度ダイヤモンド単結晶に励起光として照射しました。その結果、磁気光学効果の逆過程(光磁気効果)である逆ファラデー効果注9)により、ダイヤモンド中に磁化を発生できることを見いだしました(参考図1挿入図)。この磁化が生じている極短時間の間に直線偏光のプローブ光を照射すると、磁化の大きさに比例してプローブ光の偏光ベクトルが回転します。これを磁気光学カー回転と呼びます。磁気光学カー回転の時間変化はポンプープローブ分光法で測定しました(図1)。測定の結果、逆ファラデー効果で生じるダイヤモンド中の磁化は、約100フェムト秒の応答として誘起されることが確かめられました(図2左)。NVセンターを導入していないダイヤモンドでも磁化は発生しますが、導入すると、発生する磁化が増幅されることも明らかになりました(図2右)。
次に、励起レーザーの偏光状態を直線偏光から右回り円偏光、そして直線偏光に戻り、次に左回り円偏光と逐次変化させることで、波長板の角度とカー回転角(θ )の関係を調べました。すると、NVセンターを導入する前の高純度ダイヤモンド単結晶では、逆ファラデー効果を示すsin 2θ 成分および非線形屈折率変化である光カー効果を示す sin 4θ 成分のみが観測されました。一方、NVセンターを導入したダイヤモンドでは、それらの成分に加えて、新規にsin 6θ の成分を持つことが明らかになりました(図3a)。さらに、励起光強度を変化させながら各成分を解析したところ、sin 2θ 成分およびsin 4θ 成分は励起光強度に対して一乗で増加しますが(図3b,c)、新規のsin 6θ の成分の大きさは励起光強度に対して二乗で変化することが分かりました(図3d)。これらのことから、 sin 6θ の成分は、NVセンターが有するスピンが駆動力となり、ダイヤモンド結晶中に発生した非線形な磁化(逆コットン・ムートン効果注10))であることが示唆されました。また、この付加的で非線形な磁化により、図2で観測された磁化の増幅が説明できました。この非線形な磁化による磁場検出感度を見積もると、約35 mT(ミリテスラ)となりました。SQUIDの検出感度には及びませんが、本手法では約100フェムト秒という高い時間分解能が得られることが示されたといえます。
【今後の展開】
本研究チームは、今回観測に成功した光磁気効果を用いた量子センシング技術をさらに高感度化し、ダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングに深化させることを目指して研究を進めていきます。今後は、ダイヤモンドNVセンターが駆動力となった逆コットン・ムートン効果を磁気センシングに応用することで、先端材料の局所磁場やスピン流を高空間・高時間分解能で測定することが可能となります。さらに、パワーデバイス、トポロジカル材料・回路、ナノバイオ材料など実際のデバイスの動作条件下で、例えば磁壁のダイナミクスや磁化反転などデバイス中に生じるダイナミックな変化を、フェムト秒の時間分解能で観察できることになり、先端デバイスの高速化や高性能化への貢献が期待されます。
【参考図】
図1 本研究に用いた実験手法 パルスレーザーから出たフェムト秒レーザー光はビームスプリッタでポンプ光とプローブ光に分割され、それぞれ波長板と偏光子を通過した後、ポンプ光は光学遅延回路を経由した後レンズで試料に照射される。プローブ光も同様に試料に照射された後、偏光ビームスプリッタにより分割されて二つの検出器で光電流に変換される。その後、電流増幅された後、デジタルオシロスコープで信号積算される。右上の挿入図は、逆ファラデー効果の模式図を示し、右回り(σ+)または左回り(σ-)の円偏光励起パルスによりダイヤモンド結晶中に上向き(H+)または下向きの磁化(H-)が生じる。なおデジタルオシロスコープでは、下向きの磁化が観測されている。 |
図2 高純度ダイヤモンド(NVなし)およびNVセンターを導入したダイヤモンド(NVあり)における時間分解カー回転測定の結果。赤色および青色の実線はそれぞれ、右回り円偏光、左回り円偏光により励起した実験結果を示す。 |
図3 NVセンターを導入したダイヤモンドにおけるカー回転の解析結果 (a) 下図(青丸)はカー回転角の波長板の角度(θ )に対するプロットである。黒い実線はCsin 2θ + Lsin 4θ による最小二乗回帰曲線(フィット)を示す。上図(赤丸)は下図の最小二乗回帰の残差を示す。太い実線はFsin 6θ による最小二乗回帰曲線(フィット)を示す。また最上部は偏光状態の変化(直線偏光→右回り円偏光→直線偏光→左回り円偏光→直線偏光)を表す。(b) Csin 2θ の振幅Cを励起フルエンスに対してプロットした図。 (c) Lsin 4θ の振幅Lを励起フルエンスに対してプロットした図。(d) Fsin 6θ の振幅Fを励起フルエンスに対してプロットした図。(b)と(c)の実線は一次関数によるフィットを示し、(d) の実線は二次関数によるフィットを示す。 |
【用語解説】
注1)トンネル磁気抵抗素子
2枚の磁性体の間に非常に薄い絶縁体を挟んだ構造(磁性体/絶縁体/磁性体)からなる素子。磁性体は金属であり、電圧を加えると、薄いポテンシャル障壁を通り抜けるという量子力学的なトンネル効果により絶縁体を介したトンネル電流が流れる。各磁性体の磁化の向きが平行な場合と反平行な場合で、素子の電気抵抗が大きく変化する。これをトンネル磁気抵抗効果という。よって、この効果を原理とした素子をトンネル磁気抵抗素子と呼ぶ。
注2)超伝導量子干渉素子(QUID)
超伝導体のリングにジョセフソン接合(二つの超伝導体間にトンネル効果によって超伝導電流が流れるようにした接合のこと)を含む素子を、超伝導量子干渉素子(SQUID)と呼ぶ。リングを貫く磁束が変化すると、ジョセフソン接合を流れるトンネル電流が変化するため、高感度の磁気センサーとして用いられる。
注3)窒素−空孔(NV)センター
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)センター」はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となる。NVセンターには、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。
注4)走査型プローブ顕微鏡(SPM)
微小な探針(プローブ)で試料表面をなぞることにより、試料の凹凸を観察する顕微鏡の総称である。細胞やデバイスなどにおいて、分子や原子などナノメートルの構造を観察するのに用いられる。代表的なものに原子間力顕微鏡(AFM)などがある。
注5)空間分解能
近い距離にある2つの物体を区別できる最小の距離である。この距離が小さいほど空間分解能が高く、微細な画像データの測定が可能になる。
注6)量子センシング
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
注7)時間分解能
観測するデータに識別可能な変化を生じさせる最小の時間変化量である。最小時間変化量が小さいほど時間分解能が高く、高速で変化する画像などのデータ識別が可能となる。
注8)超短パルスレーザー
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注9)逆ファラデー効果
ファラデー効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは平行である。逆ファラデー効果はこれとは逆に、円偏光したレーザー光を物質に入射することで、入射した方向に平行に磁化が生じる現象のことをいう。磁性体に限らず、あらゆる物質で生じる非線形光学過程である。
注10)逆コットン・ムートン効果
コットン・ムートン効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に、光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは垂直である。逆コットン・ムートン効果は、逆に、磁界が印可された物質に直線偏光のレーザー光を入射した際に、入射した方向に垂直に磁化が生じる現象であり、磁性体などで生じる高次の非線形光学過程である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング(JPMJCR1875)」(研究代表者:長谷 宗明)、および独立行政法人 日本学術振興会 科学研究費補助金「サブサイクル時間分解走査トンネル顕微鏡法の開発と応用」(研究代表者:重川 秀実)による支援を受けて実施されました。
【掲載論文】
題 目 | Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals. (ダイヤモンド結晶中の窒素空孔センターが誘起する超高速光磁気効果) |
著者名 | Ryosuke Sakurai, Yuta Kainuma, Toshu An, Hidemi Shigekawa, and Muneaki Hase |
掲載誌 | APL Photonics |
掲載日 | 2022年6月15日(現地時間) |
DOI | 10.1063/5.0081507 |
令和4年6月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/06/16-1.html多機能ナノ粒子を用いて、無傷のリソソームを迅速かつ高純度に単離する手法を開発

![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 国立大学法人東北大学 |
多機能ナノ粒子を用いて、無傷のリソソームを迅速かつ高純度に単離する手法を開発
ポイント
- 磁性―プラズモンハイブリッドナノ粒子を哺乳動物細胞のリソソーム内腔へエンドサイトーシス*1経路で高効率に送達することに成功
- ハイブリッドナノ粒子の細胞内輸送過程をプラズモンイメージング*2によって精確に追跡することで、高純度にリソソームを磁気分離するための最適培養時間を容易に決定可能
- リソソーム内腔にハイブリッドナノ粒子を送達後、細胞膜を温和に破砕し、4℃で30分以内にリソソームを磁気分離することで、細胞内の状態を維持したままリソソームの高純度単離に成功
北陸先端科学技術大学院大学(JAIST)(学長:寺野 稔、石川県能美市) 先端科学技術研究科 前之園 信也 教授、松村 和明 教授、平塚 祐一 准教授の研究チームは、東北大学(総長:大野 英男、宮城県仙台市)大学院生命科学研究科の田口 友彦教授と共同で、磁気分離能(超常磁性)とバイオイメージング能(プラズモン散乱*3特性)を兼ね備えた多機能ナノ粒子(磁性―プラズモンハイブリッドナノ粒子)を用いて、細胞内の状態を維持したままリソソームを迅速かつ高純度に単離する技術を世界で初めて開発しました。 |
【背景と経緯】
リソソームは60を超える加水分解酵素とさまざまな膜タンパク質を含む細胞小器官(オルガネラ)で、タンパク質、炭水化物、脂質、ヌクレオチドなどの高分子の分解と再利用に主要な役割を果たします。これらの機能に加えて、最近の発見では、リソソームがアミノ酸シグナル伝達にも関与していることがわかってきています。リソソーム機能障害に由来する疾患も数多く存在します。そのため、リソソームの機能をより深く理解することは基礎生物学においても医学においても重要な課題です。
リソソームの代謝物の探索は、近年急速に関心が高まっている研究分野です。たとえば、飢餓状態と栄養が豊富な状態でリソソームの代謝物を研究することにより、アミノ酸の流出がV-ATPaseおよびmTORに依存することが示されました(M. Abu-Remaileh et al., Science, 2017, 358, 807)。このように、外部刺激に応答したリソソームの動的な性質を調べるためには、リソソームを細胞内の状態を維持したまま迅速かつ高純度に分離する必要があります。
一般的に、リソソームの単離は密度勾配超遠心分離法*4によって行われていますが、密度勾配超遠心分離法には二つの大きな問題があります。まず一つ目の問題として、細胞破砕液にはほぼ同じ大きさと密度を持ったオルガネラが多種類あるため、得られた画分にはリソソーム以外の別のオルガネラが不純物として混ざっていることがよくあります。したがって、リソソーム画分のプロテオミクス解析を行っても、完全な状態のリソソームに関する情報を得ることができません。二つ目の問題として、分離プロセスに長い時間がかかるため、リソソームに存在する不安定なタンパク質は脱離、変性、または分解される可能性があります。この問題も、リソソームに関する情報を得ることを大きく妨げます。
これらの問題を克服するために、リソソームを迅速に単離するための他の技術が開発されました。たとえば、磁気ビーズを用いた免疫沈降法*5によってリソソームを迅速に分離できることが示されました(M. Abu-Remaileh et al., Science, 2017, 358, 807)。しかし、この手法では、ウイルスベクターのトランスフェクションなどによって抗体修飾磁気ビーズが結合できるリソソーム膜貫通タンパク質を発現させる必要があります。この方法は、密度勾配超遠心分離法よりも高純度のリソソーム画分が得られますが、リソソーム膜のタンパク質組成とその後のプロテオミクス解析に悪影響を与える可能性が指摘されています(J. Singh et al., J. Proteome Res., 2020, 19, 371-381.)。
【研究の内容】
本研究では、無傷のリソソームを迅速かつ効率的に分離する新たな単離法として、アミノデキストラン(aDxt)で表面修飾したAg/FeCo/Ag コア/シェル/シェル型磁性―プラズモンハイブリッドナノ粒子(MPNPs)をエンドサイトーシス経路を介してリソソームの内腔に集積した後、細胞膜を温和に破砕し、リソソームを磁気分離するという手法を開発しました(図1)。リソソームの高純度単離のためには、エンドサイトーシス経路におけるaDxt結合MPNPs(aDxt-MPNPs)の細胞内輸送を精確に追跡することが必要となります。そこで、aDxt-MPNPsとオルガネラの共局在の時間変化を、aDxt-MPNPsのプラズモンイメージングとオルガネラ(初期エンドソーム、後期エンドソームおよびリソソーム)の免疫染色によって追跡しました(図2)。初期エンドソームおよび後期エンドソームからのaDxt-MPNPsの脱離と、リソソーム内腔へのaDxt-MPNPsの十分な蓄積に必要な最適培養時間を決定し、その時間だけ培養後、リソソームを迅速かつマイルドに磁気分離しました。細胞破砕からリソソーム単離完了までの経過時間(tdelay)と温度(T)を変化させることにより、リソソームのタンパク質組成に対するtdelayとTの影響をアミノ酸分析によって調べました。その結果、リソソームの構造は細胞破砕後すぐに損なわれることがわかり、リソソームを可能な限り無傷で高純度で分離するには、tdelay ≤ 30分およびT = 4℃という条件で磁気分離する必要があることがわかりました(図3)。これらの条件を満たすことは密度勾配超遠心分離法では原理的に困難であり、エンドサイトーシスという細胞の営みを利用して人為的にリソソームを帯磁させて迅速かつ温和に単離する本手法の優位性が明らかとなりました。
本研究成果は、2022年1月3日(米国東部標準時間)に米国化学会の学術誌「ACS Nano」のオンライン版に掲載されました。
【今後の展開】
本手法はリソソーム以外のオルガネラの単離にも応用可能な汎用性のある技術であり、オルガネラの新たな高純度単離技術としての展開が期待されます。
図1 磁性―プラズモンハイブリッドナノ粒子を用いたリソソームの迅速・高純度単離法の概念図
図2 COS-1細胞におけるaDxt-MPNPsの細胞内輸送。 (A)aDxt-MPNPsの細胞内輸送の概略図(tは培養時間)。 (B)aDxt-MPNPsとリソソームマーカータンパク質(LAMP1)の共局在を示す共焦点レーザー走査顕微鏡像 (核:青、aDxt-MPNPs:緑、リソソーム:赤)。 aDxt-MPNPsはプラズモンイメージングによって可視化。 スケールバーは20 µm。 |
図3 単離されたリソソームのウエスタンブロッティングおよびアミノ酸組成分析の結果。 (A)ネガティブセレクション(NS)およびポジティブセレクション(PS)画分。 (B)PS画分の共焦点レーザー走査顕微鏡画像(緑:aDxt-MPNPs、赤:LAMP1)。 (C)NSおよびPS画分、および細胞破砕液のウエスタンブロット結果。 (D)異なる温度でtdelayを変化した際に得られたリソソーム画分のアミノ酸含有量の変化。 水色(4℃、tdelay = 30分)、青(4℃、tdelay = 120分)、ピンク(25℃、tdelay = 30分)、 および赤(25℃、tdelay = 120分)。 |
【論文情報】
掲載誌 | ACS Nano |
論文題目 | Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles (磁性―プラズモンハイブリッドナノ粒子を用いた完全な状態のリソソームの迅速かつ温和な単離) |
著者 | The Son Le, Mari Takahashi, Noriyoshi Isozumi, Akio Miyazato, Yuichi Hiratsuka, Kazuaki Matsumura, Tomohiko Taguchi, Shinya Maenosono* |
掲載日 | 2022年1月3日(米国東部標準時間)にオンライン版に掲載 |
DOI | 10.1021/acsnano.1c08474 |
【用語説明】
*1.エンドサイトーシス:
細胞が細胞外の物質を取り込む過程の一つ
*2.プラズモンイメージング:
プラズモン散乱を用いて、光の回折限界以下のサイズの金属ナノ粒子を光学顕微鏡(蛍光顕微鏡や共焦点顕微鏡など)で可視化すること
*3.プラズモン散乱:
金属ナノ粒子表面での自由電子の集合振動である局在表面プラズモンと可視光との相互作用により、可視光が強く散乱される現象
*4.密度勾配超遠心分離法:
密度勾配のある媒体中でサンプルに遠心力を与えることで、サンプル中の構成成分がその密度に応じて分離される方法
*5.免疫沈降法:
特定の抗原を認識する抗体を表面修飾したビーズ用い、標的抗原が発現したオルガネラを細胞破砕液中から選択的に分離する免疫化学的手法
令和4年1月5日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/01/05-2.html量子センサーによる熱磁気流の観測に成功 -量子センシングとスピンカロリトロニクスの融合に道-

量子センサーによる熱磁気流の観測に成功
-量子センシングとスピンカロリトロニクスの融合に道-
ポイント
- 熱により励起された磁気の流れ(熱マグノン流)をダイヤモンド中のNV中心と呼ばれる極小な量子センサーを用いて計測することに成功
- 量子センシング分野とスピンカロリトロニクス分野を融合する新手法として期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 応用物理学領域のドゥイ プラナント元博士後期課程学生(2019年6月修了、安研究室)、安 東秀准教授らは、京都大学、物質・材料研究機構と共同で、熱により励起された磁気の流れ(熱マグノン流注1))をダイヤモンド中の窒素-空孔複合体中心(NV中心(図1))注2)と呼ばれる極小な量子センサー注3)を用いて計測することに成功しました。 |
【背景と経緯】
近年、持続可能な社会の実現(SDGs)に向けた環境・エネルギー・情報通信などの問題への取り組みが活発化する中で、計測分野においては、量子力学を原理とした新しい計測技術に基づき従来の性能を凌駕する量子センシング分野の発展が期待されています。その中でも、ナノサイズの量子センサーとしてダイヤモンド中の欠陥構造であるNV中心が注目されています。
一方で、デバイス分野においては、これまで情報を入出力する方法として電流が用いられてきましたが、デバイスの微細化とともに多くのエネルギーが熱として浪費され発熱によりデバイスの動作が不安定となる問題がありました。これを解決する分野として、電流を用いずに電子の自由度であるスピン注4)を用いるスピントロニクス分野注5)が期待され、その中でもスピンと熱の相互作用を積極的に利用することで問題を解決しようとするスピンカロリトロニクス注6)が注目されています。
従来、量子センシング分野とスピンカロリトロニクス分野は独立に発展してきましたが、今回、これらを融合した分野の発展に繋がる新手法を実証しました。今回の研究では、熱により励起された磁気の流れ(熱マグノン流)をNV中心に存在する量子スピン状態により計測が可能であることを実証しました。
【研究の内容】
図2に示すように、まず、磁性ガーネット試料(Y3Fe5O12: YIG) 注7)中に温度勾配を印加して熱の流れを創り、これにより熱励起された磁気の流れ(熱マグノン流)を生成します。続いて、試料端でマイクロ波によりコヒーレント(エネルギーと位相の揃った)なスピン波注8)を生成して試料中に伝搬させます。この状況で試料中央にはダイヤモンドNV中心を含有したダイヤモンド片がYIGに近接され、このダイヤモンドNV中心を用いてスピン波を計測しました(図3(左))。今回、スピン波の強度を、光学的磁気共鳴検出法注9)を用いたNV中心のラビ振動注10)により計測し、熱マグノン流による変調信号を観測することに成功しました(図3(右))。
本研究成果は、2021年12月23日(米国東部標準時間)に米国物理学会の学術誌「Physical Review Applied」のオンライン版に掲載されました。
【今後の展開】
本研究では、スピン波を介して熱マグノン流を量子センサーであるNV中心を用いて計測することに成功しました。このことは、量子センシングとスピンカロリトロニクス分野を融合する新手法となることを示唆します。特に、NV中心はナノスケールの分解能で量子計測が可能であり、将来的には熱マグノン流に関する現象をナノスケールで計測すること、さらには熱マグノン流とNV中心の量子状態との相互作用に関する新しい研究展開を可能にし、スピンカロリトロニクスと量子センシングの融合研究に貢献することが期待されます(図4)。
図1 ダイヤモンド中の窒素(N)-空孔(V)
複合体中心(NV中心)スピン状態
図2 スピン波を介したNV中心による熱マグノン流計測の概念図
図3 (左)実験配置図、(右)NV中心のラビ振動計測による熱スピン流による変調信号の観測
図4 量子センシングとスピンカロリトロニクスの融合
【論文情報】
掲載誌 | Physical Review Applied |
論文題目 | Probing Thermal Magnon Current Mediated by Coherent Magnon via Nitrogen-Vacancy Centers in Diamond |
著者 | Dwi Prananto, Yuta Kainuma, Kunitaka Hayashi, Norikazu Mizuochi, Ken-ichi Uchida, Toshu An* |
掲載日 | 2021年12月23日(米国東部標準時間) |
DOI | 10.1103/PhysRevApplied.16.064058 |
【研究助成費】
本研究の一部は、次の事業の一環として実施されました。
・ 日本学術振興会(JSPS)科研費
新学術領域研究「ハイブリッド量子科学」公募研究(18H04289)、基盤研究(B) (18H01868) 、
若手研究(19K15444)、新学術領域研究(15H05868)
・ 科学技術振興機構(JST)戦略的創造研究推進事業CREST(JPMJCR1875, JPMJCR1711)
・ 文部科学省 光・量子飛躍フラッグシッププログラム(Q-LEAP, JPMXS0118067395)
【用語説明】
注1)熱マグノン流
磁性体中の磁気の流れ(マグノン、またはスピン波とも呼ばれる)が熱により励起されたもの
注2)NV中心
ダイヤモンド中の窒素(N)不純物と空孔(V)が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定的にスピン量子状態が存在する。
注3)量子センサー
量子力学を原理とした量子状態を利用して超高感度測定を行うセンサー
注4)スピン
電子が有する自転のような性質。電子スピンは磁石の磁場の発生源でもあり、スピンの状態には上向きと下向きという2つの状態がある。
注5)スピントロニクス
電子の持つ電荷とスピンの2つの性質を利用して新しい物理現象や応用研究をする分野
注6)スピンカロリトロニクス
スピントロニクスの分野の中でもスピンと熱の相互作用の利用を目指す分野
注7)磁性ガーネット
希土類元素をイットリウム(Y)としたイットリウム鉄ガーネット(Y3Fe5O12)結晶。スピン波の拡散長が数ミリメートル以上と長いことで知られている。
注8)スピン波
スピンの集団運動であり、個々のスピンの磁気共鳴によるコマ運動(歳差運動)が磁気の波となって伝わっていく現象
注9)光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
注10)ラビ振動
ここではNV中心の2つのスピン状態間のエネルギーに相当するマイクロ波磁場を印加することにより状態が2準位の間を振動する現象。本研究ではスピン波(マグノン)が生成するマイクロ波磁場によりラビ振動を励起した。
令和3年12月27日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/12/27-1.html学生の高橋さんがIUMRS-ICAM 2017 国際会議において2件の奨励賞を受賞
学生の高橋麻里さん(博士後期課程3年、物質化学領域・前之園研究室)がIUMRS-ICAM 2017 国際会議において2件の奨励賞を受賞しました。
IUMRS(International Union of Materials Research Society)は、学術的材料研究の振興を共通の関心とする学術団体から構成される国際機関で、毎年各国で材料科学に関する国際会議を開催しています。IUMRS-ICAM(International Conference on Advanced Materials)2017は、日本MRSの主催で2017年8月31日~9月1日の期間、京都大学吉田キャンパスにて開催され、4分野30シンポジウムに総勢1908名が参加しました。
奨励賞(Award for Encouragement of Research)は、優れた講演を行った若い研究者に贈られる賞であり、各々のシンポジウムで厳正なる審査が行われ、上位約10%の発表者しか受賞できない栄誉ある賞です。
■受賞年月日
平成29年10月17日
■タイトル
(1)シンポジウム: A-4 (Magnetic oxide thin films and hetero-structures)
Transition from Linear to Oscillatory Behavior of Exchange Bias Revealed with Progression of Surface Oxidation of Ag@FeCo@Ag Core@Shell@Shell Nanoparticles
著者:M. Takahashi, P. Mohan, D. M. Mott, and S. Maenosono
(2)B-7 (Nano-biotechnology on Interfaces)
Imaging and Isolation of Autophagosomes using Magnetic-Plasmonic Ag@FeCo@Ag Core@Shell@Shell Hybrid Nanoparticles
著者:M. Takahashi, P. Mohan, K. Mukai, Y. Takeda, T. Matsumoto,K. Matsumura, M. Takakura, T. Taguchi, and S. Maenosono
■概要
(1)シンポジウム: A-4 (Magnetic oxide thin films and hetero-structures)
Ag@FeCo@Agコア@シェル@シェルナノ粒子における交換バイアスを調べたところ、強磁性体FeCoが反強磁性体CoFeOへ酸化することで交換バイアス磁場が振動現象を示すことが分かった。
(2)B-7 (Nano-biotechnology on Interfaces)
磁性-プラズモンハイブリッドAg@FeCo@Agコア@シェル@シェルナノ粒子を用い、細胞内小器官の一つであるオートファゴソームのイメージング及び磁気分離を行った。
■受賞にあたって一言
共同研究者の方々をはじめ、応援してくださった皆様に心より感謝申し上げます。私が初めて国際学会で口頭発表をした場がIUMRSでその当時も賞を頂き、おそらく学生生活最後の国際学会での発表となった今回のIUMRSでも発表した2件において賞を頂けたことを大変嬉しくまた光栄に思います。これを励みに今後も研究に対して真摯に向き合い、邁進して参りたいと思います。
平成29年10月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2017/10/20-1.htmlミリメートルの長距離スピン情報の変換に成功 -量子情報素子やスピンセンサーの技術開発に道-

ミリメートルの長距離スピン情報の変換に成功
-量子情報素子やスピンセンサーの技術開発に道-
ポイント
- 磁気の波(スピン波)を用いて数ミリメートル離れたスピン状態へ情報を変換する基本原理を実証
- 量子情報素子やスピンセンサーの新手法として期待
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、先端科学技術研究科応用物理学領域の菊池大介研究員、安東秀准教授らは、京都大学、東京工業大学、東北大学、理化学研究所、ニューヨーク市立大学と共同で、スピン波注1)とダイヤモンド中の窒素-空孔複合体中心(NV中心(図1))注2)を組み合わせた長距離(約3.6ミリメートル)スピン信号変換に成功しました。
<背景と経緯>
近年、持続可能な社会の実現に向けた環境・エネルギー・情報通信などの問題への取組が活発化する中で、電子デバイスの省電力化やナノセンシング技術の高性能化が求められています。これまでデバイスに情報を入出力する方法として電流が用いられてきましたが、情報処理に時間がかかること、多くのエネルギーが熱として浪費され発熱によりデバイスの動作が不安定となることなど問題がありました。これらを解決する方法として、電流を用いずに電子の自由度であるスピン注3)を用いるスピントロニクス素子注4)や量子情報素子(発熱を抑えるとともに情報処理時間を飛躍的に高速化できる)の実現が期待されています。従来、これらの素子では相互作用を大きくするためにスピンとスピンの距離をナノメートル程に設計する必要がありました(図2)。今回の研究では、スピンの波(スピン波)とダイヤモンド結晶中のNV中心に存在するスピン状態とを組み合わせた手法によりミリメートルの長距離でもスピン情報を伝送できることを実証しました。
<研究の内容>
今回の研究では、図3の模式図に示した実験により、スピン波とNV中心スピンを用いた長距離スピン信号変換に成功しました。先ず、直径4ミリメートルの絶縁体である磁性ガーネット (Y3Fe5O12: YIG) 注5)多結晶円板にマイクロ波と磁場を印加して、磁気の波(スピン波)を試料左端に励起します(図3(a))。この際に、表面スピン波注6)と呼ばれる、試料表面に局在し一方向にのみ伝搬するスピン波を励起します。その後、試料左端から右端へ3.6ミリメートル伝搬した表面スピン波は、試料右端上に配置されたダイヤモンド中に用意された複数のNV中心スピンを励起します。励起されたNV中心は光学的に磁気共鳴信号(ODMR)注7)やラビ振動注8)を計測することにより検出します(図3(b), (c))。今回、スピン波の共鳴周波数とNV中心の共鳴周波数が一致する条件でODMR信号が増強され、ラビ振動の周波数が高くなることを発見しました。
<今後の展開>
本研究では、スピン波とNV中心を組み合わせることで離れたスピン状態間の信号の伝送・変換が可能なことを実証しました。今後、2つのスピン状態をスピン波で接続することで、これまで困難だった長距離(ミリメートル以上でも可能)離れた2つのスピン状態間の信号の変換を可能にし(図4)、新しい量子情報素子やナノスピンセンサーを実現する技術開発に貢献することが期待されます。
![]() |
![]() |
図1 ダイヤモンド中の窒素(C)-空孔(V)複合体中心(NV中心)スピン状態 | 図2 従来のスピン変換の概念図 ナノメートル程の距離の2つのスピン状態、スピンAとスピンB間で信号を変換する。 |
![]() |
|
図3 スピン波とNV中心を用いた長距離スピン信号変換の原理。(a)多結晶ガーネット(YIG)磁性体試料の左端で励起された表面スピン波は右方向へ数ミリメートル伝搬した後、試料右端上のダイヤモンド中のNV中心スピンを励起する(スピン変換)。励起されたNV中心は光学的磁気共鳴検出法(ODMR)により磁気共鳴(b)やラビ振動(c)として検出される。 | |
![]() |
|
図4 今後の展開。長距離離れた2つのスピン状態、スピンAとスピンBをスピン波で接続する。 |
<論文情報>
掲載誌:Applied Physics Express
論文題目:Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves
著者:Daisuke Kikuchi, Dwi Prananto, Kunitaka Hayashi, Abdelghani Laraoui, Norikazu Mizuochi, Mutsuko Hatano, Eiji Saitoh, Yousoo Kim, Carlos A. Meriles, Toshu An
Vol.10, No.10, Article ID:103004
掲載日:10月2日(英国時間)公開 DOI: 10.7567/APEX.10.103004
<研究助成費>
本研究の一部は、キャノン財団研究助成プログラム、村田学術振興財団研究助成、科学研究費補助金・新学術領域研究「ナノスピン変換」公募研究、研究活動スタート支援の一環として実施されました。
<用語解説>
注1) スピン波
スピンの集団運動であり、個々のスピンの磁気共鳴によるコマ運動(歳差運動)が波となって伝わっていく現象である。
注2) NV中心
ダイヤモンド中の窒素不純物と空孔が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定にスピン状態が存在する。
注3) スピン
電子が有する自転のような性質。電子スピンは磁石の磁場の発生源でもあり、スピンの状態には上向きと下向きという2つの状態がある。
注4) スピントロニクス
電子の持つ電荷とスピンの2つの性質を利用した新しい物理現象や応用研究をする分野
注5) 磁性ガーネット
本研究では希土類元素をイットリウム(Y)としたイットリウム鉄ガーネット(Y3Fe5O12)多結晶を用いた。スピン波の拡散長が数ミリメートル以上と長いことで知られている。
注6) 表面スピン波
スピン波の一種であり、試料の表面に局在し一方向にのみ伝搬する性質を持つ。また、表面スピン波の持つ非相反性より、試料の上面と下面では逆向きに伝搬する。
注7) 光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
注8) ラビ振動
NV中心の2つのスピン状態間のエネルギーに相当するマイクロ波磁場を印加することにより状態が2準位の間を振動する現象。本研究ではマイクロ波磁場の代わりにスピン波によるマイクロ波磁場を生成してラビ振動を励起した。
平成29年10月3日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/10/03-1.html2次元sp2炭素高分子材料の開拓に成功
![]() |
![]() |
国立大学法人 北陸先端科学技術大学院大学 大学共同利用機関法人 分子科学研究所 |
2次元sp2炭素高分子材料の開拓に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の江 東林教授らの研究グループと分子科学研究所の物質分子科学研究領域の中村 敏和准教授らの研究グループは、sp2炭素からなる2次元共役有機骨格構造体の開拓に成功した。
炭素材料は様々な機能を発現するプラットホームとして注目されている。その中でも、2次元炭素材料はその特異な化学・電子構造を有するため、近年各国で熾烈な研究開発が行われている。特に、グラフェンは、sp2炭素原子が2次元的に繋がって原子層を形成し、特異な電気伝導特性を示すことで、様々な分野で幅広く応用されている。しかしながら、化学的な手法でsp2炭素原子(あるいはsp2炭素ユニット)を規則正しく繋げてsp2炭素シートをつくりあげることが極めて困難で、2次元炭素材料はグラフェンに限られているのが現状である。
これに対して、本研究では、sp2炭素ユニットから2次元炭素材料を設計する原理を明らかにし、さらに、sp2炭素ユニットを規則正しく連結して2次元炭素材料を合成する手法を開拓した。この手法は従来不可能な2次元炭素材料の化学合成を可能にし、分子構造を思ったままに設計して2次元炭素をテーラーメイドで合成することを可能とする。今回合成された2次元炭素材料は、規則正しい分子配列構造を有し、拡張された2次元sp2炭素骨格構造を有し、π共役が2次元的に広がっている特徴を示す。高い結晶性と安定性を有するとともに、2ナノメートルサイズの1次元チャンネルが規則正しく内蔵されている。この2次元炭素材料は、ヨウ素でドーピングすると、電気伝導度は12桁も高くなり、室温で優れた半導体特性示した。興味深いことに、この2次元炭素材料は、極めて高い濃度の有機ラジカル種を共存させることができ、さらに、低温において、これらのラジカルスピンが同じ方向に配列するように転移し、強磁性体になることを突き止めた。今後は、様々な2次元炭素材料の設計と合成が可能となるに加え、その特異なπ電子構造に由来する新奇な機能の開発がより一層促進される。
本研究は、Scienceに2017年8月18日に公開された。
1.研究の成果
今回研究開発された2次元炭素高分子材料は2次元高分子注1)である。2次元高分子は、規則正しい分子骨格構造を有し、無数の細孔が並んでいるため、二酸化炭素吸着、触媒、エネルギー変換、半導体、エネルギー貯蔵など様々な分野で活躍し、新しい機能性材料として大いに注目されている。江教授らは、世界に先駆けて基礎から応用まで幅広い研究を展開し、この分野を先導してきた。
これまでの2次元合成高分子は、分子骨格に他の元素(例えば、ホウ素、酸素、窒素などの原子)が入っていて、sp2炭素からなる2次元炭素高分子は合成できなかった。これまでの合成手法では、sp2炭素ユニットからなる高分子を合成できるものの、アモルファス系の無秩序構造を与え、規則正しい2次元原子層及び積層構造をつくることはできなかった。今回、江教授らは、可逆的なC=C結合反応を開発し、C=C結合でsp2炭素ユニットを規則正しく繋げて、結晶性の高い2次元sp2炭素高分子の合成に成功した(図1A)。この原理は様々なトポロジーを有する2次元sp2炭素高分子を設計することができる点が特徴的である。今回合成されたsp2c-COFは、2次元sp2炭素原子層を有し(図1B)、積層することによって頂点に位置するピレンπ-カラムアレイと規則正しく並んだ1次元ナノチャンネルが生成される(図1C)。2次元sp2炭素原子層の中では、xとy方向に沿ってπ電子共役が伸びており、拡張された2次元電子系を形成する(図1D)。また、積層構造では、ピレン(丸い点)ユニットが縦方向でスタックして特異なπカラムアレイ構造と1次元ナノチャンネル構造を形成している(図1E)。X線構造解析から、2次元sp2炭素高分子は、規則正しい配列構造を有することが明らかになった。
図1.A)sp2炭素ユニットからなる2次元炭素高分子の合成。B) 2次元炭素原子層の構造。C)積層された2次元炭素構造。D)2次元炭素の網目モデル構造、xとy方向にπ共役が広がっている。E) 積層された2次元炭素の網目モデル構造。
この2次元sp2炭素高分子は空気中、様々な有機溶媒、水、酸、および塩基下においても安定である。また、熱的にも極めて安定であり、窒素下で400°Cまで加熱しても分解しない。この2次元sp2炭素高分子は酸化還元活性であり、有機半導体の特性を示す。エネルギーギャップは1.9 eVであり、ヨウ素でドーピングすると、電気伝導度が12桁も向上する。
電子スピン共鳴スペクトルを用いて、ヨウ素でのドーピング過程を追跡したところ、有機ラジカル種がドーピング時間とともに増えてくることが分かった。これらのラジカル種はピレンに位置し、互いに会合してバイポラロンを形成することができない。したがって、2次元炭素高分子系内では、極めて高いラジカル密度を保つことができる。超電導量子干渉計を用いた測定から、ピレンあたりのラジカル種は0.7個であることが分かった。これに対して、類似構造を有する1次元高分子および3次元アモルファス高分子系では、ラジカル密度が極めて低かった。すなわち、2次元 sp2炭素高分子はバルクの磁石であることが示唆された。
磁化率と磁場強度との関係を検討したところ、温度を下げていくと、これらのラジカル種が同じ方向に向くようになり、2次元炭素高分子は強磁性体注2)に転移することを見いだした。すなわち、隣り合うラジカル種のスピンが同じ方向に揃うことによって、スピン間のコヒーレンスが生まれる。これらの特異なスピン挙動は1次元や3次元アモルファス炭素材料には見られない。
本研究成果は、このような高度なスピンアレイを用いた超高密度データー貯蔵システムや超高密度エネルギー貯蔵システムの開拓に新しい道を開くものである。
2.今後の展開
今回の研究成果は、化学合成から2次元炭素高分子材料の新しい設計原理を確立した。また、合成アプローチも確保されており、様々な2次元炭素高分子材料の誕生に繋がるものと期待される。今後、これらの特異な2次元炭素構造をベースに、様々な革新的な材料の開発がより一層促進される。
3.用語解説
注1)2次元高分子
共有結合で有機ユニットを連結し、2次元に規定して成長した多孔性高分子シートの結晶化により積層される共有結合性有機構造体。
注2)強磁性体
隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質を指す。そのため、外部磁場が無くても自発磁化を示す。
4.論文情報
掲載誌:Science
論文タイトル:Two-dimensional sp2 carbon-conjugated covalent organic frameworks(2次元sp2炭素共役共有結合性有機骨格構造体)
著者:金 恩泉(北陸先端科学技術大学院大学研究員)、浅田 瑞枝(分子科学研究所特任助教)、徐 慶(北陸先端科学技術大学院大学特別研究学生)、Sasanka Dalapati(北陸先端科学技術大学院大学研究員、日本学術振興会外国人特別研究員)、Matthew A. Addicoat (イギリス ノッティンガム・トレント大学助教)、 Michael A. Brady(アメリカ ローレンス・バークレー国立研究所 研究員)、徐 宏(北陸先端科学技術大学院大学研究員)、中村 敏和(分子科学研究所准教授)、Thomas Heine (ドイツ ライプツィヒ大学教授)、陳 秋紅(北陸先端科学技術大学院大学研究員)、江 東林(北陸先端科学技術大学院大学教授)
掲載日:8月18日にオンライン掲載。 DOI: 10.1126/science.aan0202.
5.研究助成
この研究は科学研究費助成金 基盤研究(A)(17H01218)、ENEOS水素信託基金、および小笠原科学技術振興財団によって助成された。
平成29年8月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/08/21-1.htmlダイヤモンドのNV中心を用いた温度計測に成功 ~非線形光学による新しい量子センシングの可能性~

![]() ![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 |
ダイヤモンドのNV中心を用いた温度計測に成功
~非線形光学による新しい量子センシングの可能性~
温度センサーは接触型と非接触型に大別されます。接触型の温度センサーには抵抗温度計、サーミスタや熱電対などが、非接触型の温度センサーには量子準位の変化で温度を読み取る量子センサーが主に用いられています。非接触型量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心と呼ばれる格子欠陥を用いたセンサーは、高空間分解能・高感度を必要とする細胞内計測やデバイス評価装置のセンサーへの応用が期待されています。 高純度のダイヤモンドは結晶学的に対称性が高く、対象点を中心に結晶を反転させると結晶構造が重なる空間反転対称性を持っています。結晶の対称性は、結晶の光学的性質を決定する上で重要な役割を担っており、空間反転対称性の有無は、非線形光学効果の発現を左右します。本研究チームは近年、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)が発現することを報告しました。このSHGは、結晶にレーザー光を照射した際に、そのレーザー周波数の2倍の周波数の光が発生する現象です。 この成果を基に、本研究では、20℃から300℃の温度範囲において、SHG強度の変化を調べ、高温では屈折率変化による光の位相不整合によりSHG強度が大きく減少することを発見しました。 本研究成果は、ダイヤモンドベースの非線形光学による温度センシングの実現に向けた効率的かつ新しい方法を提示するものと言えます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 応用物理学領域
安 東秀准教授
【研究の背景】
温度センサーは、エアコン、冷蔵庫、自動車エンジン、パソコンなどさまざまな電子機器に使用されており、温度管理や機器の性能維持に重要な役割を果たしています。温度センサーにはさまざまな種類がありますが、大きくは接触型と非接触型に分類されます。接触型の温度センサーには抵抗温度計、サーミスタ、熱電対などが用いられ、一方、非接触型の温度センサーには量子センサー注1)が主に使われています。
特に、ダイヤモンド中の窒素−空孔(NV)中心注2)を用いた非接触型量子センサーは、NV中心における量子準位間発光の共振マイクロ波周波数が温度によって変化することを原理とし、高空間分解能・高感度を必要とする細胞内計測や、デバイス評価装置のセンサーへの応用などが期待されています。ダイヤモンドのNV中心は、置換型窒素原子と炭素原子の隣の空孔からなる原子状欠陥(図1挿入図)です。
表面近傍(深さ数十ナノメートル)にNV中心を導入するには、一般に窒素イオン注入と高温アニールの組み合わせがよく用いられます。近年、ダイヤモンドのNV中心は、発光など豊かな光物性から、量子計算のためのフォトニックデバイス技術、単一光子源などへの応用が期待され、高い注目を集めています。さらに、ダイヤモンドのNV中心を用いた量子センシングが注目され、電場(電流)、磁場(スピン)の計測や、温度センサーに利用されています。一方、結晶の対称性、中でも空間反転対称性注3)の有無は、物質の光学的性質を決定する上で重要な役割を担っています。本研究チームは近年、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)注4)を発現することを報告しましたa)。
今回、本研究チームは、NV含有ダイヤモンド結晶に赤外域の超短パルスレーザーを照射することで、第二高調波、および第三高調波の発光強度の温度依存性について研究し、非線形光学効果に基づいた温度センサーとしての可能性を探りました。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ波長800nmで瞬く超短パルスレーザー注5)を波長1350nmの赤外パルス光に変換し、NV中心を導入した高純度ダイヤモンド単結晶に励起光として照射しました。これにより、ダイヤモンドの表面近傍から発生したカスケード型第三高調波(cTHG)と第二高調波の強度変化を、20℃~300℃の温度範囲で調べました。図2は、20℃(室温)から240℃までのさまざまな温度でNV含有ダイヤモンド結晶から得られた典型的な発光スペクトルを示します。室温の20℃においては、複屈折性を有するNV含有ダイヤモンド試料の角度を調整することにより、ほぼ完全な位相整合注6)が精巧に行われました。この時、SHGについては約4.7 × 10-5、cTHGについては約3.0 × 10-5の光変換効率が得られています。しかし、温度上昇に伴い、SHG および cTHG の強度は急激に減少することが分かります。
また、20℃から300℃までの非線形発光の温度同調曲線を、さらに光学調整を行わずに20℃の間隔で記録したところ、SHGとcTHGの積分強度は、低温領域(100℃以下)では、ほとんど温度変化しないことが分かりました。しかし、高温領域(150℃から300℃)では、SHG強度、cTHG強度ともに温度の上昇とともに急激に低下し、室温で得られる信号強度に比べてほぼ1桁低い信号強度が観測されました。一方、NV中心を導入する前の純粋なダイヤモンド結晶のTHG強度は、温度の上昇とともにゆっくり減少することが分かりました。ダイヤモンド結晶では、屈折率の温度変化による位相不整合により、格子温度の上昇に伴ってSHG強度が減少したと考えられます(図3)。このように、NV含有ダイヤモンドのSHGから得られる温度センサーとしての感度(dI/dT=0.81%/℃)は、高純度ダイヤモンドのTHGから得られる温度感度(dI/dT=0.25%/℃)よりも3倍以上大きく、非線形光学効果に基づいた温度センシング技術開発への大きな可能性を示すものでした。
【今後の展開】
本研究チームは、2次の非線形光学効果である第二高調波発生や電気−光学効果を用いた量子センシング技術を深化させ、最終的にダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングの研究を進めています。NV含有ダイヤモンドにおいては、NV中心の配向をそろえることでSHGの変換効率が高まると期待されます。また、NV含有ダイヤモンドは、チップ状に加工することで、走査型プローブ顕微鏡のプローブとしての役割も果たし、さまざまな先端材料に対して有効なナノメートル分解能をもつ温度センサーを実現できる可能性を秘めています。今後は、フェムト秒(1000兆分の1)パルスレーザー技術が持つ高い時間分解能と、走査型プローブ顕微鏡注7)が持つ高い空間分解能とを組み合わせ、ダイヤモンドのNV中心から引き出したSHGなどの2次の非線形光学効果が、電場や温度のセンシングに幅広く応用できることを示していきます。
【参考図】
図1.本研究に用いた実験装置の概略 挿入図は、ダイヤモンド結晶中の窒素―空孔(NV)中心の原子構造を示している。 |
図2.実験結果
第二高調波発生(SHG)とカスケード型第三高調波発生(cTHG)スペクトルの結晶温度依存性。五つの値:20℃(室温)、90℃、160℃、200℃、240℃に、黒、濃い赤、オレンジ、緑、紫の線が対応する。
図3.ダイヤモンド結晶における位相整合 NVダイヤモンド結晶における温度、屈折率(赤線)、およびSHG強度の関係を示す。 |
【用語解説】
注1)量子センサー
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測するセンサーのこと。
注2)窒素−空孔(NV)中心
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」は、ダイヤモンドの着色にも寄与する色中心(カラーセンター)と呼ばれる格子欠陥となる。NV中心には、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
注3)空間反転対称性
三次元空間の直交座標系(x, y, z)において、結晶中の全ての原子を(x, y, z) → (-x, -y, -z)と反転操作しても元の結晶と完全に一致すること。
注4)第二高調波発生
同じ周波数(波長)を持つ二つの光子が非線形光学結晶に入射すると、入射した光子の2倍の周波数(半分の波長)の光が発生する現象のこと。2次の非線形光学効果(電場振幅の二乗に比例する効果)の一種である。同様に、第三高調波発生は三つの光子から入射した光子の3倍の周波数の光が発生する3次の非線形光学効果である。
注5)超短パルスレーザー
パルスレーザーの中でも、特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注6)位相整合
基本波レーザー光とそれから発生する第二高調波(或いは第三高調波)の位相速度が一致することである。位相整合を満たす方法として、複屈折性を有する結晶の角度を回転させることで二つの異なる波長に対する屈折率を位相整合条件に一致させることができる。位相不整合が起こると第二高調波の強度が減少することが知られている。
注7)走査型プローブ顕微鏡
小さいプローブ(探針)を試料表面に近接させ、探針を表面に沿って動かす(走査する)ことで、試料の原子レベルの表面構造のみならず、温度や磁性などの物理量も画像化できる顕微鏡である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング」(グラント番号:JPMJCR1875)(研究代表者:長谷 宗明)による支援を受けて実施されました。
【参考文献】
a) Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase, 2021, Second-harmonic generation in bulk diamond based on inversion symmetry breaking by color centers. ACS Photonics 8, 988-993 (doi:1021/acsphotonics.0c01806).
【掲載論文】
題 目 | Temperature-dependent second-harmonic generation from color centers in diamond. (ダイヤモンドの色中心からの温度依存的な第二高調波発生) |
著者名 | Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase |
掲載誌 | Optics Letters |
掲載日 | 2022年3月1日(著者版先行公開) |
DOI | 10.1364/OL.455437 |
令和4年3月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/03/09-1.html