研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。欠陥修復した酸化グラフェンから優れた電気特性をもつバンド伝導の観察に成功
![]() ![]() |
大阪大学 北陸先端科学技術大学院大学 名古屋大学 公益財団法人科学技技術交流財団 あいちシンクロトロン光センター |
欠陥修復した酸化グラフェンから
優れた電気特性をもつバンド伝導の観察に成功
~高結晶性グラフェン薄膜のスケーラブル製造への道筋を開拓~
| 研究成果のポイント | ||
|
||
| <概要> 大阪大学大学院工学研究科の根岸良太助教、小林慶裕教授、北陸先端科学技術大学院大学の赤堀誠志准教授、名古屋大学大学院工学研究科の伊藤孝寛准教授、あいちシンクロトロン光センター渡辺義夫リエゾン副所長らの研究グループは、還元過程において微量の炭素源ガス(エタノール)を添加した高温(1100℃以上)加熱還元処理により欠陥構造の修復を促進させることで飛躍的に酸化グラフェンの結晶性を向上させ、還元処理をした酸化グラフェン薄膜においてグラフェン本来の電気伝導特性を反映したバンド伝導の観察に初めて成功しました。(図1)
このバンド伝導の発現により、還元処理をした酸化グラフェン薄膜としては現状最高レベルのキャリア移動度(~210cm2/Vs)を達成しました。 本成果によって、酸化グラフェンは、還元処理によりグラフェン薄膜の生成が可能なため、グラフェンを利用した電子デバイスやセンサーなど様々な応用が期待されています。 本研究成果は、日本時間 7月1日(金) 午後6時に英国の科学オープンアクセス誌「Scientific Reports (Nature Publishing Group)」に公開されます。 ![]() 図1 酸化グラフェンの還元法に対する(a)従来法と(b)本手法との比較。(c)低結晶性と(d)高結晶性グラフェンにおける電子・ホールの流れる様子の違い。処理温度の異なるエタノール還元処理後の酸化グラフェン薄膜の伝導度における観察温度存性(e)900℃、(f)1130℃。伝導機構モデルに基づく伝導度の温度依存性解析から、1130℃の高温エタノール加熱還元処理した酸化グラフェン薄膜では観察温度が室温~40Kの範囲においてバンド伝導が観察されている((f)のグラフ)。 |
| <研究の背景> | |||
図2 高配向性グラファイト(HOPG)と酸化グラフェンからのグラフェン薄膜形成方法の比較その発見者であるガイム、ノボセロフはその重要性から2010年にノーベル賞を受賞しています。大量合成可能な酸化グラフェンは、還元処理によりグラフェンを形成させることが可能なため、グラフェンの合成における出発材料として、世界中で大変注目されています。 しかしながら、酸化グラフェンは非常に多くの欠陥構造を有するため、還元処理後に得られるグラフェン薄膜のキャリア移動度(トランジスタ性能の指標となり、物質を伝搬する電子・ホールの速さ:速いほどトランジスタ性能が良い)はせいぜい数cm2/Vsに留まっていました。 現在、最も結晶性の高いグラフェンの合成方法は、HOPG(高配向性のグラファイト)からスコッチテープで一枚ずつ剥離して基板へ転写する方法です。しかしながら、この方法では得られるグラフェン片のサイズは数μm程度と小さい上に、小さなフレークを幾重にも重ねてデバイスとして利用可能な薄膜にしなければなりません。これは至難の作業です(図2(a))。 一方、酸化グラフェンは親水性のため水によく分散させることができるので、その水溶液を基板上に滴下して水分を飛ばし還元するだけで、容易に厚さ1-3層分の薄いグラフェン薄膜を形成させることが可能となります(図2(b))。そのため、グラフェンを大量に合成する原料として、酸化グラフェンの合成法や還元法が世界中で研究されています。
酸化グラフェンからグラフェンを生成するためには還元処理が必須となりますが、一般的な化学還元や真空・不活性ガス(アルゴンなどカーボンと化学反応を起こさないガス)中での加熱還元処理では、酸化過程で形成した欠陥構造が還元後も多く残るため、これまで薄膜のキャリア伝導機構は電子が局在したホッピング伝導※7を示すことが知られていました。 ![]() 図3 処理温度の異なるエタノール還元処理後の酸化グラフェン薄膜およびグラファイト(HOPG)からのX線吸収微細構造スペクトル。1130℃の高温エタノール還元処理では非占有準位であるπ*とσ*のピーク強度比が900℃処理よりも完全結晶であるグラファイトで観察された強度比に近い値を示しており、酸化グラフェンの高結晶化に伴いバンド(電子)構造が理想的なグラフェンに近づいていることが分かる。 図1(c),(d)の伝導機構に対する模式図で示すように、薄膜内に欠陥構造が多い場合(図1(c))、欠陥構造がキャリア(電子・ホール)の流れに対して大きな壁となります。キャリアは熱エネルギーの助けを借りてこの障壁を乗り越えるようにホッピング伝導します。これは、キャリアにとって大きなエネルギーを必要とし、著しい移動度の低下を引き起こします。一方で、欠陥構造の領域が減少すると障壁の高さが低下し(図1(d))、キャリアの流れはスムーズになり、グラフェンの結晶性を反映したバンド伝導を示すことが期待されます。 |
|||
| <研究の内容> | |||
|
本研究グループは、1-3層(厚さ:~1nm)からなる極めて薄い酸化グラフェン薄膜をデバイス基板上へ塗布し、エタノール添加ガス雰囲気で1100℃以上の高温加熱還元処理を行うことにより(図1(b))、高移動度の薄膜形成に成功しました。還元処理をしたグラフェン薄膜における電気伝導度の温度特性解析から、バンド伝導が観察されました。低結晶性を示す低温(900℃)でのエタノール還元処理では、電子の流れ(図1(e)のグラフ:Y軸)は観察温度Tの-1/3乗(X軸)に対して線形に変化しており、この振る舞いはホッピング伝導モデルで説明することができます。一方、高結晶性を示すグラフェン薄膜が生成される高温条件(1130℃)では、観察温度が室温から40Kの範囲で伝導度(図1(f)のグラフ:Y軸)がTの-1/3乗に対して非線形的変化を示し、バンド伝導モデルで説明することができます。これは、カーボン原材料となるエタノールガスの添加により、酸化過程で生成した欠陥構造の修復が効率的に促進し、グラフェンの結晶性が飛躍的に向上していることを意味しています。実際、バンド伝導の発現を裏付けるデータとして、X線吸収微細構造スペクトル※8 を実施して電子構造※9 の視点からもこの物性を実証しました(図3)。さらに、ミクロ領域の構造解析法である透過型電子顕微鏡※10 観察からも、結晶性の向上を明らかにしました(図4)。
図4 処理温度の異なるエタノール加熱還元処理後の酸化グラフェン薄膜の透過型電子顕微鏡像(a)900℃、(b)1100℃。処理温度1100℃では炭素原子の蜂の巣構造を反映した輝点が周期的に配列しており、結晶性が飛躍的に向上していることが分かる。 |
|||
| <本研究成果が社会に与える影響(本研究成果の意義)> | |||
|
酸化グラフェンは、還元処理によりグラフェン薄膜の生成が可能なため、グラフェンを利用した電子デバイスやセンサーなど様々な応用が期待されています。本研究の成果は、グラフェンの優れた物性を活用したスケーラブルな材料開発の進展において重要なマイルストーンとなります。
|
|||
| <特記事項> | |||
|
本研究成果は、日本時間 7月1日(金) 午後6時に英国の科学オープンアクセス誌「Scientific Reports (Nature Publishing Group)」に公開されます。
タイトル:"Band-like transport in highly crystalline graphene films from defective graphene oxides" 著者名:R. Negishi, M. Akabori, T. Ito, Y. Watanabe and Y. Kobayashi なお本研究は、JSPS科研費PJ16K13639, 26610085, JST育成研究 A-STEP No. AS242Z02806J, AS242Z03214M, 大阪大学フォトニクス先端融合研究センター、「低炭素研究ネットワーク」京都大学ナノテクノロジーハブ拠点、北陸先端科学技術大学院大学ナノテクノロジープラットフォーム事業の一環として行われ、京都大学 大学院理学研究科 倉田博基教授、大阪工業大学教育センター 山田省二教授、大阪大学大学院理学研究科 髙城大輔助教、あいちSRセンター 仲武昌史氏、北陸先端科学技術大学院大学 村上達也氏の協力を得て行われました。 |
|||
| <用語説明> | |||
|
※1 欠陥構造
グラフェンは炭素原子が蜂の巣状(ハニカム状)に結合したシート状の物質であり、欠陥構造とはこのハニカム状の構造の変形や、カーボンそのものが欠損した穴、カーボンがそれ以外の元素(酸素など)と結合した状態等を指す。 ※2 酸化グラフェン
酸化処理によりグラファイトから化学的に剥離させた厚さ1原子層分のシート状の材料。水や有機溶媒に溶け、液体として取り扱うことができるため、任意基板へ塗布するだけでグラフェン薄膜を容易に大面積で作成することができる。しかし、酸化処理により多くの欠陥構造や酸素含有基を含むため、その伝導特性は高配向性グラファイト(HOdivG)から得られるグラフェンと比較して著しく低い。このことが酸化グラフェン材料のデバイス応用に向けて大きなボトルネックとなっている。 ※3 バンド伝導
キャリアが周期的電子構造を持つ固体結晶内を波として伝搬する伝導機構。 ※4 キャリア移動度
固体物質内におけるキャリア(電子・ホール)の動きやすさを表わし、トランジスタ性能の基本的な指標となる。 ※5 還元処理
グラファイトの酸化処理により合成された酸化グラフェンは多くの酸素含有基を含むため絶縁性を示す。電子デバイスへの応用には、これら酸素含有基を取り除くための還元処理が必須となる。 ※6 スケーラブル
製造プロセスやネットワークシステムなどにおいて現時点では小規模なものであるが、リソースの追加により大規模なものへ拡張できる能力。 ※7 ホッピング伝導
キャリアが固体結晶内の欠陥構造などに起因した局在電子準位を熱エネルギーの助けを借りて移動する伝導機構。 ※8 X線吸収微細構造スペクトル
X線を物質に照射するとX線の吸収に伴い観察対象となる原子の電子が放出し、周辺に位置する原子によって散乱・干渉が起きる。このようなX線の吸収から原子の化学状態や電子構造を調べることができる。 ※9 電子構造
固体内の原子・分子の配置に起因した電子の状態。周期的な結晶構造を持つ物質では、物質中の電子のエネルギーと運動量の関係が物質間の相互作用のためにエネルギー状態が帯状に広がったバンド構造を持つ。 ※10 透過型電子顕微鏡
観察の対象となる物質に電子を照射し、それを透過してきた電子を観察する顕微鏡。原子スケールで固体結晶の構造解析が可能。 |
|||
平成28年7月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/07/01-1.html学生の中嶋さんが日本顕微鏡学会第67回シンポジウムにおいて学生優秀ポスター賞を受賞
学生の中嶋まいさん(博士前期課程2年、ナノマテリアル・デバイス研究領域、大島研究室)が公益社団法人日本顕微鏡学会第67回シンポジウムにおいて学生優秀ポスター賞を受賞しました。
日本顕微鏡学会は顕微鏡学に関わる研究発表、知識の交換並びに社会との連絡連携の場となり、顕微鏡学の進歩発展を図り、もって社会および産業界に寄与することを目的として、電子顕微鏡(学)に関する理論、基礎的な研究を行うとともに、産業界、医学界、生物界における実際問題への応用研究も盛んに行っています。
同学会第67回シンポジウムは、『GXに貢献する顕微科学の未来』をメインテーマとして、令和6年11月2日~3日にかけて、北海道大学にて開催されました。
学生優秀ポスター賞は、顕微鏡技術(装置・手法)部門、医学・生物科学部門、材料・物質科学部門の各部門ごとに選考が行われ、優れたポスター発表を行った学生に授与されるものです。
※参考:日本顕微鏡学会第67回シンポジウム
■受賞年月日
令和6年11月2日
■研究題目、論文タイトル等
GaSeナノリボンの電子照射によるスイッチング動作の検証
■研究者、著者
中嶋まい、Limi Chen、麻生浩平、高村(山田)由起子、大島義文
■受賞対象となった研究の内容
GaSe(セレン化ガリウム)は光や電子に対して高い光伝導効果が知られている二次元材料であり、超小型スイッチングデバイスへの応用が期待されている。しかし、二次元材料の電子に対する応答を測定することは難しく、電子照射効果の影響は解明されていなかった。
本研究では、二次元材料の転写方法の改善と、独自に開発したその場電子顕微鏡観察法を行い、原子構造の観察をしながら電子照射下の電気伝導測定を行った。この結果、初めて電子照射量に対する電流の増加量(=応答率)を導くことができ、電子照射応答のメカニズムの解明に貢献した。
■受賞にあたって一言
この度は学生優秀ポスター賞を賜り、大変光栄に存じます。本研究の遂行にあたり、丁寧なご指導をしてくださった大島義文教授、高村(山田)由起子教授、および研究室の皆様に深くお礼申し上げます。今後も、二次元材料の物性研究を進めて参ります。
令和7年1月16日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/01/16-1.html量子グレードの高品質・高輝度蛍光ナノ粉末ダイヤモンド ~ナノダイヤモンド量子センサの性能向上で超高感度の測定が可能に~
![]() ![]() |
| 岡山大学 量子科学技術研究開発機構 北陸先端科学技術大学院大学 筑波大学 |
量子グレードの高品質・高輝度蛍光ナノ粉末ダイヤモンド
~ナノダイヤモンド量子センサの性能向上で超高感度の測定が可能に~
【ポイント】
- 明るい蛍光イメージングとナノ量子計測法が利用可能な品質等級(量子グレード)を実現しました。
- 従来の蛍光ナノ粉末ダイヤモンド※1に比べて量子特性が10倍以上、温度感度が2桁向上しました。
- ナノダイヤモンド量子センサの性能を大幅に向上させた画期的な成果です。
- 細胞内やナノ電子デバイスの温度や磁場を超高感度で測定可能になることが期待されます。
| 岡山大学学術研究院環境生命自然科学学域(理)の藤原正澄研究教授、押味佳裕日本学術振興会特別研究員、同大大学院環境生命自然科学研究科の中島大夢大学院生、大学院自然科学研究科のマンディッチサラ大学院生、小林陽奈非常勤研究員(当時)は、住友電気工業株式会社の西林良樹主幹、寺本三記主席、辻拡和研究員、量子科学技術研究開発機構量子生命科学研究所の石綿整主任研究員、北陸先端科学技術大学院大学ナノマテリアル・デバイス研究領域の安東秀准教授、筑波大学システム情報系の鹿野豊教授らとの共同研究により、従来の10倍以上の優れた量子特性(量子コヒーレンス※2)を持つ高輝度の蛍光ナノ粉末ダイヤモンドを世界で初めて報告しました。この蛍光ナノ粉末ダイヤモンドは、住友電気工業株式会社との協力によって実現されたもので、高い蛍光輝度で蛍光イメージングが可能で、高品質な量子センサ特性を有しており、温度量子測定においても1桁以上の感度向上が確認されました。 本研究成果は、2024年12月16日に「ACS Nano」のオンライン先行版に掲載されました。蛍光ナノ粉末ダイヤモンドを用いた量子センシング※3技術は、近年注目を集めている超高感度ナノセンシング技術です。しかし、これまで高い蛍光輝度と様々な量子計測法を行うのに要求される品質等級(量子グレード)の両立は困難とされてきました。本研究により、ナノダイヤモンド量子センサの性能が大幅に向上され、細胞内やナノ電子デバイスの温度や磁場を超高感度で測定できると期待されます。 |
【現状】
蛍光ナノ粉末ダイヤモンドを用いた量子センシングは、ナノスケールでの温度、磁場、化学環境の変化を高感度に計測できる技術として、生命科学やナノテクノロジー分野で大きな注目を集めています。この技術は、細胞内の微小領域やデバイス内部の構造を精密に計測できることから、将来的には癌の超早期診断や極微量ウイルスの検出などの医療分野や、リチウムイオンバッテリーの状態モニタリングなどのスマートデバイス分野での応用が期待されています。しかし、量子センシングの性能は蛍光ナノ粉末ダイヤモンドの電子スピン特性に大きく依存しており、このスピン特性の向上が技術の成否を左右します。特に、従来の蛍光ナノダイヤモンドでは、蛍光強度とスピン特性の両立が難しく、測定感度が劣化するという課題がありました。
【研究成果の内容】
本研究では、蛍光ナノ粉末ダイヤモンド中のスピン不純物(孤立窒素原子や天然炭素に含まれる約1%の13C同位体)を大幅に減少させ、スピン純度を飛躍的に向上させることに成功しました。また、窒素空孔欠陥中心(NV中心)※4を高効率で生成するためのダイヤモンド成長法およびナノ粒子粉砕法を最適化し、含有されているNV中心が約1 ppm、孤立窒素が約30 ppm、13C同位体が0.01%以下に制御され、平均粒径277 nmの大きさを有するナノ粉末ダイヤモンドを作製しました。その結果、光検出磁気共鳴※5信号(ODMR)が著しく改善され、従来の蛍光ナノ粉末ダイヤモンドと比較して量子コヒーレンス時間が10倍以上延長されました。(図1)

図1:細胞内の量子グレード蛍光ナノ粉末ダイヤモンドとそのスピン特性
さらに、これらの蛍光ナノ粉末ダイヤモンドを細胞内に導入し、従来の蛍光ナノ粉末ダイヤモンドに比べてより高感度にODMR信号が検出できることを実証しました。また、バルク結晶のみで実現されていた量子計測法の1つである、超高感度温度測定法「サーマルエコー」も観測することに成功しました。これにより、従来のナノダイヤモンド温度量子センシングに比べて1桁以上感度が向上することを確認しました(図2)。ナノダイヤモンド量子センサの実用に道を開く画期的な成果です。

図2:サーマルエコー法による超高感度温度測定と従来に比べた測定感度の向上
【社会的な意義】
本研究は、生命科学やナノテクノロジー分野におけるナノスケールセンシング技術の大きな進展をもたらす可能性を秘めています。蛍光ナノ粉末ダイヤモンドは、優れた光安定性と生体適合性を持ち、既に一部で商用化が始まっている有望な蛍光イメージング材料です。ナノダイヤモンド量子センサの応用が進展すれば、癌などの超早期診断や極微量ウイルス検出といった新しい診断技術の開発が期待されます。また、ナノメートルからマイクロメートルの微小領域で温度や磁場を検出する技術は、リチウムイオンバッテリー内部の状態モニタリングなど、スマートデバイスの革新的な性能向上にも貢献すると期待されています。本研究を通じて量子センシング技術が進展することで、蛍光ナノ粉末ダイヤモンドのバイオ医療やスマート電子技術分野での幅広い商用化が期待されます。
【論文情報】
| 論文名 | Bright quantum-grade fluorescent nanodiamonds |
| 邦題名 | 「高輝度量子グレード蛍光ナノ粉末ダイヤモンド」 |
| 掲載紙 | ACS Nano |
| 著者 | Keisuke Oshimi, Hitoshi Ishiwata, Hiromu Nakashima, Sara Mandić, Hina Kobayashi, Minori Teramoto, Hirokazu Tsuji, Yoshiki Nishibayashi, Yutaka Shikano, Toshu An, Masazumi Fujiwara |
| DOI | 10.1021/acsnano.4c03424 |
| URL | https://doi.org/10.1021/acsnano.4c03424 |
【研究資金】
- 独立行政法人日本学術振興会「科学研究費助成事業」
‣基盤A・24H00406,研究代表:藤原正澄
‣基盤A・20H00335,研究代表:藤原正澄
‣国際共同研究強化(A)・20KK0317,研究代表:藤原正澄
‣特別研究員奨励費・23KJ1607,研究代表:押味佳裕 - 国立研究開発法人科学技術振興機構
「先端国際共同研究推進事業(ASPIRE)次世代のためのASPIRE」
(JPMJAP2339,研究代表:鹿野豊(筑波大学) - 国立研究開発法人 新エネルギー・産業技術総合開発機構
「官民による若手研究者発掘支援事業」
(JPNP20004,研究代表:藤原正澄) - 国立研究開発法人日本医療研究開発機構「ムーンショット型研究開発事業」
(JP23zf0127004,研究代表:村上正晃(北海道大学)) - 国立研究開発法人科学技術振興機構 未来社会創造事業 「共通基盤」領域 本格研究
(JPMJMI21G1,研究代表:飯田琢也(大阪公立大学)) - 国立研究開発法人科学技術振興機構 戦略的創造研究推進事業さきがけ
(JPMJPR20M4,研究代表:鹿野豊(筑波大学)) - 国立研究開発法人科学技術振興機構 科学技術イノベーション創出に向けた大学フェローシップ創設事業
(JPMJFS2128, 研究代表:押味佳裕(岡山大学))
(JPMJFS2126, 研究代表:マンディッチサラ(岡山大学)) - 公益財団法人 山陽放送学術文化・スポーツ振興財団「研究助成」(研究代表:藤原正澄)
- 公益財団法人 旭硝子財団「研究助成」(研究代表:藤原正澄)
- 文部科学省「ナノテクノロジープラットフォーム」(JPMXP09F21OS0055)
- 国立研究開発法人科学技術振興機構 創発的研究支援事業
(JPMJFR224K,研究代表:石綿整(QST)) - 公益財団法人 村田学術振興・教育財団「研究助成」(研究代表:石綿整(QST))
【補足・用語説明】
ダイヤモンド中に存在する窒素欠陥中心によって赤い発光を示す、ナノメートルサイズのダイヤモンド粉末粒子。褪色がなく安定した蛍光を半永久的に示す蛍光材料。生体毒性も低く、バイオイメージングなどに利用されている。
量子力学において量子状態が外部からの影響を受けずに一貫性を保ちながら情報を保持できる性質。温度測定の場合、ダイヤモンド窒素欠陥中心の電子スピン状態が温度情報を感じることのできる時間であり、コヒーレンスが失われると温度測定の精度が低下する。
量子力学の原理に基づいてさまざまな物理量を超高感度に計測することができる。特に蛍光ナノ粉末ダイヤモンドでは、窒素欠陥中心が有する電子スピン状態を、量子力学の原理に基づいて操作・検出することで、さまざまな物理量(磁気・温度・電気)を超高感度に計測することができる。
ダイヤモンドの炭素格子中に含まれる結晶欠陥の1つ。窒素原子と隣接する空孔から構成され、緑色の光を吸収して赤い蛍光を示す。この蛍光は、光検出磁気共鳴を示し※5、これが磁場や温度によって影響されるため、蛍光を通したセンシングが可能。超高感度計測が可能な量子センサとして注目され、生体内での温度や磁場の計測、量子情報技術などで注目されている。
光検出を通して電子スピンとマイクロ波の共鳴を観測する手法。蛍光ナノ粉末ダイヤモンドの場合、2.87 GHz付近のマイクロ波を照射すると、電子スピン共鳴が生じ、それが蛍光輝度の減少に表れる。
令和6年12月23日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/12/23-1.html革新的ポリマーを用いたタンパク質凝集阻害メカニズムの解明 ―タンパク質医薬品製造の効率化や神経変性疾患治療への応用に期待―
![]() |
国立大学法人 国立大学法人東京工業大学 |
革新的ポリマーを用いたタンパク質凝集阻害メカニズムの解明
―タンパク質医薬品製造の効率化や神経変性疾患治療への応用に期待―
ポイント
- 双性イオンポリマー(PSPB)によるタンパク質凝集阻害の複雑な分子メカニズムを先駆的に解明した。
- PSPBは、多様なタンパク質の熱凝集に対して高い保護活性を持ち、PSPBとタンパク質の相互作用を実験及びシミュレーションにより包括的かつ詳細に検討した結果、弱く可逆的な結合の重要性を明らかにした。また、PSPBはタンパク質と弱く可逆的に相互作用することで、凝集経路を妨げ、凝集性中間体の形成を阻止することも明らかとなった。
- タンパク質治療薬の安定化と長期保存を実現する可能性を見出した。
- 将来的にはアルツハイマーなどの神経変性疾患の治療への応用も期待される。
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の松村和明教授、ラジャンロビン元助教及びZHAO, Dandan研究員(超越バイオメディカルDX研究拠点)は、東京工業大学(学長・益一哉、東京都目黒区)生命理工学院生命理工学系の古田忠臣助教と共同で、双性イオンポリマーによるタンパク質凝集阻害メカニズムの解明に成功した。 本研究グループが合成したスルホベタインポリマーと呼ばれる双性イオン高分子は、タンパク質と弱く可逆的に相互作用し、凝集経路を妨げることで凝集性中間体の形成を阻止し、有害な凝集を防ぐ。この画期的な発見は、タンパク質治療薬を進歩させ、タンパク質のミスフォールディングに関連する様々な症状に対する新規治療法を開発する上で、計り知れない可能性を秘めている。 本成果は、2024年5月30日11時(米国東部標準時間)にCell Press発行「Cell Reports Physical Science」オンライン版に掲載された。 |
【研究の背景】
タンパク質の凝集は、アルツハイマー病、パーキンソン病、ハンチントン病などの神経変性疾患の主な原因とされている。また、タンパク質医薬品の生産と保管中に凝集が発生すると、薬剤の活性と有効性が失われる可能性がある。従来の方法では、これらの凝集を防ぐことは困難であり、効果的な安定化手法の開発が求められていた。
【研究内容】
本研究グループは、双性イオン高分子注1の一種であるスルホベタインポリマー(PSPB)及びその疎水性誘導体がタンパク質凝集を抑制するメカニズムを解明した。(図1)。PSPBはタンパク質と弱く相互作用し、凝集経路を妨げることで凝集性中間体の形成を阻止する。実験により、PSPBがインスリンやリゾチームなどの複数のタンパク質を熱ストレスから効果的に保護することが示された。特に、疎水性残基を導入したPSPBは、タンパク質の凝集抑制効果が著しく向上することが確認された。この効果は分子シールディング効果注2と呼ばれ、保護対象のタンパク質と保護高分子が可逆的な相互作用を示すことにより、物理的に凝集を妨げている様子が分子動力学シミュレーション注3の結果からも確認された。
【主な結果】
- PSPBの合成と特性評価:異なる疎水性モノマー(BuMA、HxMA、OcMA)を組み込んだ種々のスルホベタインポリマー(PSPB)を合成し、その特性を評価した。
- タンパク質の保護効果:インスリン、リゾチーム、乳酸脱水素酵素(LDH)をモデルタンパク質として使用し、PSPBがこれらタンパク質の凝集繊維形成を著しく抑制することを確認。分子量と疎水性が高いPSPBは、特に効果的であることが示された(図2)。
- 分子動力学シミュレーション:PSPBが分子シールドとして機能し、タンパク質分子間の距離を保ち、凝集を防ぐ効果を持つことが確認された(図3)。
- メカニズムの解明:熱分析、分光学的手法などを駆使し、PSPBによる凝集抑制効果の解明に成功した。モデルタンパク質のインスリンを加熱すると、タンパク質の高次構造がほどけるアンフォールディングが起こる。その後、さらに加熱することで凝集性の前駆体が形成され、不可逆な凝集体となる。ここにPSPBが存在することで、アンフォールディングする温度が高温側にシフトし、凝集前駆体の形成が阻害される。冷却時にはPSPBは脱離し、元の高次構造が維持される(図4)。PSPBへの疎水基の導入は、タンパク質の疎水性残基との相互作用を高める効果があり、より凝集前駆体の形成阻害効果を高めていることが示唆される。
【今後の展望】
PSPBによるタンパク質凝集抑制効果の分子メカニズムに迫った研究は初めてであり、このメカニズムにより、PSPBがタンパク質治療薬の安定化と長期保存に貢献できる可能性が示された。
さらに、この研究は新しい診断及び治療法の開発にも応用される可能性があり、将来的には幅広い疾患に対する効果的な治療法の提供が期待される。本研究グループは、今後さらにアミロイドβタンパクの凝集抑制などの研究を進め、アルツハイマー病やパーキンソン病などのタンパク質凝集が原因とされる神経変性疾患の治療や原因解明など、実用化に向けた具体的な応用方法の開発に取り組んでいく予定である。

図1 各種合成した双性イオンポリマー
スルホベタインポリマー(PSPB)にブチルメタクリレート(BuMA)、ヘキシルメタクリレート(HxMA)、オクチルメタクリレート(OcMA)を共重合したポリマーの構造を示す。

図2 インスリン溶液の凝集抑制の様子。i)加熱前、ii)加熱後、iii)PSPB添加後に加熱。
加熱することで凝集により白濁していることが確認される。一方、PSPBを添加することで白濁は抑えられる。

図3 P(SPB-r-BuMA)のモデルとしたスルホベタイン2量体にブチルメタクリレートを結合した化合物(SPB2_BuMA)とインスリンのMDシミュレーションによるスナップショット。インスリン二分子の間にモデル化合物が分子シールドとして可逆的にサンドイッチされ、凝集を妨げている様子が見られた。

図4 凝集抑制メカニズムの模式図。インスリン二量体(天然構造)が加熱により単量体に変性し、さらにアンフォールディングして立体構造が解消される。その際にポリマーがあると、分子シールディング効果により、凝集前駆体の形成を抑制し、繊維状凝集前駆体(prefibrillar aggregates)から繊維凝集体(mature fibrils)の形成を阻害する。
なお、本研究は、科研費基盤研究(B)20H04532、若手研究20K20197、23K17211、学術変革領域研究(A)21H05516、国立研究開発法人科学技術振興機構(JST)研究成果最適展開支援プログラム(A-STEP)JPMJTR20UN、文部科学省ナノテクノロジープラットフォーム事業JPMXP09S21MS1051、JPMXP09S21MS1051b、文部科学省マテリアル先端リサーチインフラ事業JPMXP1222MS1007、ならびに北陸先端科学技術大学院大学超越バイオメディカルDX研究拠点、生体機能・感覚研究センターの支援のもと行われた。
【論文情報】
| 雑誌名 | Cell Reports Physical Science |
| 題目 | Molecular mechanism of protein aggregation inhibition with sulfobetaine polymers and their hydrophobic derivatives |
| 著者 | Robin Rajan, Tadaomi Furuta, Dandan Zhao, Kazuaki Matsumura |
| 掲載日 | 2024年5月30日11時(米国東部標準時間) |
| DOI | 10.1016/j.xcrp.2024.102012 |
【用語説明】
同一分子内に正電荷と負電荷を持つ全体としては中性の高分子で、高い水和性と低い非特異的タンパク質吸着性を持つ。これにより、生体適合性が高く、医療分野やバイオテクノロジー分野で広く研究、応用されている。
Tunaccliffeらの報告によると、ある種の天然変性タンパク質が乾燥時に他のタンパク質の周りに保護相を形成し、物理的に凝集を抑制する効果のことを分子シールディング(molecular shielding)効果として説明している。
Chakrabortee S, et al., Mol. Biosys. 2012, 8, 210-219
分子系の運動を時間的に解析する手法。具体的には、原子や分子の初期位置と速度を設定し、相互作用ポテンシャルを用いてニュートンの運動方程式を解くことで、分子系の時間発展を追跡し、構造変化、相転移、拡散などの現象を解析する。例えば、タンパク質のフォールディング過程や薬物分子の結合動態、材料の熱物性などを詳細に調べることができ、生物学、化学、材料科学に広く応用されている。
令和6年5月31日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/05/31-1.html精密な高分子設計による能動的電子輸送が終始可能に -高分子が触手のように電子を授受-
精密な高分子設計による能動的電子輸送が終始可能に
-高分子が触手のように電子を授受-
ポイント
- 精密に合成された高分子が能動的に電子を輸送するナノシステムを設計
- 実際の葉緑体に倣った光エネルギー変換システムの構築が期待
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)、サスティナブルイノベーション研究領域の、博士前期課程大学院生 萩原礼奈、桶葭興資准教授、物質化学フロンティア研究領域の西村俊准教授らは、「電子を輸送する」高分子-金属ナノ粒子の複合組織を設計した。ここでは、三元系のヘテロ高分子が触媒ナノ粒子表面に結合しており、能動的な電子輸送システムとして機能する。従来の研究では、電子伝達には2 nm以内で著しく効率的になることが分かっていたが、この距離を制御する能動的なシステムは無かった。本研究の高分子は電子の授受に伴って相転移を起こし、能動的に触媒粒子との距離を変化させる。このようなナノシステムは、可視光エネルギーによる水の分解や水素生成の触媒作用のみならず、電池など電気化学反応を伴う系や人工酵素の系に展開することで、様々なエネルギー変換システムに有用と期待される。 |
桶葭准教授らの研究グループはこれまでに、持続可能社会の実現に向けて人工光合成[用語解説1]の高分子によるシステム構築に挑戦してきた。実際の光合成を行う葉緑体が持つ電子伝達組織、および電子移動に関するマーカス理論[用語解説2]に学び、今回、2 nm以内の電子輸送を能動的に起こす系を高分子の精密な合成を通して構築した。まず、三元系のヘテロ高分子を精密に合成し、これが結合した触媒ナノ粒子を作製した(図)。この高分子は、相転移[用語解説3]を起こす部位、ナノ粒子と結合する部位、そして電子を授受する部位から構成される。ここで、高分子中のビオロゲン分子[用語解説4]が電子を得ると、触媒の白金ナノ粒子まで迅速に運び水素生成する仕組みである。プロセスとしては、I) 電子を得たビオロゲン分子近傍の高分子が収縮する。II) この高分子の一部はナノ粒子表面に固定されているため、電子を得たビオロゲンをナノ粒子表面へ触手のように引き寄せられる。III) ビオロゲンが電子をナノ粒子に渡した後、この高分子は伸長して元に戻る。他方、このナノ粒子は水素生成の触媒として働く。このI~IIIがサイクリックに進む。従来の研究では、拡散律速に依存した受動的な電子移動が介在してしまっていたが、今回のシステムでは、高分子がナノ粒子表面に固定されたことでその能動的な電子輸送が終始可能となった。2 nm以内での電子移動において、著しく高い有効性が認められることは、理論だけでなく実証実験でも報告されていたが、この距離を制御する能動系はこれまで無かった。今回、高分子が触手の様に電子を捉えて触媒が電子を食べるような、アクティブなナノシステムが提案された。

| 上図:三元系のヘテロ高分子Poly(NIPAAm-co-AAm-co-Viologen) (PNAV)。相転移を起こす部位N、ナノ粒子と結合する部位A、そして電子を授受する部位Vから構成される。 下図:高分子PNAVが結合した白金ナノ粒子。光捕集分子などから電子を得たPNAV (PNAV+)は収縮し白金ナノ粒子に近づき電子を渡す。その際、PNAV2+となると伸長してナノ粒子表面から離れる。この能動的な電子の授受を繰り返す。 |
本成果は、2023年12月13日(英国時間)に科学雑誌「Chemical Communications」誌(RSC社)のオンライン版で公開された。なお、本研究は、文部科学省科研費 挑戦的研究(萌芽)(JP21K18998)の支援のもと行われた。
【論文情報】
| 掲載誌 | Chemical Communications (The Royal Society of Chemistry) |
| 論文題目 | Precise design of copolymer-conjugated nanocatalysts for active electron transfer |
| 著者 | Reina Hagiwara, Shun Nishimura, Kosuke Okeyoshi |
| DOI | 10.1039/d3cc05242g |
| 掲載日 | 2023年12月13日付、オンライン版 |
【今後の展開】
高分子の相転移を用いた電子の能動輸送は、エネルギー変換系(光エネルギーから水素生成等)だけでなく、次世代バッテリーなど様々な先端材料にとって有用なナノシステムと期待される。
【用語解説】
令和5年12月13日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/12/14-1.htmlサスティナブルイノベーション研究領域の宮田講師が日本熱電学会の進歩賞を受賞
サスティナブルイノベーション研究領域の宮田全展講師が一般社団法人日本熱電学会の進歩賞を受賞しました。
日本熱電学会では、熱電工学、熱電科学、及び熱電技術、並びに関連分野における発明、発見、研究と開発、並びに同学会の発展に顕著な功績があったと認められる同学会会員に対して、その功績を讃え表彰を行っています。
本研究では、実験とスーパーコンピューターを活用したシミュレーションを協奏的に行うことで、希少元素を含まない新しい硫化物・リン化物熱電材料の創製と、革新的な材料設計指針を確立することに成功しました。それら一連の研究成果が、同学会において、熱電工学、熱電科学、及び熱電技術、関連分野における発見、研究と開発、並びに同学会の発展に顕著な功績であったことが認められ、この度の受賞となりました。
※参考:日本熱電学会
■受賞年月日
令和5年9月25日
■研究題目
実験と第一原理計算による新奇硫化物・リン化物熱電材料のマテリアルデザイン
■研究者、著者
宮田全展
■受賞対象となった研究の内容
本研究では、実験とスーパーコンピューターを駆使したシミュレーション計算により、高い性能(出力因子)を示す新しい硫化物熱電材料を創製し、そのメカニズムを明らかにしました。さらに、JAIST生まれのシミュレーション計算コードOpenMXと、電子輸送計算コードBoltzTraPをつなぐ汎用インターフェースプログラムを開発し、世界に先駆けて800種類を超える硫化物熱電材料の大規模計算を行うことで、熱電性能を最大化する設計指針を確立しました。本研究で開発されたインターフェースプログラムはOpenMXの公式計算オプションとして実装されています。
(OpenMX Ver. 3.9 ユーザーマニュアル)
実験とスーパーコンピューターによる高精度なシミュレーション計算により、新しい高性能熱電材料の候補物質群として、リン化物が高いポテンシャルを持つことを詳細に明らかにし、中でもAg(銀)-P(リン)化合物中のAg原子が特殊な振動をすることで、熱伝導を大きく抑制し、極めて低い格子熱伝導率を示すメカニズムを明らかにしました。そして、リン化物のみならず、広く無機材料について、熱伝導において重要なフォノン(原子振動の伝搬を仮想の粒子の運動として取り扱う概念)において、比熱・音速・緩和時間に相関関係があることを発見し、フォノンの観点から熱電材料の新しい評価指針を確立しました。
株式会社白山、石川県工業試験場を中心とした産官学連携により、Mg(マグネシウム)とSi(シリコン)を主成分とした環境にやさしい熱電材料の高性能化の材料設計指針を、実験とスーパーコンピューターによるシミュレーションより確立し、材料の高性能化に貢献しました。
■受賞にあたって一言
この度は、日本熱電学会の優秀ポスター賞、優秀講演賞に続き、進歩賞を賜りまして誠に光栄でございます。これも本学の小矢野幹夫教授、東大物性研の尾崎泰助教授、石川県工業試験場の豊田丈紫氏、株式会社白山の内田健太郎氏をはじめとした、数えきれないほどの共同研究者の先生方との研究・ディスカッションのお陰でございます。また、本研究は科研費(若手研究JP20K15021)をはじめとした数々の研究助成、本学の大規模計算機KAGAYAKIによって実施されました。この場を借りて、深く感謝御礼申し上げます。今後も学術・社会により一層の貢献ができるよう、研究・教育活動に邁進いたします。
令和5年10月16日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2023/10/16-1.html学生のXIONGさんが、国際シンポジウムEM-NANO2023においてStudent Awardを受賞
学生のXIONG, Weiさん(博士後期課程2年、ナノマテリアル・デバイス研究領域、大島研究室)が第9回有機・無機エレクトロニクス材料とナノテクノロジーに関する国際シンポジウム(EM-NANO2023)において、Student Awardを受賞しました。
EM-NANO2023は令和5年6月5日~8日にかけて金沢市で開催されました。先端的な材料やそれを用いたデバイスに関する研究に関する講演が約300件あり、そのうち、学生発表が約140件ありました。この中で優れた発表を行った学生10名に対し学生優秀賞が授与されました。
*参考:The 9th International Symposium on Organic and Inorganic Electronic Materials and Related Nanotechnologies (EM-NANO2023)
■受賞年月日
令和5年6月7日
■研究題目、論文タイトル等
引張り変形のその場透過電子顕微鏡法によるMoS2ナノシートのリップル構造評価
■研究者、著者
XIONG, Wei
■受賞対象となった研究の内容
2次元材料の構造的な新しさの一つに、2次元材料の伸縮による原子レベルの波紋構造の形成がある。しかし、このような構造に関する実験的な報告はほとんどない。
本研究では、2つの電極間に吊り下げたMoS2ナノシートを伸張できるin-situ透過型電子顕微鏡(TEM)ホルダーを開発し、MoS2ナノシートの原子レベルの波紋構造を観察することに成功した。得られたTEM像を解析したところ、波紋構造はアームチェア方向に沿って形成されていることがわかった。幾何学的位相解析(GPA)法を用いてTEM像を解析することで、波紋構造の周期と振幅を推定することができた。0.26%、0.51%、0.77%、1.02%の引張ひずみでリップル構造の周期と振幅を推定した。その結果、MoS2ナノシートは引っ張りに対して非線形な力学応答を示すことがわかった。
■受賞にあたって一言
It's my honor to receive the "Student Award" in EM-NANO2023. Participating in this academic conference has benefited me a lot. I have listened to many excellent presentations and read many creative posters at this conference. The experiences and conversations during this trip made me think more deeply about my research. I will also put the inspiration and ideas I got at this conference into practice in my future experiments. For this honor, I would like to express my sincere gratitude to my supervisor, Prof. Yoshifumi Oshima, his profound knowledge gave me strong support in my study and research, his peaceful personality made me feel no pressure to get alone with him in life. I also want to thank Dr. Lilin Xie, a graduate of our lab, his research work has given me great convenience and confidence, and it has a great weight in this award I have received. Also, I'd like to thank assistant professor Kohei Aso and the laboratory members for their help in my life, study and research.
令和5年6月15日
抗ガン高分子の分子設計指針に新たな光 ~カチオン性と疎水性の相乗効果で高い細胞障害性が発現~
![]() |
| 国立大学法人北陸先端科学技術大学院大学 兵庫県公立大学法人兵庫県立大学 |
抗ガン高分子の分子設計指針に新たな光
~カチオン性と疎水性の相乗効果で高い細胞障害性が発現~
ポイント
- 一般的には低分子化合物であることが多い抗ガン剤において、抗ガン効果の高い高分子の分子設計指針を見出した。
- カチオン性高分子に疎水性分子を導入することで抗ガン活性が向上し、高い細胞障害性を発現することが明らかになった。
- 分子動力学シミュレーションなどの手法により、合成高分子とガン細胞の細胞膜の相互作用が抗ガン効果の重要なメカニズムであることを確認し、今後の新規高分子抗ガン剤の分子設計の指針となることが期待される。
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市) 物質化学フロンティア研究領域の松村和明教授、ラジャン ロビン助教、サスティナブルイノベーション研究領域の本郷研太准教授、兵庫県立大学大学院工学研究科の遊佐真一准教授らは、精密高分子設計の技術と分子動力学シミュレーションなどの手法を用いて、抗ガン活性の高い高分子化合物の分子設計の指針を見出すことに成功しました。 一般的には、抗ガン剤は、低分子化合物であることが多く、その副作用や水溶性など多くの問題が挙げられます。高分子化合物の抗ガン剤はこれまで研究例があまりなく、また、細胞毒性のあるカチオン性高分子を利用した研究が行われてきました。 本研究では、このカチオン性高分子に疎水性部位を導入することで飛躍的にガン細胞への障害性が向上することを確認し、そのメカニズム解明の一端として、合成高分子とガン細胞の細胞膜への相互作用の向上を分子動力学シミュレーション等で明らかにしました。この研究結果は、今後の新しい高分子抗ガン剤の分子設計の指針となることが期待されます。 本研究成果は、英国王立化学会発刊のJournal of Materials Chemistry Bのオンライン版に1月6日に掲載されました。 |
【研究の背景】
日本人の三大疾病の第一位を占めるガンに対し、治療薬としての抗ガン剤の研究は重要な役割を担っていますが、まだ副作用も大きく、新たな作用機序に基づく効果の高い抗ガン剤の開発が待ち望まれています。
抗ガンペプチドのように、高分子化合物による細胞膜障害を利用した抗ガン剤の研究も行われており、高分子抗ガン剤の研究は、ガンの治療に新しい選択肢を提供するために重要です。
ガン細胞は、細胞膜表面にホスファチジルセリン[用語説明]というマイナスに帯電したリン脂質が発現していることが多いため、正常の細胞に比べて表面電位がマイナスに帯電しているといわれています。そこで、プラスに帯電したカチオン性高分子による細胞膜破壊作用をその機序として抗ガン高分子や抗ガンペプチドの研究が行われてきました。
今回の研究では、合成高分子によるガン細胞への障害性の向上に向けた分子設計の指針を見出しました。
【研究の内容】
研究グループは、4級カチオンを側鎖にもつ高分子(図1)に、ブチルメタクリレートやヘキシルメタクリレート、オクチルメタクリレートなどの疎水性のアルキル鎖を持つモノマーを共重合することで合成した疎水性導入カチオン高分子化合物(図2)が、肝臓ガン細胞や結腸ガン細胞、悪性黒色腫細胞に対して、高い障害性を持つことを明らかにしました(図3)。図3(a)は、カチオン性ポリマー中のブチルメタクリレートのモノマー比が大きくなるほど細胞毒性が高くなり、(b)では、アルキル基の炭素数が大きくなるほど強い細胞毒性を持つことが示されました。つまり、カチオン性基と疎水性基による相乗効果が認められました。
次に、研究グループは、この疎水性部位を導入したカチオン性高分子とガン細胞の細胞膜の相互作用について、パルス磁場勾配核磁気共鳴法(Pulsed-filed gradient Nuclear Magnetic Resonance : PFG-NMR)[用語説明]や分子動力学(MD)シミュレーション[用語説明]など様々な手法を用いて実験と計算の両面から確認しました。
PFG-NMRの測定結果から、疎水性モノマーであるブチルメタクリレートを導入したカチオン性高分子の拡散係数が、細胞膜を模した脂質二重膜と同時に存在するときに小さくなることが確認されました。この結果は、合成高分子が脂質分子と相互作用することで分子の運動性が抑制されていることを示しており、相互作用の向上が示唆される結果となりました。
また、MDシミュレーションでは、疎水性側鎖の導入により10 nsにおけるポリマーとリン脂質膜のコンタクト原子数が、疎水部位の導入前より2倍程度大きな値を示しました(図4)。この相互作用の向上の要因について考察するため、ポリマーの吸着構造の比較を行ったところ、疎水性部位の存在下では、ポリマー主鎖配向が細胞膜の分子配向に対してより平行であることが示されており、ガン細胞の細胞膜への吸着及び膜内へ侵入しやすい主鎖配向を持つことがわかりました(図5)。これにより、ガン細胞の細胞膜構造をより破壊しやすいと考えられます。
以上のことから、「細胞膜障害性」という新たな機序を持つ高分子抗ガン剤の分子設計指針として、カチオン性と疎水性のバランスが重要であることを示しました。
今後はその抗ガン剤高分子にガン細胞選択性などの機能をさらに追求することで新しい抗ガン剤の開発につなげていきます。
本研究は、科研費「学術変革領域研究(A)公募研究(課題番号:21H05516および21H05535)」の支援により実施されました。
本研究成果は、令和5年4月に北陸先端科学技術大学院大学に新設予定の超越バイオメディカルDX研究拠点所属教員らによる先行事例です。
【論文情報】
| 雑誌名 | Journal of Materials Chemistry B |
| 題目 | Mechanistic insights and importance of hydrophobicity in cationic polymers for cancer therapy |
| 著者 | Nishant Kumar, Kenji Oqmhula, Kenta Hongo, Kengo Takagi, Shinichi Yusa, Robin Rajan, Kazuaki Matsumura |
| WEB掲載日 | 2023年1月6日(英国時間) |
| DOI | 10.1039/D2TB02059A |

図1 合成4級カチオン性高分子 (PAMPTMA)

| 図2 疎水性付与合成4級カチオン性高分子 (a)ブチルメタクリレート共重合体(PAMPTMA-r-BuMA) (b)ヘキシルメタクリレート共重合体(PAMPTMA-r-HexMA) (c)オクチルメタクリレート共重合体(PAMPTMA-r-OctMA) |

| 図3 肝ガン細胞(HepG2)に対する抗ガン高分子の細胞毒性試験。縦軸は細胞生存率。
(a)ブチルメタクリレート(BuMA)の導入量の影響。P3:カチオン性高分子(PAMPTMA),
P6:PAMPTMAに対するBuMAの導入モル比5%, P7: 10%, P8: 20%, P9: 30% (b)アルキル基の長さの影響。P7: BuMA 10%, P10: HexMa 10%, P11: OctMa 10%
|

図4 リン脂質膜とポリマーのコンタクト数。
BuMA10%導入ポリマー(赤)の方が10ns時点において2倍程度大きなコンタクト数を示す。

| 図5 MDシミュレーションにおけるスナップショット。
(a)PAMPTMA (b) PAMPTMA-r-BuMA
(b)ではポリマー主鎖配向が膜の分子配向に対してより平行であり、
細胞膜への吸着及び膜内へ侵入しやすい主鎖配向を持つ |
【用語説明】
細胞膜のアニオン性の細胞内リン脂質成分であり、通常は、細胞膜の内側に主に存在しています。しかし、ガン細胞では細胞膜表面に高頻度に発現しているといわれています。
核磁気共鳴(NMR)技術の一種で、磁場勾配を利用して、物質中の空間的な分布を可視化することができます。また、液体中の分子の拡散移動速度を測定する方法の一つです。
分子レベルで物質の構造や動きを計算するためのコンピュータシミュレーション手法です。原子や分子間の力を計算し、物質の構造や動きを時間発展させることができます。
令和5年1月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/01/30-1.htmlサスティナブルイノベーション研究領域の水田教授が応用物理学会からフェロー称号を受理
サスティナブルイノベーション研究領域の水田 博教授に公益社団法人応用物理学会からフェローの称号が授与され、表彰を受けました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を行っています。公益性の高い学会として広く活動を展開し、社会連携事業にも取り組んでいます。
*参考:公益社団法人応用物理学会ホームページ
■フェローの概要等
「応用物理学会フェロー表彰」制度は、同学会の会員表彰制度の一環として、2006年に創設されました。この表彰制度は、同学会における継続的な活動を通じて、学術・研究における業績、産業技術の開発・育成における業績、教育・公益活動を通した人材育成や教育における業績などにより、応用物理学の発展に貢献した在籍累計年数10年以上の正会員を対象とし、特に貢献が顕著であると認められた会員を表彰するものです。また、フェローの人数は同学会個人会員数の3%程度と定められています。
*参考:第16回(2022年度)応用物理学会フェロー表彰者
■授与日
令和4年9月20日
■表彰内容
ナノメータスケール電子-機械複合機能素子の研究
■水田教授からの一言
本フェロー表彰の対象となった研究は、企業から大学に異動した2003年頃に「従来の電子デバイスの中に機械的に動くパーツを入れたら面白いことができるのでは?」という単純な発想で開始したものです。約20年にわたり東工大、サウサンプトン大、本学と職場を移しながら継続し、特に本学ではグラフェンなど原子層材料を用いて、気相単分子センシングやナノスケール熱制御素子などの極限機能素子について原理探索から社会実装までを進めてきました。英国で働いた期間も長かったのですが、その間、応用物理学会では200件超の発表、分科会・研究委員会幹事、シンポジウム世話人、また応物主催/共催の国際学会の実行委員長・論文委員長など、微力ながら学会の活動に参画させていただきました。これらはひとえに学内外の多くの方々からいただいた多大なご支援、特に研究室の同僚の方々・学生の皆さんのご協力の賜物です。この場をお借りして心より御礼を申し上げます。
*水田教授は2012年に英国物理学会(IOP)フェローの称号も受理しています。
![]() 表彰を受けた水田教授(左) |
![]() |
![]() |
![]() |
| 記念盾とフェローバッジ | |
令和4年9月21日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/09/21-1.htmlレッドビート由来のベタレイン色素がアミロイドβペプチドの凝集を阻害することを発見
![]() |
石川県公立大学法人 石川県立大学 国立大学法人 北陸先端科学技術大学院大学 |
レッドビート由来のベタレイン色素が
アミロイドβペプチドの凝集を阻害することを発見
| レッドビート由来のベタレイン色素が、アルツハイマー病の原因の一つとされているアミロイドβペプチドの凝集を阻害する効果を様々な分析法を用いて明らかにしました。さらに、アルツハイマー病のモデル線虫を用いた実験においても、その効果を確認することができました。 |
【概要】
石川県立大学の研究グループ(森正之准教授、今村智弘講師、東村泰希准教授、古賀博則客員教授、松本健司教授、高木宏樹准教授)は、北陸先端科学技術大学院大学 生命機能工学領域 大木進野教授と共同で、植物色素ベタレインの一つであるベタニンがアミロイドβペプチドの凝集を抑制する働きを持つことを発見しました。本研究成果は、学術誌「Plant Foods for Human Nutrition」で公表されました。
ベタレイン色素は、植物色素の一つでありオシロイバナやサボテン、雑穀のキヌアなどのナデシコ目植物で主に合成されています。ベタレイン色素は高い抗酸化活性によって、抗がん作用、抗炎症作用、コレステロール(LDL)酸化抑制作用などを持つことが示されており、本研究グループもHIV-1プロテアーゼの阻害活性を持つことを見出しています(参考文献)。このようにベタレイン色素は、多様な生理活性を持つことから、近年その効能に注目が集まっています。
本研究で扱ったレッドビートは、ヒユ科植物であり、ロシアなどで郷土料理「ボルシチ」に用いられています。レッドビートは、根の部分にベタレイン色素(主にベタニン、イソベタニン)を多く蓄積しており(図1)、別名「食べる輸血」と呼ばれ様々な生理機能を持つスーパーフードとして注目されています。
近年、高齢者の増加に伴ってアルツハイマー病による認知症患者数が増加し、罹患者のみならず介護者への肉体的・精神的負担が社会問題となっています。アルツハイマー病の原因の一つとして、アミロイドβ(Aβ)ペプチドが凝集し、脳内に沈着・蓄積することが考えられます。アルツハイマー病に関しては、決定的な治療薬が確立していないため、若い時期から、Aβの蓄積を予防することと、Aβの凝集を阻害することが重要です。
本研究では、レッドビートから抽出・精製したベタレイン色素について、Aβの凝集阻害効果の有無をThTアッセイ、電子顕微鏡、円二色性分光計や核磁気共鳴装置を用いた立体構造解析を用いて評価しました。その結果、レッドビート由来のベタレイン色素はAβの凝集を阻害する活性を持つことを明らかにしました(図2)。さらに、Aβ遺伝子を発現するアルツハイマー病モデル線虫にレッドビート由来のベタレイン色素を与え、線虫の形質出現を遅延させる事を見出しました(図3)。これらの結果より、レッドビート由来のベタレイン色素がAβの凝集を阻害することで、生物のアルツハイマー病態を緩和する機能を有する可能性を見出すことができました。今後の更なる研究により、アルツハイマー病の予防への活用が期待されます。本成果は国際特許(PCT)出願中です。また、分析機器の使用に関して、文部科学省のナノテクノロジープラットフォーム事業の支援を受けました。
【発表論文】
| 論文タイトル | Red-beet betalain pigments inhibit amyloid-β aggregation and toxicity in amyloid-β expressing Caenorhabditis elegans |
| 論文著者 | Tomohiro Imamura, Noriyoshi Isozumi, Yasuki Higashimura, Hironori Koga, Tenta Segawa, Natsumi Desaka, Hiroki Takagi, Kenji Matsumoto, Shinya Ohki, and Masashi Mori |
| 雑誌 | Plant Foods for Human Nutrition |
| DOI | 10.1007/s11130-022-00951-w |
【参考文献】
| 論文タイトル | Isolation of amaranthin synthetase from Chenopodium quinoa and construction of an amaranthin production system using suspension-cultured tobacco BY-2 cells |
| 論文著者 | Tomohiro Imamura, Noriyoshi Isozumi, Yasuki Higashimura, Akio Miyazato, Hiroharu Mizukoshi, Shinya Ohki, and Masashi Mori |
| 雑誌 | Plant Biotechnology Journal |
| DOI | 10.1111/pbi.13032 |

図1 レッドビート(テーブルビート)と、それに含まれるベタレイン色素

図2 レッドビート由来ベタレイン色素のアミロイドβ (Aβ)凝集阻害効果
レッドビート由来のベタレイン色素を加えたものはAβ凝集が観察されない。
(A)透過型電子顕微鏡を用いたAβの観察。スケールバー200 nm。
(B, C)NMRを用いたAβの測定。Aβ単独のNMRシグナル(B)。レッドビート由来のベタレイン色素を加えたAβのNMRシグナル(C)。Day 0のNMRシグナルが凝集していないAβ40のNMRシグナル。

図3 Aβ発現線虫の麻痺形質を利用した評価試験
50 µMレッドビート由来ベタレイン色素の処理は、アルツハイマー病モデル線虫の麻痺形質の発現を遅らせる。
(A)時間経過と共に麻痺形質を示さないAβ発現線虫の割合。
(B)未処理区で観察された麻痺形質を示す線虫。
(C)50 µMベタレイン色素処理区で観察された健常な形質を示す線虫。
【用語説明】
ベタレイン色素: カロテノイド、フラボノイドと共に植物の代表的な色素の1つ。ベタレイン色素は、紫から赤色を示すベタシアニンと黄色から橙色を示すベタキサンチンに分類される。特徴として、分子内にカロテノイド、フラボノイドには見られない窒素原子を持つ。基本骨格としてベタラミン酸を有する。
アルツハイマー病: 記憶、思考、行動に問題を起こす脳の病気。認知症の症例において、アルツハイマー病は、その60-80%を占めるとされている。
アミロイドβ (Aβ): 脳内で作られるたんぱく質から生じるペプチド。アルツハイマー病患者の脳に観察される老人斑の構成成分であり、Aβが重合・凝集することがアルツハイマー病の原因の一つと考えられている。Aβの長さは40アミノ酸残基程度であり代表的なものとして、40アミノ酸残基のAβ40と42アミノ酸残基のAβ42が知られている。
ThTアッセイ: アミロイド線維に特異的に結合し蛍光を発する試薬チオフラビンT(Thioflavin T, ThT)を用いて、アミロイドβペプチドの重合を測定する方法。
円二色性: 試料(光学活性物質)に右回りおよび左回りの円偏光を照射し、その吸収の差を測定して立体構造を解析する手法。
核磁気共鳴(NMR)装置: 強力な磁場中に置いた試料に電磁波を照射して応答信号を得る装置。信号を解析することで、試料の構造や運動性を知ることができる。
令和4年2月15日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/15-1.htmlダイヤモンド量子イメージングプローブの新規作製法を開発 -ナノ量子イメージングに道-
ダイヤモンド量子イメージングプローブの新規作製法を開発
-ナノ量子イメージングに道-
ポイント
- レーザー加工と集束イオンビーム加工を用いた走査ダイヤモンド量子イメージングプローブの作製法の開発に成功
- 高性能化へ向けた加工自由度の高いナノ量子センシング・イメージングプローブ作製法として期待
| 北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 応用物理学領域の貝沼 雄太大学院生(博士後期課程)、安 東秀准教授らは、京都大学、産業技術総合研究所と共同で、レーザー加工と集束イオンビーム加工注1)によりダイヤモンド中の窒素-空孔複合体中心(NV中心(図1[右]))注2)と呼ばれる極小な量子センサーをプローブ先端に含有するナノ量子イメージングプローブ(図1[左])の新規作製法の開発に成功しました。 |
【背景と経緯】
近年、新しいデバイスやセンサーの創出による環境・エネルギー問題の解決、安心安全な社会の実現、これらによる人類社会の持続的繁栄への貢献が求められています。この中で量子計測・センシング技術は、量子力学を原理とした従来とは異なる革新的な技術を提供する分野であり、将来の社会基盤を支えるしくみを一新すると期待されています(量子技術イノベーション)。その中でも、ダイヤモンド中の欠陥構造であるNV中心を用いた量子計測技術は、室温・大気中で動作可能なこと、センサーサイズがナノスケールであることより注目を集めており、特に、NV中心を走査プローブとして用いた際にはナノスケールの量子イメージングの実現が期待されています。
従来、走査NV中心プローブの作製にはフォトリソグラフィーと電子線リソグラフィーを用いたリソグラフィー法が用いられていましたが、この方法ではプロセスが複雑であること、再加工ができないという課題がありました。今回の研究では、レーザー加工と集束イオンビーム加工(FIB)による加工自由度の高い走査NV中心プローブの作製法を開発し、さらに磁気イメージングの動作を実証しました。
【研究の内容】
図2に示すように、まず、表面下約40ナノメートルにNV中心を有するダイヤモンド結晶の板を、レーザー加工によりロッド状の小片に加工した上で、水晶振動子型の原子間力顕微鏡の先端に取り付けました。続いて、FIB加工においてドーナツ型の加工形状を用いることで、当該小片の中心位置に存在するNV中心の加工ダメージを回避して走査ダイヤモンドNV中心プローブを作製しました。このNV中心プローブを走査しながら磁気テープ上に記録された磁気構造からの漏洩磁場を光学的磁気共鳴検出法(ODMR)注3)により計測し、磁気構造のイメージングに成功しました(図3)。
本研究成果は、2021年12月28日(米国東部標準時間)に米国物理学協会の学術誌「Journal of Applied Physics」のオンライン版に掲載されました。
【今後の展開】
本研究では、レーザー加工とFIB加工による加工自由度の高い走査NV中心プローブの作製法の開発に成功しました。今後、プローブの形状や表面状態を最適化することで、より高性能な走査ダイヤモンドNV中心プローブを作製し量子イメージング分野に貢献することが期待されます。

図1 ダイヤモンド中の窒素(N)-空孔(V)複合体中心(NV中心)[右]と、
走査ダイヤモンドNV中心プローブ[左]

図2 レーザー加工とFIB加工による走査ダイヤモンドNV中心プローブの作製

図3 走査ダイヤモンドNV中心プローブによる磁気テープの磁気構造イメージング
【論文情報】
| 掲載誌 | Journal of Applied Physics |
| 論文題目 | Scanning diamond NV center magnetometor probe fabricated by laser cutting and focused ion beam milling |
| 著者 | Yuta Kainuma, Kunitaka Hayashi, Chiyaka Tachioka, Mayumi Ito, Toshiharu Makino, Norikazu Mizuochi, and Toshu An |
| 掲載日 | 2021年12月28日(米国東部標準時間) |
| DOI | 10.1063/5.0072973 |
【研究助成費】
本研究の一部は、次の事業の支援を受けて実施されました。
・科学技術振興機構(JST)戦略的創造研究推進事業CREST (JPMJCR1875)、
次世代研究者挑戦的研究プログラム(未来創造イノベーション研究者支援プログラム)(JPMJSP2102)
・澁谷学術文化スポーツ振興財団
・日本学術振興会(JSPS)科研費 基盤研究(C) (21K04878)
・文部科学省 光・量子飛躍フラッグシッププログラム(Q-LEAP, JPMXS0118067395)
【用語解説】
注1)集束イオンビーム加工(Focused Ion Beam, FIB)
イオンビームにより材料をナノスケールで加工する加工法。本研究では、ガリウム(Ga)イオンを用いてダイヤモンド片をプローブ形状に加工した。
注2)NV中心
ダイヤモンド中の窒素(N)不純物と空孔(V)が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定的にスピン量子状態が存在する。
注3)光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
令和4年1月5日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/01/05-1.html応用物理学領域の麻生助教が中部電気利用基礎研究振興財団の研究助成に採択
応用物理学領域の麻生 浩平助教が公益財団法人 中部電気利用基礎研究振興財団の研究助成に採択されました。
中部電気利用基礎研究振興財団は電気の利用及びこれに関連する基礎的な技術に関する試験研究等に対する助成を行うことにより、電気の効果的な利用の拡大を図り、我が国経済の健全な発展と国民生活の向上に寄与することを目的としています。
■採択期間
令和3年4月1日~令和5年3月31日
■研究課題
リチウムイオン電池の充放電にともなうイオン伝導過程の電子顕微鏡解析
■研究概要
リチウムイオン電池は、充放電に伴って電池内部でリチウムイオンが移動していきます。しかし、物質中でイオンがどのように移動していくのかは未だによく分かっていません。そこで本研究では、ナノメートル程度の空間スケール、かつ従来よりも短い時間スケールでリチウムイオンのダイナミクスを可視化することを目指します。開発した手法を用いて、リチウムイオンの移動の仕方と、原子の並びの乱れといった結晶状態との関係解明に挑戦します。リチウムイオン電池にはどのような結晶状態が適しているのか、これまでにない実験的な知見を与えられると期待しています。
■採択にあたって一言
中部電気利用基礎研究振興財団および選考委員の皆様に心から感謝いたします。本研究を進めるにあたり数々のご協力を頂きました研究室の方々、ナノマテリアルテクノロジーセンターの皆様、および共同研究者の皆様方に感謝申し上げます。
令和3年3月26日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/03/26-1.htmlリチウムイオン2次電池の長期的耐久性の課題解決に資する超高耐久性バインダーを開発
リチウムイオン2次電池の長期的耐久性の課題解決に資する
超高耐久性バインダーを開発
ポイント
- リチウムイオン2次電池の長期的耐久性の課題の解決に資する超高耐久性負極バインダーの開発に成功した。
- 1700回の充放電サイクルを経ても95%の容量維持率を示した。
- 本バインダー材料を用いた系ではPVDF系で顕著であった電解液の電気分解が抑制された。
- 充放電サイクル後に、本バインダー材料を用いた電池系ではPVDF系と比較して大幅に低い(45%減少)内部抵抗が観測された。
- 各種電気化学測定により、負極内部のリチウムイオンの拡散性に優れていることが分かった。本バインダー系ではイオンの拡散係数がPVDF系を15%上回った。
- ヤング率、引張強度のいずれにおいても本バインダーはPVDFと比較して大幅に優れた力学的強靭さを示した。
- 電極―電解質界面抵抗を低減できる高耐久性バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が期待される。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の先端科学技術研究科 物質化学領域の松見 紀佳教授、環境・エネルギー領域の金子 達雄教授、バダム ラージャシェーカル講師、アグマン グプタ博士後期課程学生、アニルッダ ナグ元博士研究員は、リチウムイオン2次電池*1の耐久性を大幅に向上させる負極バインダー材料(図1)の開発に成功した。 リチウムイオン2次電池は、一般ユーザーが広く認識しているように充放電能力が経年劣化することが知られている。この問題は、EV用途を始めとする高付加価値製品においては更に深刻な課題となる。リチウムイオン2次電池の劣化要因は極めて多岐にわたるが、様々な電極内における副反応によるバインダーを含む電極複合材料の変性、電極/集電体の接着力の劣化が主要因の一つと考えられている。 本バインダー材料は、アセナフテキノンと1,4-フェニレンジアミンとを酸触媒の存在下で重縮合することにより合成した(図2)。 開発したリチウムイオン2次電池用バインダーは、長く検討されてきたポリフッ化ビニリデン(PVDF)と比較すると、LUMO*2,3が低い電子構造的特徴を有し(図3)、その結果として電解液の過剰な分解による厚い被膜形成を効果的に抑制した。 サイクリックボルタンメトリー*4後に見積もられたイオン拡散係数はPVDF系と比較して15%高い値となった。また、リチウム脱挿入ピークの電位差(オーバーポテンシャル)は本バインダー材料系においてPVDF系と比較して100mV減少し、より容易なリチウムイオンの拡散を支持する結果となった。充放電後の電池セルの界面抵抗*5も本バインダーにおいて大幅に低い値を示した(62Ω;PVDF系では110Ω)(図4)。 その結果として本バインダー高分子系では1735回の充放電サイクルを経ても95%の容量維持率を示し、非常に優れた耐久性が明らかとなった(図5)。 長期充放電後の負極のXPS測定より、バインダー材料由来の窒素原子に由来するピークが明瞭に観測されたことから、電極表面に形成されている被膜は極めて薄いことが示唆された。また、バインダー構造の一部が顕著にリチウムドープされていることも明らかとなった。長期充放電後の負極のSEM像では、PVDF系では500サイクル後に大きなクラックの形成と共に集電体から剥離した様子も観測されたが、本バインダー系では1735サイクル後にも僅かなクラックの形成が観測されるにとどまった。 なお、本研究はJST未来社会創造事業の支援を受けて実施された。 |
本成果は「ACS Applied Energy Materials」(米国化学会)オンライン版に2月17日に掲載された。
| 題目 | Bis-imino-acenaphthenequinone-Paraphenylene-Type Condensation Copolymer Binder for Ultralong Cyclable Lithium-ion Rechargeable Batteries |
| 著者 | Agman Gupta, Rajashekar Badam, Aniruddha Nag, Tatsuo Kaneko and Noriyoshi Matsumi |
| DOI | 10.1021/acsaem.0c02742 |
【今後の展開】
セル構成や充放電条件を最適化し、最も優れた特性を有する蓄電デバイスの創出に結びつける。
更に異なる材料組成から成る高容量負極材料への適用を進めつつある。
電極―電解質界面抵抗を大幅に低減できる機能性高分子バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が見込まれる。





【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 LUMO:
電子が占有していない分子軌道の中でエネルギー準位が最も低い軌道を最低空軌道(LUMO; Lowest Unoccupied Molecular Orbital)と呼ぶ。
*3 HOMO:
電子が占有している分子軌道の中でエネルギー準位が最も高い軌道を最高被占軌道(HOMO; Highest Occupied Molecular Orbital)と呼ぶ。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
*5 電極―電解質界面抵抗:
エネルギーデバイスにおいては一般的に個々の電極の特性や個々の電解質の特性に加えて電極―電解質界面の電荷移動抵抗がデバイスのパフォーマンスにとって重要である。交流インピーダンス測定を行うことによって個々の材料自身の特性、電極―電解質界面の特性等を分離した成分としてそれぞれ観測し、解析することが可能である。
令和3年3月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/03/01-1.html学生の米澤さんの論文がWiley社刊行Surface and Interface Analysis誌でTOP DOWNLOADED PAPER(2018-2019)の1つに選出
学生の米澤 隆宏さん(2020年3月博士後期課程修了、応用物理学領域、高村研究室)による、国際学術誌Surface and Interface Analysisに掲載された論文 "Atomistic study of GaSe/Ge(111) interface formed through van der Waals epitaxy" が、2018年1月~2019年12月の間に同誌に掲載された論文の中で、オンライン掲載後12ヶ月のダウンロード数において上位10%を記録したため、掲載直後に最も多く読まれた、immediate impactのある論文の1つとして認められました。
■選出された論文のタイトル
Atomistic study of GaSe/Ge(111) interface formed through van der Waals epitaxy
■著者
Takahiro Yonezawa, Tatsuya Murakami, Koichi Higashimine, Antoine Fleurence, Yoshifumi Oshima, and Yukiko Yamada-Takamura
■対象となった研究の内容
光デバイスや電子デバイス、スピントロニクスデバイス等への応用が期待される半導体層状物質のGaSeは従来、Se原子が三角柱型に配置された単位層構造のみを有すると考えられてきました。それに対して本研究では、分子線エピタキシー法によるGe基板上へのGaSe薄膜成長時に、従来報告例のない反三角柱型のSe原子配置をもつ単位層が基板との界面に局所形成されることを断面走査透過電子顕微鏡観察により明らかにしました。
■選出にあたっての一言
本研究の遂行にあたり熱心にご指導くださった応用物理学領域の高村由起子先生、大島義文先生、アントワーヌ・フロランス先生に心より感謝いたします。また、多くの技術的なご指導をしてくださったナノマテリアルテクノロジーセンターの村上達也様、東嶺孝一様にも深く感謝いたします。今後、この新たなGaSe相の生成機構や通常のGaSe相との構造の違いに起因した特異物性が解明されることにより、本成果がGaSe薄膜の、ひいては層状物質薄膜全体の成長技術の進展と応用可能性の拡大につながることを期待します。

令和2年5月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/05/25-1.html"三種の神器"を備えた多機能性グラフェンの開発 -ガン分子標的治療技術を目指して-

国立大学法人北陸先端科学技術大学院大学
フランス国立科学研究センター
"三種の神器"を備えた多機能性グラフェンの開発
-ガン分子標的治療技術を目指して-
ポイント
- 三種類の機能性分子(近赤外蛍光プローブ、抗ガン剤、腫瘍マーカー認識分子)をグラフェン表面上に一度に化学修飾することに成功
- 多機能性グラフェンの合理的な分子設計によって選択的かつ効果的なガン細胞死を誘導することに成功
|
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科物質化学領域の都 英次郎准教授らはフランス国立科学研究センター(所長、アントワーヌ・プチ、フランス・パリ)のアルベルト・ビアンコ博士ら(同センター、細胞分子生物学研究所、フランス・ストラスブール)と共同で、多機能性グラフェン*1を活用した新しいガン分子標的治療技術の開発に成功した(図1)。
本研究は、グラフェンに様々な機能性分子を一度に化学修飾できること、そしてその合理的な分子設計に基づいた効果的なガン分子標的治療技術への応用の可能性を示した。今後は、この技術を応用して、マウスやラット等の実験動物の体内における抗ガン作用を詳細に調べていく予定である。 本成果は、2020年4月21日にWiley-VCH発行「Angewandte Chemie International Edition」のオンライン版に掲載された。なお、本研究は、日本学術振興会科研費[基盤研究A、基盤研究B、国際共同研究加速基金(国際共同研究強化)]、フランス国立研究機構、グラフェンフラッグシップ、スペイン財務省、バレンシア州自治政府の支援を受けて行われた。 |
図1. 多機能性グラフェンの分子構造
【論文情報】
| 掲載誌 | Angewandte Chemie International Edition (Wiley-VCH) |
| 論文題目 | Rational chemical multifunctionalization of graphene interface enhances targeting cancer therapy |
| 著者 | Matteo Andrea Lucherelli, Yue Yu, Giacomo Reina, Gonzalo Abellán, Eijiro Miyako*, Alberto Bianco* |
| 掲載日 | 2020年4月21日にオンライン版に掲載 |
| DOI | 10.1002/anie.201916112 |
【用語説明】
*1 グラフェン
炭素原子だけで構成される二次元シート状のナノ炭素材料。厚さが炭素一個分に相当し、炭素原子が蜂の巣のような六角形に連結した構造を持つ。優れた電気伝導性、熱伝導性、機械的強度、化学的安定性などを持っており、幅広い分野での応用が期待されている。
*2 インドシアニングリーン(ICG)
医療診断で使用されるシアニン色素の一種である。生体透過性の高い近赤外波長領域の光が利用できるため生体深部の診断や治療に有用と考えられている。
*3 葉酸
葉酸はビタミンB群の一種。ガンマーカー認識素子として葉酸受容体を標的にしたドラッグデリバリーシステムが開発され、ガンの診断や治療に応用されつつある。
*4 ドキソルビシン(Dox)
抗ガン剤の一種である。腫瘍細胞の核内の遺伝子に結合することで、DNAやRNAを合成する酵素の働きを阻害することで抗腫瘍効果を示す。
令和2年4月23日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/04/23-1.html水田教授らが太陽誘電社とグラフェン超高感度においセンサの共同開発を発表
環境・エネルギー領域の水田 博教授らの研究グループは、 太陽誘電株式会社(本社:東京都、代表取締役社長:登坂正一、以下太陽誘電)と、グラフェンを用いた超高感度においセンサの共同開発を発表しました。
<発表の概要>
水田教授らの研究グループは、原子層材料グラフェンを用いた独自のNEMS(Nano-Electro-Mechanical Systems: ナノ電子機械システム)技術を用いて、グラフェン表面に物理吸着した単一CO2ガス分子によるグラフェンの微小な電気抵抗変化を、室温で検出時間<1分で高速検出する抵抗検出方式の単分子レベル気相センサの原理検証に成功しています。この抵抗検出方式グラフェンセンサはグラフェンとガス分子間の化学反応を用いておらず、吸着を加速する目的で印加している基板電界を切れば吸着分子は自然に脱離します。つまりセンサのリフレッシュ動作は必要なく、それゆえ素子のライフタイムを飛躍的に長くできます。最近では、この基盤技術を応用展開し、室温大気圧雰囲気下で濃度~500 pptの極薄アンモニアガスに対して、検出時間<10秒で高速検出することにも成功しています。また、グラフェンRF振動子を用いた質量検出方式グラフェンセンサの基盤技術も開発済みです。現在のQCM(Quartz Crystal Microbalance:水晶振動子マイクロバランス)センサの質量検出限界が数ピコグラム(10-12 g)レベルであるのに対して、本研究では、濃度~数ppbのH2/Arガス中で、グラフェン振動子表面に吸着した分子による質量の増加を、室温で100ゼプトグラム(1zg = 10-21 g)レベルで検出することに成功しています。これは、従来のQCMセンサと比較して約7桁の質量感度向上にあたります。
一方、太陽誘電は、これまでQCMを用いたにおいセンサの開発を行ってきました。開発中のセンサシステムは、①QCMセンサアレイモジュール、②センサコントロールユニット、③クラウド処理の3つの構成要素からなっており、①QCMセンサモジュールは、水晶振動子、水晶発振回路、周波数検出回路、流路、ポンプ、BLE(無線)等から構成されています。②センサコントロールユニットは、①QCMセンサモジュールと同時複数(最大32台)接続し、センサデータを取得するとともに、そのデータをクラウドへアップするゲートウェイ機能を有しています。③クラウド処理は、②センサコントロールユニットを介してアップされたセンサデータをニューラルネットワークの機械学習で処理し、においの種類や危険予知、故障予測など人にとって意味のある結果を出力します。しかし、①のQCMセンサの感度は人の嗅覚感度にも達しておらずppm程度の濃度が検出限界であることが課題となっています。
本共同開発においては、両グループの相補的な世界的卓越技術を融合させ(図1参照)、犬や線虫の嗅覚能力に迫るpptレベルの超高感度(図2参照)を可能とするマルチセンサアレイ方式パターン分析超低濃度・超微小量においセンシング技術を開発します。これは太陽誘電の高感度化ロードマップ(図3参照)において、最高感度フェーズの技術として位置づけられています。

図1 太陽誘電株式会社と水田教授グループの共同開発チーム概念図

図2 匂いセンサの応用分野と既存センサの性能および共同開発する超高感度グラフェンセンサのターゲット

図3 太陽誘電株式会社の高感度化ロードマップにおける本共同開発の位置付け

図4 共同開発チームの主メンバー:
左から水田博教授、太陽誘電株式会社開発研究所・機能デバイス開発部の服部将志課長、下舞賢一次長
<今後の展開>
生体・環境などのにおいをシングルppb~pptレベルで識別するグラフェンセンサアレイを室温・高速で動作させ、真のe-Nose技術の実現を目指します。また、これを、①皮膚ガス検知によって未病検出や精神的ストレスモニタを可能とする高機能ヘルスチェックシステムや、②シックハウス症候群の原因となっているVOC(揮発性有機化合物)など生活環境汚染モニタリングシステム開発に発展させ、新たな産業・市場開拓に挑んでまいります。

図5 超高感度グラフェンにおいセンサシステムによる応用展開例
本共同開発事業は、10月23日開催の、粉体粉末冶金協会2019年度秋季大会(第124回講演大会)講演特集『スマートソサイエティを支える高機能電子部品材料』において発表予定です。
*参考:粉体粉末冶金協会2019年度秋季大会(第124回講演大会)ホームページ
令和元年10月23日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2019/10/23-2.html












