研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。超越バイオ医工学研究拠点 リサーチコアセミナー「カーボンナノチューブの近赤外蛍光を用いた褐色脂肪組織異常の検出」

セミナーを下記のとおり開催しますので、ご案内します。
新型コロナウイルス感染症対策のため、ネット配信方式にてご参加いただきます。カメラ付きパソコン、スマホ、タブレットなどからご参加いただけます。
開催日時 | 令和3年10月13日(水)13:30~15:00 |
実施方法 | ネット配信方式 |
講演題目 | カーボンナノチューブの近赤外蛍光を用いた褐色脂肪組織異常の検出 |
講 師 | 産業技術総合研究所 ナノ材料研究部門 客員研究員 湯田坂 雅子 氏 |
参加申込 | 下記のお問い合わせ担当へ前日までにご連絡ください。 (参加費無料) 【お問い合わせ】 北陸先端科学技術大学院大学 超越バイオ医工学研究拠点長 都 英次郎 (担当:研究施設支援係 sien@ml.jaist.ac.jp) |
物質化学領域の松村教授が高分子学会三菱ケミカル賞を受賞
物質化学領域の松村 和明教授が公益社団法人高分子学会三菱ケミカル賞を受賞しました。
高分子学会は、高分子科学の基礎ならびに高性能材料などの応用分野に関する幅広い研究分野を対象とした会員数10,000を超える学術団体です。
三菱ケミカル賞は、高分子科学に基礎をおき、技術、産業に寄与する独創的かつ優れた研究業績を挙げた研究者に授与される賞です。
*参考:高分子学会三菱ケミカル賞受賞者
■受賞年月日
令和3年9月7日
■研究題目
両性電解質高分子の凍結保護効果の解明と生体材料応用
■研究内容
細胞の凍結保存技術は古くから開発されており、保護物質であるジメチルスルホキシド(DMSO)などを添加する必要がありました。松村教授らは、DMSOに比べて毒性が低く、しかも活性の高い高分子系の新規凍結保護物質を新たに見いだしました。その機序が既存の物質と異なることをNMRを用いた独自の手法で明らかとし、この機序を用いた再生医療用組織の凍結保存にも挑戦しています。さらに、和牛の受精卵や精子の凍結保護剤として産業応用もされています。また、凍結濃縮という凍結現象を用いた細胞内への物質送達手法を開発するなど、高分子化学と低温生物工学双方向の異分野融合型研究を進めています。
以上、基礎から産業応用に至るまで独創的かつ優れた研究成果であると国内外から高く評価されています。
■受賞にあたって一言
高分子学会よりこの度、三菱ケミカル賞を頂くことができ誠に光栄に思います。さらに高分子化学の発展に尽力して参ります。共同研究者や研究室の学生さんならびに研究費をご支援いただいた関係各所に厚くお礼申し上げます。


令和3年9月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/09/17-1.html物質化学領域の木田助教の研究課題が服部報公会の研究助成に採択
公益財団法人 服部報公会の研究助成「工学研究奨励援助金」に物質化学領域の木田 拓充助教の研究課題が採択されました。
服部報公会では、工学に関する研究を奨励援助し、もって学術及び科学技術の振興と進歩発展に寄与することを目的とした事業が行われています。工学研究奨励援助金は、工学の発展に寄与する基礎的研究で、単なる調査ではなく理論的あるいは実験的研究を行い、1年間に一応の進展が期待される研究に贈呈されます。
*詳しくは、服部報公会ホームページをご覧ください。
■研究者名
物質化学領域 木田 拓充助教
■採択期間
令和3年10月~令和4年9月
■研究課題名
構造不均一性の導入による高強度・高延伸性熱可塑性エラストマーの開発
■研究概要
熱可塑性エラストマーは、結晶化して架橋構造として振る舞うハードセグメントと、柔軟で屈曲性に優れたソフトセグメントで構成された高分子材料であり、各セグメントの長さや分率を調製することで材料の性質を柔軟的なものから剛直的なものまで幅広く制御することが可能です。従来の研究では、熱可塑性エラストマーは精密合成法で合成されることが多く、各セグメントの長さや分率、分布が高度に制御された、均一な構造を有する熱可塑性エラストマーが開発されてきました。本研究では、異なる構造状態を有する熱可塑性エラストマーをブレンドすることで、わざと構造状態に不均一性を導入します。我々の有する世界最先端の構造解析技術と物性評価技術を駆使することで、物性向上のための最適な不均一構造の導入法を突き止め、従来の熱可塑性エラストマーと比べて劇的に物性を改善することを目指します。
令和3年8月30日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/08/30-3.html学生のHASANさんの論文が、Altmetricによるスコアで上位5%に入る最も議論された論文の1つとして認定

学生のHASAN, Md. Mahmudulさん(博士後期課程3年、物質化学領域、長尾研究室)による、John Wiley & Sons社刊行のChemistrySelect誌に掲載された論文 "Christmas-Tree-Shaped Palladium Nanostructures Decorated on Glassy Carbon Electrode for Ascorbic Acid Oxidation in Alkaline Condition" が、Altmetricによるスコアで上位5%に入る最も議論された論文の1つとして雑誌編集部から認定されました。
■認定年月日
令和3年7月13日
■論文タイトル
Christmas‐Tree‐Shaped Palladium Nanostructures Decorated on Glassy Carbon Electrode for Ascorbic Acid Oxidation in Alkaline Condition
■研究者、著者
Md. Mahmudul Hasan, Yuki Nagao
■対象となった研究の内容
Christmas-tree-shaped Pd nanostructures were synthesized using a simple one-step electrodeposition method with no additives on a glassy carbon electrode (GCE) surface. Growth of the hierarchical nanostructures was optimized through the applied potential, deposition time, and precursor concentration. Comprehensive characterization techniques such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), and cyclic voltammetry (CV) were used to characterize structural features of the Christmas-tree-shaped Pd nanostructures. Our Christmas-tree-shaped Pd nanostructures showed excellent catalytic activity for ascorbic acid (AA) electro-oxidation in the alkaline condition. The modified electrode exhibited current density of 4.5 mA cm-2: much higher than that of unmodified GCE (0.6 mA cm-2). This simple electrodeposition technique with well-defined hierarchical Pd nanostructures is expected to offer new perspectives using Pd-based nanostructured surfaces in different research areas.
■認定にあたって一言
We are pleased to receive the award for one of the most-discussed articles in "ChemistrySelect". First and foremost, I want to thank Associate Professor Yuki Nagao for his valuable comments, guidelines, and advice. I am also grateful for the support of Nagao LAB members. Our study will hopefully aid in the development of hierarchical metal catalysts for electrocatalysis and energy conversion applications.


令和3年8月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/08/20-1.html触媒遺伝子「触媒シークエンシング」を発見 ~触媒インフォマティクスを駆使した新しい触媒開発に成功~
![]() ![]() ![]() |
国立大学法人 北海道大学 国立大学法人 北陸先端科学技術大学院大学 国立研究開発法人 科学技術振興機構 |
触媒遺伝子「触媒シークエンシング」を発見
~触媒インフォマティクスを駆使した新しい触媒開発に成功~
ポイント
- 触媒遺伝子「触媒シークエンシング」を触媒ビッグデータから発見。
- 触媒組成を従来の周期表の元素記号ではなく、ゲノム配列のように記号で表現。
- 触媒遺伝子を用いた触媒設計を提案し、実験実証に成功。
【概要】
北海道大学大学院理学研究院の髙橋 啓介准教授、髙橋 ローレン学術研究員、藤間 淳特任准教授、宮里 一旗特任助教らの研究グループは、北陸先端科学技術大学院大学先端科学技術研究科物質化学領域の谷池 俊明教授らと共同で、触媒遺伝子「触媒シークエンシング」を触媒ビッグデータから発見しました。 これまで触媒組成は周期表の元素記号で表現されてきましたが、反応場での真の触媒の状態は複雑なため、触媒組成を記述する真の触媒記述子*1の決定が困難を極めています。そのため機械学習などを用いる触媒インフォマティクス*2において、触媒物性を記述する上で情報的制約がありました。 そこで本研究では、独自に開発したハイスループット実験装置で得られたメタン酸化カップリング反応の触媒ビッグデータに対して、触媒インフォマティクス・信号処理*3・パターン認識*4・自然言語処理*5を駆使し、新たな触媒の記述方法である「触媒の遺伝子」を定義し提案しました。この「触媒の遺伝子」を用いることで、触媒組成の情報を、生物の塩基配列のように記号で表現することが可能となります。この触媒特有の配列を「触媒シークエンシング」と名付けました。この「触媒シークエンシング」を用いると、従来の元素記号での表記では全く異なる触媒組成であっても、同じ機能を持つ触媒は同じ「触媒の遺伝子」として表現することが可能となります。触媒組成は周期表の元素記号で表現されるのが一般的でしたが、本研究により提案された「触媒遺伝子」により、今後触媒は「触媒シークエンシング」で記述することが可能となります。 この「触媒遺伝子」の有効性を確認するため、同じ「触媒遺伝子」を持つ触媒群の元素を再編成することにより、同じ触媒遺伝子を持つ触媒の設計を行い、実験実証にも成功しました。結果、高いC2収率を達成する新規触媒が発見でき、「触媒遺伝子」が触媒設計に大変有用であることが証明されました。また発見された触媒が既知の触媒と似た遺伝子を持っているのか、もしくは全く新種の触媒遺伝子なのかなど、バイオインフォマティクスで見られる遺伝子解析のような、全く新しい視点での触媒情報の解析が可能となり、より発展的かつ実用的な適用が期待できます。 本研究成果は、米国東部時間2021年7月30日(金)午前6時公開のThe Journal of Physical Chemistry Letters誌にてオンライン版が掲載されました。 |
【背景】
マテリアルズインフォマティクス・触媒インフォマティクスの登場により材料・触媒科学は大きな転換期を迎えています。マテリアルズインフォマティクス・触媒インフォマティクスでは、第4の科学であるデータ科学を用い、材料・触媒データのパターンから材料・触媒設計を行います。そのような中、触媒組成は周期表の元素記号で表現されてきましたが、反応場での真の触媒の状態は複雑なため、触媒組成を記述する真の触媒記述子の決定が困難を極めています。そのため機械学習などの触媒インフォマティクスにおいて、触媒組成の記述方法が大きな障壁となっています。周期表の元素記号に頼らず、触媒の特徴を反映した触媒組成の記述方法を決定する必要があります。
【研究手法】
独自開発したハイスループット実験装置で得られたメタン酸化カップリング反応の触媒ビッグデータを用い、触媒インフォマティクス・信号処理・パターン認識・自然言語処理を駆使し、触媒ビッグデータに隠されているパターンから「触媒の遺伝子」を提案しました。
【研究成果】
発見された「触媒の遺伝子」は生物の塩基配列のように記号で表現することができます。この触媒特有の配列を「触媒シークエンシング」と名付けました(図1)。この「触媒シークエンシング」を用いると、従来の元素記号での表記では全く異なる触媒組成であっても、同じ機能を持つ触媒は同じ「触媒の遺伝子」として表現することが可能となります。「触媒遺伝子」を持つ触媒群の元素を再編成することにより、同じ触媒遺伝子を持つ触媒の設計を行い、実験実証にも成功しました。
【今後への期待】
今回提案した「触媒遺伝子」は、様々な触媒データに適用することにより、発見された触媒が既知の触媒と似た遺伝子を持っているのか、もしくは全く新種の触媒遺伝子なのかなど、バイオインフォマティクスで見られる遺伝子解析のような、全く新しい視点での触媒情報の解析が可能となります。したがって、触媒インフォマティクスにおける触媒データの取り扱い手法の基盤技術として、より発展的かつ実用的な適用が期待できます。
【謝辞】
なお、本研究は、科学技術振興機構(JST)戦略的創造研究推進事業CREST研究領域「多様な天然炭素資源の活用に資する革新的触媒と創出技術」(研究総括:上田 渉)における「実験・計算・データ科学の統合によるメタン変換触媒の探索・発見と反応機構の解明・制御」(研究代表者:髙橋 啓介)の支援を受けて行われました。
【参考図】
図1 発見された触媒遺伝子-触媒シークエンシング
【論文情報】
論文名 | Catalysis Gene Expression Profiling: Sequencing and Designing Catalysts(触媒遺伝子発現プロファイリング:触媒シークエンシングと設計) |
著者名 | 髙橋 啓介1 、藤間 淳1、宮里 一旗1、中野渡 淳2、藤原 綾2、Thanh Nhat Nguyen2、谷池 俊明2、 髙橋 ローレン1(1北海道大学大学院理学研究院、2北陸先端科学技術大学院大学) |
雑誌名 | The Journal of Physical Chemistry Letters(物理化学の専門誌) |
DOI | 10.1021/acs.jpclett.1c02111 |
公表日 | 日本時間2021年7月30日(金)午後8時(米国東部時間2021年7月30日(金)午前6時)(オンライン公開) |
【用語解説】
*1 触媒記述子...触媒の特徴を数値化して表現したもの。
*2 触媒インフォマティクス...データ科学手法を用いて触媒設計・触媒解析を行う学問。
*3 信号処理...信号を数理処理によって解析・処理する技術。
*4 パターン認識...データの中から規則性を取り出す技術。
*5 自然言語処理...言語や記号をコンピューターで処理する技術。
令和3年8月2日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/08/02-1.html学生のSUWANSOONTORNさんの論文が公益社団法人電気化学会刊行のElectrochemistry 誌で最も多くダウンロードされた論文として選出

学生のSUWANSOONTORN, Athchayaさん(博士後期課程3年、物質化学領域、長尾研究室)による、公益社団法人電気化学会刊行のElectrochemistry 誌に掲載された論文 "Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations" が、2021年5・6月の間に同誌に掲載された論文の中で、最も多くダウンロードされた論文として選出されました。
この論文で発表した研究成果については、令和3年5月28日に本学から「高分子薄膜における水素イオンの界面輸送で新知見」としてプレスリリースしています。
電気化学会は、電気化学の基礎と応用に関する研究の推進と、それを基礎とする産業技術の進歩を図り、学術文化の進展と社会の発展に寄与することを目的として、1933年に設立されました。
■受賞年月日
令和3年7月20日
■選出された論文のタイトル
Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations
■著者
Athchaya Suwansoontorn, Katsuhiro Yamamoto, Shusaku Nagano, Jun Matsui, Yuki Nagao
■対象となった研究の内容
Investigation of interfacial proton transport is necessary to elucidate biological systems. As commonly found in biomaterials, the carboxylic acid group was proven to act as a proton conducting group. This study investigated the influence of carboxylic acid concentration on both interfacial and internal proton transport. Several styrene-based polymers containing the carboxylic acid group were synthesized. The amount of carboxylic acid group in the polymer chain was varied to explore the effects of weak acid concentration on polymer thin films' electrical properties. The IR p-polarized multiple-angle incidence resolution spectrometry (pMAIR) spectra show the higher ratio of the free carboxylic acid groups rather than cyclic dimers in polymers with a higher concentration of carboxylic acid group, facilitating the more hydrogen bonding networks in films. The water uptake results reveal the similar number of adsorbed water molecules per carboxylic acid group in all thin films. Remarkably, polymer thin films with high carboxylic acid concentration provide internal proton conduction because of the relative increase in the amount of the free carboxylic acid group. In contrast, interfacial proton conduction was found in low carboxylic acid concentration polymers because of the relatively large amount of cyclic dimer carboxylic acid group and poor amount of free carboxylic acid group. This study provides insight into interfacial proton transport behavior according to the weak acid concentration, which might explain proton transport in biological systems.
■選出にあたって一言
We are greatly honored to receive the award for Most Downloaded Papers for "Electrochemistry". First, I want to express my appreciation to Assoc. Prof. Katsuhiro Yamamoto, Prof. Shusaku Nagano, Prof. Jun Matsui, and Assoc. Prof. Yuki Nagao for their valuable comments and guidance. And I am also grateful to Nagao LAB members for their support. We expect that our research can contribute to developing bio-conductive materials for eco-friendly devices.


令和3年7月27日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/07/27-4.html物質化学領域の長尾准教授の研究課題が村田学術振興財団の研究助成に採択
公益財団法人 村田学術振興財団の研究助成に物質化学領域 長尾 祐樹准教授の研究課題が採択されました。
村田学術振興財団では、エレクトロニクスを中心とする自然科学の研究及び国際化にともなう法律、経済、社会、文化等に係る諸問題に関する人文・社会科学の研究に対して研究助成が行われています。
*詳しくは、村田学術振興財団ホームページをご覧ください。
■研究者名
物質化学領域 長尾 祐樹准教授
■採択期間
令和3年7月~令和4年6月
■研究課題名
分子配向制御による全固体電池の界面デザイン
■研究概要
高分子は柔軟さや自己修復性が付与可能なため、将来的には、折り曲げ可能な固体電池の開発が期待されています。この実現には、電解質に対する電極および活物質の界面設計が不可欠です。界面の特徴の1つに、高分子特有の主鎖や官能基の分子配向等の構造変化がイオン伝導性に強い影響を与えるケースが報告され始めています。長尾准教授の研究グループでは、燃料電池に応用可能なプロトン伝導性高分子薄膜の界面におけるプロトン伝導性と分子配向の相関について研究を行ってきました。例えば、高プロトン伝導性高分子であるNafionは、界面の影響を受けた薄膜では配向構造を示すことが明らかにされています。さらに、酸化物界面と金属界面ではその配向構造が異なります。その構造の違いによってプロトン伝導度も異なります。これらの研究はまだ体系的に実施されておらず、特にデバイスや電池において重要な知見となる金属系材料や炭素系材料などの導電性表面における、高プロトン伝導性高分子界面のプロトン伝導性は十分に明かにされていない状況です。
本研究では、全固体蓄電界面のイオン伝導性や分子配向を同定することで、全固体電池の性能向上と共に課題となるイオンの拡散律速を抑制する次世代蓄電池の界面をデザインすることを目指します。
令和3年7月12日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/07/12-1.html学生のGUPTAさんとPATNAIKさんが第70回高分子学会年次大会において優秀ポスター賞を受賞
学生のGUPTA, Agmanさん(博士後期課程3年、物質化学領域、松見研究室)とPATNAIK, Kottisa Sumalaさん(博士前期課程1年、物質化学領域、松見研究室)が第70回高分子学会年次大会において優秀ポスター賞を受賞しました。
高分子学会は、高分子科学と技術及びこれらに関連する諸分野の情報を交換・吸収する、さまざまな場を提供しています。会員はこれらの場を通じ、学術的向上や研究の新展開のみならず会員相互の人間的な触れ合いや国際的な交流を深めています。
優秀ポスター賞は、高分子学会年次大会において、優れたポスター発表を行った発表者に授与されるもので、もって発表を奨励し、高分子科学ならびに同会の発展に資することを目的としています。
第70回高分子学会年次大会は、5月26日~28日にかけてオンラインで開催されました。
■受賞年月日
令和3年5月28日
【GUPTA, Agmanさん】
■発表題目
リチウムイオン二次電池のシリコン系アノードを安定化する架橋型BIAN系共役系高分子
Crosslinked BIAN Polymer Matrices to Stabilize Silicon Anode in Lithium Ion Secondary Batteries
■研究者、著者
〇Agman Gupta, Rajashekar Badam, and Noriyoshi Matsumi
■受賞対象となった研究の内容
従来型のグラファイトの約10倍の理論放電容量を有しているシリコンは次世代リチウムイオン二次電池用の負極として多大な注目を集めており、活発な研究が展開されている。一方、充放電におけるシリコン粒子の大幅な体積膨張・収縮により粒子の破壊や表面被膜の破壊、集電体からの剥離が問題となり、実用に適した系の創出には至っていない。本研究ではBIAN型共役系高分子を1,6-ジブロモヘキサンとの四級化反応により架橋した高分子材料を負極バインダーとして検討した。その結果、1000サイクル以上にわたって約2500 mAhg-1(Si)の放電容量を維持し、卓越した特性を発現した。
■受賞にあたって一言
I am full of gratitude towards my Prof. Noriyoshi Matsumi for providing me with his immense support, encouragement, and guidance throughout my studies. Also, I am thankful to Senior lecturer Dr. Rajashekar Badam for his motivation and worthy insights that always encouraged me to work hard. I would like to thank MEXT and JST-Mirai (Grant Number: JP18077239) for providing financial support. I am thankful to all JAIST staff (teaching and non-teaching) for providing a healthy scientific environment with good facilities so that students like me can comfortably conduct quality research work. I am deeply motivated from within to pursue my passion for science and contribute to society by using my scientific endeavors for public benefit. In this regard, I have been studying and conducting research that is aimed towards developing Li-ion batteries with high energy density for future applications in portable electronic devices, electric vehicles (EVs), hybrid electric vehicles (HEVs), etc.


【PATNAIK, Kottisa Sumalaさん】
■発表題目
高速充放電能と長期耐久性を併せ持つバイオベース型リチウムイオン二次電池負極活物質
Bio-derived Lithium-ion Battery Anode Material for Fast Charging and Long-cycle Life
■研究者、著者
〇Kottisa Sumala Patnaik, Yueying Peng, Rajashekar Badam, Tatsuo Kaneko, and Noriyoshi Matsumi
■受賞対象となった研究の内容
今日、リチウムイオン二次電池研究において急速充放電技術の開発は最も重要な側面の一つとなっています。ガソリンスタンドでの数分の停車で給油可能なガソリン車と比較して、EV車の充電に要する長い充電時間は消費者心理に多大に影響し、技術の広範な普及への足かせとなっています。本研究では耐熱性のバイオベースポリマーであるポリベンズイミダゾールを焼成することにより得られた高濃度窒素ドープハードカーボンをリチウムイオン二次電池の負極活物質として用いることにより9分間での充電と1000サイクル以上のサイクル耐久性を同時に実現できることが見出されました。見出された知見を活かしつつさらなる系の発展が期待されます。
■受賞にあたって一言
At the outset, I want to express my heartfelt gratitude to Prof. Noriyoshi Matsumi for his invaluable guidance in my research work. I thank Prof. Tatsuo Kaneko for opportunity of collaboration under SIP project. I also want to thank Senior lecturer Dr. Rajashekar Badam for incessantly providing me with his suggestions at every step of my research work. I believe research has been very interesting for me especially because of extremely supportive lab mates. I am very grateful to every member of Matsumi Lab for helping me in many small and big ways to carry out my research work smoothly. Lithium ion batteries have brought a lot of convenience and comfort into our everyday life. Any research in this field adds a significant impact at large. I believe lithium-ion batteries have the potential to impact human life at even greater scale than they currently do. Fast charging batteries with long cycle life is one of the fields in maximum demand owing to their applicability in electric vehicles. The prospect of using a vehicle not powered by fossil fuel but delivering equivalent capability to a fossil fuel powered vehicle inspired me to carry out my research in this field of 'Fast Charging Lithium-ion Batteries". I intend to dedicate my future research endeavors in this field.


令和3年7月6日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/07/06-1.html物質化学領域の長尾准教授らの論文が国際学術誌ChemSusChem誌のThe Cover Featureに採択

物質化学領域の長尾 祐樹准教授、学生のWang, Fangfangさん(博士後期課程2年)、修了生のWang, Dongjinさん(令和2年9月博士前期課程修了)らの論文が国際学術誌ChemSusChemのThe Cover Featureに採択されました。
この論文は、令和3年5月7日に本学からプレスリリースしました、次世代燃料電池のアニオン交換薄膜において水酸化物イオン伝導度の評価法を確立した内容になります。
■掲載誌
ChemSusChem
■著者
Fangfang Wang, Dongjin Wang, Yuki Nagao
■論文タイトル
OH− Conductive Properties and Water Uptake of Anion Exchange Thin Films
■論文概要
本研究では、次世代燃料電池で注目されるアニオン交換薄膜において、空気中の二酸化炭素の影響を受けない状態で、水酸化物イオン伝導度と含有水分子量の評価法を確立することに成功しました。長年求められてきたこの評価法の確立は、当該分野において世界初の成果になります。本成果により、次世代燃料電池の性能向上に関する研究の加速が期待されます。
論文詳細:https://doi.org/10.1002/cssc.202100711
The Cover Feature詳細: https://doi.org/10.1002/cssc.202101142
令和3年6月22日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/06/22.html高分子薄膜における水素イオンの界面輸送で新知見

![]() ![]() ![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 名古屋工業大学 学校法人立教学院 立教大学 国立大学法人 山形大学 |
高分子薄膜における水素イオンの界面輸送で新知見
ポイント
- カルボン酸基の濃度を制御した弱酸性高分子を合成し、水素イオンの輸送を薄膜状で評価
- カルボン酸基は、少なくとも二種類の状態で存在
- カルボン酸基が低濃度になると、カルボン酸基が薄膜界面により多く存在
- カルボン酸基の濃度の低下に伴い水素イオンの輸送経路は内部輸送から界面輸送が支配的
北陸先端科学技術大学院大学・先端科学技術研究科 物質化学領域の長尾 祐樹 准教授、スワンスントン アトチャヤ氏(大学院博士後期課程在籍)は、名古屋工業大学・大学院工学研究科 生命・応用化学専攻の山本 勝宏 准教授、立教大学・理学部の永野 修作 教授、山形大学・学術研究院(理学部主担当)の松井 淳 教授との共同研究で、燃料電池や生体活動等で重要となる水素イオンの輸送において、モデル高分子薄膜のカルボン酸基の濃度を制御することで、水素イオンの輸送経路が薄膜内部と界面で切り替わる現象を発見しました。本成果により、エネルギー変換システムの高度化やイオンを能動的に制御するための界面分子設計に関する研究の加速が期待されます。 本研究成果は、2021年5月21日(英国時間)に電気化学会刊行のElectrochemistry誌のオンライン版で公開されました。なお、本研究は日本学術振興会(JSPS)科研費基盤研究(C)、科研費基盤研究(B)、科研費 新学術領域研究「ハイドロジェノミクス」の支援を受けて行われました。 |
【研究背景と内容】
生体系ではタンパク質等の高次構造が、イオン輸送チャネルの制御を行い、イオン輸送の外場刺激応答を実現しています。また、生体材料界面でのイオン輸送は1960年代から議論が続いています。この機能を人工的に設計・構築することは未だ容易ではありません。長尾准教授らは、イオンの中でも水素イオンに着目し、水素イオンを人工的かつ能動的に制御するための要素技術に関して研究を推進してきました。
酸の素である水素イオンは、材料中を輸送されることで燃料電池や生体活動等のエネルギー変換システムで重要な役割を果たします。この水素イオンは、材料内部の非常に小さなスケールの通り道に沿って輸送されると考えられてきました。近年、エネルギー変換システムの高度化に伴い、高性能化のために材料の内部だけでなく端(エッジ)である界面の分子設計も重要視されています。しかし、材料界面における水素イオンの輸送に関する基礎研究は十分に行われていません。今回長尾准教授らは、生体材料ではなく、酸の素の一種であるカルボン酸基の濃度を制御した合成高分子を用いて、薄膜中の水素イオンの通り道について研究を実施しました。その結果、水素イオンが薄膜内部を通る道が不足すると、水素イオンは薄膜の表側と裏側に相当する薄膜界面に沿って輸送されることを明らかにしました。
本研究では、ポリスチレンと呼ばれる高分子の側鎖にカルボン酸基が化学修飾された高分子を合成しました(図1)。比較のためにカルボン酸基の濃度を高いものから低いものまで四種類合成しました。高分子を薄膜化し、赤外線を用いて分子構造を調べた結果、酸の素となるカルボン酸基の状態が少なくとも二種類あることがわかりました。一つはカルボン酸基が単体で存在する状態(フリーな状態)、もう一つは二つのカルボン酸基がお互いに向き合った二量体で存在する状態(ダイマー状態)でした。ダイマー状態は、二つの水素イオンが二つのカルボン酸基に挟まれた状態となり、水素結合と呼ばれる結合で安定化されています。研究グループは、カルボン酸基の濃度を高くすると、フリーな状態のカルボン酸基の量が相対的に増加し、ダイマー状態のカルボン酸基の量が減少する傾向を見出しました。さらに、カルボン酸基の濃度が低い場合には、フリーなカルボン酸基が薄膜の内部ではなく界面により多く存在することも明らかにしました。高分子薄膜中ではカルボン酸基は均一に存在しておらず、その濃度によって存在状態が異なることもわかりました。
この結果から研究グループは、カルボン酸基の濃度を低くすると、薄膜界面にフリーなカルボン酸基が集合し、水素イオンが薄膜内部ではなく界面に沿って輸送される仮説を検討しました。具体的には、水素イオン輸送の性能指標の一つにあたる水素イオン伝導度の評価を、インピーダンス法と呼ばれる手法を用いて実施しました。結果は仮説を裏付けるものであり、カルボン酸基の濃度が高い薄膜では、水素イオンが薄膜内部で輸送されることが支配的であるのに対して、カルボン酸基の濃度が低い薄膜では、水素イオンは薄膜内部ではなく薄膜界面に沿って輸送されることがわかりました(図2)。これはフリーなカルボン酸基が薄膜の内部ではなく界面により多く存在することと、薄膜内部には水素イオンの輸送にあまり寄与しないと思われるダイマー状態のカルボン酸基が多いためであると考えられます。この結果から、水素イオンは材料内部を必ずしも通らずに、通りやすい道があれば材料の端である界面に沿って輸送されることもあることが示されました。
図1 本研究に用いた高分子材料
図2 高分子薄膜における水素イオンが輸送されるイメージ。内部輸送(上)と界面輸送(下)
【今後の展開】
高分子材料中の水素イオンの輸送は、材料内部の通り道に沿って輸送されると考えられてきました。しかし本研究では、酸の素や構造の状況によっては、水素イオンは材料内部ではなく界面に沿った輸送が支配的になることがわかりました。このイオンの界面輸送は無機材料では既に知られていましたが、高分子材料においても界面輸送が可能であることから、界面の分子設計に活かせる可能性があります。また、これまで説明できなかった水素イオンの輸送現象の理解にアプローチすることもできるかもしれません。特にカルボン酸基は生体活動で重要な役割を担っています。今後長尾准教授らは、エネルギー変換システムの高度化に加え、イオン輸送の人工的かつ能動的な制御を目指して、得られた知見を活かしていきます。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(C)(JP18K05257)
・日本学術振興会(JSPS)科研費 基盤研究(B)(JP21H01997)
・日本学術振興会(JSPS)科研費 新学術領域研究「ハイドロジェノミクス」(JP21H00020)
【論文情報】
雑誌名 | Electrochemistry |
題名 | "Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations" |
著者名 | Athchaya Suwansoontorn, Katsuhiro Yamamoto, Shusaku Nagano, Jun Matsui, Yuki Nagao* |
掲載日 | 2021年5月21日(英国時間)に著者原稿版がオンラインで掲載 |
DOI | 10.5796/electrochemistry.21-00042 |
令和3年5月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/05/28-1.html物質化学領域のBADAM講師が田中貴金属記念財団 萌芽賞を受賞

物質化学領域のBADAM, Rajashekar講師(松見研究室)が一般財団法人田中貴金属記念財団 萌芽賞を受賞しました。
田中貴金属記念財団は、貴金属に関する研究への助成を行い、貴金属の新分野を開拓醸成し、学術、技術ならびに社会経済の発展に寄与することを目的としています。
本助成金制度は、「貴金属が拓く新しい世界」へのさまざまなチャレンジを支援するため、1999年度から毎年実施されています。第22回目となる今回は、貴金属が貢献できる新しい技術や研究・開発に対して、あらゆる分野から研究を募集し、その結果、合計171件の応募があり、この中から合計26件の研究に対し、総額1,610万円の研究助成金を授与しています。
■受賞年月日
令和3年3月31日
■研究題目
水分解に適した効率的酸素発生触媒活性を有する強い金属―基盤相互作用を伴うIrO2系有機・無機ハイブリッド触媒
■受賞対象となった研究の内容
Dr Rajashekar Badam, has been working on various energy materials especially electrocatalysts for oxygen redox reactions for fuel cell and electrolyser applications to name a few. His passion to mitigate environmental issues lead to the research in green hydrogen production using water electrolysis. Water electrolysis is one of the cleanest ways to produce hydrogen. Oxygen evolution reaction (OER) at anode being kinetically and thermodynamically more demanding, need an efficient catalyst. IrO2 is the best-known catalyst which is stable in acidic medium but with high overpotential (~330 mV). Changing the morphology and electronic structure of IrO2 by alloying with other metals was found to reduce the overpotential but poor stability due to agglomeration of nanoparticles and leaching of alloying metal are the key problems to be answered. In this regard, they are working on a novel strategy of anchoring IrO2 nanopartlcles to electrochemically stable conducting polymer with coordination sites. The strong metal substrate interaction between IrO2 nanoparticles and high heteroatom content in the polymer lead to high durability and reduced overpotential making water electrolyser a viable method for green hydrogen production.
ラージャシェーカル バダム博士は様々なエネルギー関連材料、とりわけ電気化学触媒(燃料電池用の酸素還元触媒や水分解反応触媒)に注力した研究を行っています。グリーンな水分解反応など、環境問題の解決を指向した研究を進めています。水分解反応は水素を得るための最もクリーンな反応であり、アノード電極側での酸素発生反応が速度論的にも熱力学的にも技術課題になっています。IrO2は酸性条件でも安定ですが、高い過電圧を有しています。IrO2を他の金属と組み合わせることでモルフォロジーや電子構造を改変でき、過電圧を低下させることができますが、同時にナノ粒子の凝集や、合金触媒からの脱離が問題となります。この点に関して、彼らはIrO2を電気化学的に安定な導電性高分子中の配位子に配位させることに取り組んでいます。強い金属―基板相互作用がIrO2と高ヘテロ元素濃度を有するポリマー間で起こることは高い触媒の安定性と過電圧の低下につながり、水分解反応をグリーンな水素製造法として実現可能なものにすることにつながると期待しています。
■受賞にあたって一言
I would like to thank Tanaka Kikinzoku Memorial Foundation and the selection committee for bestowing me with this prestigious award. I would like to thank Professor Matsumi for all the guidance, Matsumi lab members and my family for the support. I take this opportunity to dedicate this award to the almighty God.
令和3年5月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/05/25-1.html次世代燃料電池のアニオン交換薄膜において水酸化物イオン伝導度の評価法を確立

次世代燃料電池のアニオン交換薄膜において
水酸化物イオン伝導度の評価法を確立
ポイント
- 高分子薄膜状のアニオン交換膜の水酸化物イオン伝導度と含有水分子量の評価法を確立
- サンプルの合成から評価まで、空気中の二酸化炭素の影響を排除
- 0.05 S cm-1の高い水酸化物イオン伝導性(Br-型のアニオン交換薄膜の2倍以上)
- 次世代燃料電池の性能向上への貢献が期待
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科 物質化学領域の長尾 祐樹准教授、オウ ホウホウ 大学院生(博士後期課程在籍)、ワン ドンジン 大学院生(博士前期課程修了)らは、次世代燃料電池で注目されるアニオン交換薄膜において、空気中の二酸化炭素の影響を受けない状態で、水酸化物イオン伝導度と含有水分子量の評価法を確立することに成功しました。長年求められてきたこの評価法の確立は、当該分野において世界初の成果になります。本成果により、次世代燃料電池の性能向上に関する研究の加速が期待されます。 本研究成果は、2021年4月29日(英国時間)にWiley社刊行のChemSusChem誌のオンライン版で公開されました。なお、本研究は日本学術振興会(JSPS)科研費基盤(C)、科研費基盤(B)、科研費 新学術領域研究「ハイドロジェノミクス」の支援を受けて行われました。 |
【研究背景と内容】
資源の少ない日本が脱炭素化を進めながら持続的な発展をするためには、多様なエネルギー資源を確保することが喫緊の課題です。長尾准教授らは、これまで水素社会に貢献する燃料電池の性能向上に関する研究を推進してきました。
長尾准教授らは、現在の燃料電池に利用されるプロトン交換膜に加え、次世代燃料電池で利用が検討されているアニオン交換膜における、水酸化物イオン伝導性の研究に取り組んでいます。この次世代燃料電池は、従来必要とされてきた白金などの貴金属触媒に依存せずに動作が可能であることから、世界的に研究報告例が増加しています。アニオン交換膜とは、陰イオンが膜の内部を移動可能な材料であり、特に水酸化物イオンが高速に移動する材料はこの燃料電池に欠かせません。水酸化物イオンが内部を移動するアニオン交換膜は、空気中の二酸化炭素と容易に反応する特徴があり、燃料電池の性能を低下させることが知られています。アニオン交換膜の水酸化物イオン伝導性を評価するためには、膜を水に浸漬することで空気中の二酸化炭素の影響を排除する必要がありました。しかし、実際の燃料電池では、アニオン交換膜は水に浸った状態で動作していないため、二酸化炭素の影響を排除した、より燃料電池の動作環境に近い加湿状態での評価法が求められてきました。
アニオン交換膜のもう一つの重要な役割は、燃料電池の反応場である電極触媒界面に薄膜状で存在することにより、アニオン交換膜から電極触媒へ水酸化物イオンを高速に輸送することです。しかし、これまでは水酸化物イオン型のアニオン交換薄膜の水酸化物イオン伝導性と含有水分子量を評価する方法がありませんでした。今回、長尾准教授らは、モデル高分子として合成したアニオン交換膜を基板上に薄膜化し、薄膜の作成から各種物性評価の終了までの間、空気中の二酸化炭素の影響を受けない評価方法を確立し、世界で初めてアニオン交換薄膜における水酸化物イオン伝導性と含有水分子量を明らかにしました。
研究成果として、水酸化物イオン型のアニオン交換薄膜(OH-型、図1)は、0.05 S cm-1と比較的高い水酸化物イオン伝導性を示すことや、臭化物イオン型のアニオン交換薄膜(Br-型)と比較すると約2倍のイオン伝導度を有することがわかりました(図2)。さらに、厚膜状のアニオン交換膜と270nmの厚さの薄膜では、水酸化物イオン伝導度が同程度であることも明らかにしました。この結果はプロトン交換膜で知られている、厚さが薄くなるにつれてイオン伝導度が低下する傾向と異なる知見となりました。
図1 アニオン交換膜(Poly[9,9-bis(6'-(N,N,N-trimethylammonium)-hexyl)-9H-fluorene)-alt-(1,4-benzene)] (PFB+), X = OH and Br)
図2 アニオン交換薄膜におけるイオン伝導度の比較
【今後の展開】
空気中の二酸化炭素の影響を受けない状態で、アニオン交換薄膜の水酸化物イオン伝導度と含有水分子量の相関に関する知見を得た例は世界初となります。これらの研究成果は、次世代燃料電池の反応場を設計する上で重要な知見となりえます。今後長尾准教授らは、確立した評価手法を利用して、分子構造の異なる複数のアニオン交換膜の評価を推進することで、得られた知見が普遍性を有するのかどうかを含め検討していく予定です。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(C)(JP18K05257)
・日本学術振興会(JSPS)科研費 基盤研究(B)(JP21H01997)
・日本学術振興会(JSPS)科研費 新学術領域研究「ハイドロジェノミクス」(JP21H00020)
【論文情報】
雑誌名 | ChemSusChem |
題名 | OH- Conductive Properties and Water Uptake of Anion Exchange Thin Films |
著者名 | Fangfang Wang, Dongjin Wang, and Yuki Nagao* |
掲載日 | 2021年4月29日(英国時間)にオンライン版に暫定版が掲載 |
DOI | 10.1002/cssc.202100711 |
令和3年5月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/05/07-1.html物質化学領域の松村研究室の論文が国際学術誌の表紙に採択
物質化学領域の松村 和明教授、ラジャン ロビン助教らの論文が英国王立化学会(RSC)刊行のMaterials Advances誌の表紙(Back cover)に採択されました。
本研究は科研費および科学技術振興機構(JST)「研究成果最適展開支援プログラム(A-STEP)」の支援により行われました。
■掲載誌
Materials Advances, 2021, 2, 1139-1176 掲載日2021年1月15日
■著者
Robin Rajan*, Sana Ahmed, Neha Sharma, Nishant Kumar, Alisha Debas, and Kazuaki Matsumura*
■論文タイトル
Review of the current state of protein aggregation inhibition from a materials chemistry perspective:special focus on polymeric materials
■論文概要
タンパク質の凝集抑制効果を持つ物質について、特に高分子化合物を中心にその合成方法や機能、応用などをまとめた総説論文です。神経変性疾患の治療や予防、バイオ医薬品の生産プロセスの効率化などに期待出来る最新の研究成果をまとめています。
表紙詳細:https://pubs.rsc.org/en/content/articlelanding/2021/ma/d1ma90025k#!divAbstract
論文詳細:https://pubs.rsc.org/en/content/articlelanding/2021/ma/d0ma00760a#!divAbstract
令和3年3月3日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/03/03-1.htmlリチウムイオン2次電池の長期的耐久性の課題解決に資する超高耐久性バインダーを開発

リチウムイオン2次電池の長期的耐久性の課題解決に資する
超高耐久性バインダーを開発
ポイント
- リチウムイオン2次電池の長期的耐久性の課題の解決に資する超高耐久性負極バインダーの開発に成功した。
- 1700回の充放電サイクルを経ても95%の容量維持率を示した。
- 本バインダー材料を用いた系ではPVDF系で顕著であった電解液の電気分解が抑制された。
- 充放電サイクル後に、本バインダー材料を用いた電池系ではPVDF系と比較して大幅に低い(45%減少)内部抵抗が観測された。
- 各種電気化学測定により、負極内部のリチウムイオンの拡散性に優れていることが分かった。本バインダー系ではイオンの拡散係数がPVDF系を15%上回った。
- ヤング率、引張強度のいずれにおいても本バインダーはPVDFと比較して大幅に優れた力学的強靭さを示した。
- 電極―電解質界面抵抗を低減できる高耐久性バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の先端科学技術研究科 物質化学領域の松見 紀佳教授、環境・エネルギー領域の金子 達雄教授、バダム ラージャシェーカル講師、アグマン グプタ博士後期課程学生、アニルッダ ナグ元博士研究員は、リチウムイオン2次電池*1の耐久性を大幅に向上させる負極バインダー材料(図1)の開発に成功した。 リチウムイオン2次電池は、一般ユーザーが広く認識しているように充放電能力が経年劣化することが知られている。この問題は、EV用途を始めとする高付加価値製品においては更に深刻な課題となる。リチウムイオン2次電池の劣化要因は極めて多岐にわたるが、様々な電極内における副反応によるバインダーを含む電極複合材料の変性、電極/集電体の接着力の劣化が主要因の一つと考えられている。 本バインダー材料は、アセナフテキノンと1,4-フェニレンジアミンとを酸触媒の存在下で重縮合することにより合成した(図2)。 開発したリチウムイオン2次電池用バインダーは、長く検討されてきたポリフッ化ビニリデン(PVDF)と比較すると、LUMO*2,3が低い電子構造的特徴を有し(図3)、その結果として電解液の過剰な分解による厚い被膜形成を効果的に抑制した。 サイクリックボルタンメトリー*4後に見積もられたイオン拡散係数はPVDF系と比較して15%高い値となった。また、リチウム脱挿入ピークの電位差(オーバーポテンシャル)は本バインダー材料系においてPVDF系と比較して100mV減少し、より容易なリチウムイオンの拡散を支持する結果となった。充放電後の電池セルの界面抵抗*5も本バインダーにおいて大幅に低い値を示した(62Ω;PVDF系では110Ω)(図4)。 その結果として本バインダー高分子系では1735回の充放電サイクルを経ても95%の容量維持率を示し、非常に優れた耐久性が明らかとなった(図5)。 長期充放電後の負極のXPS測定より、バインダー材料由来の窒素原子に由来するピークが明瞭に観測されたことから、電極表面に形成されている被膜は極めて薄いことが示唆された。また、バインダー構造の一部が顕著にリチウムドープされていることも明らかとなった。長期充放電後の負極のSEM像では、PVDF系では500サイクル後に大きなクラックの形成と共に集電体から剥離した様子も観測されたが、本バインダー系では1735サイクル後にも僅かなクラックの形成が観測されるにとどまった。 なお、本研究はJST未来社会創造事業の支援を受けて実施された。 |
本成果は「ACS Applied Energy Materials」(米国化学会)オンライン版に2月17日に掲載された。
題目 | Bis-imino-acenaphthenequinone-Paraphenylene-Type Condensation Copolymer Binder for Ultralong Cyclable Lithium-ion Rechargeable Batteries |
著者 | Agman Gupta, Rajashekar Badam, Aniruddha Nag, Tatsuo Kaneko and Noriyoshi Matsumi |
DOI | 10.1021/acsaem.0c02742 |
【今後の展開】
セル構成や充放電条件を最適化し、最も優れた特性を有する蓄電デバイスの創出に結びつける。
更に異なる材料組成から成る高容量負極材料への適用を進めつつある。
電極―電解質界面抵抗を大幅に低減できる機能性高分子バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が見込まれる。
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 LUMO:
電子が占有していない分子軌道の中でエネルギー準位が最も低い軌道を最低空軌道(LUMO; Lowest Unoccupied Molecular Orbital)と呼ぶ。
*3 HOMO:
電子が占有している分子軌道の中でエネルギー準位が最も高い軌道を最高被占軌道(HOMO; Highest Occupied Molecular Orbital)と呼ぶ。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
*5 電極―電解質界面抵抗:
エネルギーデバイスにおいては一般的に個々の電極の特性や個々の電解質の特性に加えて電極―電解質界面の電荷移動抵抗がデバイスのパフォーマンスにとって重要である。交流インピーダンス測定を行うことによって個々の材料自身の特性、電極―電解質界面の特性等を分離した成分としてそれぞれ観測し、解析することが可能である。
令和3年3月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/03/01-1.htmlがん光細菌療法の新生

がん光細菌療法の新生
ポイント
- 高い腫瘍標的能を有し、近赤外光によって様々な機能を発現する光合成細菌の発見
- 当該細菌を活用したがん診断・治療技術の創出
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科物質化学領域の楊 羲研究員、博士前期課程学生の小松 慧、博士後期課程学生のラグー シータル、都 英次郎准教授らは、光合成細菌を使ってマウス体内のガン細胞の検出と治療を同時に可能にする技術の開発に成功した。 世界的にがんの罹患者数、死亡者数は増加している。体内の高精度ながん細胞検出技術ならびにがん細胞を根絶可能な治療法の開発は、がん医療における究極の目的である。 本研究では、低酸素状態の腫瘍環境内で高選択的に集積・生育・増殖が可能で、かつ生体透過性の高い近赤外レーザー光*1によって様々な機能を発現する非病原性の紅色光合成細菌*2を発見した(図1)。また、当該細菌の特性を活用することで体内の腫瘍を高選択的に検出し、標的部位のみを効果的に排除することが可能な "がん光細菌療法"という新しい概念・技術を創出することに成功した。 本研究で提案する概念・技術は、ナノ・マイクロテクノロジー、光学、微生物工学といった幅広い研究領域に貢献し、将来的に先進医療分野において世界の科学・技術をリード可能な革新的がん診断・治療法に成り得ると期待している。 本成果は、2021年2月15日にナノサイエンス・ナノテクノロジー分野のトップジャーナル「Nano Today」誌(Elsevier発行)のオンライン版に掲載された。なお、本研究成果は日本学術振興会科研費[基盤研究A、国際共同研究加速基金(国際共同研究強化)]の支援のもと行われたものである。 |
![]() 図1. がん光細菌療法の概念。NIR: 近赤外、FL: 蛍光、ROS: 活性酸素種、PA: 光音響。 |
【論文情報】
掲載誌 | Nano Today(Elsevier発行) |
論文題目 | Optically activatable photosynthetic bacteria-based highly tumor specific immunotheranostics |
著者 | Xi Yang, Satoru Komatsu, Sheethal Reghu, Eijiro Miyako* |
掲載日 | 2021年2月15日にオンライン版に掲載 |
DOI | 10.1016/j.nantod.2021.101100 |
【関連研究情報】
北陸先端科学技術大学院大学(JAIST)、先端科学技術研究科物質化学領域の都研究室では、近赤外レーザー光により容易に発熱するナノ材料の特性(光発熱特性)に注目し、これまでに、"三種の神器"を備えた多機能性グラフェン(2020年4月23日 JAISTからプレス発表)、ナノテクノロジーと遺伝子工学のマリアージュ(2020年8月17日 JAISTからプレス発表)などの光がん療法を開発している。
【用語解説】
*1 近赤外レーザー光
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
*2 紅色光合成細菌
近赤外光を利用して光合成を行う細菌。水の分解による酸素発生は行わない。
令和3年2月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/02/16-1.html【2/26(金)開催】JAIST創立30周年記念 マテリアルズインフォマティクス国際シンポジウム
本学創立30周年を記念して、エクセレントコア推進本部マテリアルズインフォマティクス国際研究拠点による「マテリアルズインフォマティクス国際シンポジウム」を下記のとおり開催しますので、ご案内いたします。
ビッグデータ時代の到来とともに急速に発展するマテリアルズインフォマティクス(MI)が、近い将来材料科学の方法論や速度に変革をもたらすことはほぼ確実です。本シンポジウムでは、MIとその関連技術に関する最前線の研究発表をお届けします。
日 時 | 令和3年2月26日(金)13:00~18:30 |
会 場 | オンライン(Webex) |
講演者 | 招待講演者 Prof. Joris Thybaut (U-Ghent, Belgium) Prof. Jörg Behler (Georg-August-Universität Göttingen, Germany) Prof. Keisuke Takahashi (Hokkaido-U, Japan) Dr. Kwang-Ryeol Lee (Korea Institute of Science and Technology, Korea) Dr. Supareak Praserthdam (Chulalongkorn-U, Thailand) Dr. Huan Tran (Georgia Institute of Technology, USA) 本学講演者 谷池 俊明 教授(物質化学領域) ダム ヒョウ チ 教授(知識マネジメント領域) 西村 俊 准教授(物質化学領域) 本郷 研太 准教授(環境・エネルギー領域) チャミンクワン パッチャニー 講師(環境・エネルギー領域) |
言 語 | 英語 |
詳細・申込み | https://www.jaist.ac.jp/project/materialsinformatics/symposium.html 必ず事前申し込みをしてください。 |