研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。物質化学領域の松村研究室の論文がBiomacromolecules誌の表紙に採択
物質化学領域の松村 和明教授、ラジャン ロビン助教、知能ロボティクス領域のホ アン ヴァン准教授、学生のHarit Pitakjakpipopさん(博士後期課程3年、松村研究室)、Duy Dang Nguyenさん(博士後期課程1年、ホ研究室)らの論文が米国化学会(ACS)刊行のBiomacromolecules誌の表紙(Inner cover)に採択されました。
■掲載誌
Biomacromolecules 2022, Volume 23, Issue 1
掲載日2022年1月10日
■著者
Harit Pitakjakpipop, Robin Rajan, Kittipong Tantisantisom, Pakorn Opaprakasit, Duy Dang Nguyen, Van Anh Ho, Kazuaki Matsumura*, Paisan Khanchaitit*(*責任著者)
■論文タイトル
Facile Photolithographic Fabrication of Zwitterionic Polymer Microneedles with Protein Aggregation Inhibition for Transdermal Drug Delivery
■論文概要
マイクロニードルは、皮膚に貼るだけで薬物を投与することが可能であり、痛みを伴わない新規経皮吸収型製剤としての適用が期待されています。本論文では、タンパク質保護高分子をマイクロニードルに応用することで、タンパク質医薬品の機能を維持したまま投与が可能なマイクロニードルを提案しました。本論文はタイのタマサート大学との協働教育プログラムおよびホ研究室との共同研究の成果です。
論文詳細:https://doi.org/10.1021/acs.biomac.1c01325
表紙詳細:https://pubs.acs.org/toc/bomaf6/23/1
令和4年1月13日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/01/13-1.html研究員のZHANGさんが国際会議ISSS-9においてYoung Researchers' Awardを受賞

研究員のZHANG, Jiaqiさん(応用物理学領域、大島研究室)が国際会議The 9th International Symposium on Surface Science(ISSS-9)においてYoung Researchers' Awardを受賞しました。
ISSSは、日本表面真空学会が主催で3年ごとに開催しています。同会議には国内外の表面科学・ナノサイエンス分野の研究者約500名が参加し、ハインリッヒ・ローラー賞(ハインリッヒ・ローラー博士‐1986年に走査型トンネル顕微鏡の設計でノーベル賞を受賞)の受賞式が行われることでも国際的に知られています。
今回、ISSS-9は、令和3年11月28日から12月1日にかけてオンラインにて開催されました。
■受賞年月日
令和3年12月1日
■研究題目、論文タイトル等
Mechanical properties of Pt atomic chains measured by TEM coupled with a quartz resonator
■研究者、著者
〇Jiaqi Zhang1, Masahiko Tomitori1, Toyoko Arai2, Kenta Hongo1, Ryo Maezono1 and Yoshifumi Oshima1
1) 本学
2) 金沢大学
■受賞対象となった研究の内容
Monatomic chains have shown unique physical and chemical properties, which draws a different picture from their bulk counterparts. It has been reported that the electrical or magnetic properties can be tuned by controlling the length of the atomic chains, which indicate that the mechanical properties is very important for their applications. However, the mechanical properties of atomic chains have not been clarified experimentally. To solve this problem, we developed an in-situ TEM holder equipped with a quartz resonator as force sensor to measure the mechanical properties of atomic chains when observing their atomic configurations.
A quartz length-extension resonator (LER) was used to measure the stiffness of platinum (Pt) monatomic chains from its frequency shift. Because the stiffness of the atomic chain suspended between the edge of LER and the fixed counter base can be measure precisely with very small oscillation amplitude (about 30 pm). The atomic resolution TEM images and videos were captured simultaneously with measuring the conductance and stiffness by our developed TEM holder.
The stiffness of atomic chains with 2-5 atoms were obtained. By subtracting the stiffness of the electrodes supporting the monatomic chain from the measured stiffness, we found that the stiffness of a Pt monatomic chain varied with the number of the constitute atoms in the chain. We investigated the stiffness of about 150 Pt monatomic chains for reproducibility and confirmed that the middle bond stiffness (25N/m) in the chain was slightly higher than that of the bond connect to the suspending tip (23N/m). In addition, the maximum elastic strain of individual bond in the chain was as large as 24%. These values were obviously different from the bulk counterpart. Such peculiar values could be briefly explained by the concept of "string tension".
■受賞にあたって一言
I'm incredibly honored with Young Researchers' Award in ISSS-9. First, I would express my appreciation to the organizer of this symposium for providing us the opportunity to share and discuss our researches. Importantly, I would describe my gratitude to Prof. Oshima, Prof. Tomitori, Prof. Arai, for their precious support. And I am also grateful to Oshima-LAB members for their kind encouragement. This award is an essential motivation for me to further research and contribute to nanoscience community.
令和4年1月12日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2022/01/12-2.html物質化学領域の長尾准教授の論文がMacromolecular Rapid Communications誌の表紙に採択

物質化学領域の長尾 祐樹准教授の論文がWiley社刊行のMacromolecular Rapid Communications誌の表紙(Front cover)に採択されました。
■掲載誌
Macromol. Rapid Commun. 2022, Volume 43, Issue 1
掲載日2022年1月7日
■著者
Lipeng Zhai, Yuze Yao, Baiwei Ma, Md. Mahmudul Hasan, Yuxi Han, Liwei Mi, Yuki Nagao, Zhongping Li
■論文タイトル
Accumulation of Sulfonic Acid Groups Anchored in Covalent Organic Frameworks as an Intrinsic Proton-Conducting Electrolyte
■論文概要
スルホン酸基を結合させた共有結合性有機フレームワーク(COF)において、細孔内部の一次元チャネルを用いてプロトン伝導性電解質を合成しました。このスルホン化COFは、25℃および相対湿度(RH)95%で、1.5×10-2 S cm-1の優れたプロトン伝導性を達成しました。
論文詳細:https://doi.org/10.1002/marc.202100590
表紙詳細:https://onlinelibrary.wiley.com/toc/15213927/2022/43/1
令和4年1月12日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/01/12-1.html多機能ナノ粒子を用いて、無傷のリソソームを迅速かつ高純度に単離する手法を開発

![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 国立大学法人東北大学 |
多機能ナノ粒子を用いて、無傷のリソソームを迅速かつ高純度に単離する手法を開発
ポイント
- 磁性―プラズモンハイブリッドナノ粒子を哺乳動物細胞のリソソーム内腔へエンドサイトーシス*1経路で高効率に送達することに成功
- ハイブリッドナノ粒子の細胞内輸送過程をプラズモンイメージング*2によって精確に追跡することで、高純度にリソソームを磁気分離するための最適培養時間を容易に決定可能
- リソソーム内腔にハイブリッドナノ粒子を送達後、細胞膜を温和に破砕し、4℃で30分以内にリソソームを磁気分離することで、細胞内の状態を維持したままリソソームの高純度単離に成功
北陸先端科学技術大学院大学(JAIST)(学長:寺野 稔、石川県能美市) 先端科学技術研究科 前之園 信也 教授、松村 和明 教授、平塚 祐一 准教授の研究チームは、東北大学(総長:大野 英男、宮城県仙台市)大学院生命科学研究科の田口 友彦教授と共同で、磁気分離能(超常磁性)とバイオイメージング能(プラズモン散乱*3特性)を兼ね備えた多機能ナノ粒子(磁性―プラズモンハイブリッドナノ粒子)を用いて、細胞内の状態を維持したままリソソームを迅速かつ高純度に単離する技術を世界で初めて開発しました。 |
【背景と経緯】
リソソームは60を超える加水分解酵素とさまざまな膜タンパク質を含む細胞小器官(オルガネラ)で、タンパク質、炭水化物、脂質、ヌクレオチドなどの高分子の分解と再利用に主要な役割を果たします。これらの機能に加えて、最近の発見では、リソソームがアミノ酸シグナル伝達にも関与していることがわかってきています。リソソーム機能障害に由来する疾患も数多く存在します。そのため、リソソームの機能をより深く理解することは基礎生物学においても医学においても重要な課題です。
リソソームの代謝物の探索は、近年急速に関心が高まっている研究分野です。たとえば、飢餓状態と栄養が豊富な状態でリソソームの代謝物を研究することにより、アミノ酸の流出がV-ATPaseおよびmTORに依存することが示されました(M. Abu-Remaileh et al., Science, 2017, 358, 807)。このように、外部刺激に応答したリソソームの動的な性質を調べるためには、リソソームを細胞内の状態を維持したまま迅速かつ高純度に分離する必要があります。
一般的に、リソソームの単離は密度勾配超遠心分離法*4によって行われていますが、密度勾配超遠心分離法には二つの大きな問題があります。まず一つ目の問題として、細胞破砕液にはほぼ同じ大きさと密度を持ったオルガネラが多種類あるため、得られた画分にはリソソーム以外の別のオルガネラが不純物として混ざっていることがよくあります。したがって、リソソーム画分のプロテオミクス解析を行っても、完全な状態のリソソームに関する情報を得ることができません。二つ目の問題として、分離プロセスに長い時間がかかるため、リソソームに存在する不安定なタンパク質は脱離、変性、または分解される可能性があります。この問題も、リソソームに関する情報を得ることを大きく妨げます。
これらの問題を克服するために、リソソームを迅速に単離するための他の技術が開発されました。たとえば、磁気ビーズを用いた免疫沈降法*5によってリソソームを迅速に分離できることが示されました(M. Abu-Remaileh et al., Science, 2017, 358, 807)。しかし、この手法では、ウイルスベクターのトランスフェクションなどによって抗体修飾磁気ビーズが結合できるリソソーム膜貫通タンパク質を発現させる必要があります。この方法は、密度勾配超遠心分離法よりも高純度のリソソーム画分が得られますが、リソソーム膜のタンパク質組成とその後のプロテオミクス解析に悪影響を与える可能性が指摘されています(J. Singh et al., J. Proteome Res., 2020, 19, 371-381.)。
【研究の内容】
本研究では、無傷のリソソームを迅速かつ効率的に分離する新たな単離法として、アミノデキストラン(aDxt)で表面修飾したAg/FeCo/Ag コア/シェル/シェル型磁性―プラズモンハイブリッドナノ粒子(MPNPs)をエンドサイトーシス経路を介してリソソームの内腔に集積した後、細胞膜を温和に破砕し、リソソームを磁気分離するという手法を開発しました(図1)。リソソームの高純度単離のためには、エンドサイトーシス経路におけるaDxt結合MPNPs(aDxt-MPNPs)の細胞内輸送を精確に追跡することが必要となります。そこで、aDxt-MPNPsとオルガネラの共局在の時間変化を、aDxt-MPNPsのプラズモンイメージングとオルガネラ(初期エンドソーム、後期エンドソームおよびリソソーム)の免疫染色によって追跡しました(図2)。初期エンドソームおよび後期エンドソームからのaDxt-MPNPsの脱離と、リソソーム内腔へのaDxt-MPNPsの十分な蓄積に必要な最適培養時間を決定し、その時間だけ培養後、リソソームを迅速かつマイルドに磁気分離しました。細胞破砕からリソソーム単離完了までの経過時間(tdelay)と温度(T)を変化させることにより、リソソームのタンパク質組成に対するtdelayとTの影響をアミノ酸分析によって調べました。その結果、リソソームの構造は細胞破砕後すぐに損なわれることがわかり、リソソームを可能な限り無傷で高純度で分離するには、tdelay ≤ 30分およびT = 4℃という条件で磁気分離する必要があることがわかりました(図3)。これらの条件を満たすことは密度勾配超遠心分離法では原理的に困難であり、エンドサイトーシスという細胞の営みを利用して人為的にリソソームを帯磁させて迅速かつ温和に単離する本手法の優位性が明らかとなりました。
本研究成果は、2022年1月3日(米国東部標準時間)に米国化学会の学術誌「ACS Nano」のオンライン版に掲載されました。
【今後の展開】
本手法はリソソーム以外のオルガネラの単離にも応用可能な汎用性のある技術であり、オルガネラの新たな高純度単離技術としての展開が期待されます。
図1 磁性―プラズモンハイブリッドナノ粒子を用いたリソソームの迅速・高純度単離法の概念図
図2 COS-1細胞におけるaDxt-MPNPsの細胞内輸送。 (A)aDxt-MPNPsの細胞内輸送の概略図(tは培養時間)。 (B)aDxt-MPNPsとリソソームマーカータンパク質(LAMP1)の共局在を示す共焦点レーザー走査顕微鏡像 (核:青、aDxt-MPNPs:緑、リソソーム:赤)。 aDxt-MPNPsはプラズモンイメージングによって可視化。 スケールバーは20 µm。 |
図3 単離されたリソソームのウエスタンブロッティングおよびアミノ酸組成分析の結果。 (A)ネガティブセレクション(NS)およびポジティブセレクション(PS)画分。 (B)PS画分の共焦点レーザー走査顕微鏡画像(緑:aDxt-MPNPs、赤:LAMP1)。 (C)NSおよびPS画分、および細胞破砕液のウエスタンブロット結果。 (D)異なる温度でtdelayを変化した際に得られたリソソーム画分のアミノ酸含有量の変化。 水色(4℃、tdelay = 30分)、青(4℃、tdelay = 120分)、ピンク(25℃、tdelay = 30分)、 および赤(25℃、tdelay = 120分)。 |
【論文情報】
掲載誌 | ACS Nano |
論文題目 | Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles (磁性―プラズモンハイブリッドナノ粒子を用いた完全な状態のリソソームの迅速かつ温和な単離) |
著者 | The Son Le, Mari Takahashi, Noriyoshi Isozumi, Akio Miyazato, Yuichi Hiratsuka, Kazuaki Matsumura, Tomohiko Taguchi, Shinya Maenosono* |
掲載日 | 2022年1月3日(米国東部標準時間)にオンライン版に掲載 |
DOI | 10.1021/acsnano.1c08474 |
【用語説明】
*1.エンドサイトーシス:
細胞が細胞外の物質を取り込む過程の一つ
*2.プラズモンイメージング:
プラズモン散乱を用いて、光の回折限界以下のサイズの金属ナノ粒子を光学顕微鏡(蛍光顕微鏡や共焦点顕微鏡など)で可視化すること
*3.プラズモン散乱:
金属ナノ粒子表面での自由電子の集合振動である局在表面プラズモンと可視光との相互作用により、可視光が強く散乱される現象
*4.密度勾配超遠心分離法:
密度勾配のある媒体中でサンプルに遠心力を与えることで、サンプル中の構成成分がその密度に応じて分離される方法
*5.免疫沈降法:
特定の抗原を認識する抗体を表面修飾したビーズ用い、標的抗原が発現したオルガネラを細胞破砕液中から選択的に分離する免疫化学的手法
令和4年1月5日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/01/05-2.htmlダイヤモンド量子イメージングプローブの新規作製法を開発 -ナノ量子イメージングに道-

ダイヤモンド量子イメージングプローブの新規作製法を開発
-ナノ量子イメージングに道-
ポイント
- レーザー加工と集束イオンビーム加工を用いた走査ダイヤモンド量子イメージングプローブの作製法の開発に成功
- 高性能化へ向けた加工自由度の高いナノ量子センシング・イメージングプローブ作製法として期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 応用物理学領域の貝沼 雄太大学院生(博士後期課程)、安 東秀准教授らは、京都大学、産業技術総合研究所と共同で、レーザー加工と集束イオンビーム加工注1)によりダイヤモンド中の窒素-空孔複合体中心(NV中心(図1[右]))注2)と呼ばれる極小な量子センサーをプローブ先端に含有するナノ量子イメージングプローブ(図1[左])の新規作製法の開発に成功しました。 |
【背景と経緯】
近年、新しいデバイスやセンサーの創出による環境・エネルギー問題の解決、安心安全な社会の実現、これらによる人類社会の持続的繁栄への貢献が求められています。この中で量子計測・センシング技術は、量子力学を原理とした従来とは異なる革新的な技術を提供する分野であり、将来の社会基盤を支えるしくみを一新すると期待されています(量子技術イノベーション)。その中でも、ダイヤモンド中の欠陥構造であるNV中心を用いた量子計測技術は、室温・大気中で動作可能なこと、センサーサイズがナノスケールであることより注目を集めており、特に、NV中心を走査プローブとして用いた際にはナノスケールの量子イメージングの実現が期待されています。
従来、走査NV中心プローブの作製にはフォトリソグラフィーと電子線リソグラフィーを用いたリソグラフィー法が用いられていましたが、この方法ではプロセスが複雑であること、再加工ができないという課題がありました。今回の研究では、レーザー加工と集束イオンビーム加工(FIB)による加工自由度の高い走査NV中心プローブの作製法を開発し、さらに磁気イメージングの動作を実証しました。
【研究の内容】
図2に示すように、まず、表面下約40ナノメートルにNV中心を有するダイヤモンド結晶の板を、レーザー加工によりロッド状の小片に加工した上で、水晶振動子型の原子間力顕微鏡の先端に取り付けました。続いて、FIB加工においてドーナツ型の加工形状を用いることで、当該小片の中心位置に存在するNV中心の加工ダメージを回避して走査ダイヤモンドNV中心プローブを作製しました。このNV中心プローブを走査しながら磁気テープ上に記録された磁気構造からの漏洩磁場を光学的磁気共鳴検出法(ODMR)注3)により計測し、磁気構造のイメージングに成功しました(図3)。
本研究成果は、2021年12月28日(米国東部標準時間)に米国物理学協会の学術誌「Journal of Applied Physics」のオンライン版に掲載されました。
【今後の展開】
本研究では、レーザー加工とFIB加工による加工自由度の高い走査NV中心プローブの作製法の開発に成功しました。今後、プローブの形状や表面状態を最適化することで、より高性能な走査ダイヤモンドNV中心プローブを作製し量子イメージング分野に貢献することが期待されます。
図1 ダイヤモンド中の窒素(N)-空孔(V)複合体中心(NV中心)[右]と、
走査ダイヤモンドNV中心プローブ[左]
図2 レーザー加工とFIB加工による走査ダイヤモンドNV中心プローブの作製
図3 走査ダイヤモンドNV中心プローブによる磁気テープの磁気構造イメージング
【論文情報】
掲載誌 | Journal of Applied Physics |
論文題目 | Scanning diamond NV center magnetometor probe fabricated by laser cutting and focused ion beam milling |
著者 | Yuta Kainuma, Kunitaka Hayashi, Chiyaka Tachioka, Mayumi Ito, Toshiharu Makino, Norikazu Mizuochi, and Toshu An |
掲載日 | 2021年12月28日(米国東部標準時間) |
DOI | 10.1063/5.0072973 |
【研究助成費】
本研究の一部は、次の事業の支援を受けて実施されました。
・科学技術振興機構(JST)戦略的創造研究推進事業CREST (JPMJCR1875)、
次世代研究者挑戦的研究プログラム(未来創造イノベーション研究者支援プログラム)(JPMJSP2102)
・澁谷学術文化スポーツ振興財団
・日本学術振興会(JSPS)科研費 基盤研究(C) (21K04878)
・文部科学省 光・量子飛躍フラッグシッププログラム(Q-LEAP, JPMXS0118067395)
【用語解説】
注1)集束イオンビーム加工(Focused Ion Beam, FIB)
イオンビームにより材料をナノスケールで加工する加工法。本研究では、ガリウム(Ga)イオンを用いてダイヤモンド片をプローブ形状に加工した。
注2)NV中心
ダイヤモンド中の窒素(N)不純物と空孔(V)が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定的にスピン量子状態が存在する。
注3)光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
令和4年1月5日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/01/05-1.html学生のZHOUさんが第29回日本ポリイミド・芳香族系高分子会議において優秀ポスター賞を受賞
学生のZHOU, Jiabeiさん(博士前期課程2年、環境・エネルギー領域、金子研究室)が第29回日本ポリイミド・芳香族系高分子会議において優秀ポスター賞を受賞しました。
日本ポリイミド・芳香族系高分子系会議では、芳香族系高分子を中心に幅広い分野における合成、材料分野を基軸として研究を展開する研究者・学生らの学術交流として、毎年、研究発表会を開催しています。今年はコロナ禍の影響で対面&オンラインのハイブリッド型で、令和3年12月10日に開催されました。
優秀ポスター賞は、発表会ポスターセッションにおいて優秀な研究発表を行った学生に授与されます。
*参考:第29回日本ポリイミド・芳香族系高分子会議
■受賞年月日
令和3年12月10日
■発表者名
Zhou Jiabei、Zhong Xianzhu、Nag Aniruddha、高田健司、金子達雄
■発表題目
Toughening of Ultrahigh Thermoresistant Biopolybenzimidazoles by Forming Porous Structure
■研究概要
本研究では、スーパーエンジニアリングプラスチックの中でも特に高レベルの力学的・熱的安定性を有するポリベンズイミダゾールの多孔質化による高タフネス化に成功しました。シリカ粒子の分散・除去によるハードテンプレート法で多孔質ポリベンズイミダゾールフィルムを作製したところ、フィルムの力学物性が大きく向上する性質を見出しました。走査型プローブ顕微鏡によりポリベンズイミダゾール表面の力学強度を観測したところ、シリカ分散により生じた空孔周辺の靭性が著しく向上し、その空孔率が増えるごとに高靭性を示すことが分かりました。従来、ポリベンズイミダゾールは高い化学的安定性から物性の改質は困難でしたが、本研究で確立した方法を用いれば複雑な工程無しで、成型物の物性を改良することができ、材料開発における重要な手法となることが期待されます。
■受賞にあたって一言
この度は、第29回日本ポリイミド・芳香族系高分子会議におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている金子達雄教授、高田健司助教にこの場をお借りして心より御礼を申し上げます。さらに、VISTECのNag Aniruddha様、株式会社島津製作所の長野浩一様、および多くのご助言をいただきました研究室のメンバーに深く感謝いたします。


令和3年12月28日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/12/28-1.html環境・エネルギー領域の高田助教の研究課題が松籟科学技術振興財団の研究助成に採択
公益財団法人 松籟科学技術振興財団の研究助成に環境・エネルギー領域の高田 健司助教の研究課題が採択されました。
松籟科学技術振興財団では、科学技術の振興に貢献するため、科学技術、特に天然物の有効利用、生理活性物質、有機新素材及び電子材料等、同財団の指定する課題分野にて優れた研究に携わる研究者への助成を行っています。
*詳しくは、松籟科学技術振興財団ホームページをご覧ください。
■研究者名
環境・エネルギー領域 高田 健司助教
■採択期間
令和4年4月~令和5年3月まで
■研究課題名
バイオマス由来ヒドロキシ酸を基盤としたフォトメカニカル材料の開発
■研究概要
フォトメカニカル材料は光によって材料の形状・形態を大きく変化させることが可能であり、古くからスマートマテリアルとしての利用が注目されていました。また、エネルギー効率の良い光を用いるという点からサスティナブルマテリアルとしても注目されており、その物性の精密制御や機能化法の確立が急務の課題となっています。本研究では、主鎖に桂皮酸を有するポリエステルの特徴的な構造に対して、リビング重合によるブロック/グラフトポリマー化による柔軟性の精密コントロールを達成し、多様な刺激応答性能を有するバイオベースプラスチックの提案を目的としています。
■採択にあたって一言
本研究課題を採択頂き大変嬉しく存じます。また、松籟科学技術振興財団、および本助成の選考委員会の皆様に深く感謝申し上げます。本研究が、地球の環境・エネルギー問題に資するものになるよう邁進してまいります。また、本研究に関して多大なアドバイスをいただいた金子達雄教授はじめ、様々な知見を頂いた研究室の皆様、および研究協力者の方々にこの場をお借りして厚く御礼申し上げます。
令和3年12月28日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/12/28-1.html量子センサーによる熱磁気流の観測に成功 -量子センシングとスピンカロリトロニクスの融合に道-

量子センサーによる熱磁気流の観測に成功
-量子センシングとスピンカロリトロニクスの融合に道-
ポイント
- 熱により励起された磁気の流れ(熱マグノン流)をダイヤモンド中のNV中心と呼ばれる極小な量子センサーを用いて計測することに成功
- 量子センシング分野とスピンカロリトロニクス分野を融合する新手法として期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 応用物理学領域のドゥイ プラナント元博士後期課程学生(2019年6月修了、安研究室)、安 東秀准教授らは、京都大学、物質・材料研究機構と共同で、熱により励起された磁気の流れ(熱マグノン流注1))をダイヤモンド中の窒素-空孔複合体中心(NV中心(図1))注2)と呼ばれる極小な量子センサー注3)を用いて計測することに成功しました。 |
【背景と経緯】
近年、持続可能な社会の実現(SDGs)に向けた環境・エネルギー・情報通信などの問題への取り組みが活発化する中で、計測分野においては、量子力学を原理とした新しい計測技術に基づき従来の性能を凌駕する量子センシング分野の発展が期待されています。その中でも、ナノサイズの量子センサーとしてダイヤモンド中の欠陥構造であるNV中心が注目されています。
一方で、デバイス分野においては、これまで情報を入出力する方法として電流が用いられてきましたが、デバイスの微細化とともに多くのエネルギーが熱として浪費され発熱によりデバイスの動作が不安定となる問題がありました。これを解決する分野として、電流を用いずに電子の自由度であるスピン注4)を用いるスピントロニクス分野注5)が期待され、その中でもスピンと熱の相互作用を積極的に利用することで問題を解決しようとするスピンカロリトロニクス注6)が注目されています。
従来、量子センシング分野とスピンカロリトロニクス分野は独立に発展してきましたが、今回、これらを融合した分野の発展に繋がる新手法を実証しました。今回の研究では、熱により励起された磁気の流れ(熱マグノン流)をNV中心に存在する量子スピン状態により計測が可能であることを実証しました。
【研究の内容】
図2に示すように、まず、磁性ガーネット試料(Y3Fe5O12: YIG) 注7)中に温度勾配を印加して熱の流れを創り、これにより熱励起された磁気の流れ(熱マグノン流)を生成します。続いて、試料端でマイクロ波によりコヒーレント(エネルギーと位相の揃った)なスピン波注8)を生成して試料中に伝搬させます。この状況で試料中央にはダイヤモンドNV中心を含有したダイヤモンド片がYIGに近接され、このダイヤモンドNV中心を用いてスピン波を計測しました(図3(左))。今回、スピン波の強度を、光学的磁気共鳴検出法注9)を用いたNV中心のラビ振動注10)により計測し、熱マグノン流による変調信号を観測することに成功しました(図3(右))。
本研究成果は、2021年12月23日(米国東部標準時間)に米国物理学会の学術誌「Physical Review Applied」のオンライン版に掲載されました。
【今後の展開】
本研究では、スピン波を介して熱マグノン流を量子センサーであるNV中心を用いて計測することに成功しました。このことは、量子センシングとスピンカロリトロニクス分野を融合する新手法となることを示唆します。特に、NV中心はナノスケールの分解能で量子計測が可能であり、将来的には熱マグノン流に関する現象をナノスケールで計測すること、さらには熱マグノン流とNV中心の量子状態との相互作用に関する新しい研究展開を可能にし、スピンカロリトロニクスと量子センシングの融合研究に貢献することが期待されます(図4)。
図1 ダイヤモンド中の窒素(N)-空孔(V)
複合体中心(NV中心)スピン状態
図2 スピン波を介したNV中心による熱マグノン流計測の概念図
図3 (左)実験配置図、(右)NV中心のラビ振動計測による熱スピン流による変調信号の観測
図4 量子センシングとスピンカロリトロニクスの融合
【論文情報】
掲載誌 | Physical Review Applied |
論文題目 | Probing Thermal Magnon Current Mediated by Coherent Magnon via Nitrogen-Vacancy Centers in Diamond |
著者 | Dwi Prananto, Yuta Kainuma, Kunitaka Hayashi, Norikazu Mizuochi, Ken-ichi Uchida, Toshu An* |
掲載日 | 2021年12月23日(米国東部標準時間) |
DOI | 10.1103/PhysRevApplied.16.064058 |
【研究助成費】
本研究の一部は、次の事業の一環として実施されました。
・ 日本学術振興会(JSPS)科研費
新学術領域研究「ハイブリッド量子科学」公募研究(18H04289)、基盤研究(B) (18H01868) 、
若手研究(19K15444)、新学術領域研究(15H05868)
・ 科学技術振興機構(JST)戦略的創造研究推進事業CREST(JPMJCR1875, JPMJCR1711)
・ 文部科学省 光・量子飛躍フラッグシッププログラム(Q-LEAP, JPMXS0118067395)
【用語説明】
注1)熱マグノン流
磁性体中の磁気の流れ(マグノン、またはスピン波とも呼ばれる)が熱により励起されたもの
注2)NV中心
ダイヤモンド中の窒素(N)不純物と空孔(V)が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定的にスピン量子状態が存在する。
注3)量子センサー
量子力学を原理とした量子状態を利用して超高感度測定を行うセンサー
注4)スピン
電子が有する自転のような性質。電子スピンは磁石の磁場の発生源でもあり、スピンの状態には上向きと下向きという2つの状態がある。
注5)スピントロニクス
電子の持つ電荷とスピンの2つの性質を利用して新しい物理現象や応用研究をする分野
注6)スピンカロリトロニクス
スピントロニクスの分野の中でもスピンと熱の相互作用の利用を目指す分野
注7)磁性ガーネット
希土類元素をイットリウム(Y)としたイットリウム鉄ガーネット(Y3Fe5O12)結晶。スピン波の拡散長が数ミリメートル以上と長いことで知られている。
注8)スピン波
スピンの集団運動であり、個々のスピンの磁気共鳴によるコマ運動(歳差運動)が磁気の波となって伝わっていく現象
注9)光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
注10)ラビ振動
ここではNV中心の2つのスピン状態間のエネルギーに相当するマイクロ波磁場を印加することにより状態が2準位の間を振動する現象。本研究ではスピン波(マグノン)が生成するマイクロ波磁場によりラビ振動を励起した。
令和3年12月27日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/12/27-1.html学生の貝沼さんが令和3年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞

学生の貝沼 雄太さん(博士後期課程3年、応用物理学領域、安研究室)が令和3年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
令和3年度応用物理学会北陸・信越支部学術講演会は、12月4日に信州大学工学部及びオンラインにてハイブリッド開催され、一般54名・学生78名が参加しました。
この学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対して、その功績を称えることを目的として発表奨励賞が授与されます。
■受賞年月日
令和3年12月4日
■講演題目
「走査ダイヤモンドNV中心磁気プローブによる磁気ドメインイメージング」
■研究者、著者
貝沼 雄太、林 都隆、安 東秀
■講演概要
ダイヤモンド中の格子欠陥の一種として知られている窒素-空孔(NV)中心は、室温下で優れた磁場感度と高い空間分解能を有する磁気センサとして応用されています。このNV中心を含有するダイヤモンドプローブを走査プローブへ応用することでナノメートルスケールの高い空間分解能の実現が期待されています。従来、走査NV中心プローブの作製はリソグラフィ法が主に用いられていましたが、我々は加工自由度の高い集束イオンビーム(FIB)を用いた加工に着目し、FIBを用いて走査ダイヤモンドNV中心磁気プローブを作製し、磁性試料の磁気ドメイン界面のイメージングが可能なことを実証しました。今後、FIB加工により走査NV中心プローブの形状の最適化を進めることで、磁場感度と空間分解能向上の実現が期待されます。
■受賞にあたって一言
この度は、令和3年度北陸・信越支部学術講演会で発表奨励賞をいただけたこと、講演会主催者様に深くお礼申し上げます。我々の地道な努力が今回の受賞に至ったと思っております。ご指導いただきました安東秀准教授ならびに支援くださった研究室メンバーに深くお礼申し上げます。本受賞をきっかけとして今後の研究生活の励みにしていきたいと思います。
令和3年12月23日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/12/23-2.htmlナノ粒子と近赤外レーザー光でマウス体内のがんを検出・治療できる! ~ ガンマ線架橋したゼラチン-液体金属ナノ粒子の開発により実現 ~

![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 国立研究開発法人量子科学技術研究開発機構 |
ナノ粒子と近赤外レーザー光でマウス体内のがんを検出・治療できる!
~ ガンマ線架橋したゼラチン-液体金属ナノ粒子の開発により実現 ~
ポイント
- 液体金属に生体分子を吸着させた複合体へのガンマ線照射によりコア-シェル型の構造を持つナノ粒子の作製に成功
- ガンマ線架橋したゼラチン-液体金属ナノ粒子がEPR効果により腫瘍に集積し、マウスに移植したがんの可視化と、光熱変換によるがん治療が可能であることを実証
- 当該ナノ粒子と近赤外光を組み合わせた新たながん診断・治療技術の創出に期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 物質化学領域の都 英次郎准教授とセキ ウン大学院生(博士前期課程)は、量子科学技術研究開発機構(理事長・平野 俊夫、千葉県千葉市)、高崎量子応用研究所 先端機能材料研究部(群馬県高崎市)の田口 光正上席研究員(「生体適合性材料研究プロジェクト」プロジェクトリーダー)、木村 敦上席研究員と共同で、量子ビーム(ガンマ線*1)架橋技術を用いて、ガリウム-インジウム合金から成る液体金属*2 表面に様々な生体高分子(ゼラチン、DNA、レシチン、牛血清蛋白質)がコートされ、安定な状態を保つことができるコア-シェル型*3 のユニークな構造を有すナノ粒子の作製に成功した(図1)。得られたゼラチン-液体金属ナノ粒子は、EPR効果*4 によって大腸がんを移植したマウス体内の腫瘍内に集積し、生体透過性の高い近赤外レーザー光*5 により、がん患部の可視化と光熱変換による治療が可能であることを実証した。さらに、マウスがん細胞とヒト正常細胞を用いた細胞毒性試験と生体適合性試験を行い、いずれの検査からもゼラチン-液体金属ナノ粒子が生体に与える影響は極めて少ないことがわかった。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待される。 |
【研究背景と内容】
ガリウム・インジウム(Ga/In)合金からなる室温で液体の金属(液体金属)は、高い生体適合性と優れた物理化学的特性を有することが知られており、とりわけナノ粒子化した液体金属をバイオメディカル分野に応用する研究に大きな注目が集まっている。研究チームでも、液体金属をがん患部に送り込むことができれば、生体透過性の高い近赤外レーザー光を用いることで、患部の可視化や光熱変換を利用した、新たながんの診断や治療が実現できるのではないかと考え、研究をスタートさせた。
液体金属をナノ粒子化するためには煩雑な合成プロセスが必要であり、ナノ粒子化した液体金属の構造や機能を溶媒中で安定的に保持させることは難しい。そこで、研究チームは、液体金属をがん患部まで送り、がん細胞内に取り込ませるために、液体金属表面に生体高分子(ゼラチン、DNA、レシチン、牛血清蛋白質)を吸着させたコア-シェル型ナノ粒子の作製を試みた。Ga/In液体金属と生体分子の混合物に超音波照射することで、コア-シェル型ナノ粒子を形成できることを見出したが、そのままではナノ粒子の構造を水中で安定的に維持させることはできなかった。
この問題を解決するために、ナノ粒子表面の生体高分子がバラバラにならないよう、量子ビーム(ガンマ線)架橋反応を利用すれば、架橋剤などの細胞毒性を有する薬剤を用いることなく、生体高分子の特性を保持したまま安定化できると考えた。この方法でガンマ線架橋したゼラチン-液体金属ナノ粒子は、30日以上の粒径安定性を有していること、細胞に対し高い膜浸透性を有し毒性が無いこと、近赤外レーザー光照射により発熱が起こることが確認できたため、がん患部の可視化と治療効果について試験を行った。
大腸がんを移植して10日後のマウスに、ゼラチン-液体金属ナノ粒子を投与し、4時間後に740~790 nmの近赤外光を当てたところがん患部だけが蛍光を発している画像が得られ、当該ナノ粒子がEPR効果によりがん組織に取り込まれていることが分かった(図2(左))。そこで、当該ナノ粒子が集積した患部に対して808 nmの近赤外レーザー光を照射したところ、光熱変換による効果で26日後には、がんを完全に消失させることに成功した(図2(右))。
さらに、ゼラチン-液体金属ナノ粒子の細胞毒性と生体適合性を評価した。2種類の細胞[マウス大腸がん由来細胞(Colon-26)、ヒト胎児肺由来正常線維芽細胞(MRC5)]を培養する培養液中に、ゼラチン-液体金属ナノ粒子を、添加量を変えて投与・分散させ、24時間後に細胞内小器官であるミトコンドリアの活性を指標として細胞生存率を測定した結果、細胞生存率の低下は見られず、細胞毒性はなかった(図3)。また、ゼラチン-液体金属ナノ粒子をマウスの静脈から投与し、生体適合性を血液検査(1週間調査)と体重測定(約1ヵ月調査)により評価したが、いずれの項目でもゼラチン-液体金属ナノ粒子が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発した生体高分子のナノ粒子コーティング技術が、革新的がん診断・治療法の基礎に成り得ることを示すだけでなく、ナノテクノロジー、光学、量子ビーム工学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、2021年12月20日に先端材料分野のトップジャーナル「Applied Materials Today」誌(Elsevier発行)のオンライン版に掲載された。なお、本研究は、日本学術振興会科研費(基盤研究A)及び総合科学技術・イノベーション会議 官民研究開発投資拡大プログラム(Public/Private R&D Investment Strategic Expansion PrograM:PRISM)の支援のもと行われたものである。
図1. ガンマ線を利用した生体分子-液体金属ナノ複合体の合成と当該ナノ粒子を活用した光がん療法の概念。
LM: 液体金属、NIR: 近赤外、FL: 蛍光。
図2. ナノ粒子をがん患部に集積・可視化(左)し、光照射によりがんを治療(右)。
図3. CCK-8法によるゼラチン-液体金属ナノ粒子の細胞毒性評価。
赤:マウスの大腸がん細胞、グレー:ヒトの正常細胞、
RIPA: Radioimmunoprecipitation Buffer(細胞や組織の溶解に
使用される緩衝液、本実験の陽性対照に利用)
【論文情報】
掲載誌 | Applied Materials Today |
論文題目 | Sonication- and γ-ray-mediated biomolecule-liquid metal nanoparticlization in cancer optotheranostics |
著者 | Qi Yun, Atsushi Kimura, Mitsumasa Taguchi, Eijiro Miyako* |
掲載日 | 2021年12月20日にオンライン版に掲載 |
DOI | 10.1016/j.apmt.2021.101302 |
【関連研究情報】
北陸先端科学技術大学院大学(JAIST)、先端科学技術研究科物質化学領域の都研究室では、近赤外レーザー光により容易に発熱するナノ材料の特性(光発熱特性)に注目し、これまでに、"三種の神器"を備えた多機能性グラフェン(2020年4月23日 JAISTからプレス発表)、ナノテクノロジーと遺伝子工学のマリアージュ(2020年8月17日 JAISTからプレス発表)、がん光細菌療法の新生(2021年2月16日JAISTからプレス発表)などの光がん療法を開発している。
量子科学技術研究開発機構(QST)、先端機能材料研究部プロジェクト「生体適合性材料研究」では、量子ビーム微細加工技術による先端医療デバイスの創製の一環として、これまでに、診断や創薬における微量検体の分析性能が数10倍に!(2019年6月25日 QSTからプレス発表)、平面状の細胞シートが立体的に!細胞が自分の力でシートを3次元化(2021年7月14日QSTからプレス発表)などの機能性材料作製技術を開発している。
【用語説明】
*1 ガンマ線
ガンマ線とは、放射性同位元素(コバルト60など)の崩解によって放出される量子ビームの一種。
*2 液体金属
室温以下あるいは室温付近で液体状態を示す金属のこと。例えば、水銀(融点マイナス約39℃)、ガリウム(融点約30℃)、ガリウム-インジウム合金(融点約15℃)がある。
*3 コア-シェル型
コアは核、シェルは殻を意味し、一つの粒子で核と殻の素材が異なるものをこのように呼ぶ。
*4 EPR効果
100nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみがん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
*5 近赤外レーザー光
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
令和3年12月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/12/21-1.html物質化学領域の松村教授、都准教授、ラジャン助教らの論文がMaterials Today誌の表紙に採択
物質化学領域の松村 和明教授、都 英次郎准教授、ラジャン ロビン助教、研究員のSajid Fazalさん(松村研究室)、学生のNishant Kumarさん(博士後期課程2年、松村研究室)らの総説論文が材料科学の最高峰雑誌の一つであるエルゼビア社刊行のMaterials Today誌の表紙(Inner cover)に採択されました。
■掲載誌
Materials Today, Volume 51
掲載日2021年12月
■著者
Nishant Kumar, Sajid Fazal, Eijiro Miyako*, Kazuaki Matsumura*, Robin Rajan*(*責任著者)
■論文タイトル
Avengers against cancer: A new era of nano-biomaterial-based therapeutics
■論文概要
今回の論文は、抗がん治療に利用される様々なナノ材料、高分子材料を系統的に整理し、抗がん高分子化合物や免疫治療、バクテリア療法にいたるまで幅広い材料化学の観点から抗がん治療の最前線および将来展望をまとめた総説論文です。 表紙では各材料をイメージした戦士達がそれぞれの必殺技を用いてガンに立ち向かう様子を表しています。本発表は、科研費基盤研究(A)および本学の超越バイオ医工学研究拠点 リサーチコアの支援による成果です。
論文詳細:https://www.sciencedirect.com/science/article/pii/S1369702121003321
表紙詳細:https://www.sciencedirect.com/science/article/pii/S1369702121004028
令和3年12月16日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/12/16-2.html学生の柿﨑さんが第70回高分子学会北陸支部研究発表会において優秀研究賞を受賞
学生の柿﨑 翔さん(博士前期課程1年、環境・エネルギー領域、金子研究室)が第70回高分子学会北陸支部研究発表会において高分子学会北陸支部優秀研究賞を受賞しました。
高分子学会北陸支部では、北陸地域を中心に幅広い分野における高分子科学を基軸として研究を展開する研究者・学生らの学術交流として、毎年、研究発表会を開催しています。今年はコロナ禍の影響で11月27日~28日にかけてオンラインにて開催されました。
優秀研究賞は、北陸支部研究発表会の「高分子化学部門」「高分子構造・高分子物理部門」「高分子機能部門」において、それぞれ優秀な研究発表を行った学生に授与されます。
■受賞年月日
令和3年11月28日
■研究題目、論文タイトル等
Syntheses of Polymer Composites of Itaconic Acid-derived Biobased Polyamide and Nylon 11
■研究者、著者
柿﨑翔、高田健司、金子達雄
■受賞対象となった研究の内容
本研究では、ヒマシ油から抽出される11-アミノウンデカン酸をベースとしたバイオナイロンに、同じくバイオ由来で得られるイタコン酸ベースバイオナイロンをコンポジット化することに成功しました。得られたバイオナイロンコンポジットにおける11-アミノウンデカン酸の組成が増えるごとに、成型物の伸び率が向上したことから、柔軟性に優れたバイオナイロンを得ることができました。さらに当該バイオナイロン成型物をタンパク質分解酵素であるペプシンにより処理したところ、樹脂が軟化し崩壊していく挙動を示しました。これは、生体内に入ったとしても臓器を傷つけずに排出されるなど、海洋プラごみ問題である海洋生物の誤飲事故などの防止につながる成果であり、特定の条件下でのみ分解する新しいバイオベースポリマー開発に大きく寄与する研究になります。
■受賞にあたって一言
この度は、第70回高分子学会北陸支部研究発表会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている金子達雄教授、高田健司助教にこの場をお借りして心より御礼を申し上げます。さらに、多くのご助言をいただきました研究室のメンバーに深く感謝いたします。


令和3年12月16日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/12/16-1.html学生の八木さんが令和3年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞

学生の八木 稜平さん(博士前期課程2年、応用物理学領域、村田研究室)が令和3年度応用物理学会北陸・信越支部学術講演会において発表奨励賞を受賞しました。
令和3年度応用物理学会北陸・信越支部学術講演会は、12月4日に信州大学工学部及びオンラインにてハイブリッド開催され、一般54名・学生78名が参加しました。
この学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対して、その功績を称えることを目的として発表奨励賞が授与されます。
■受賞年月日
令和3年12月4日
■講演題目
「光導波路分光法を用いた有機発光ダイオードのオペランド吸収測定」
■研究者、著者
八木 稜平、江口 敬太郎、村田 英幸
■講演概要
有機発光ダイオード(OLED)は、陽極と陰極から有機層中に注入された正孔(ラジカルカチオン)と電子(ラジカルアニオン)が発光層で再結合し、一重項励起子と三重項励起子を1 : 3の割合で生成します。これらの励起子の失活過程によって、OLEDの発光効率と安定性は大きく影響されます。本研究では、光導波路分光法を動作中のOLEDの吸収スペクトル測定に応用することにより、素子内部で発生するラジカルカチオンをその場検出できる新しいオペランド吸収測定法を開発しました。そして、電荷注入によって生成したラジカルカチオンの吸収スペクトル測定に初めて成功しました。
■受賞にあたって一言
この度、令和3年度北陸・信越支部発表奨励賞をいただけたことを大変光栄に思います。ご指導いただきました村田英幸教授、江口敬太郎助教ならびに貴重なご意見を頂いた研究室のメンバーに深くお礼申し上げます。


令和3年12月14日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/12/14-1.html生命機能工学領域の藤本教授らの論文がJournal of Chemical Technology and Biotechnology誌の表紙に採択

生命機能工学領域の藤本 健造教授らの論文がWiley社刊行の Journal of Chemical Technology and Biotechnology誌の表紙(Front cover)に採択されました。
■掲載誌
Journal of Chemical Technology and Biotechnology
掲載日2021年12月2日
■著者
Kenzo Fujimoto*, Masakatsu Ichikawa, Shigetaka Nakamura
■論文タイトル
Photoinduced aggregation of liposome modified with DNA containing ultrafast DNA photo-cross-linker
■論文概要
脂質二分子膜により構成されるリポソームは細胞膜のモデル系及びドラッグデリバリーのキャリアーとして魅力的なバイオ高分子である。本研究では、光に応答するDNAをリポソーム膜に修飾させることで、リポソーム同士を光照射エネルギー依存的に会合させることに成功した。さらに、この会合したリポソーム群を別の波長で光照射することで解離させることも可能となった。リポソームの会合状態を光制御するという今までにない独自のリポソーム操作性を実現することに成功した。本成果は細胞間相互作用解析やリポソームを基盤としたドラッグデリバリー開発に役立つものと期待される。
論文詳細:https://onlinelibrary.wiley.com/doi/10.1002/jctb.6941
表紙詳細:https://onlinelibrary.wiley.com/toc/10974660/2022/97/1
令和3年12月13日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/12/13-2.htmlリチウムイオン2次電池の急速充放電を実現する負極活物質を開発 ~バイオベースポリマー由来高濃度窒素ドープカーボン~

リチウムイオン2次電池の急速充放電を実現する負極活物質を開発
~バイオベースポリマー由来高濃度窒素ドープカーボン~
ポイント
- リチウムイオン2次電池の急速充放電技術の価値が国際的に高まっており、これに適した材料の開発が期待されている。
- 耐熱性バイオベースポリマーであるポリベンズイミダゾールを焼成することにより、高濃度窒素ドープカーボンを得ることに成功した。
- 得られた窒素ドープカーボンを負極活物質としてアノード型ハーフセルを構築し充放電試験を行ったところ、本活物質は急速充放電に対してグラファイトとの比較において大幅に優れた適性を示した。
- 急速充放電に適した電極材料として、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用展開が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 松見 紀佳教授(物質化学領域)、金子 達雄教授(環境・エネルギー領域)、バダム ラージャシェーカル講師(物質化学領域)、東嶺孝一技術専門員、Yueying Peng元研究員、Kottisa Sumala Patnaik(博士前期課程2年)は、リチウムイオン2次電池*1の急速充放電を可能にする新たな負極活物質の開発に成功した。 |
【研究背景と内容】
今日、次世代リチウムイオン2次電池開発においては、高容量化、高電圧化、難燃化など多様な開発の方向性が展開されている。なかでも最も重要性を増しているものとして、急速充放電の実現が挙げられる。現状、ガソリン車にガソリンスタンドで給油するためには数分を要するのみであるため、電気自動車(EV)が要する長い充電時間は、消費者の購買意欲を低減させている主要因の一つと考えられる。そのような状況にもかかわらず、多くの国々は将来的なガソリン車の生産中止の意向を決定しており、今後、急速充電に対応する関連技術の国際的な価値は極めて高いものとなっていくことが予想される。これらの背景のもと、米国エネルギー省(DOE:Department of Energy)においても超高速充電(XFC:extreme fast charging)の目標として15分以内での充電の実現を掲げてきた。
アノード(負極)側の活物質において、充放電速度の向上に適用可能な設計戦略としては、炭素系材料における層間距離の拡張によりイオンの拡散速度を上昇させることに加え、窒素などのヘテロ元素ドープが潜在的に有効な手法として検討されてきた。しかし、層間距離やヘテロ元素濃度を自在に制御する手法は確立されていない。
そのような背景のもと、本研究グループでは、含窒素型芳香環密度が高く高耐熱性を有するバイオベースポリマー*2のポリベンズイミダゾールを前駆体とすることにより、焼成後に高濃度窒素ドープハードカーボン*3を得た(図1)。バイオベースポリマーを前駆体とすることにより、低炭素化技術としての相乗的効果が期待される。得られた材料は17 wt%という高濃度の窒素を有していた。低分子前駆体の場合には焼成過程で多量の含ヘテロ元素成分が揮発してしまうが、高耐熱性高分子を前駆体とすることで大幅に窒素導入率を向上させることができた。
また、ポリベンズイミダゾールを800℃で焼成して得られた窒素ドープカーボンに関してXRD測定で層間距離(dスペーシング)を観測すると3.5Åであり、通常のグラファイトの3.3Åと比較して顕著に拡張した(図2A)。一般に、広いdスペーシングは系内のリチウムの拡散を促し、リチウム脱挿入の速度を向上させる。ラマンスペクトルはId/Ig比が0.98と極めて高く、(通常のグラファイトでは0.18)、効果的な欠陥の導入によりイオン拡散において好影響を有することが期待された(図2B)。また、XPSスペクトル(N1s)においては、窒素がグラファイティック窒素、ピロリジニック構造、ピリジニック構造等としてそれぞれ導入されている様子を観測した(図2C)。
得られた窒素ドープカーボンを負極活物質としてアノード型ハーフセル*4を構築し充放電試験を行ったところ、本活物質は急速充放電に対して優れた適性を示した。同様の充放電条件においてグラファイトと比較して大幅に優れた放電容量を示した(図3)。また、13分充電条件(0.74 Ag-1)においては1,000サイクル後に153 mAhg-1 (容量維持率89%)を示し、1.5分充電条件(7.4 Ag-1)においては1,000サイクル後に86 mAg-1 (容量維持率90%)を示すなど、良好な耐久性を示した。さらにフルセルにおいても好ましい充放電挙動を示した。
なお、本研究は、戦略的イノベーション創出プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
本成果は、Chemical Communications (英国王立化学会)オンライン版に11月25日(英国時間)に掲載された。
【今後の展開】
前駆体である高分子材料においては様々な構造の改変が可能であるほか、焼成条件の相違においても様々な異なる高濃度窒素ドープハードカーボンの化合物が得られ、さらなる高性能化につながると期待できる。
前駆体高分子には様々な有機合成化学的アプローチを適用可能であり、本研究が示すアプローチにより、急速充放電能を示す負極活物質材料における構造―特性相関の研究の進展が期待できる。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開を期待したい。
図2. (A) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)とグラファイトのXRDパターンの比較、(B) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)とグラファイトのラマンスペクトルの比較、(C) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)のXPS N1s スペクトル
図3. (A) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)及びグラファイトを用いて作製した負極型ハーフセルの充放電レート特性、(B) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)及びグラファイトを用いて作製した負極型ハーフセルの長期サイクル特性、(C) 各レートにおける(0.37, 0.74, 3.72, 7.44, 11.16, 18.60 Ag-1 )800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)を負極活物質としたハーフセルの長期サイクル特性
【論文情報】
雑誌名 | Chemical Communications |
題目 | Extremely Fast Charging Lithium-ion Battery Using Bio-Based Polymer-Derived Heavily Nitrogen Doped Carbon |
著者 | Kottisa Sumala Patnaik, Rajashekar Badam, Yueying Peng, Koichi Higashimine, Tatsuo Kaneko and Noriyoshi Matsumi* |
掲載日 | 2021年11月25日(英国時間)にオンライン版に掲載 |
DOI | 10.1039/d1cc04931c |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 バイオベースポリマー:
生物資源由来の原料から合成される高分子材料の総称。低炭素化技術として、その利用の拡充が期待されている。
*3 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*4 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和3年12月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/12/09-1.html学生のHASANさんが国際会議NANOSYM 2021においてBest Student Paper Awardを受賞

学生のHASAN, Md. Mahmudulさん(博士後期課程3年、物質化学領域、長尾研究室)が国際会議Nanotechnology Malaysia Biennial Symposium(NANOSYM 2021)においてBest Student Paper Awardを受賞しました。
NANOSYM 2021は、マレーシアナノテクノロジー協会(MNA)が主催で、10月11日から13日にかけてオンラインにて開催されました。
■受賞年月日
令和3年10月13日
■研究題目、論文タイトル等
Hierarchical Metal Nanostructures: Synthesis, Characterizations, and Electrocatalysis
(階層的金属ナノ構造:合成、特性評価、および電極触媒作用)
■研究者、著者
Md. Mahmudul Hasan, Yuki Nagao
■受賞対象となった研究の内容
The physical and chemical characteristics of hierarchical metal nanostructures have sparked scientific interest in heterogeneous catalysis and electrocatalysis. Recently, the fabrication of well-defined nanostructures has received a lot of attention. In this study, we have successfully fabricated different hierarchical metal nanostructures and applied for Ascorbic acid (AA) electrooxidation. AA, known as vitamin C, is environment-friendly and releases two electrons during electro-oxidation and could be used as an alternative fuel for a direct liquid fuel cell system. Well-defined hierarchical silver dendrite nanostructures were successfully deposited on the glassy carbon electrode (GCE) by the simple electroless deposition method without using any capping agent, current, pressure, or temperature. This integrated electrode is applied for AA electrooxidation in neutral medium to understand the oxidation pathway. The kinetic study revealed the electron transfer process is stepwise at slower scan rates and concerted at faster scan rates. We have also synthesized Christmas-Tree-Shaped palladium nanostructures featuring many sharp edges on the GCE (Pd/GCE) by a controlled electrodeposition technique. These unique nanostructures showed excellent AA electrocatalytic activity in alkaline solution. These new synthesis processes can play an important role in the preparation of hierarchical metal nanostructures for electrocatalysis.
■受賞にあたって一言
We are honored to win the prize for Best Student Paper Award at NANOSYM 2021. First and foremost, I want to express my gratitude to my supervisor Associate Professor Yuki Nagao for his excellent remarks, suggestions, and guidance. I also appreciate Nagao LAB members for their supports. This award encouraged me to explore more in the field of science and technology.
令和3年12月8日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/12/08-1.html