研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。マルチモーダルセンシングを行う触覚センサにより人とロボットの協働をより安全に
マルチモーダルセンシングを行う触覚センサにより
人とロボットの協働をより安全に
【ポイント】
- 柔らかい素材を用いた連続体ロボット用触覚センサの形状復元情報の取得や接触検出を行うDeepLearningモデルを含む統合的なマルチモーダルセンシングプラットフォームを開発しました。
- 知覚情報を用いたロボットアームの動きを決定するアドミタンスベースコントローラにも取り組みました。
- 今後、このプラットフォームに基づいて、柔らかい素材を用いたセンサやロボットへの応用を期待します。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域のHo Anh Van准教授、Nguyen Tai Tuan大学院生(博士後期課程)、Luu Khanh Quan大学院生(博士後期課程)及びハノイ工業大学(ベトナム)のNguyen Quang Dinh博士の研究チームは、ソフトロボットのための新しい触覚センシングプラットフォームを開発しました。 |
【研究の内容】
本研究では、柔らかいスキンを持つ柔軟なロボットアーム用に設計した"ConTac"と呼ばれる新たなビジョンベースの触覚センシングシステムを開発しました。このシステムは、ロボットアームの位置推定と触覚検出を行うことが出来ます。また、シミュレーション上のデータで訓練した二つのDeepLearningモデルを使用しており、追加の調整を行うことなく実世界のデータで動作することが可能です。このシステムにおいて、二つの異なるロボットモジュールでテストし、その有効性を確認しました。さらに、形状情報と触覚情報を利用する制御戦略を開発し、ロボットアームが衝突に適切に対応できるようにしました。これらにより、このアプローチは、柔軟性の高いロボットの知覚と制御を大幅に改善できる可能性があることを解明しました。
自然界では象の鼻やタコの足など器用な動きをする体が存在します。本研究チームは、これらの自然構造の原理をロボットへ応用することで、高い堅牢性や安全性を備えた連続体ロボット[1]の開発を目指しています。
連続体ロボットは、ほとんどのタスクで必要となる自由度(DOF)よりも多くの自由度を持ち、剛体ロボットと異なる柔軟性や器用さにより、不測の事態へ対応可能です。特に、障害物や外乱などがある環境下で真価を発揮します。しかし、連続体ロボットのように柔軟性の高いロボットは、動作中に複雑な屈曲やカーブを描くため、形状や動きを正確に把握することが課題です。解析により、これらのロボットの運動学・動力学的問題を解決することは可能ですが、複雑なモデリングが必要となります。
解析とは別のアプローチとして、連続体ロボットに組み込まれた柔軟性を持つセンサを用いる方法があります。このセンサは、ロボットの表面に取り付けたり、覆ったりすることが出来ますが、この方法では多くの低解像度センサを必要とし、システムが大型になってしまうという欠点があります。そのため、ロボットやアクチュエータの端に1つのセンサモジュールを使用し、大型化を避ける効率的な解決策が求められていました。ところが、これまでの研究では、ロボットの姿勢推定に重点が置かれており、ロボットの柔軟性に対応するための接触検出は含まれていませんでした。
この問題に取り組むため、本研究チームは柔らかいスキンを持つロボットアームの形状を推定し、接触を検出できるConTacシステムを開発しました(図1)。このシステムの最終的な目標は、連続体ロボットに実装することですが、本研究では、検証のため柔らかいスキンを持つ多関節ロボットアームを用いて"知覚"に焦点を当て、開発を行いました。このシステムには、連続体ロボットのような屈曲動作が可能な骨格、マーカー付きの柔らかいスキン、スキンの変形を撮影するカメラ、スキンの形状と触覚のセンシングモデル及び接触機構が含まれます。また、キャリブレーションを行うことなく、同じ機構や形態を持つあらゆるロボットに適用することが出来ます。さらに、知覚情報を用いてロボットアームの動きを決定するアドミタンスベースコントローラ[2]を開発しました。

図1:ConTac概要。人間がロボットに触れると、ロボットは衝突を避けるために動きを変える。
本研究チームが開発を行ったConTacは、複雑な調整を必要とせず、様々なロボットアームで使用することを目指しています。これを実現するために、シミュレーションデータのみで学習させたDeepLearningモデルを用いました。これらのモデルは実際のロボットへ適応できるため、時間とリソースを短縮できます(図2)。ConTacシステムを搭載した柔軟なロボットアームは、ロボットが障害物の多い環境をナビゲーションし、人間とロボットが安全に作業することが求められるスマート農業やヘルスケアサービスに適しています。また、その柔らかさと柔軟的な機構は、周囲の環境を感知する能力が組み合わさり、植物や患者などへの安全なインタラクションでもあります。

図2:ConTacフレームワーク。センシングモデルの開発には、シミュレーション環境によるトレーニングデータの収集が用いられる。このシステムを搭載したロボットは、人間とロボットのインタラクションに用いられることが期待されている。
【今後の展開】
将来的に、既存のロボットシステムに簡単に組み込むことができる触覚センサの開発が期待されます。この進歩により、新しいセンシングと制御手法が導入されれば、ロボット本来の設計に変更を加えることなく、人間とロボットの安全な相互作用が促進されます。すべてのロボットが触覚を持つ社会となれば、産業と日常生活などに大きな変革をもたらすこととなります。
本研究成果は、2024年7月15日から19日にかけてオランダのデルフトで開催の、ロボティクス研究会におけるトップカンファレンス「ROBOTICS: SCIENCE AND SYSTEMS」で発表されました。
【論文情報】
| 論文題目 | ConTac: Continuum-Emulated Soft Skinned Arm with Vision-based Shape Sensing and Contact-aware Manipulation |
| 発表先 | Robotics: Science and Systems (RSS) |
| 著者 | Tuan Tai Nguyen, Quan Khanh Luu, Dinh Quang Nguyen, and Van Anh Ho* |
| URL | https://enriquecoronadozu.github.io/rssproceedings2024/rss20/p097.pdf |
【用語解説】
令和6年8月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/08/06-1.html大学見本市2024~イノベーション・ジャパンに本学が出展
8月22日(木)・23日(金)の2日間、東京ビッグサイト(東京都江東区有明)で国内最大規模の産学マッチングイベントである「大学見本市2024~イノベーション・ジャパン」が開催されます。
本学からは大学等シーズ展示に松見教授、JST採択課題出展ブースに栗澤教授が出展します。
ご来場の際にはぜひお立ち寄りください。
| 日 時 | 8月22日(木) 10時00分~17時00分 8月23日(金) 10時00分~17時00分 |
| 会 場 | 東京ビッグサイト 南展示棟 南1ホール(東京都江東区有明3丁目11番1) |
| 大学等 シーズ展示 |
先端科学技術研究科 融合科学共同専攻 松見 紀佳 教授 【小間番号】 C-024 |
| JST採択課題 出展ブース (A-STEP) |
先端科学技術研究科 物質化学フロンティア研究領域 栗澤 元一 教授 【小間番号】J-019 |
詳細はこちらをご覧ください。
・大学見本市2024~イノベーション・ジャパン公式サイト
https://innovationjapan.jst.go.jp/
大聖寺高等学校の生徒さんが来学
7月25日(木)、加賀市にある大聖寺高等学校の1年生36名の皆さんが来学し、3つの講義を受講しました。
1つ目は、サスティナブルイノベーション研究領域の小矢野幹夫教授による「『熱から発電、電気で熱を操る』近未来のテクノロジー『熱電変換技術』とは?」について、温度差によって電圧が発生する原理「ゼーベック効果」に関する説明があり、その後、生徒たちはこの原理を利用して動く熱電ミニカーを作り、より速く走らせることに熱心に取り組んでいました。
2つ目は、人間情報学研究領域の長谷川忍教授が「AIと人間の学習の違いを学ぼう」と題して、AIと人間の学習プロセスの共通点と違いについて解説し、生徒たちは長谷川研究室が作成したコンピュータゲームを通して、AIを学習させる方法を学びました。
3つ目は、創造社会デザイン研究領域の謝浩然准教授が「生成AIの仕組み」について、生徒たちからのリクエストに応じて画像を生成するなど実演を交えて説明しました。グループワークにおいて、生徒たちは「2050年の世界」をイメージして画像を生成し、その創作意図を発表しました。
続く施設見学では、ナノマテリアルテクノロジーセンターの透過電子顕微鏡や情報社会基盤研究センターの大規模並列計算機「KAGAYAKI」を興味深く見ていました。
今回の訪問が科学技術に興味を持つきっかけになれば幸いです。

小矢野教授の講義
「『熱から発電、電気で熱を操る』近未来の
テクノロジー『熱電変換技術』とは?」

長谷川教授の講義
「AIと人間の学習の違いを学ぼう」

謝准教授の講義
「生成AIの仕組み」

透過電子顕微鏡の見学
令和6年7月30日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/07/30-1.html機械学習を用いた太陽電池用シリコン薄膜堆積条件の新たな最適化手法を開発
|
国立大学法人 国立研究開発法人理化学研究所 |
機械学習を用いた太陽電池用シリコン薄膜堆積条件の
新たな最適化手法を開発
ポイント
- 実用で頻出する制約(膜厚制限や実現不可能な実験条件排除)を考慮した「制約付きベイズ最適化」を開発
- 制約内の実験条件範囲でキャリア再結合抑止能力が最良となる薄膜堆積を少ない実験回数で実現
- 太陽電池製造や薄膜堆積に限らず広く応用可能な手法として期待
| 北陸先端科学技術大学院大学 (JAIST)(学長・寺野稔、石川県能美市)の大橋亮太大学院生(博士前期課程)、Huynh, Thi Cam Tu特任助教(サスティナブルイノベーション研究領域)、東嶺孝一技術専門員(ナノマテリアルテクノロジーセンター)、大平圭介教授(サスティナブルイノベーション研究領域)と、理化学研究所革新知能統合研究センターの沓掛健太朗研究員は、結晶シリコン太陽電池に用いられる薄膜のシリコン堆積条件を最適化する新たな手法を開発した。 |
本研究グループではこれまで、触媒化学気相堆積(Cat-CVD)法*1を用いた太陽電池用薄膜形成に取り組んできた。特に、非晶質シリコン膜と結晶シリコン基板との接合からなるシリコンヘテロ接合太陽電池*2は、低損傷での膜堆積が可能なCat-CVDの優位性が生かせることから、有用な応用先として注力している。この製膜においては、多数の製膜パラメータが存在するため、太陽電池出力を最大化する最適製膜条件の発見には、一般に膨大な実験回数(試行錯誤)を要する。
このような実験条件の最適化問題に対して、「ベイズ最適化」*3と呼ばれる、機械学習を応用した逐次最適化法が、最近よく使用されている。しかし、太陽電池出力の最大化のみを目的とした単純なベイズ最適化では、次の実験条件で得られる膜の厚さを規定する機能は無く、デバイス動作上問題が生じるような厚膜が形成されうる。また、ベイズ最適化によって提示される実験条件が、実現不可能な組み合わせ(例えばガス流量と製膜装置のポンプの排気能力の不整合)となる可能性がある。
本研究では、これらのベイズ最適化における実践的な問題を解決するための、「制約付きベイズ最適化」を開発した。この手法では、未実施の実験条件のうち、製膜装置の仕様上実現が困難な実験条件を機械学習による予測に基づいてあらかじめ排除し、残りの条件の中からキャリア再結合抑止性能を最良化する可能性のある実験条件を提示させるよう工夫した。さらに、一定の製膜時間における予測膜厚を提示させる機能を持たせ、所望の膜厚を得るための製膜時間を逆算できるよう設計した。これらの制約を組み込むことで、製膜装置が実現可能な条件の範囲内でかつ一定の膜厚を有し、キャリア再結合抑止性能を最良化するベイズ最適化の手順を進行させることが可能となった。開発した「制約付きベイズ最適化」を用いることで、わずか8回のサイクルにより最適な製膜条件に到達し、20回のサイクルでベイズ最適化工程が完了した。また、本ベイズ最適化の提示に従って複数の製膜パラメータを広い範囲で変化させた結果、高いキャリア再結合抑止性能の実現には、製膜時の基板温度と原料ガスであるSiH4の流量の組み合わせが重要であることも見出した。
本研究で得られた手法は、太陽電池製造や薄膜堆積に限らず、幅広い分野や試料作製に適用可能な手法として期待される。

「制限付きベイズ最適化」の流れ
【論文情報】
| 雑誌名 | ACS Applied Materials and Interfaces(米国化学会) |
| 題目 | High Passivation Performance of Cat-CVD i‑a-Si:H Derived from Bayesian Optimization with Practical Constraints |
| 著者 | Ryota Ohashi, Kentaro Kutsukake, Huynh Thi Cam Tu, Koichi Higashimine, and Keisuke Ohdaira |
| 掲載日 | 2024年2月8日 |
| DOI | 10.1021/acsami.3c16202 |
【用語説明】
加熱触媒体線により原料ガスを分解し、薄膜を堆積する手法。原料ガスの分解時にイオンが生成されないため、イオンの衝突による結晶シリコン表面への損傷が起こらず、良好な薄膜/基板界面が得られる。
結晶シリコンウェハと非晶質シリコン膜の接合を基本構造とする太陽電池。非晶質シリコン膜により、結晶シリコン表面に存在する結晶欠陥が有効に不活性化され、キャリア再結合が抑えられる結果、汎用の結晶シリコン太陽電池と比べて高い電圧が得られる特長がある。
形状が不明な関数の最大値や最小値を得るための手法の一種。既知である実験条件(入力)とその結果(出力)のデータセットから、未実施の実験条件における結果の予測値を、不確かさ(標準偏差)とともに推定し、不確かさも含めて予測値が最良となる条件で次の実験を行う。その実験で得られた結果を含めて予測値を推定し直す。これを繰り返し、少ない実験回数で最適な実験条件を得る。
令和6年2月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/02/19-1.html令和5年度第3回全学FDを開催
1月19日(金)、「研究連携のすゝめ」というテーマで、Web会議にて令和5年度第3回全学FDを開催し、100名余の教職員が参加しました。
神田 陽治研究科長の挨拶に続き、村田 英幸教授(ナノマテリアル・デバイス研究領域)の進行で学内外における研究連携の推進に関する講演が4名の本学教員によって行われました。
講演者と講演タイトルは次の通りです。
- 前園 涼教授(サスティナブルイノベーション研究領域):
「External collaboration triggered by unexpected sources(瓢箪から駒の対外連携)」 - Dam Hieu Chi教授(共創インテリジェンス研究領域):
「Interdisciplinary Research Adventure: Naivety, Fidelity, Curiosity, and the Joy of Integrating Diverse Fields」 - 谷池 俊明教授(物質化学フロンティア研究領域):
「What we think of when conducting research collaboration(共同研究を行う際に考慮すること)」 - Sakti Sakriani准教授(人間情報学研究領域):
「Beyond Boundaries: Opportunities and Challenges in Global Collaboration」
閉会挨拶では、村田教授から、「共同研究における研究チームの人数が少なく、物理的距離が近い場合に、革新的な研究成果が生まれやすい」という研究報告があることが紹介されました。
事後アンケートでは、74名からの回答のうち95%の参加者から今回のFD参加によって新たな学びがあったという回答があり、「広い切り口のテーマに対し、各教員の視点・実績から、うまくまとめた発表だった」、「それぞれに特色があり、異なる気付きを得られた」、「実体験に基づいた講演は、今後の活動において参考になる」、「もっと国際的な研究連携に積極的になりたいと思った」、「JAISTの教員が協力し、国際的研究連携に積極的な雰囲気を作ることで、より良い大学になると思った」などの感想が寄せられました。
世界トップレベルの研究を目指す大学として、本FDが学内外との共同研究に対する前向きな雰囲気を醸成するきっかけとなり、具体的な共同研究の実施へと結び付くことが期待されます。
令和6年1月26日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2024/01/26-1.html非対称な二次元シートを利用したナノサイズの巻物構造の実現 〜高性能な触媒や発電デバイスへの応用に期待〜
![]() |
東京都公立大学法人 国立大学法人筑波大学 国立大学法人東北大学 国立大学法人東海国立大学機構 国立大学法人金沢大学 国立大学法人 |
![]() |
| 東京都公立大学法人 国立大学法人筑波大学 国立大学法人東北大学 国立大学法人東海国立大学機構 国立大学法人金沢大学 国立大学法人 |
非対称な二次元シートを利用したナノサイズの巻物構造の実現
~高性能な触媒や発電デバイスへの応用に期待~
【概要】
東京都立大学、産業技術総合研究所、筑波大学、東北大学、名古屋大学、金沢大学、北陸先端科学技術大学院大学らの研究チーム(構成員及びその所属は以下「研究チーム構成員」のとおり)は、次世代の半導体材料として注目されている遷移金属ダイカルコゲナイド(TMD)(注1)の単層シートを利用し、最小内径5 nm程度のナノサイズの巻物(スクロール)状構造の作製に成功しました。TMDは遷移金属原子がカルコゲン原子に挟まれた3原子厚のシート状物質であり、その機能や応用が近年注目を集めています。一般に、TMDは平坦な構造が安定であり、円筒などの曲がった構造は不安定な状態となります。本研究では、上部と下部のカルコゲン原子の種類を変えたヤヌス構造と呼ばれるTMDを作製し、この非対称な構造がスクロール化を促進することを見出しました。理論計算との比較より、最小内径が5 nm程度まで安定な構造となることを確認しました。また、スクロール構造に由来して軸に平行な偏光を持つ光を照射したときに発光や光散乱の強度が増大すること、表面の電気的な特性がセレン側と硫黄側で異なること、及びスクロール構造が水素発生特性を有するなどの基礎的性質を明らかにしました。
今回得られた研究成果は、平坦な二次元シート材料を円筒状の巻物構造に変形する新たな手法を提案するものであり、ナノ構造と物性の相関関係の解明、そしてTMDの触媒特性や光電変換特性などの機能の高性能化に向けた基盤技術となることが期待されます。
本研究成果は、2024年1月17日(米国東部時間)付けでアメリカ化学会が発行する英文誌『ACS Nano』にて発表されました。
【研究チーム構成員】
【ポイント】
- 遷移金属ダイカルコゲナイド(TMD)のシートを安定した構造で巻物(スクロール)にする新たな手法を開発。
- TMDの上部と下部の組成を変えた「ヤヌス構造」が、スクロール化を促進することを発見。
- TMDの曲率や結晶の対称性などの制御を通じた触媒や光電変換機能の高性能化が期待。
【研究の背景】
近年、ナノチューブと呼ばれるナノサイズの円筒状物質は、その特徴的な構造に由来する物性、そして触媒や太陽電池等の光電変換デバイス等への応用について世界中で盛んに研究が行われています。一般に、ナノチューブは、厚みが1原子から数原子程度の極薄の二次元的なシート構造を円筒状に丸めた構造を持つナノ物質であり、代表的な物質として、炭素の単原子層であるグラフェンを丸めたカーボンナノチューブが知られています。また、遷移金属原子がカルコゲン原子に挟まれた構造を持つ遷移金属ダイカルコゲナイド(TMD)についても、二次元シートやナノチューブ構造が存在します。最近では、TMDのナノチューブが同軸状に重なった多層TMDナノチューブにおいて、その巻き方に起因する超伝導や光起電力効果を示すことが報告されました。一方、このような多層TMDナノチューブは、様々な直径や巻き方などを持つナノチューブが同軸状に重なっているため、その結晶構造の同定は困難となります。その電気的・光学的性質と構造の相関を明らかにするには、ナノチューブの巻き方を制御することが重要な課題となっていました。
このような課題の解決に向け、これまで主に二つのアプローチが報告されてきました。一つは、多層TMDナノチューブとは別に、構造の同定が容易な単層TMDナノチューブに着目したものです。特に、カーボンナノチューブ等をテンプレートに用いた同軸成長により、単層TMDナノチューブを成長させることができます。本研究チームの中西勇介助教、宮田耕充准教授らは、これまで絶縁体のBNナノチューブの外壁をテンプレートに用いたMoS2(二硫化モリブデン)の単層ナノチューブ(https://www.tmu.ac.jp/news/topics/35021.html)や、様々な組成のTMDナノチューブ(https://www.tmu.ac.jp/news/topics/36072.html)の合成に成功してきました。しかし、同軸成長法では、得られるTMDナノチューブの長さが多くの場合は100 nm以下と短く、物性や応用研究には更なる合成法の改善が必要となっています。もう一つのアプローチとして、単結晶性の単層のTMDシートを巻き取り、各層の結晶方位が揃ったスクロール構造にする手法も知られていました。一般にマイクロメートルサイズの長尺な構造が得られますが、TMDシートを曲げた場合、遷移金属原子を挟むカルコゲン原子の距離が伸び縮みするため、構造的には不安定となります。そのため、得られるスクロール構造も内径が大きくなり、また円筒構造ではなく平坦な構造になりやすいなどの課題がありました。
【研究の詳細】
本研究では、長尺かつ微小な内径を持つスクロール構造の作製に向け、上部と下部のカルコゲン原子の種類を変えたヤヌス構造と呼ばれるTMDに着目しました。このヤヌスTMDでは、上下のカルコゲン原子と遷移金属原子の距離が変わることで、曲がった構造が安定化することが期待できます。このようなヤヌスTMDを作製するために、研究チームは、最初に化学気相成長法(CVD法)(注2)を利用し、二セレン化モリブデン(MoSe2)および二セレン化タングステン(WSe2)の単結晶性の単層シートをシリコン基板上に合成しました。この単層シートに対し、水素雰囲気でのプラズマ処理により、単層TMDの上部のセレン原子を硫黄原子に置換し、単層ヤヌスTMDを作製できます。次に、有機溶媒をこの単層ヤヌスTMDに滴下することで、シートの端が基板から剥がれ、マイクロメートル長のスクロール構造を形成しました(図1)。

| 図1 単層ヤヌスMoSSeを利用したナノスクロールの作製手法。(a)単層MoSe2の構造モデル。(b)熱CVDシステムの概略図。(c)単層ヤヌスMoSSeの構造モデル。(d)水素プラズマによる硫化プロセスの概略図。(e)ヤヌスナノスクロールの構造モデル。(f)有機溶媒の滴下によるナノスクロールの作製方法の概略図。 ※原論文「Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides」の図を引用・改変したものを使用しています。 |
この試料を電子顕微鏡で詳細に観察し、実際にスクロール構造を形成したこと(図2)、全ての層が同一の方位を持つこと、そして最小内径で5 nm程度まで細くなることなどを確認しました。観察された内径に関しては、ヤヌスTMDのナノチューブでは最小で直径が5 nm程度までは、フラットなシート構造よりも安定化するという理論計算とも一致します。また、このスクロール構造に由来し、軸に平行な偏光を持つ光を照射したときに発光や光散乱の強度が増大すること、表面の電気的な特性がセレン原子側と硫黄原子側で異なること、およびスクロール構造が水素発生特性を有することも明らかにしました。

図2 ナノスクロールの電子顕微鏡写真。
| ※原論文「Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides」の図を引用・改変したものを使用しています。 |
【研究の意義と波及効果】
今回得られた研究成果は、平坦な二次元シート材料を円筒状のスクロール構造に変形する新たな手法を提案するものです。特に、非対称なヤヌス構造の利用は、様々な二次元シート材料のスクロール化に適用することができます。また、単結晶のTMDを原料に利用することで、スクロール内部の層の結晶方位を光学顕微鏡による観察で容易に同定すること、そして様々な巻き方を持つスクロールの作製が可能になりました。今後、本研究成果より、様々な組成や構造を持つスクロールの実現、電気伝導や光学応答と巻き方の関係の解明、触媒やデバイス応用など、幅広い分野での研究の展開が期待されます。
【用語解説】
タングステンやモリブデンなどの遷移金属原子と、硫黄やセレンなどのカルコゲン原子で構成される層状物質。遷移金属とカルコゲンが1:2の比率で含まれ、組成はMX2と表される。単層は図1aのように遷移金属とカルコゲン原子が共有結合で結ばれ、3原子厚のシート構造を持つ。近年、TMDが持つ優れた半導体特性により大きな注目を集めている。
原料となる材料を気化させて基板上に供給することにより、薄膜や細線を成長させる合成技術。
【発表論文】
| タイトル | Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides |
| 著者名 | Masahiko Kaneda, Wenjin Zhang, Zheng Liu, Yanlin Gao, Mina Maruyama, Yusuke Nakanishi, Hiroshi Nakajo, Soma Aoki, Kota Honda, Tomoya Ogawa, Kazuki Hashimoto, Takahiko Endo, Kohei Aso, Tongmin Chen, Yoshifumi Oshima, Yukiko Yamada-Takamura, Yasufumi Takahashi, Susumu Okada, Toshiaki Kato*, and Yasumitsu Miyata* *Corresponding author |
| 雑誌名 | ACS Nano |
| DOI | https://doi.org/10.1021/acsnano.3c05681 |
本研究の一部は、日本学術振興会 科学研究費助成事業「JP21H05232, JP21H05233, JP21H05234, JP21H05236, JP21H05237, JP22H00283, JP22H00280, JP22H04957, JP21K14484, JP20K22323, JP20H00316, JP20H02080, JP20K05253, JP20H05664, JP21K14498, JP21K04826, JP21H02037, JP22H05459, JP22KJ2561, JP22H05445, JP23K13635, JP22H05441, JP23H00097, JP23K17756, JP23H01087」、文部科学省マテリアル先端リサーチインフラ事業「JPMXP1222JI0015」、創発的研究支援事業FOREST「JPMJFR213X and JPMJFR223H」、戦略的創造研究推進事業さきがけ「JPMJPR23H5」、矢崎科学技術振興記念財団、三菱財団、村田学術振興財団および東北大学電気通信研究所共同プロジェクト研究の支援を受けて行われました。
令和6年1月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/01/18-1.html可視光応答型光触媒を用いた環境水浄化:研究開発の飛躍的加速へ
可視光応答型光触媒を用いた環境水浄化:研究開発の飛躍的加速へ
ポイント
- 光触媒試験を飛躍的に加速する技術の開発
- 環境水浄化のための光触媒の一括スクリーニング
- 環境水中で高活性を発揮する可視光応答型光触媒を開発
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の谷池俊明教授らは、可視光応答型光触媒を利用した環境水浄化に関するハイスループット実験[*1]技術を開発しました。 水質汚染は、現代社会における重要な問題の一つです。有機汚染物質の中でも染料は、その多様性や濃度の高さから環境への影響が大きく、発展途上国を中心に深刻な問題となっています。これらの有機汚染物質を効果的に除去する方法として、可視光応答型の光触媒反応が注目されています。しかし、現在の光触媒は高濃度の汚染物質に対して十分な活性を示すことができず、また実用的な環境下での研究や応用に関する知見も不足しています。特に、環境水中に含まれるさまざまな無機イオンが光触媒反応に影響を与えることが知られており、これらの環境条件を考慮した効果的な触媒の開発が急務となっています。 本研究では、光触媒反応を132並列で実施可能なハイスループット実験技術を新たに開発し、大規模な実験から、可視光応答型光触媒を用いた環境水浄化[*2]に関する有用な知見を導くことに成功しました。また、環境水中の特定のイオンが触媒の活性を有意に低下させることを明らかにしました。さらに、工業廃水において効果的な触媒を開発するため、15種類の貴金属ナノ粒子を光触媒に担持した結果、AuやPtなどの高仕事関数と酸化耐性を併せ持つ金属ナノ粒子が、環境イオンを活性種に変換し、高活性を示すことを明らかにしました。 この研究は、開発されたハイスループット実験技術の有効性を示すものです。今後は、この技術を改良することで、水分解や二酸化炭素還元など他の光触媒反応の研究を可能にする見通しです。 本成果は、2023年11月17日に学術雑誌「Environmental Pollution」(Elsevier社)のオンライン版に掲載されました。なお、本研究は、科学技術振興機構(JST)未来社会創造事業(探索加速型)「超広域材料探索を実現する材料イノベーション創出システム(JPMJMI22G4)」(研究代表:谷池俊明)の支援を受けて行われました。 |
開発ハイスループットスクリーニング装置 (a)とスクリーニング結果 (b)
【論文情報】
| 掲載誌 | Environmental Pollution (Elsevier) |
| 論文題目 | High-throughput experimentation for photocatalytic water purification in practical environments |
| 著者 | Kyo Yanagiyama, Ken Takimoto, Son Dinh Le, Nhan Nu Thanh Ton, Toshiaki Taniike |
| 掲載日 | 2023年11月17日にオンライン版に掲載 |
| DOI | 10.1016/j.envpol.2023.122974 |
【用語解説】
実験の回転速度をスループットと呼ぶ。ハイスループット実験技術とは高度な並列化や自動化によって実験のスループットを劇的に改善する技術を指す。
太陽光や人工光を利用して水中の汚染物質を分解する技術で、環境に優しく持続可能な水浄化の方法として注目されている。光触媒はこのプロセスで重要な役割を果たす。
令和5年12月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/12/08-1.html【1/11(木)~12(金)開催】JAIST International Symposium on Nano-Materials for Novel Devices 2023(JAIST-NMND2023)
| 開催日時 | 2024年1月11日(木)13:00 - 21:00 2024年1月12日(金)10:00 - 12:00 |
| 会 場 | 金沢商工会議所 ホール |
| 参加費 | 一般 5,000円、学生 3,000円 |
| 講演者 | 基調講演者
Prof. Jana Vejpravova(カレル大学) 吾郷 浩樹 教授(九州大学 グローバルイノベーションセンター) 高村由起子 教授(ナノマテリアル・デバイス研究領域) |
| ポスター セッション |
主に、院生や若手研究者を対象にしています(50件)。 研究内容をアピールする良い機会ですので、積極的にご応募ください。 優れた発表に対し、若手優秀賞(副賞)が贈呈されます。 なお、このセッションは、1月11日(木)午後6時から9時まで行います。 |
| 言 語 | 英語 |
| 詳 細 | 詳細は下記ホームページをご覧ください。 https://www.jaist-nmnd2023.com/ |
| 参加申込み | ホームページの登録フォームより、12月8日(金)までにお申し込みください。 |
MoS2ナノリボンのエッジが示す特異な力学特性の観測に成功
MoS2ナノリボンのエッジが示す特異な力学特性の観測に成功
ポイント
- 雷、加速度、ガス、臭気などの環境電磁界を計測するセンサーの開発に必要な要素技術として、機械共振器がある。
- ナノスケールの超薄型機械共振器として期待されている、単層2硫化モリブデン(MoS2)・ナノリボンのヤング率測定に成功した。
- リボン幅が3nm以下になると、ヤング率がリボン幅に反比例して増加する特異な性質を発見した。
- リボンのエッジ部分における原子配列の座屈がエッジの強度を高める要因であることを、計算科学手法を用いて解明した。
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域の大島義文教授は、サスティナブルイノベーション研究領域の前園涼教授、本郷研太准教授、鄭州大学物理学院の刘春萌講師、張家奇講師らと、独自に開発した顕微メカニクス計測法を用いて、リボン状になった単層2硫化モリブデン(MoS2)膜の力学性質を調べ、リボンのエッジ部分の強度が、リボンの内部より高いことを明らかにした。 単層MoS2ナノリボンは、ナノスケールの超薄型機械共振器への応用が期待されているが、その力学性質の解明が課題となっている。ナノリボンの力学性質について、そのエッジ部分の影響が予想されており、第一原理計算による予測値は報告されているが、明確な結論が得られていない。本研究では、世界唯一の手法である「顕微メカニクス計測法」を用いて、単層MoS2ナノリボンの原子配列を観察しながら、そのばね定数を測定することに成功した。解析の結果、エッジがアームチェア構造である単層MoS2ナノリボンのリボン幅が3nm以下になると、ヤング率が増加することを発見した。リボン幅の減少とともにエッジ構造の物性への寄与が大きくなるため、この結果は、エッジ強度が内部に比べて高いことを示す。 このエッジ構造を第一原理計算で調べたところ、エッジにおいてモリブデン(Mo)原子が座屈しており、硫黄(S)原子へ電荷が移動していることが示唆された。このことから、両原子間に働くクーロン引力の増加が、エッジ強度を高めることに寄与したと説明できる。 |
【研究の背景】
シリコンをベースとした半導体デバイスを凌駕する新奇ナノデバイスの開発、あるいは、加速度、ガス、雷などの環境電磁場を測定するセンサーの開発が精力的に行われている。このような開発に必要な要素技術として、機械共振器[*1]がある。従来、高い剛性を持ち、かつ、高品位な結晶が得られることから水晶が機械共振器として用いられてきたが、近年、ナノスケールの超薄型機械共振器が求められており、その有力候補として単層2硫化モリブデン(MoS2)のナノリボン(ナノメートルサイズの幅に切り出した帯状物質)が挙げられている。しかし、単層MoS2ナノリボンの力学性質は、明らかになっていない。その理由として、物質の力学特性を理解するためには、力学的応答を測定すると同時に材料の結晶構造や形状を観察する必要があるが、そのような観察手法が確立されていないことが挙げられる。
従来手法では、原子配列を直接観察できる透過型電子顕微鏡(TEM)にシリコン製カンチレバーを組み込んだ装置を用いて、カンチレバーの曲がりから測定対象材料に加えた力を求め、それによって生じた変位をTEM像で得ることで、ヤング率(変形しやすさ)を推量している。しかし、この測定法は、個体差があるカンチレバーのばね定数を正確に知る必要があり、かつ、サブオングストローム(1オングストローム(1メートルの100億分の1)より短い長さのスケール)の精度で変位を求める必要があるため、定量性が十分でないと指摘されている。
【研究の内容】
大島教授らの研究グループは、2021年、TEMホルダーに細長い水晶振動子(長辺振動水晶振動子(LER)[*2])を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする「顕微メカニクス計測法」[*3]を世界で初めて開発した。この手法では、水晶振動子の共振周波数が、物質との接触による相互作用を感じることで変化する性質を利用する。共振周波数の変化量は物質の等価バネ定数に対応しており、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)と微小なため、TEMの原子像がぼやけることはない。この手法は、上述した従来手法の問題点を克服するものであり、結果として高精度測定を実現した。
本研究では、この顕微メカニクス計測法を用いて、単層MoS2ナノリボンの力学性質を測定した。特に、アームチェア構造のエッジを持つMoS2ナノリボンに着眼し、そのヤング率の幅依存性について調べた。
具体的には、単層MoS2ナノリボンは、MoS2多層膜の端にタングステン(W)チップを接触させ、最外層のMoS2層を剥離することで作製した(図1)。図2に示す2枚は、それぞれ、同じ単層MoS2ナノリボンを断面から観察したTEM像(2-1)と平面から観察したTEM像(2-2)であり、単層MoS2ナノリボンが、MoS2多層膜とWチップ間に担持した状態にあることが確認できる(図3のイラストを参照)。また、エッジ構造は、平面から観察したTEM像のフーリエパターンから判定でき、アームチェア構造であることが分かった。この平面から観察したTEM像から、ナノリボンの幅と長さを測定し、それに対応する等価ばね定数をLERの周波数変化量から求めることで、このナノリボンのヤング率を得た。図3右側のグラフは、異なるリボン幅に対するヤング率をプロットした結果である。
同グラフから、リボン幅が3 nm以上では、ヤング率は166 GPa前後でほぼ一定であり、一方、リボン幅が2.4 nmから1.1 nmに減少すると、ヤング率は179 GPaから215 GPaに増加することがわかった。リボン幅の減少とともに物性へのエッジ構造の寄与が大きくなることを考慮すると、この結果は、エッジ強度が内部に比べて高いことを示す。
さらに、このアームチェア構造を第一原理計算で調べ、アームチェア・エッジにおいてモリブデン(Mo)原子が座屈し、硫黄(S)原子へ電荷が移動しているという結果を得た。このことから、両原子間に働くクーロン引力が増加することによりエッジ強度が高くなったと説明できた。
本研究成果は、2023年9月11日に科学雑誌「Advanced Science」誌のオンライン版で公開された。
【今後の展望】
現在、雷、加速度、ガス、臭気などの環境電磁界を計測するセンサーの開発が精力的に行われている。このようなセンサーの開発に必要な要素技術の一つが機械振動子である。本研究の成果は、ナノスケールの超薄型機械的共振器の設計を可能にする。近い将来、これを用いたナノセンサーがスマートフォンや腕時計などに組み込まれ、個人がスマートフォンで環境をモニタリングしたり、匂いや味などの情報を数値としてとらえ、自由に伝えることができる可能性がある。

|
図1.MoS2多層膜の端にタングステン(W)チップを接触し、最外層の単層MoS2膜を剥離する過程を示したイラスト
図2.同じ単層MoS2ナノリボンを断面から観察したTEM像(2-1)と平面から観察したTEM像(2-2)
図3.(左)単層MoS2ナノリボンが、MoS2多層膜とWチップ間に担持した状態を示すイラスト、
(右)アームチェアエッジの単層MoS2ナノリボンに対するヤング率のリボン幅依存性を示すグラフ |
【論文情報】
| 掲載誌 | Advanced Science(Wiley社発行) |
| 論文題目 | Stiffer Bonding of Armchair Edge in Single‐Layer Molybdenum Disulfide Nanoribbons |
| 著者 | Chunmeng Liu, Kenta Hongo, Ryo Maezono, Jiaqi Zhang*, Yoshifumi Oshima* |
| 掲載日 | 2023年9月11日 |
| DOI | 10.1002/advs.202303477 |
【用語説明】
[*1] 機械共振器
材料には、ヤング率、その形状(縦、横、長さ)、質量によって決まる固有振動があり、これを共振周波数と呼ぶ。この共振周波数は、他の材料と接触したり、あるいは、ガス吸着などによる質量変化に応じてシフトする。そのため、この変化から、接触した材料の等価ばね定数や吸着したガスの質量を評価できる。このような評価法を周波数変調法という。本研究でも、周波数変調法によって、単層MoS2ナノリボンのばね定数を算出している。
[*2] 長辺振動水晶振動子(LER)
長辺振動水晶振動子(LER)は、細長い振動子(長さ約3 mm、幅約0.1 mm)を長辺方向に伸縮振動させることで、周波数変調法の原理で金属ナノ接点などの等価バネ定数(変位に対する力の傾き)を検出できる。特徴は、高い剛性(1×105 N/m )と高い共振周波数(1×106 Hz )である。特に、前者は、化学結合の剛性(等価バネ定数)測定に適しているだけでなく、小さい振幅による検出を可能とすることから、金属ナノ接点を壊すことなく弾性的な性質を得ることができ、さらには、原子分解能TEM 像も同時に得られる点で大きな利点をもつ。
[*3] 【参考】「世界初! 個々の原子間の結合強度の測定に成功―強くて伸びる白金原子の鎖状物質―」(2021年4月30日 JAISTからプレスリリース)
https://www.jaist.ac.jp/whatsnew/press/2021/04/30-1.html
令和5年9月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/09/19-1.html金沢大学・北陸先端科学技術大学院大学 第1回共同シンポジウムを開催
令和5年6月26日(月)、本学小ホールにおいて、金沢大学・北陸先端科学技術大学院大学 第1回共同シンポジウムを開催しました。
金沢大学と本学は、融合科学共同専攻における分野融合型研究を推進してきましたが、本年度より、融合科学共同専攻にとどまらず、両大学間の共同研究の発展と促進を目指し、共同シンポジウムを開催することといたしました。
第1回である今回は、「エネルギー関連材料・デバイスにおける最新研究の展開」をテーマに開催し、寺野 稔学長による開会挨拶後、本学 サスティナブルイノベーション研究領域 大平圭介教授、金沢大学 理工研究域 機械工学系 辻口拓也准教授、金沢大学 ナノマテリアル研究所 當摩哲也教授、本学 融合科学共同専攻長 松見紀佳教授にそれぞれエネルギー関連の最新研究についてご講演いただき、金沢大学 和田隆志学長の挨拶をもって閉会となりました。
本シンポジウムが、今後の両大学間の共同研究の発展と促進を目的としていることから、各講演者は、自身の研究内容の説明に加えて、「どのような研究分野との共同研究が可能か」という点も併せて講演されました。
オンライン配信とのハイフレックス形式にて開催しました本シンポジウムには、両大学より多くの方が参加され、質疑応答の時間には研究者間による活発な意見交換が行われました。次回は金沢大学を会場として開催される予定であり、本シンポジウムが今後両大学間の共同研究発展の端緒となるよう推進して参ります。

開会の挨拶をする寺野学長

講演① 「シリコン系太陽電池の高性能・低コスト・長寿命化技術の開発」
大平圭介 教授(本学 サスティナブルイノベーション研究領域)

講演② 「ギ酸を中心とした循環型社会の構築に向けた要素技術開発」
辻口拓也 准教授(金沢大学 理工研究域 機械工学系)

講演③ 「軽くて柔らかい有機材料を用いた太陽電池の長寿命化と実用化」
當摩哲也 教授(金沢大学 ナノマテリアル研究所)

講演④ 「次世代型蓄電池の開発を目指した部材開発」
松見紀佳 教授(本学 融合科学共同専攻長)

閉会の挨拶をする金沢大学 和田学長
令和5年6月28日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/06/28-1.html学生のXIONGさんが、国際シンポジウムEM-NANO2023においてStudent Awardを受賞
学生のXIONG, Weiさん(博士後期課程2年、ナノマテリアル・デバイス研究領域、大島研究室)が第9回有機・無機エレクトロニクス材料とナノテクノロジーに関する国際シンポジウム(EM-NANO2023)において、Student Awardを受賞しました。
EM-NANO2023は令和5年6月5日~8日にかけて金沢市で開催されました。先端的な材料やそれを用いたデバイスに関する研究に関する講演が約300件あり、そのうち、学生発表が約140件ありました。この中で優れた発表を行った学生10名に対し学生優秀賞が授与されました。
*参考:The 9th International Symposium on Organic and Inorganic Electronic Materials and Related Nanotechnologies (EM-NANO2023)
■受賞年月日
令和5年6月7日
■研究題目、論文タイトル等
引張り変形のその場透過電子顕微鏡法によるMoS2ナノシートのリップル構造評価
■研究者、著者
XIONG, Wei
■受賞対象となった研究の内容
2次元材料の構造的な新しさの一つに、2次元材料の伸縮による原子レベルの波紋構造の形成がある。しかし、このような構造に関する実験的な報告はほとんどない。
本研究では、2つの電極間に吊り下げたMoS2ナノシートを伸張できるin-situ透過型電子顕微鏡(TEM)ホルダーを開発し、MoS2ナノシートの原子レベルの波紋構造を観察することに成功した。得られたTEM像を解析したところ、波紋構造はアームチェア方向に沿って形成されていることがわかった。幾何学的位相解析(GPA)法を用いてTEM像を解析することで、波紋構造の周期と振幅を推定することができた。0.26%、0.51%、0.77%、1.02%の引張ひずみでリップル構造の周期と振幅を推定した。その結果、MoS2ナノシートは引っ張りに対して非線形な力学応答を示すことがわかった。
■受賞にあたって一言
It's my honor to receive the "Student Award" in EM-NANO2023. Participating in this academic conference has benefited me a lot. I have listened to many excellent presentations and read many creative posters at this conference. The experiences and conversations during this trip made me think more deeply about my research. I will also put the inspiration and ideas I got at this conference into practice in my future experiments. For this honor, I would like to express my sincere gratitude to my supervisor, Prof. Yoshifumi Oshima, his profound knowledge gave me strong support in my study and research, his peaceful personality made me feel no pressure to get alone with him in life. I also want to thank Dr. Lilin Xie, a graduate of our lab, his research work has given me great convenience and confidence, and it has a great weight in this award I have received. Also, I'd like to thank assistant professor Kohei Aso and the laboratory members for their help in my life, study and research.
令和5年6月15日
第1回 金沢大学・北陸先端科学技術大学院大学 共同シンポジウム
| 開催日時 | 令和5年6月26日(月)13:30~17:00 |
| 会 場 | マテリアルサイエンス系講義棟1階 小ホール ※Webexにて同時配信(ハイフレックスにて開催) |
| 対 象 | 両大学の教職員・学生 |
| テーマ | エネルギー関連材料・デバイスにおける最新研究の展開 |
| プログラム | 13:30~ オープニング(共同シンポジウムの趣旨説明等) 13:40~ 開会挨拶 北陸先端科学技術大学院大学 寺野学長 13:45~14:25 ≪講演1≫ 講演者:大平圭介 教授(本学 サスティナブルイノベーション研究領域) 講演タイトル:シリコン系太陽電池の高性能・低コスト・長寿命化技術の開発 14:30~15:10 ≪講演2≫ 講演者:辻口拓也 准教授(金沢大学 理工研究域 機械工学系) 講演タイトル:ギ酸を中心とした循環型社会の構築に向けた要素技術開発 15:10~15:30 休憩 15:30~16:10 ≪講演3≫ 講演者:當摩哲也 教授(金沢大学 ナノマテリアル研究所) 講演タイトル:軽くて柔らかい有機材料を用いた太陽電池の長寿命化と実用化 16:15~16:55 ≪講演4≫ 講演者:松見紀佳 教授(本学 融合科学共同専攻長) 講演タイトル:次世代型蓄電池の開発を目指した部材開発 16:55~17:00 閉会挨拶 金沢大学 和田学長 |
| 参加申込 | 下記申込み用フォームからお申込みください https://forms.gle/eUG4xNHfKwfutWNq8 ※会場での参加、オンライン参加ともに申込みが必要です ※オンライン参加の方には、アクセス用のURLをご連絡いただいたメールアドレス宛に後日送付いたします。 【本件問合せ先】 研究推進課 学術研究推進係 内線:1907/1912 E-mail:suishin@ml.jaist.ac.jp |
物質化学フロンティア研究領域の後藤教授の論文がCarbon誌の表紙に採択
ナノマテリアルテクノロジーセンターの後藤和馬教授(物質化学フロンティア研究領域)の論文が、米国炭素学会機関紙「Carbon」の表紙(front cover)に採択されました。
本研究は、後藤研究室および京都大学、岡山大学による共同研究の成果です。
■掲載誌
Carbon, Vol. 206, Page 84-93.
掲載日:2023年3月25日
■著者
Hideka Ando(特別研究学生、後藤研究室), Katsuaki Suzuki, Hironori Kaji, Takashi Kambe, Yuta Nishina, Chiyu Nakano, Kazuma Gotoh
■論文タイトル
Dynamic nuclear polarization - nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials
■論文概要
炭素材料は、化学反応の触媒や燃料電池・二次電池の電極、バイオマテリアルなど多種多様な分野での応用が期待されている。本研究ではNMR(核磁気共鳴分光法)による炭素材料の表面構造分析の感度を改善するため、信号強度増幅剤を用いた動的核偏極NMRを用いた。これまで不可能と考えられていた炭素表面上の微量のメチル基、水酸基などの表面官能基の検出に成功し、炭素材料の性質に大きな影響を及ぼす表面構造の微細な違いが検出可能となった。
表紙詳細:https://www.sciencedirect.com/science/article/pii/S0008622323001549
論文詳細:https://doi.org/10.1016/j.carbon.2023.02.010

令和5年3月31日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/03/31-1.html令和4年度地域連携事業 宮竹小学校の児童が来学-附属図書館・JAISTギャラリー見学&理科特別授業-
2月17日(金)、能美市立宮竹小学校の4年生20名が、理科の特別授業を受けました。特別授業では、ナノマテリアルテクノロジーセンターの赤堀准教授及び木村技術専門職員が講師となり、液体窒素や液体酸素を用いた様々な科学実験を行いました。
子供たちは、酸素や窒素、空気などの気体が入った風船を液体窒素で冷やしたときの反応の違いや、液体窒素や液体酸素によって、花や電池、線香などの身近な物が化学反応を起こす様子を観察しました。
今回の特別授業は科学技術の世界に触れることのできる貴重な機会となりました。
2月28日(火)には、同校の3年生16名が附属図書館の見学やJAISTギャラリーでのパズル体験を行いました。本棚に並ぶ多くの図書や、貴重図書室の『解体新書』(杉田玄白著)や『アトランティコ手稿』(レオナルド・ダ・ヴィンチ著)を目にし、本学職員の解説を熱心に聞き入っていました。
また、実際に触って解いて遊ぶことができるパズルに興味津々な様子で、本学の学生が解説しながらパズルを解く実演では、多くの児童が積極的に質問する様子が見られました。

風船を用いた科学実験を行う4年生

液体窒素を観察する4年生

貴重図書室を見学する3年生(附属図書館)

JAISTギャラリーでのパズル実演を見る3年生
令和5年3月7日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/03/07-1.html動的核偏極磁気共鳴法による炭素材料表面の微細構造の解析に世界で初めて成功 -次世代の炭素材料の開発と利用促進に貢献-
![]() ![]() |
| 国立大学法人北陸先端科学技術大学院大学 国立大学法人京都大学 国立大学法人岡山大学 |
動的核偏極磁気共鳴法による炭素材料表面の微細構造の解析に世界で初めて成功
-次世代の炭素材料の開発と利用促進に貢献-
ポイント
- 次世代の炭素材料として、グラフェンや薄膜炭素といった材料が注目されている。炭素材料は、化学反応の触媒や燃料電池等の電極触媒としてだけでなく、ドラッグデリバリーシステムなどのバイオマテリアル分野を含め、多種多様な分野での応用が期待されている。
- NMR(核磁気共鳴分光法)による炭素材料の表面構造分析の感度を改善するため、信号強度増幅剤を用いた動的核偏極磁気共鳴法により、これまで同手法では不可能と考えられていた炭素表面の微量なメチル基、水酸基などの表面官能基の検出に成功した。
- これにより、炭素材料の性質に大きな影響を及ぼす表面構造の微細な違いが検出可能となった。
- 今後の炭素材料の表面構造制御ならびに様々な用途に応じた炭素材料の開発とその炭素材料の利用促進に貢献できる。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)ナノマテリアルテクノロジーセンターの後藤和馬教授、岡山大学大学院自然科学研究科の安東映香大学院生は、京都大学化学研究所の梶弘典教授、鈴木克明助教ならびに岡山大学学術研究院自然科学学域の神戸高志准教授、異分野融合先端研究コアの仁科勇太研究教授らと共同で、動的核偏極磁気共鳴法(DNP-NMR)による炭素材料の微細表面構造解析に成功した。これまで不可能とされていたDNP-NMR法による炭素表面のメチル基や水酸基などの表面官能基の信号の大幅な増幅に成功し、炭素材料の性質に大きな影響をおよぼす微量のメチル基、水酸基の観測に成功した。今後の炭素材料の表面構造制御ならびに様々な用途に応じた炭素材料の開発とその炭素材料の利用促進に貢献できる。 |
【研究の背景】
次世代炭素材料の一つとしてグラフェンや薄膜炭素が注目されており、その応用に関して数多くの研究が行われています。グラフェンや薄膜炭素材料の作製にはいくつかの方法があり、黒鉛を化学的に酸化して炭素層を剥離することで、酸化グラフェンを得る方法などが知られています。この酸化グラフェンは触媒となる金属ナノ粒子を担持する[用語解説]ことや、ポリマーやカーボンナノチューブなどと複合化ができるため、化学反応の触媒、燃料電池等の電極触媒としてだけでなく、ドラッグデリバリーシステムなどのバイオマテリアル分野を含め、多種多様な分野での応用が期待されています。
このような炭素材料の表面には数多くの欠陥構造があり、そこには水酸基やカルボキシル基、エポキシ基、メチル基などの表面官能基が存在していることが知られています。炭素材料の性質はこの表面官能基の種類や結合量により、大きく変わることも知られています。よって、この表面官能基の状態を把握し、制御することが材料開発において重要となります。従来、炭素材料の表面官能基についてはX線光電子分光法(XPS)や昇温脱離法(TPD)といった分析手段により解析されてきましたが、これらの方法では分析の感度は良いものの、精度に課題がありました。一方、本研究で用いた核磁気共鳴分光法(NMR)[用語解説]では、官能基の種類の分析は高精度で行えるものの、従来の方法では検出感度が低いという問題があり、高精度かつ高感度な炭素材料の表面構造の分析手段が望まれていました。
【研究の内容】
本研究では、NMR による分析の感度を改善するために、近年溶液中の分子の水素(1H)原子や炭素(13C)原子を高感度で観測する技術として注目されている、動的核偏極(DNP)[用語解説]という手法を用いた分析を試みました。NMRは、磁場中に置かれた原子核が特定の周波数の電磁波(ラジオ波)を吸収する現象を利用することによって、対象原子の状態を観測する分析手段で、化学物質の同定や病院のMRI検査などに広く用いられています。DNP-NMRは、測定したい試料にマイクロ波(MW)を同時に照射することで、試料中に含まれる信号強度増幅に用いるラジカル分子[用語解説]の磁化を原子核に移し、NMRの信号強度を最大で200倍以上に増幅させる画期的手法です。しかし、炭素材料はマイクロ波を吸収し効率的な磁化移動を阻害する上に、マイクロ波吸収による温度上昇も生じることからDNP効果が減少するという問題があるため、これまでDNP-NMRを用いた炭素材料の信号強度増幅は不可能とされてきました。
これに対し、本研究では、DNPによる信号強度増幅を可能にするため、DNP測定で用いられる信号強度増幅用のラジカルと溶媒の組み合わせを、従来のTEKPol/有機溶媒系からAMUPol/水系に変更し、水酸基やカルボキシル基の存在により親水性が増していると考えられる炭素表面へラジカル分子の接近を可能とすることで、DNPによる信号強度増幅を実現しました。また、炭素材料自体がその欠陥構造内に所有している内在ラジカルを用いたDNP信号強度増幅現象を発現することも観測しました。この手法により、従来の一般的NMR測定ではほとんど観測できなかった酸化グラフェン末端のメチル基を、1H-13C CP/MAS 固体NMR法[用語解説]にて明確に観測することに成功しました。このとき、信号強度増幅は10倍以上となります。また、スクロースを焼成して作製した無定形炭素材料[用語解説] においても、水酸基の信号強度の10倍以上の増幅を達成しました。
本研究により、今後DNP-NMRを用いて炭素材料の微細表面構造の解析が進むことが期待されます。DNP-NMRを用い、炭素材料の表面構造に残存する微少量の表面官能基の存在を明らかにすることで、それぞれの炭素材料の表面状態の違いを解明することができ、これにより、各種触媒元素の担持への適合性などを知ることができるようになると期待されます。適合性が判明することによって、多種多様な分野の各種用途に最適化した薄膜炭素材料の開発に大きく貢献できることが期待されます。
本研究成果は、2月14日にElsevier社が発行する学術雑誌「Carbon」のオンライン版に掲載されました。また、3月25日に出版予定の当該誌206号において、表紙(front cover)に採択されることになりました。
【論文情報】
| 論文題目 | Dynamic nuclear polarization - nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials |
| 雑誌名 | Carbon |
| 著者 | Hideka Ando, Katsuaki Suzuki, Hironori Kaji, Takashi Kambe, Yuta Nishina, Chiyu Nakano, Kazuma Gotoh |
| WEB掲載日 | 2023年2月14日 |
| 出版予定日 | 2023年3月25日 |
| DOI | 10.1016/j.carbon.2023.02.010 |

図 DNP-NMRによる観測(信号強度増幅は10倍以上となる。)
【用語説明】
担持:他の物質を固定する土台となる物質のことを担体といい、担持は、その土台に金属などの物質を付着させること。金属をグラフェン上に担持した触媒は、水酸化触媒や酸化触媒として工業的にも利用されている。
NMR (Nuclear Magnetic Resonance) :核磁気共鳴分光法。試料を磁場中に置き、電磁波を照射すると、元素ごとに特定の周波数を吸収する「共鳴」現象が生じる。周波数を観測することで水酸基、カルボキシル基、メチル基などを分別して検出が可能なため、有機化合物の分析などに広く用いられている。
DNP (Dynamic Nuclear Polarization):動的核偏極。NMR測定時にマイクロ波を照射することで測定核近傍のラジカルの磁化を測定対象原子核に移動させる手法。NMRでの共鳴信号検出の際のエネルギー準位間の電子の占有数差を大きく変化させることにより、通常のNMR信号に比べて数倍から最大で200倍以上の信号強度を得ることができる。
ラジカル:不対電子を持つ原子や分子。共有電子対を形成していないため、極めて不安定かつ反応性が高い状態である。
1H-13C CP/MAS 固体NMR:体交差分極(CP)マジック角回転(MAS)NMR法。1H元素の磁化を13C元素に特定条件下で移動させ、さらに試料全体を数kHz以上の超高速回転で回転させることにより、炭素のNMR信号を高感度、高精度で検出する実験手法。
無定形炭素材料:黒鉛やダイヤモンド、カーボンナノチューブなどのような規則的構造をもつ炭素材料とは異なり、結晶構造を持たない非結晶性炭素。但し、非結晶性ではあるが完全に規則構造が無い訳ではなく、ある程度炭素の層状構造や内部細孔などが存在することが知られている。無定形炭素の一種である難黒鉛化性炭素(ハードカーボン)はリチウムイオン電池・ナトリウムイオン電池の負極として用いられている。
令和5年3月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/03/07-1.html12/12(月)~13(火) 自然との共感・共生国際シンポジウム開催
標題について、共創的国際研究推進本部 サイレントボイスセンシング国際研究拠点主催、未来創造イノベーション推進本部 自然との共感・共生テクノロジー研究センター共催による「自然との共感・共生国際シンポジウム」を下記のとおり開催しますので、ご案内いたします。
本シンポジウムでは、自然界のサイレントボイス(声なき声)を聴きとり豊かで寛容な共感・共生社会の実現を目指す研究の最前線を紹介します。
自然災害や病気等の予知及び予防を可能とするナノ・マクロのマルチスケールセンシングや、自然界の情報伝達機構を模倣する革新的技術、また、ユーザー視点の感性的デザインなど、技術の現状と今後の展望を議論します。
| 開催日時 | 令和4年12月12日(月) 9:20~16:35 令和4年12月13日(火) 9:50~17:00 |
| 会 場 | 石川ハイテク交流センター(石川県能美市旭台2-1)及びオンライン ※ハイブリッド開催(要・参加申込) |
| 講演者 | 【第1部】 プレナリー講演 榎戸 輝揚 氏(京都大学大学院理学研究科 准教授) 竹内 渉 氏(東京大学生産技術研究所 教授) 水田 博 教授(サスティナブルイノベーション研究領域) ポスター発表 |
| 言 語 | 日本語、英語 |
| 詳 細 | https://www.jaist.ac.jp/event/SVS2022/index.html |
| 申込み | https://forms.gle/dByuGn2s4kDziWgV8 申込期限:令和4年12月5日(月) |
| 問合せ先 | 物質化学フロンティア研究領域 教授 長尾 祐樹 ynagao@jaist.ac.jp |





