研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。銅スズ硫化物系ナノ粒子から環境に優しいナノ構造熱電材料を創製
銅スズ硫化物系ナノ粒子から環境に優しいナノ構造熱電材料を創製
ポイント
- 銅スズ硫化物系ナノ粒子を化学合成し、それを焼結することで環境に優しいナノ構造熱電材料の創製に成功
- ナノ粒子の粒成長を抑制しながら焼結することで微細構造と組成を制御し、構造及び組成と物性との関係を解明
- 創製したナノ構造熱電材料は、構造や組成制御がされていない通常の銅スズ硫化物結晶に比べて約10倍の熱電変換性能を示し、サステイナブルな熱電材料の実用化へ向けた大きな一歩
|
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、物質化学領域の前之園 信也教授らは、(株)日本触媒、産業技術総合研究所と共同で、銅スズ硫化物系ナノ粒子を化学合成し、それらをビルディングブロック(構成要素)として環境に優しい銅スズ硫化物系ナノ構造熱電材料を創製しました。このように、化学的アプローチによって熱電材料のナノ構造を精密に制御し、熱伝導率と電気伝導率を独立に調節することで熱電変換効率を向上させる方法は他の熱電材料にも適用できるため、高い熱電変換効率を有したサステイナブルな熱電材料の実現への有効な手段の一つとして期待されます。 実用化された代表的な熱電材料であるテルル化ビスマスをはじめ多くの熱電材料には、テルル、セレン、鉛といった毒性が高いあるいは資源的に希少な元素が用いられています。民生用途は安全性の担保が必須条件であり、毒性の高い材料系を用いた場合には実用化に向けての大きな障害となりかねません。そのような観点から、我々は、サステイナブルな熱電材料として金属硫化物材料に注目してきました。金属硫化物材料は比較的安価で安全、資源的にも豊富です。金属硫化物熱電材料は、これまで知られている熱電材料の主要元素であるテルルやセレンと同じ第16族元素である硫黄を用いており、熱電材料としての潜在性も高いと考えられます。 一方、熱電変換効率を表す指標である無次元性能指数 ZT を向上させる一つの方法論として"ナノ欠陥構造制御"があります。ナノ欠陥構造制御を行うためのアプローチの一つに、化学合成したナノ粒子をビルディングブロックとして用いてマルチスケール欠陥構造を有する熱電材料を創製しようという試みが近年注目を集めています。バルク結晶をボールミリング法等によって粉砕しナノ粉末を得て、それらを焼結することでナノメートルサイズの結晶粒界を有する熱電材料が作製されてはいるものの、このようなトップダウン式の手法では原子・ナノスケールの精密な構造制御は困難でした。一方、不純物元素や格子欠陥が導入された均一かつ単分散なナノ粒子を、形状や粒径を制御しながら精密に化学合成し、それらをパルス通電加圧焼結法などによって焼結することで、マルチスケール欠陥構造を有する熱電材料をボトムアップ式に創製できます。 |
<今後の展開>
本研究は、マルチスケール欠陥構造を有する高性能銅硫化物系熱電材料の創製に向けての大きな第一歩となります。今後はCu2SnS3系だけでなく、テトラヘドライト(Cu12Sb4S13)系など様々な銅硫化物系ナノ粒子を化学合成し、それらナノ粒子を複数種類配合して焼結することで、パワーファクターの向上と格子熱伝導率の低減を同時に達成し、更なるZTの向上を図ります。最終的には、エネルギーハーベスティングに資することができるサステイナブル熱電材料の実用化を目指します。

図1 (a,b) CTS 及び (c-f) ZnドープCTS ナノ粒子の透過型電子顕微鏡像:(a)閃亜鉛鉱型CTSナノ粒子、(b) ウルツ鉱型CTSナノ粒子、(c) Cu2Sn0.95Zn0.05S3ナノ粒子、(d) Cu2Sn0.9Zn0.1S3ナノ粒子、(e) Cu2Sn0.85Zn0.15S3ナノ粒子、(f) Cu2Sn0.8Zn0.2S3ナノ粒子。

図2 (a) 電気伝導率、(b) ゼーベック係数、(c) 熱伝導率、(d) 格子熱伝導率、(e) パワーファクター、(f) ZT。 ▲、●、●、●、●及び●は、それぞれ、図1a-fのナノ粒子をパルス通電加圧焼結することによって作製したペレットのデータを表す。○はナノ構造を持たないCTSバルク結晶の値である(Y. Shen et al., Sci. Rep. 2016, 6, 32501)。(b)の挿入図は、●と○の格子熱伝導率データを温度の逆数(T -1)に対してプロットした図である。ナノ構造制御されたCTSでは格子熱伝導率がT -1に依存していないことから、フォノンが効率的に散乱されていることを示している。
<論文>
| 掲 載 誌 | Applied Physics Letters |
| 論文題目 | "Sustainable thermoelectric materials fabricated by using Cu2Sn1-xZnxS3 nanoparticles as building blocks" |
| 著 者 | Wei Zhou,1 Chiko Shijimaya,1 Mari Takahashi,1 Masanobu Miyata,1 Derrick Mott,1 Mikio Koyano,1 Michihiro Ohta,2 Takeo Akatsuka,3 Hironobu Ono3 and Shinya Maenosono1* 1 北陸先端科学技術大学院大学 2 産業技術総合研究所 3 株式会社日本触媒 |
| DOI | 10.1063/1.5009594 |
| 掲 載 日 | 2017年12月29日にオンライン掲載 |
平成30年1月4日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2018/01/04-1.html学生の石川さんが平成29年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞
学生の石川 達也さん(博士前期課程1年、応用物理学領域・村田研究室)が平成29年度応用物理学会 北陸・信越支部学術講演会において発表奨励賞を受賞しました。
応用物理学会は、半導体、光・量子エレクトロニクス,新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を続けています。この発表奨励賞は、北陸・信越支部が毎年開催する学術講演会において、応用物理学の発展に貢献しうる優秀な一般講演論文を発表した若手支部会員に対し、その功績を称えることを目的としています。
■受賞年月日
平成29年12月9日
■講演題目
フレキシブル有機圧力センサの作製
■講演概要
有機圧力センサは人の体や曲面にフィットするようなフレキシブルセンサとして期待されています。その中で有機電界効果トランジスタ(OFET)を用いたアクティブ型有機圧力センサはヘルスケア分野などへの応用を目指して活発に研究が進められています。圧力センサでは低電圧駆動と大きな圧力応答の両立が実用化に向けた課題でしたが、我々はガラス基板上に低電圧駆動OFETを作製し、感圧部と組み合わせるDual-gate型有機圧力センサの開発を行い、低電圧駆動と大きな圧力応答の両立を達成しました。しかし、ガラス基板では期待されるようなフレキシブルな応用ができません。そこで本研究ではPEN基板を用いたDual-gate型フレキシブル有機圧力センサの作製に取り組み、動作を確認することができました。
■受賞にあたって一言
この度、応用物理学会北陸・信越支部学術講演会におきまして、発表奨励賞を頂けたことを大変光栄に思います。研究するにあたり、ご指導頂きました村田英幸教授、酒井平祐助教、ならびに研究室のメンバーに深く御礼申し上げます。受賞を励みに、これからも研究に精一杯取り組んでいきたいと思います。

平成29年12月21日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2017/12/21-3.html環境・エネルギー領域の小矢野教授の研究室が高性能多孔質熱電材料の創製に寄与
環境・エネルギー領域の小矢野幹夫教授の研究グループは、NEDOの「未利用熱エネルギーの革新的活用技術研究開発」プロジェクトにおいて株式会社白山(本社:金沢市)、石川県工業試験場(金沢市)と共同研究を行い、従来のn型熱電材料に対し6割以上の出力因子の性能を有する多孔質p型マグネシウムシリサイド系熱電材料の創製に世界で初めて成功しました。
この研究過程で、同研究室の宮田全展助教は、密度汎関数理論・最適化擬原子基底関数に基づく第一原理ソフトウェアパッケージOpenMXと電子輸送計算コードBoltzTraPを用いて、詳細な電子構造計算に基づく物性予測を行い、当該高性能材料の性能最適化への重要な指針を与えました。またJAISTの恵まれた計算環境と評価装置群を活用し、計算機シミュレーションによる熱流解析や多孔質構造の分析も行いました。
今回開発された新規熱電材料は、今後、自動車エンジンの排熱や産業分野における300~400℃の未利用熱エネルギーを電力に変換する低コスト・高耐久性熱電変換モジュールへ応用されることが期待されています。
「熱電変換技術」はゼーペック効果やペルチェ効果を用いて、熱エネルギーと電気エネルギーを相互に変換する技術です。小矢野研究室では熱電変換技術のキーテクノロジーとなる、新しい熱電材料の開発、熱電現象の計測、およびプリンティング熱電モジュール開発などの研究を行っています。今般は、地殻埋蔵量の多い元素で構成された環境に優しい新材料「多孔質Mg-Sn-Si」の開発に、研究室の資産を活用することができたことを喜んでいます。これからも熱電変換技術を中心として、省エネルギー・持続可能な社会の構築へ寄与していきたいと考えています。
NEDO プレスリリース
http://www.nedo.go.jp/news/press/AA5_100876.html
平成29年11月22日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2017/11/22-2.html環境・エネルギー領域の大平准教授の研究グループの講演がPVSEC-27においてBest Paper Awardを受賞
環境・エネルギー領域の大平圭介准教授のグループと、産業技術総合研究所太陽光発電研究センターの増田淳副研究センター長(兼本学客員教授)のグループとの共同研究の成果をまとめた講演が、27th Photovoltaic Science and Engineering Conference (PVSEC-27)において、Best Paper Awardを受賞しました。
PVSECは、アジア・太平洋地域で開催される太陽光発電に関する最大級の国際学会で、今回が27回目の開催です。各種太陽電池材料やデバイス、評価技術、信頼性、市場・政策など広範囲のトピックスを対象としており、今回は10のエリアに分かれて発表が行われました。Best Paper Awardは、総発表件数750件超の中から、全エリアを通して数件程度に授与されるものです。
■受賞年月日
平成29年11月17日
■タイトル
Jsc and Voc reductions in silicon heterojunction photovoltaic modules by potential-induced degradation tests
■著者
Keisuke Ohdaira (JAIST), Seira Yamaguchi (JAIST), Chizuko Yamamoto (AIST), and Atsushi Masuda (AIST)
■発表概要
大規模太陽光発電所において、太陽電池モジュールのフレームと発電素子(セル)の間の電位差が原因で発電性能が低下する、電圧誘起劣化(potential-induced degradation: PID)の問題が顕在化しています。結晶シリコンと非晶質シリコンとのヘテロ接合からなるシリコンヘテロ接合(silicon heterojunction: SHJ)太陽電池は、高効率太陽電池としてすでに市販されており、大規模太陽光発電所への導入も進んでいますが、そのPID現象や発現機構は未解明でした。今回の研究では、SHJ太陽電池モジュールに対してPID試験を行い、1) 電流の低下に特徴づけられるPIDがまず発現すること、2) 透明導電膜の還元による光学損失がこの電流低下の原因であること、3) さらに長時間のPID試験を行うと電圧の低下も起こること、4) モジュールに用いる封止材を変更することでPIDを抑止できること、を明らかにしました。
■受賞にあたって一言
太陽光発電分野の権威ある国際学会であるPVSECでのBest Paper Awardを受賞でき、大変光栄に感じております。実験データの多くが産業技術総合研究所で取得されたものであり、共著者の皆様にも感謝いたしております。今後も引き続き、SHJ太陽電池モジュールをはじめ、n型結晶Si太陽電池モジュールのPIDの現象解明と抑止技術開発に、精力的に取り組んでいきたいと思います。本研究は国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託により行っているものであり、関係各位に感謝いたします。
平成29年11月22日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2017/11/22-1.html物質化学領域の松村准教授らの研究成果がWiley社発刊の国際学術誌 Macromolecular Rapid Communications(IF:4.265)のfront coverに採択
物質化学領域の松村和明准教授らの研究成果がWiley社発刊の国際学術誌 Macromolecular Rapid Communications (IF:4.265)のfront coverに採択されました。
■掲載誌
Macromolecular Rapid Communications (Wiley-VCH) 2017. 38, 1700478
■著者
Robin Rajan (博士研究員), Kazuaki Matsumura*
■論文タイトル
Tunable Dual-Thermoresponsive Core-Shell Nanogels Exhibiting UCST and LCST Behavior
■論文概要
コアがPolyN-isopropylacrylamide、シェルがPolysulfobetaineで構成されたコアシェル型ナノゲルを創出し、低温と高温で相転移を起こす二段階温度応答性を示すことを示しました。本学のSTEM-EDXを用いることでコアシェル型の構造が明らかとなり、その構造を変化させることにより温度応答性を制御することにも成功しました。
このような材料は、温度を変化させることで多段階の薬物放出を制御出来る材料として期待でき、高分子化学およびバイオマテリアルの分野で注目されています。
詳細:http://onlinelibrary.wiley.com/doi/10.1002/marc.201700478/full

平成29年11月22日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2017/11/22-1.html物質化学領域の長尾准教授が科学技術振興機構のさくらサイエンスプランを実施
物質化学領域の長尾祐樹准教授のマレーシアとの交流計画が科学技術振興機構(JST)の「日本・アジア青少年サイエンス交流事業-さくらサイエンスプラン-」に採択されたことを受け、11月1日~11月10日の日程でマレーシア工科大学(MJIIT)から6名の研究者・大学院生を受け入れました。
「日本・アジア青少年サイエンス交流事業-さくらサイエンスプラン-」は、産学官の緊密な連携により、優秀なアジアの青少年が日本を短期に訪問し、未来を担うアジアと日本の青少年が科学技術の分野で交流を深めることを目指します。そしてアジアの青少年の日本の最先端の科学技術への関心を高め、日本の大学・研究機関や企業が必要とする海外からの優秀な人材の育成を進め、もってアジアと日本の科学技術の発展に貢献することを目的としています。
参考:http://ssp.jst.go.jp/outline/index.html
本学はアジア諸国の大学・研究機関との学術的交流を強く推進しているところであり、将来的に優秀な学生を受け入れるためにマレーシアにおける大学・研究機関においても交流を進めています。
本交流の趣旨はマレーシアの環境問題解決のためのマテリアル開発に関する技術交流を核に、国際共著論文成果に繋がる大学間連携を強化することであり、本学からは主に日本人学生が積極的に関わることができるように計画されました。本学教員による研究指導等を実施し、最終日にはマレーシア工科大の学生から成果報告が行われ今後の研究について本学教員や学生と議論がなされました。また、金沢のひがし茶屋街での金箔貼り体験を通して日本的な文化や美にも触れ、さらに、東京の日本科学未来館を訪問して日本の多様な先端科学技術を紹介しました。
本交流プログラムはこれらの経験を通して招聘者の将来の日本への留学を促し、本学が招聘者の母国やアジアの科学技術の進歩や発展に貢献することを目指しています。
■実施期間
平成29年11月1日―平成29年11月10日
■研究テーマ
マレーシアの環境問題解決のためのマテリアル開発に関する共同研究プログラム
■本交流について一言
本計画をサポートいただきましたJSTに御礼申し上げます。また、派遣元のマレーシア工科大MJIITの教職員の皆様、本学受入教員の海老谷教授、松見教授、実験をサポートして下さった大坂講師、西村講師、宮里主任技術職員、教職員および学生の皆様に御礼申し上げます。引き続きマレーシアとの交流の発展にお力添えをお願い致します。

X線光電子分光(XPS)による測定の指導

成果報告会後の記念撮影

日本科学未来館を訪問

金箔貼り体験
平成29年11月13日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2017/11/13-1.html物質化学領域の長尾准教授の研究成果が米国化学会刊行Langmuir誌の表紙に採択
物質化学領域の長尾祐樹准教授の研究成果をまとめた論文が米国化学会刊行Langmuir誌の表紙に採択されました。(Invited Feature Article)
■掲載誌
American Chemical Society, Langmuir 2017, 33, 12547-12558.
■著者
Yuki Nagao *
■論文タイトル
Proton-Conductivity Enhancement in Polymer Thin Films
■論文概要
プロトン伝導性薄膜は固体高分子形燃料電池の反応場でアイオノマーと呼ばれ、プロトン交換膜から電極触媒へのプロトンの輸送を行っている。長尾准教授はアモルファス高分子の構造を基板界面や金属界面との相互作用を用いて変化させ、高分子の配向構造や組織構造とプロトン伝導性の関係を調べてきた。Langmuir誌の編集者から、長尾准教授の研究成果をレビューの形でまとめて掲載する機会を与えられたため、招待論文として執筆を行った。
■採択にあたって一言
これまでの研究成果は共同研究者と多くの学生さんに支えられてきました。この場をお借りして皆様に心よりお礼を申し上げます。また、レビューの執筆の機会を与えてくださった関係者各位にお礼申し上げます。
参考: http://dx.doi.org/10.1021/acs.langmuir.7b01484

平成29年11月9日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2017/11/9-1.html「北陸技術交流テクノフェア2017」に出展
10月26日(木)、27日(金)の2日間、福井県産業会館(福井県福井市下六条町)にて北陸最大規模の総合技術展示会「北陸技術交流テクノフェア2017」が開催されました。
本学からは、知能ロボティクス領域のHO, Anh Van准教授が「食品の把持に好適なソフトロボットハンド」について出展し、材料の柔らかさを活かした次世代ロボットの開発について、来場者に対して分かり易く説明しました。
本学出展ブースには、機械部品や食品製造業を中心とした企業関係者、金融機関や公的機関等の関係者及び本学への入学希望者等、2日間で25名の方々が来訪されました。HO, Anh Van准教授は、自身の研究内容について説明しながら、来場者と活発な意見交換を行いました。
本学出展ブースにて来訪者へ説明・情報交換等を行う様子
口頭発表をするHO,Anh Van 准教授
平成29年11月7日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2017/11/07-2.html学生の高橋さんがIUMRS-ICAM 2017 国際会議において2件の奨励賞を受賞
学生の高橋麻里さん(博士後期課程3年、物質化学領域・前之園研究室)がIUMRS-ICAM 2017 国際会議において2件の奨励賞を受賞しました。
IUMRS(International Union of Materials Research Society)は、学術的材料研究の振興を共通の関心とする学術団体から構成される国際機関で、毎年各国で材料科学に関する国際会議を開催しています。IUMRS-ICAM(International Conference on Advanced Materials)2017は、日本MRSの主催で2017年8月31日~9月1日の期間、京都大学吉田キャンパスにて開催され、4分野30シンポジウムに総勢1908名が参加しました。
奨励賞(Award for Encouragement of Research)は、優れた講演を行った若い研究者に贈られる賞であり、各々のシンポジウムで厳正なる審査が行われ、上位約10%の発表者しか受賞できない栄誉ある賞です。
■受賞年月日
平成29年10月17日
■タイトル
(1)シンポジウム: A-4 (Magnetic oxide thin films and hetero-structures)
Transition from Linear to Oscillatory Behavior of Exchange Bias Revealed with Progression of Surface Oxidation of Ag@FeCo@Ag Core@Shell@Shell Nanoparticles
著者:M. Takahashi, P. Mohan, D. M. Mott, and S. Maenosono
(2)B-7 (Nano-biotechnology on Interfaces)
Imaging and Isolation of Autophagosomes using Magnetic-Plasmonic Ag@FeCo@Ag Core@Shell@Shell Hybrid Nanoparticles
著者:M. Takahashi, P. Mohan, K. Mukai, Y. Takeda, T. Matsumoto,K. Matsumura, M. Takakura, T. Taguchi, and S. Maenosono
■概要
(1)シンポジウム: A-4 (Magnetic oxide thin films and hetero-structures)
Ag@FeCo@Agコア@シェル@シェルナノ粒子における交換バイアスを調べたところ、強磁性体FeCoが反強磁性体CoFeOへ酸化することで交換バイアス磁場が振動現象を示すことが分かった。
(2)B-7 (Nano-biotechnology on Interfaces)
磁性-プラズモンハイブリッドAg@FeCo@Agコア@シェル@シェルナノ粒子を用い、細胞内小器官の一つであるオートファゴソームのイメージング及び磁気分離を行った。
■受賞にあたって一言
共同研究者の方々をはじめ、応援してくださった皆様に心より感謝申し上げます。私が初めて国際学会で口頭発表をした場がIUMRSでその当時も賞を頂き、おそらく学生生活最後の国際学会での発表となった今回のIUMRSでも発表した2件において賞を頂けたことを大変嬉しくまた光栄に思います。これを励みに今後も研究に対して真摯に向き合い、邁進して参りたいと思います。
平成29年10月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2017/10/20-1.htmlシリセン上へ分子を線状に集積 -分子の性質を損なわずに固定することに成功-
シリセン上へ分子を線状に集積
-分子の性質を損なわずに固定することに成功-
ポイント
- シリセンへ有機分子を蒸着した結果、分子の性質が保たれたまま、シリセン上の特定の活性な場所に固定されることが分かった。
- 有機分子とシリセンのつくる界面を実験と理論計算の両面から詳細に調べた例はなく、世界で初めての成果。
|
北陸先端科学技術大学院大学(JAIST)(学長・浅野 哲夫、石川県能美市)の先端科学技術研究科応用物理学領域の高村 由起子准教授、アントワーヌ・フロランス助教らは、ユニバーシティ・カレッジ・ロンドン、ユーリッヒ総合研究機構、東京大学物性研究所と共同でシリセン上にヘモグロビン様の有機分子がその性質を保持した状態で固定されることを発見しました。 |

Image courtesy of Tobias G. Gill, Vasile Caciuc, Nicolae Atodiresei, Ben Warner, and Cyrus Hirjibehedin.
<今後の展開>
シリセン上に磁性を持つ分子を固定できると、シリセンの分子スピントロ二クス分野への応用が期待されます。また、今後は、分子を蒸着したシリセンの電子状態の測定などを通して、シリセンの性質が分子吸着によりどう制御できるのかを調べていきたいと考えています。
<論文>
"Guided molecular assembly on a locally reactive two-dimensional material"(局所的に活性な二次元材料上への誘導分子集積)
DOI: 10.1002/adma.201703929
Ben Warner, Tobias G. Gill, Vasile Caciuc, Nicolae Atodiresei, Antoine Fleurence, Yasuo Yoshida, Yukio Hasegawa, Stefan Blügel, Yukiko Yamada-Takamura, and Cyrus F. Hirjibehedin
Advanced Materials 2017, 1703929.
http://onlinelibrary.wiley.com/doi/10.1002/adma.201703929/abstract
(オープンアクセス論文なので、どなたでもダウンロードできます。)
<共同研究先へのリンク>
Hirjibehedin Research Group, London Centre for Nanotechnology, University College London
https://www.ucl.ac.uk/hirjibehedin
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA
http://www.fz-juelich.de/pgi/pgi-1/EN/Home/home_node.html
長谷川幸雄研究室、東京大学物性研究所
http://hasegawa.issp.u-tokyo.ac.jp/hasegawa/Welcome/Welcome.html
平成29年10月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/10/12-1.html生命機能工学領域の藤本研究室の論文がWiley社刊行 ChemBioChem誌の表紙に採択
生命機能工学領域の橋本浩寿(平成26年3月修了)、中村重孝助教、藤本健造教授の研究成果を中心とした論文が国際化学会誌の表紙に採択されました。
■掲載誌
ChemBioChem (Wiley, IF = 2.845)2017年 20巻表紙
■著者
Shigetaka Nakamura(助教), Hirokazu Hashimoto, Satoshi Kobayashi, Kenzo Fujimoto(教授).
■タイトル
Photochemical acceleration of DNA strand displacement using ultrafast DNA photo-cross-linking
(超高速DNA光架橋反応を用いたDNA鎖交換反応の光化学的高速化)
■概要
DNA鎖交換反応は体内においても遺伝子複製や転写の際に起こる生化学的に重要な反応であるとともに、試験管内でもPCRやチップ上での一塩基多型解析などライフサイエンス分野でも使用されている重要な反応です。しかし、反応の進行には時間を要する為、遺伝子解析のボトルネックとなっており、その高速化が求められていました。今回、超高速DNA光架橋反応を用いることにより、光照射をトリガーとしてDNA鎖交換反応を高速化することに成功しました。また、光照射のエネルギーに従い、DNA鎖交換反応の速度を制御可能であることも見出しました。
今後は高速遺伝子解析や細胞内遺伝子操作の高速化に向けた応用が期待されます。
論文詳細: http://onlinelibrary.wiley.com/doi/10.1002/cbic.201700511/abstract


平成29年10月12日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2017/10/12-1.htmlミリメートルの長距離スピン情報の変換に成功 -量子情報素子やスピンセンサーの技術開発に道-
ミリメートルの長距離スピン情報の変換に成功
-量子情報素子やスピンセンサーの技術開発に道-
ポイント
- 磁気の波(スピン波)を用いて数ミリメートル離れたスピン状態へ情報を変換する基本原理を実証
- 量子情報素子やスピンセンサーの新手法として期待
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、先端科学技術研究科応用物理学領域の菊池大介研究員、安東秀准教授らは、京都大学、東京工業大学、東北大学、理化学研究所、ニューヨーク市立大学と共同で、スピン波注1)とダイヤモンド中の窒素-空孔複合体中心(NV中心(図1))注2)を組み合わせた長距離(約3.6ミリメートル)スピン信号変換に成功しました。
<背景と経緯>
近年、持続可能な社会の実現に向けた環境・エネルギー・情報通信などの問題への取組が活発化する中で、電子デバイスの省電力化やナノセンシング技術の高性能化が求められています。これまでデバイスに情報を入出力する方法として電流が用いられてきましたが、情報処理に時間がかかること、多くのエネルギーが熱として浪費され発熱によりデバイスの動作が不安定となることなど問題がありました。これらを解決する方法として、電流を用いずに電子の自由度であるスピン注3)を用いるスピントロニクス素子注4)や量子情報素子(発熱を抑えるとともに情報処理時間を飛躍的に高速化できる)の実現が期待されています。従来、これらの素子では相互作用を大きくするためにスピンとスピンの距離をナノメートル程に設計する必要がありました(図2)。今回の研究では、スピンの波(スピン波)とダイヤモンド結晶中のNV中心に存在するスピン状態とを組み合わせた手法によりミリメートルの長距離でもスピン情報を伝送できることを実証しました。
<研究の内容>
今回の研究では、図3の模式図に示した実験により、スピン波とNV中心スピンを用いた長距離スピン信号変換に成功しました。先ず、直径4ミリメートルの絶縁体である磁性ガーネット (Y3Fe5O12: YIG) 注5)多結晶円板にマイクロ波と磁場を印加して、磁気の波(スピン波)を試料左端に励起します(図3(a))。この際に、表面スピン波注6)と呼ばれる、試料表面に局在し一方向にのみ伝搬するスピン波を励起します。その後、試料左端から右端へ3.6ミリメートル伝搬した表面スピン波は、試料右端上に配置されたダイヤモンド中に用意された複数のNV中心スピンを励起します。励起されたNV中心は光学的に磁気共鳴信号(ODMR)注7)やラビ振動注8)を計測することにより検出します(図3(b), (c))。今回、スピン波の共鳴周波数とNV中心の共鳴周波数が一致する条件でODMR信号が増強され、ラビ振動の周波数が高くなることを発見しました。
<今後の展開>
本研究では、スピン波とNV中心を組み合わせることで離れたスピン状態間の信号の伝送・変換が可能なことを実証しました。今後、2つのスピン状態をスピン波で接続することで、これまで困難だった長距離(ミリメートル以上でも可能)離れた2つのスピン状態間の信号の変換を可能にし(図4)、新しい量子情報素子やナノスピンセンサーを実現する技術開発に貢献することが期待されます。
![]() |
![]() |
| 図1 ダイヤモンド中の窒素(C)-空孔(V)複合体中心(NV中心)スピン状態 | 図2 従来のスピン変換の概念図 ナノメートル程の距離の2つのスピン状態、スピンAとスピンB間で信号を変換する。 |
![]() |
|
| 図3 スピン波とNV中心を用いた長距離スピン信号変換の原理。(a)多結晶ガーネット(YIG)磁性体試料の左端で励起された表面スピン波は右方向へ数ミリメートル伝搬した後、試料右端上のダイヤモンド中のNV中心スピンを励起する(スピン変換)。励起されたNV中心は光学的磁気共鳴検出法(ODMR)により磁気共鳴(b)やラビ振動(c)として検出される。 | |
![]() |
|
| 図4 今後の展開。長距離離れた2つのスピン状態、スピンAとスピンBをスピン波で接続する。 | |
<論文情報>
掲載誌:Applied Physics Express
論文題目:Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves
著者:Daisuke Kikuchi, Dwi Prananto, Kunitaka Hayashi, Abdelghani Laraoui, Norikazu Mizuochi, Mutsuko Hatano, Eiji Saitoh, Yousoo Kim, Carlos A. Meriles, Toshu An
Vol.10, No.10, Article ID:103004
掲載日:10月2日(英国時間)公開 DOI: 10.7567/APEX.10.103004
<研究助成費>
本研究の一部は、キャノン財団研究助成プログラム、村田学術振興財団研究助成、科学研究費補助金・新学術領域研究「ナノスピン変換」公募研究、研究活動スタート支援の一環として実施されました。
<用語解説>
注1) スピン波
スピンの集団運動であり、個々のスピンの磁気共鳴によるコマ運動(歳差運動)が波となって伝わっていく現象である。
注2) NV中心
ダイヤモンド中の窒素不純物と空孔が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定にスピン状態が存在する。
注3) スピン
電子が有する自転のような性質。電子スピンは磁石の磁場の発生源でもあり、スピンの状態には上向きと下向きという2つの状態がある。
注4) スピントロニクス
電子の持つ電荷とスピンの2つの性質を利用した新しい物理現象や応用研究をする分野
注5) 磁性ガーネット
本研究では希土類元素をイットリウム(Y)としたイットリウム鉄ガーネット(Y3Fe5O12)多結晶を用いた。スピン波の拡散長が数ミリメートル以上と長いことで知られている。
注6) 表面スピン波
スピン波の一種であり、試料の表面に局在し一方向にのみ伝搬する性質を持つ。また、表面スピン波の持つ非相反性より、試料の上面と下面では逆向きに伝搬する。
注7) 光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
注8) ラビ振動
NV中心の2つのスピン状態間のエネルギーに相当するマイクロ波磁場を印加することにより状態が2準位の間を振動する現象。本研究ではマイクロ波磁場の代わりにスピン波によるマイクロ波磁場を生成してラビ振動を励起した。
平成29年10月3日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/10/03-1.html学生の橋本さんがマテリアルライフ学会第28回研究発表会において研究奨励賞を受賞
学生の橋本優哉さん(博士前期課程2年、物質化学領域・谷池研究室)がマテリアルライフ学会第28回研究発表会において研究奨励賞を受賞しました。
マテリアルライフ学会は、有機、無機、金属からなる素材およびそれらを加工して得られる各種材料と構成物・製品並びにバイオマテリアル、古文化財などの耐久性、寿命予測と制御についての科学および技術の進歩を図ることを目的とした学会です。
研究奨励賞は、優れた発表を行った発表者に授与され、耐久性、寿命予測と制御についての科学および技術の進歩に資することを目的としています。本賞の授賞件数は26件の研究発表において4名の発表者が受賞しました。
■受賞年月日
平成29年7月14日
■論文タイトル
超臨界二酸化炭素を含浸溶媒として用いた高分散PP/Al2O3ナノコンポジットの調製
■論文概要
当研究室は、重合後に得られるPP粉末(リアクターグラニュール)の細孔中に金属アルコキシドを含浸させ、これを溶融混練中に金属酸化物あるいは金属水酸化物へ化学変換する新たなin-situナノコンポジット化法を開発しました。ナノサイズの細孔へ閉じ込められたフィラー前駆体が、溶融混練過程で再凝集する前に固体へと化学変換されることで、分散剤を添加することなくナノ粒子が高度に分散したナノコンポジットを得ることが可能です。しかし、有機溶媒を含浸溶媒として用いた場合、PPの細孔深部まで金属アルコキシドを含浸できていないことがわかっており、深部への均一含浸が達成できれば、より高い充填と機能性を実現できるものと考えられました。そこで本研究では、含浸溶媒である有機溶媒の代わりに高浸透性・溶解性を併せ持つ超臨界二酸化炭素(scCO2)を用いた含浸プロセスを検討し、その成果を報告しました。
■受賞にあたって一言
このような賞を頂き大変光栄に思います。本研究を進めるのにあたり、熱心なご指導を頂きました谷池俊明准教授、Bulbul Maira博士研究員にこの場をお借りして厚く御礼申し上げます。また多くのご助言を頂きました研究室のメンバーにも深く感謝いたします。
平成29年9月13日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2017/09/13-1.html磁性-プラズモンハイブリッドナノ粒子を用いて、従来分離が難しかった細胞小器官(オートファゴソームなど)の新たな分離法の開発に成功
磁性-プラズモンハイブリッドナノ粒子を用いて、従来分離が難しかった
細胞小器官(オートファゴソームなど)の新たな分離法の開発に成功
ポイント
- これまで分離が難しかった細胞小器官を磁気分離するためのプローブとして、粒径約15 nmで単分散なAg/FeCo/Agコア/シェル/シェル型磁性-プラズモンハイブリッドナノ粒子を創製した。
- ハイブリッドナノ粒子を哺乳動物細胞に取り込ませ、培養時間を変化させた際、ナノ粒子が細胞内のどの部分に局在するかということをAgコアのプラズモン散乱を利用して可視化することに成功した。
- 培養時間が30分~2時間の間でハイブリッドナノ粒子がオートファゴソームに局在することがわかったため、オートファゴソームをターゲットとして、適切な時間帯で細胞膜を破砕して磁気分離を行うことでオートファゴソームの分離に成功した。
- 単離したオートファゴソームをプロテオミクス/リピドミクス解析に供することで、オートファジーの機能欠損による疾患の創薬へと展開できる可能性がある。
- リガンド結合ハイブリッドナノ粒子を用いた汎用的かつ高選択的な細胞小器官分離技術へと拡張することで、基礎生物学上重要な発見を導く可能性があるほか、肥満や老化を防止する医療技術へと繋がることも期待される。
|
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、物質化学領域の前之園 信也 教授らは、東京大学、金沢大学ほかと共同で、独自開発の磁性-プラズモンハイブリッドナノ粒子を用いてオートファゴソームのイメージングと磁気分離に成功しました。この手法は、これまで分離が困難であった他の細胞小器官へ拡張可能なため、新たな細胞小器官分離法としての応用が期待されます。 2013年のノーベル生理学・医学賞は、「小胞輸送の分子レベルでの解析と制御メカニズムの解明」という功績に対して、米国の3名の研究者に贈られました。また、2016年のノーベル生理学・医学賞は、「オートファジー注1)の分子レベルでのメカニズムの解明」の功績に対して、東京工業大学・大隅 良典 栄誉教授に贈られたことはまだ記憶に新しいところです。これらの研究はいずれも"細胞内物質輸送"に関するものでした。細胞内物質輸送には多種多様な細胞小器官注2)が関与しており、それらの機能は細胞小器官に存在するタンパク質や脂質によって制御されています。従って、細胞小器官の機能を理解するためには、そこに存在するタンパク質/脂質を調べることが必要不可欠です。そのための有力な手段の一つとして、タンパク質/脂質が機能している小器官ごと単離して解析するという方法があります。細胞小器官の一般的な単離法には超遠心分離注3)がありますが、比重に差が無い異種の小器官の分離は困難であることに加え、分離工程が煩雑で手間がかかるほか、表在性タンパク質注4)の脱離や変性が問題となる場合もあるため、新たな分離法の開発が望まれています。 本成果は、アメリカ化学会が発行するオープンアクセスジャーナルであるACS Omega誌に2017年8月25日に掲載されました。 |
<今後の展開>
単離したオートファゴソームをプロテオミクス/リピドミクス解析に供することで、これまでとは異なる視点からオートファジーを俯瞰でき、オートファジーの機能欠損による疾患の創薬へと展開できる可能性があります。また、ハイブリッドナノ粒子表面に所望のリガンドを結合させることによって、目的の細胞小器官への受容体を介したターゲティングが可能なナノ粒子を作製し、そのリガンド結合ナノ粒子を用いて標的細胞小器官を高選択的に単離する技術を確立することで、基礎生物学上重要な発見を導く可能性があります。さらに、肥満や老化を防止する医療技術へと繋がることも期待されます。

図1 磁性-プラズモンハイブリッドナノ粒子を哺乳動物細胞にトランスフェクションした後、培養時間(図中右に行くに従って培養時間が長いことを意味する)とともにナノ粒子の局在が初期エンドソーム(early endosome)、オートファゴソーム(autophagosome)、オートファゴリソソーム(autophagolysosome)へと移行する様子をプラズモン散乱を利用した共焦点顕微鏡イメージングで確認でき、各々の時間帯で磁気分離を行うとそれぞれ異なる種類の細胞小器官を分離することが可能であることを示した図。
<論文>
| 掲載誌: | ACS Omega |
| 論文題目: | "Magnetic Separation of Autophagosomes from Mammalian Cells using Magnetic-Plasmonic Hybrid Nanobeads"(磁性-プラズモンハイブリッドナノ粒子を用いた哺乳動物細胞からのオートファゴソームの磁気分離) |
| 著者: | Mari Takahashi,1 Priyank Mohan,1 Kojiro Mukai,2 Yuichi Takeda,3 Takeo Matsumoto,4 Kazuaki Matsumura,1 Masahiro Takakura,5 Hiroyuki Arai,2 Tomohiko Taguchi,6 Shinya Maenosono1* 1北陸先端科学技術大学院大学 2東京大学大学院薬学系研究科 衛生化学教室 3大阪大学大学院医学系研究科 4金沢大学医薬保健研究域医学系 5金沢医科大学産科婦人科 6東京大学大学院薬学系研究科 疾患細胞生物学教室 |
| DOI: | 10.1021/acsomega.7b00929 |
| 掲載日: | 2017年8月25日 |
<用語解説>
注1)オートファジー
オートファジー(Autophagy)は、細胞が持っている、細胞内のタンパク質を分解するための仕組みの一つ。自食とも呼ばれる。酵母からヒトにいたるまでの真核生物に見られる機構であり、細胞内での異常なタンパク質の蓄積を防いだり、過剰にタンパク質合成したときや栄養環境が悪化したときにタンパク質のリサイクルを行ったり、細胞質内に侵入した病原微生物を排除することで生体の恒常性維持に関与している。
注2)細胞小器官
細胞の内部で特に分化した形態や機能を持つ構造の総称。細胞内器官やオルガネラとも呼ばれる。細胞小器官が高度に発達していることが、真核細胞を原核細胞から区別している特徴の一つである。
注3)超遠心分離
数万G(重力加速度)以上の遠心力をかける遠心分離法。
注4)表在性タンパク質
疎水性相互作用、静電相互作用など共有結合以外の力によって脂質二重層または内在性膜タンパク質と一時的に結合しているタンパク質。
注5)超常磁性
強磁性体やフェリ磁性体のナノ粒子に現れる。磁性ナノ粒子では磁化の向きが温度の影響でランダムに反転しうる。この反転が起こるまでの時間をネール緩和時間という。外場の無い状態で、磁性ナノ粒子の磁化測定時間がネール緩和時間よりもずっと長い時、磁化は平均してゼロであるように見える。この状態を超常磁性という。
注6)エンドサイトーシス
細胞が細胞外の物質を取り込む過程の一つ。細胞に必要な物質のあるものは極性を持ちかつ大きな分子であるため、疎水性の物質から成る細胞膜を通り抜ける事ができない、このためエンドサイトーシスにより細胞内に輸送される。
注7)オートファゴソーム
オートファジーの過程で形成される二重膜構造を有した袋状の細胞小器官。他の細胞小器官やタンパク質などを囲い込んだ後、リソソームと融合することで内容物を消化する。
注8)プラズモン
プラズマ振動の量子であり、金属中の自由電子が集団的に振動して擬似的な粒子として振る舞っている状態をいう。金属ナノ粒子ではプラズモンが表面に局在することになるので、局在表面プラズモンとも呼ばれる。
注9)トランスフェクション
人為的にDNAやウイルスなどを細胞に取り込ませる手法。
注10)プラズモン散乱イメージング
局在表面プラズモン共鳴に起因した光散乱を利用したイメージング。共焦点顕微鏡を用いたバイオイメージングでは一般的に蛍光色素が用いられるが、長時間観察では光退色が問題となる。しかし、プラズモン散乱を用いたイメージングでは光退色の心配がない。
注11)蛍光免疫染色
抗体に蛍光色素を標識しておき、抗原抗体反応の後で励起光を照射して蛍光発光させ、共焦点顕微鏡などで観察することによって本来不可視である抗原抗体反応(免疫反応)を可視化するための組織化学的手法。
注12)初期エンドソーム
初期エンドソームは、エンドサイトーシスされた物質を選別する場として機能する細胞小器官である。エンドサイトーシスによって細胞内へと取り込まれた物質は、まず細胞辺縁部に存在する初期エンドソームへと輸送される。初期エンドソームを起点として、分解される物質は分解経路へと、細胞膜で再利用される物質はリサイクリング経路へと選別されていく。
注13)オートファゴリソソーム
オートファゴソームとリソソームの融合によってできる細胞小器官。
注14)ウェスタンブロッティング
電気泳動によって分離したタンパク質を膜に転写し、任意のタンパク質に対する抗体でそのタンパク質の存在を検出する手法。
注15)LC3-II
LC3はオートファゴソームマーカーとして広く知られている。オートファジーが開始されると、LC3はプロペプチドとして発現し、直ちにC末端が切断されて細胞質型のLC3-Ⅰとなる。LC3-ⅠのC末端にホスファチジルエタノールアミンが付加され、膜結合型のLC3- IIへ変換する。LC3- IIはオートファゴソーム膜へと取り込まれて安定に結合するため、哺乳動物におけるオートファゴソーム膜のマーカーとして用いられている。
平成29年8月25日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/08/25-1.html2次元sp2炭素高分子材料の開拓に成功
![]() |
![]() |
国立大学法人 北陸先端科学技術大学院大学 大学共同利用機関法人 分子科学研究所 |
2次元sp2炭素高分子材料の開拓に成功
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)の先端科学技術研究科/環境・エネルギー領域の江 東林教授らの研究グループと分子科学研究所の物質分子科学研究領域の中村 敏和准教授らの研究グループは、sp2炭素からなる2次元共役有機骨格構造体の開拓に成功した。
炭素材料は様々な機能を発現するプラットホームとして注目されている。その中でも、2次元炭素材料はその特異な化学・電子構造を有するため、近年各国で熾烈な研究開発が行われている。特に、グラフェンは、sp2炭素原子が2次元的に繋がって原子層を形成し、特異な電気伝導特性を示すことで、様々な分野で幅広く応用されている。しかしながら、化学的な手法でsp2炭素原子(あるいはsp2炭素ユニット)を規則正しく繋げてsp2炭素シートをつくりあげることが極めて困難で、2次元炭素材料はグラフェンに限られているのが現状である。
これに対して、本研究では、sp2炭素ユニットから2次元炭素材料を設計する原理を明らかにし、さらに、sp2炭素ユニットを規則正しく連結して2次元炭素材料を合成する手法を開拓した。この手法は従来不可能な2次元炭素材料の化学合成を可能にし、分子構造を思ったままに設計して2次元炭素をテーラーメイドで合成することを可能とする。今回合成された2次元炭素材料は、規則正しい分子配列構造を有し、拡張された2次元sp2炭素骨格構造を有し、π共役が2次元的に広がっている特徴を示す。高い結晶性と安定性を有するとともに、2ナノメートルサイズの1次元チャンネルが規則正しく内蔵されている。この2次元炭素材料は、ヨウ素でドーピングすると、電気伝導度は12桁も高くなり、室温で優れた半導体特性示した。興味深いことに、この2次元炭素材料は、極めて高い濃度の有機ラジカル種を共存させることができ、さらに、低温において、これらのラジカルスピンが同じ方向に配列するように転移し、強磁性体になることを突き止めた。今後は、様々な2次元炭素材料の設計と合成が可能となるに加え、その特異なπ電子構造に由来する新奇な機能の開発がより一層促進される。
本研究は、Scienceに2017年8月18日に公開された。
1.研究の成果
今回研究開発された2次元炭素高分子材料は2次元高分子注1)である。2次元高分子は、規則正しい分子骨格構造を有し、無数の細孔が並んでいるため、二酸化炭素吸着、触媒、エネルギー変換、半導体、エネルギー貯蔵など様々な分野で活躍し、新しい機能性材料として大いに注目されている。江教授らは、世界に先駆けて基礎から応用まで幅広い研究を展開し、この分野を先導してきた。
これまでの2次元合成高分子は、分子骨格に他の元素(例えば、ホウ素、酸素、窒素などの原子)が入っていて、sp2炭素からなる2次元炭素高分子は合成できなかった。これまでの合成手法では、sp2炭素ユニットからなる高分子を合成できるものの、アモルファス系の無秩序構造を与え、規則正しい2次元原子層及び積層構造をつくることはできなかった。今回、江教授らは、可逆的なC=C結合反応を開発し、C=C結合でsp2炭素ユニットを規則正しく繋げて、結晶性の高い2次元sp2炭素高分子の合成に成功した(図1A)。この原理は様々なトポロジーを有する2次元sp2炭素高分子を設計することができる点が特徴的である。今回合成されたsp2c-COFは、2次元sp2炭素原子層を有し(図1B)、積層することによって頂点に位置するピレンπ-カラムアレイと規則正しく並んだ1次元ナノチャンネルが生成される(図1C)。2次元sp2炭素原子層の中では、xとy方向に沿ってπ電子共役が伸びており、拡張された2次元電子系を形成する(図1D)。また、積層構造では、ピレン(丸い点)ユニットが縦方向でスタックして特異なπカラムアレイ構造と1次元ナノチャンネル構造を形成している(図1E)。X線構造解析から、2次元sp2炭素高分子は、規則正しい配列構造を有することが明らかになった。

図1.A)sp2炭素ユニットからなる2次元炭素高分子の合成。B) 2次元炭素原子層の構造。C)積層された2次元炭素構造。D)2次元炭素の網目モデル構造、xとy方向にπ共役が広がっている。E) 積層された2次元炭素の網目モデル構造。
この2次元sp2炭素高分子は空気中、様々な有機溶媒、水、酸、および塩基下においても安定である。また、熱的にも極めて安定であり、窒素下で400°Cまで加熱しても分解しない。この2次元sp2炭素高分子は酸化還元活性であり、有機半導体の特性を示す。エネルギーギャップは1.9 eVであり、ヨウ素でドーピングすると、電気伝導度が12桁も向上する。
電子スピン共鳴スペクトルを用いて、ヨウ素でのドーピング過程を追跡したところ、有機ラジカル種がドーピング時間とともに増えてくることが分かった。これらのラジカル種はピレンに位置し、互いに会合してバイポラロンを形成することができない。したがって、2次元炭素高分子系内では、極めて高いラジカル密度を保つことができる。超電導量子干渉計を用いた測定から、ピレンあたりのラジカル種は0.7個であることが分かった。これに対して、類似構造を有する1次元高分子および3次元アモルファス高分子系では、ラジカル密度が極めて低かった。すなわち、2次元 sp2炭素高分子はバルクの磁石であることが示唆された。
磁化率と磁場強度との関係を検討したところ、温度を下げていくと、これらのラジカル種が同じ方向に向くようになり、2次元炭素高分子は強磁性体注2)に転移することを見いだした。すなわち、隣り合うラジカル種のスピンが同じ方向に揃うことによって、スピン間のコヒーレンスが生まれる。これらの特異なスピン挙動は1次元や3次元アモルファス炭素材料には見られない。
本研究成果は、このような高度なスピンアレイを用いた超高密度データー貯蔵システムや超高密度エネルギー貯蔵システムの開拓に新しい道を開くものである。
2.今後の展開
今回の研究成果は、化学合成から2次元炭素高分子材料の新しい設計原理を確立した。また、合成アプローチも確保されており、様々な2次元炭素高分子材料の誕生に繋がるものと期待される。今後、これらの特異な2次元炭素構造をベースに、様々な革新的な材料の開発がより一層促進される。
3.用語解説
注1)2次元高分子
共有結合で有機ユニットを連結し、2次元に規定して成長した多孔性高分子シートの結晶化により積層される共有結合性有機構造体。
注2)強磁性体
隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質を指す。そのため、外部磁場が無くても自発磁化を示す。
4.論文情報
掲載誌:Science
論文タイトル:Two-dimensional sp2 carbon-conjugated covalent organic frameworks(2次元sp2炭素共役共有結合性有機骨格構造体)
著者:金 恩泉(北陸先端科学技術大学院大学研究員)、浅田 瑞枝(分子科学研究所特任助教)、徐 慶(北陸先端科学技術大学院大学特別研究学生)、Sasanka Dalapati(北陸先端科学技術大学院大学研究員、日本学術振興会外国人特別研究員)、Matthew A. Addicoat (イギリス ノッティンガム・トレント大学助教)、 Michael A. Brady(アメリカ ローレンス・バークレー国立研究所 研究員)、徐 宏(北陸先端科学技術大学院大学研究員)、中村 敏和(分子科学研究所准教授)、Thomas Heine (ドイツ ライプツィヒ大学教授)、陳 秋紅(北陸先端科学技術大学院大学研究員)、江 東林(北陸先端科学技術大学院大学教授)
掲載日:8月18日にオンライン掲載。 DOI: 10.1126/science.aan0202.
5.研究助成
この研究は科学研究費助成金 基盤研究(A)(17H01218)、ENEOS水素信託基金、および小笠原科学技術振興財団によって助成された。
平成29年8月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/08/21-1.html従来型バインダー材料を代替するリチウムイオン2次電池用新型高性能バインダーの開発に成功
従来型バインダー材料を代替するリチウムイオン2次電池用
新型高性能バインダーの開発に成功
ポイント
- 従来型バインダー材料であるPVDF(ポリフッ化ビニリデン)を代替し得る特性を有するリチウムイオン2次電池用新型高性能高分子バインダーの開発に成功した。
- 本バインダー材料を用いた系ではPVDFを用いた場合よりも約1.5倍高い放電容量が観測された。
- 本バインダー材料を用いた系ではPVDF系で顕著であった電解液の電気分解が抑制された。
- 充放電サイクル後に、本バインダー材料を用いた電池系ではPVDF系と比較して大幅に低い内部抵抗が観測された。
- 電極―電解質界面抵抗を低減できる高性能バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が期待される。
|
北陸先端科学技術大学院大学 (JAIST) (学長・浅野哲夫、石川県能美市)の先端科学技術研究科物質化学領域の松見紀佳教授、ラーマン ヴェーダラージャン助教(当時)らはリチウムイオン2次電池*1における電極―電解質界面抵抗*2を大幅に低減し、PVDFを代替し得る高機能性高分子バインダーの開発に成功した。 リチウムイオン2次電池用バインダー (図1)としては、長きにわたってポリフッ化ビニリデン(PVDF)が広範に用いられてきた。活発な基礎研究が展開されてきた正極・負極、電解質等の部材に常に脚光が当たってきた一方で、バインダーに関しては近年論文数は向上しているものの、十分に検討されていなかった。 |
<今後の展開>
セル構成や充放電条件を最適化し、最も優れた特性を有する蓄電デバイスの創出に結びつける。
電極―電解質界面抵抗を大幅に低減できる機能性高分子バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイス(リチウムイオンキャパシタ、金属―空気電池等)への応用が見込まれる。
![]() |
![]() |
| 図1.Liイオン2次電池における負極バインダー | 図2.BIAN型高分子バインダーの設計概念 |
|
|
|
| 図3.EC、PVDF及びBIAN型高分子バインダーのHOMO、LUMOエネルギー準位 | |
|
|
![]() |
| 図4.BIAN型高分子(左)及びPVDF(右)を用いて構築したハーフセルのサイクリックボルタモグラム | |
|
|
|
| 図5.BIAN型高分子及びPVDFを用いて構築したハーフセルの充放電サイクル後の内部インピーダンススペクトル | |
<用語解説>
1.リチウムイオン2次電池
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
2.電極―電解質界面抵抗
エネルギーデバイスにおいては一般的に個々の電極の特性や個々の電解質の特性に加えて電極―電解質界面の電荷移動抵抗がデバイスのパフォーマンスにとって重要である。交流インピーダンス測定を行うことによって個々の材料自身の特性、電極―電解質界面の特性等を分離した成分としてそれぞれ観測し、解析することが可能である。
3.HOMO
電子が占有している分子軌道の中でエネルギー準位が最も高い軌道を最高被占軌道(HOMO; Highest Occupied Molecular Orbital)と呼ぶ。
4.LUMO
電子が占有していない分子軌道の中でエネルギー準位が最も低い軌道を最低空軌道(LUMO; Lowest Unoccupied Molecular Orbital)と呼ぶ。
5.サイクリックボルタンメトリー(サイクリックボルタモグラム)
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
平成29年8月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/08/17-1.html











