研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。学生のXIONGさんが、国際シンポジウムEM-NANO2023においてStudent Awardを受賞
学生のXIONG, Weiさん(博士後期課程2年、ナノマテリアル・デバイス研究領域、大島研究室)が第9回有機・無機エレクトロニクス材料とナノテクノロジーに関する国際シンポジウム(EM-NANO2023)において、Student Awardを受賞しました。
EM-NANO2023は令和5年6月5日~8日にかけて金沢市で開催されました。先端的な材料やそれを用いたデバイスに関する研究に関する講演が約300件あり、そのうち、学生発表が約140件ありました。この中で優れた発表を行った学生10名に対し学生優秀賞が授与されました。
*参考:The 9th International Symposium on Organic and Inorganic Electronic Materials and Related Nanotechnologies (EM-NANO2023)
■受賞年月日
令和5年6月7日
■研究題目、論文タイトル等
引張り変形のその場透過電子顕微鏡法によるMoS2ナノシートのリップル構造評価
■研究者、著者
XIONG, Wei
■受賞対象となった研究の内容
2次元材料の構造的な新しさの一つに、2次元材料の伸縮による原子レベルの波紋構造の形成がある。しかし、このような構造に関する実験的な報告はほとんどない。
本研究では、2つの電極間に吊り下げたMoS2ナノシートを伸張できるin-situ透過型電子顕微鏡(TEM)ホルダーを開発し、MoS2ナノシートの原子レベルの波紋構造を観察することに成功した。得られたTEM像を解析したところ、波紋構造はアームチェア方向に沿って形成されていることがわかった。幾何学的位相解析(GPA)法を用いてTEM像を解析することで、波紋構造の周期と振幅を推定することができた。0.26%、0.51%、0.77%、1.02%の引張ひずみでリップル構造の周期と振幅を推定した。その結果、MoS2ナノシートは引っ張りに対して非線形な力学応答を示すことがわかった。
■受賞にあたって一言
It's my honor to receive the "Student Award" in EM-NANO2023. Participating in this academic conference has benefited me a lot. I have listened to many excellent presentations and read many creative posters at this conference. The experiences and conversations during this trip made me think more deeply about my research. I will also put the inspiration and ideas I got at this conference into practice in my future experiments. For this honor, I would like to express my sincere gratitude to my supervisor, Prof. Yoshifumi Oshima, his profound knowledge gave me strong support in my study and research, his peaceful personality made me feel no pressure to get alone with him in life. I also want to thank Dr. Lilin Xie, a graduate of our lab, his research work has given me great convenience and confidence, and it has a great weight in this award I have received. Also, I'd like to thank assistant professor Kohei Aso and the laboratory members for their help in my life, study and research.
令和5年6月15日
リチウムイオン2次電池の急速充放電を促すリチウムボレート型のバイオマス由来バインダーを開発
リチウムイオン2次電池の急速充放電を促す
リチウムボレート型のバイオマス由来バインダーを開発
ポイント
- リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。
- リチウムイオン2次電池のグラファイト負極用バインダーとして、カフェ酸*1とLiBH4(水酸化ホウ素リチウム)との脱水素カップリング重合によりリチウムボレート型水溶性ポリマーを合成した。
- 本負極バインダーを適用した系では、低い最低被占軌道(LUMO)を持つポリマーによりホウ素を含むSEI(固体電解質界面)が形成され、界面抵抗が低減することが分かった。また、同バインダーを用いることにより、負極内におけるリチウムイオンの拡散係数の向上が観測された一方、リチウム挿入反応の活性化エネルギーは減少することが観測された。
- このことから、従来負極バインダーとして使用されているPVDF(ポリフッ化ビニリデン)やCMC-SBR(カルボキシメチルセルロース-スチレン - ブタジエンゴム)をバインダーとした系と比較して急速充放電条件において顕著な適性を示した。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の物質化学フロンティア研究領域 松見紀佳教授、ラージャシェーカル バダム元講師、アヌシャ プラダン研究員、宮入諒矢元大学院生、高森紀行大学院生(博士後期課程2年)は、リチウムイオン2次電池*2の急速充放電を促すリチウムボレート型バイオベースバインダーの開発に成功した。 |
【研究の内容と背景】
リチウムイオン2次電池の開発においては、高容量化やサイクル耐久性の向上、高電圧化など様々な開発課題解決に向けた取組みが行われているが、それと同時に急速充放電の実現に向けた技術開発についても高い関心が集まっている。しかしながら、その実現には固体中のリチウムイオンの拡散速度の向上や電極―電解質界面の特性、活物質の多孔性などの諸ファクターの検討を要している。
今回、本研究においては、カフェ酸とLiBH4(水酸化ホウ素リチウム)をテトラヒドロフラン溶液中で脱水素カップリング重合することによって、リチウムボレート型バイオベースポリマーを合成した(図1)。合成によって得られたポリマーは水溶性であり、環境負荷の少ない水系スラリーからの負極作製が可能であった。また、得られたポリマーの構造はNMR、XPS、SEM等の各測定によって決定した。
まず、合成によって得られたポリマーを負極バインダーとして用い、アノード型ハーフセル*3を構築し、性能を評価した。本バインダーを用いた系においては、PVDF(ポリフッ化ビニリデン)やCMC-SBR(カルボキシメチルセルロース-スチレン - ブタジエンゴム)を用いた系と比較して、リチウム挿入反応のピークにおけるオーバーポテンシャルが20 mV-100 mV低下し、よりスムーズな電極反応が示唆された。また、Randles-Sevcik式から、負極におけるリチウムイオンの拡散係数を算出すると7.24 x 10-9 cm2s-1であり、PVDFやCMC-SBR系バインダーと比較して有意に高い値であった。
さらに、インピーダンス測定を経て算出したリチウム挿入反応の活性化エネルギーは、本バインダー系において22.6 kJ/molであり、PVDF(28.78 kJ/mol)やCMC-SBR系(58.34 kJ/mol)バインダーと比較して有意に低下した。
次に、充放電試験の結果、1C*4条件において100サイクル時点で放電容量は本バインダー系では343 mAhg-1であり、PVDFで278 mAhg-1、CMC-SBRで188 mAhg-1であった(図2)*5。さらに、急速充電条件(10C)においては、本バインダー系では73 mAhg-1、PVDFで40 mAhg-1、CMC-SBRで17 mAhg-1であり、本バインダーの急速充放電条件における適性が示された(図2)。本バインダー系では1200サイクル(10C)まで安定した充放電挙動を示し、1200サイクル時点の容量維持率は93%であった。
また、動的インピーダンス(DEIS)測定を行ったところ、本バインダー系におけるSEI(固体電解質界面)抵抗はPVDFやCMC-SBR系バインダーと比較して有意に低下した(図3)。これは、充放電試験後に電池セルを分解し負極を分析したところ、XPSによる測定においてホウ素を含有したSEI形成が観測されたことから、SEI抵抗の低減に大いに寄与していると考えられる(図3)。
1200サイクル(10C)充放電後においても、負極を分解し、SEM(走査型電子顕微鏡)の断面像を観察したところ、PVDFバインダーの場合の体積膨張は15.49%であったが、本バインダー系では8.50%に抑制された。さらに本負極バインダーを用いたフルセルにおいても良好に作動した。
本成果は、ACS Materials Letters (米国化学会)のオンライン版に1月9日に掲載された。
本研究は、内閣府の戦略的イノベーション創造プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
【今後の展開】
バインダーを含む負極コンポジットの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業的応用への橋渡し的条件において検討を継続する。
すでに国内特許出願済みであり、今後は、企業との共同研究を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | ACS Materials Letters (米国化学会) |
| 題目 | Extreme Fast Charging Capability in Graphite Anode via a Lithium Borate Type Biobased Polymer as Aqueous Polyelectrolyte Binder |
| 著者 | Anusha Pradhan, Rajashekar Badam*, Ryoya Miyairi, Noriyuki Takamori and Noriyoshi Matsumi* |
| 掲載日 | 2023年1月9日 |
| DOI | 10.1021/acsmaterialslett.2c00999 |

|
図1.(A) 高分子バインダーの合成スキーム
(B) MALDI-TOF MSスペクトル (C) DFT計算によるポリマーの最適化構造 (D) 1H NMR スペクトル (E) 13C NMR スペクトル (F) XPS スペクトル(Li 1s 及びB 1s) |

|
図2.充放電試験結果
(a) 1C. (b) 10 C.種々の負極バインダー使用時の充放電曲線(0.01-2.1V at 1C ) (c) CAB. (d) PVDF (e) CMC-SBR |

|
図3.動的インピーダンススペクトル
(a) 本バインダー使用時 (b) PVDF使用時 (c) フィッティングに用いた等価回路 (d) CMC-SBR使用時 (e) RSEI 抵抗の比較 (f) XPS スペクトルB 1s (g) XPS スペクトルO 1s |
【用語説明】
カフェ酸は、ケイ皮酸のパラ位及びメタ位がヒドロキシ化された構造を持つ芳香族カルボン酸で、フェニルプロパノイドの1種である。カフェ酸はリグニン生合成の重要な中間体であるため、全ての植物に含まれている。
電解質中のリチウムイオンがイオン伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
バッテリー容量に対する充放電電流値の比であり、バッテリーの充放電特性(充放電するときの電流の大きさや放電能力・許容電流)を表す。1Cとは1時間で満充電状態から完全に放電した状態になる時の電流値を表し、この数字が高ければ高いほど大きな電流を出力できる。
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和5年2月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/02/01-1.html抗ガン高分子の分子設計指針に新たな光 ~カチオン性と疎水性の相乗効果で高い細胞障害性が発現~
![]() |
| 国立大学法人北陸先端科学技術大学院大学 兵庫県公立大学法人兵庫県立大学 |
抗ガン高分子の分子設計指針に新たな光
~カチオン性と疎水性の相乗効果で高い細胞障害性が発現~
ポイント
- 一般的には低分子化合物であることが多い抗ガン剤において、抗ガン効果の高い高分子の分子設計指針を見出した。
- カチオン性高分子に疎水性分子を導入することで抗ガン活性が向上し、高い細胞障害性を発現することが明らかになった。
- 分子動力学シミュレーションなどの手法により、合成高分子とガン細胞の細胞膜の相互作用が抗ガン効果の重要なメカニズムであることを確認し、今後の新規高分子抗ガン剤の分子設計の指針となることが期待される。
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市) 物質化学フロンティア研究領域の松村和明教授、ラジャン ロビン助教、サスティナブルイノベーション研究領域の本郷研太准教授、兵庫県立大学大学院工学研究科の遊佐真一准教授らは、精密高分子設計の技術と分子動力学シミュレーションなどの手法を用いて、抗ガン活性の高い高分子化合物の分子設計の指針を見出すことに成功しました。 一般的には、抗ガン剤は、低分子化合物であることが多く、その副作用や水溶性など多くの問題が挙げられます。高分子化合物の抗ガン剤はこれまで研究例があまりなく、また、細胞毒性のあるカチオン性高分子を利用した研究が行われてきました。 本研究では、このカチオン性高分子に疎水性部位を導入することで飛躍的にガン細胞への障害性が向上することを確認し、そのメカニズム解明の一端として、合成高分子とガン細胞の細胞膜への相互作用の向上を分子動力学シミュレーション等で明らかにしました。この研究結果は、今後の新しい高分子抗ガン剤の分子設計の指針となることが期待されます。 本研究成果は、英国王立化学会発刊のJournal of Materials Chemistry Bのオンライン版に1月6日に掲載されました。 |
【研究の背景】
日本人の三大疾病の第一位を占めるガンに対し、治療薬としての抗ガン剤の研究は重要な役割を担っていますが、まだ副作用も大きく、新たな作用機序に基づく効果の高い抗ガン剤の開発が待ち望まれています。
抗ガンペプチドのように、高分子化合物による細胞膜障害を利用した抗ガン剤の研究も行われており、高分子抗ガン剤の研究は、ガンの治療に新しい選択肢を提供するために重要です。
ガン細胞は、細胞膜表面にホスファチジルセリン[用語説明]というマイナスに帯電したリン脂質が発現していることが多いため、正常の細胞に比べて表面電位がマイナスに帯電しているといわれています。そこで、プラスに帯電したカチオン性高分子による細胞膜破壊作用をその機序として抗ガン高分子や抗ガンペプチドの研究が行われてきました。
今回の研究では、合成高分子によるガン細胞への障害性の向上に向けた分子設計の指針を見出しました。
【研究の内容】
研究グループは、4級カチオンを側鎖にもつ高分子(図1)に、ブチルメタクリレートやヘキシルメタクリレート、オクチルメタクリレートなどの疎水性のアルキル鎖を持つモノマーを共重合することで合成した疎水性導入カチオン高分子化合物(図2)が、肝臓ガン細胞や結腸ガン細胞、悪性黒色腫細胞に対して、高い障害性を持つことを明らかにしました(図3)。図3(a)は、カチオン性ポリマー中のブチルメタクリレートのモノマー比が大きくなるほど細胞毒性が高くなり、(b)では、アルキル基の炭素数が大きくなるほど強い細胞毒性を持つことが示されました。つまり、カチオン性基と疎水性基による相乗効果が認められました。
次に、研究グループは、この疎水性部位を導入したカチオン性高分子とガン細胞の細胞膜の相互作用について、パルス磁場勾配核磁気共鳴法(Pulsed-filed gradient Nuclear Magnetic Resonance : PFG-NMR)[用語説明]や分子動力学(MD)シミュレーション[用語説明]など様々な手法を用いて実験と計算の両面から確認しました。
PFG-NMRの測定結果から、疎水性モノマーであるブチルメタクリレートを導入したカチオン性高分子の拡散係数が、細胞膜を模した脂質二重膜と同時に存在するときに小さくなることが確認されました。この結果は、合成高分子が脂質分子と相互作用することで分子の運動性が抑制されていることを示しており、相互作用の向上が示唆される結果となりました。
また、MDシミュレーションでは、疎水性側鎖の導入により10 nsにおけるポリマーとリン脂質膜のコンタクト原子数が、疎水部位の導入前より2倍程度大きな値を示しました(図4)。この相互作用の向上の要因について考察するため、ポリマーの吸着構造の比較を行ったところ、疎水性部位の存在下では、ポリマー主鎖配向が細胞膜の分子配向に対してより平行であることが示されており、ガン細胞の細胞膜への吸着及び膜内へ侵入しやすい主鎖配向を持つことがわかりました(図5)。これにより、ガン細胞の細胞膜構造をより破壊しやすいと考えられます。
以上のことから、「細胞膜障害性」という新たな機序を持つ高分子抗ガン剤の分子設計指針として、カチオン性と疎水性のバランスが重要であることを示しました。
今後はその抗ガン剤高分子にガン細胞選択性などの機能をさらに追求することで新しい抗ガン剤の開発につなげていきます。
本研究は、科研費「学術変革領域研究(A)公募研究(課題番号:21H05516および21H05535)」の支援により実施されました。
本研究成果は、令和5年4月に北陸先端科学技術大学院大学に新設予定の超越バイオメディカルDX研究拠点所属教員らによる先行事例です。
【論文情報】
| 雑誌名 | Journal of Materials Chemistry B |
| 題目 | Mechanistic insights and importance of hydrophobicity in cationic polymers for cancer therapy |
| 著者 | Nishant Kumar, Kenji Oqmhula, Kenta Hongo, Kengo Takagi, Shinichi Yusa, Robin Rajan, Kazuaki Matsumura |
| WEB掲載日 | 2023年1月6日(英国時間) |
| DOI | 10.1039/D2TB02059A |

図1 合成4級カチオン性高分子 (PAMPTMA)

| 図2 疎水性付与合成4級カチオン性高分子 (a)ブチルメタクリレート共重合体(PAMPTMA-r-BuMA) (b)ヘキシルメタクリレート共重合体(PAMPTMA-r-HexMA) (c)オクチルメタクリレート共重合体(PAMPTMA-r-OctMA) |

| 図3 肝ガン細胞(HepG2)に対する抗ガン高分子の細胞毒性試験。縦軸は細胞生存率。
(a)ブチルメタクリレート(BuMA)の導入量の影響。P3:カチオン性高分子(PAMPTMA),
P6:PAMPTMAに対するBuMAの導入モル比5%, P7: 10%, P8: 20%, P9: 30% (b)アルキル基の長さの影響。P7: BuMA 10%, P10: HexMa 10%, P11: OctMa 10%
|

図4 リン脂質膜とポリマーのコンタクト数。
BuMA10%導入ポリマー(赤)の方が10ns時点において2倍程度大きなコンタクト数を示す。

| 図5 MDシミュレーションにおけるスナップショット。
(a)PAMPTMA (b) PAMPTMA-r-BuMA
(b)ではポリマー主鎖配向が膜の分子配向に対してより平行であり、
細胞膜への吸着及び膜内へ侵入しやすい主鎖配向を持つ |
【用語説明】
細胞膜のアニオン性の細胞内リン脂質成分であり、通常は、細胞膜の内側に主に存在しています。しかし、ガン細胞では細胞膜表面に高頻度に発現しているといわれています。
核磁気共鳴(NMR)技術の一種で、磁場勾配を利用して、物質中の空間的な分布を可視化することができます。また、液体中の分子の拡散移動速度を測定する方法の一つです。
分子レベルで物質の構造や動きを計算するためのコンピュータシミュレーション手法です。原子や分子間の力を計算し、物質の構造や動きを時間発展させることができます。
令和5年1月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/01/30-1.html分子自己集合の常識が覆る!? 自己集合で低対称な分子集合体を形成できることを発見
![]() |
| 国立大学法人長崎大学 国立大学法人東京大学大学院総合文化研究科 国立大学法人北陸先端科学技術大学院大学 |
分子自己集合の常識が覆る!?
自己集合で低対称な分子集合体を形成できることを発見
ポイント
- 分子自己集合によるC1対称性分子集合体の形成を発見し、分子低対称化に基づく光物性変化を確認した。
- 低対称な分子集合体の形成は大きなエントロピーロスを伴うため、分子自己集合で得ることは困難だと考えられていた。
- 低対称構造を有する分子集合体を得るための新たなアプローチを提供し、低対称構造に基づく新奇機能性材料の創出につながる可能性がある。
| 長崎大学大学院工学研究科の馬越啓介教授、東京大学大学院総合文化研究科の堀内新之介講師、北陸先端科学技術大学院大学先端科学技術研究科バイオ機能医工学研究領域の山口拓実准教授らの研究グループは、有機分子と遷移金属錯体(注1)を混ぜるだけで、分子対称性が最も低いC1対称の分子集合体が形成することを発見し、自己集合に基づく分子低対称化が物質の光学特性にどのような影響を与えるかも明らかにしました。 通常、分子自己集合では化学熱力学の原理によって、物質の配置エントロピー(注2)が最も高くなる高対称構造体が生成物として得られやすいことが知られています。本研究では、そのような分子自己集合の常識を覆し、分子自己集合によって低対称な分子自己集合体が得られることを発見し、分子自己集合に基づく低対称化(Symmetry-breaking assembly)が起こることを見出しました。これまで様々な研究グループによって低対称構造を有する分子集合体を合成しようとするアプローチが報告されてきましたが、本研究成果はそれらとは一線を画す、新しい方法論となりました。 本研究成果は、1月11日に英国のNature Research社が出版する総合科学速報誌「Nature Communications」誌に掲載されました。 |
【研究の背景】
分子自己集合は自然界で一般的に観測される現象であり、小さな分子がひとりでに集まって巨大な集合構造が構築される現象のことを指します。身近な例では雪の結晶が成長する過程がそうであり、規則的で様々な形状を持つ美しい雪の結晶が報告されています。近年では新しい材料を作り出す手法にこの分子自己集合を取り入れる試みが盛んであり、自己集合性化合物に関する研究はノーベル化学賞の有力候補とされています(図1)。

図1. 金属イオンと有機分子の自己集合によって得られる分子集合体の例
自己集合性化合物の一番の特徴は、雪の結晶でも見られるような、規則的で美しく対称性の高い構造です。これは、分子自己集合の過程が系の乱雑さを表す指標であるエントロピーを大きく減少させる反応であるため、自己集合によるエントロピーの損失を少しでも抑えるため、生成物の構造は高配置エントロピーをもつ対称性の高い構造体になりやすいことに由来しています。自然界では自己集合によって形成する酵素やDNAが生体活動を司っていますが、人類はまだそれらに匹敵するような洗練された機能をもつ自己集合性化合物を合成できていません。この理由は、酵素やDNAが人工的な自己集合性化合物と異なり、低対称で高い複雑性を持つ集合体であるためです。自己集合によって様々な集合構造が合成できることが当たり前となった今日では、自然界で達成されている複雑な仕組みを人工分子系でも達成するため、得られる分子集合体を低対称化する試みや複雑性を付与する研究が盛んに行われています。
【研究内容】
酵素やDNAは水素結合や分子間相互作用のような弱い会合力の協同作用によって自己集合構造を形成しています。研究グループは、自己集合の仕組みに弱い会合力の協同作用を取り入れることで、新しいタイプの分子集合体の合成を探索しました。その結果、水素結合能を持つ有機分子とカチオン性遷移金属錯体(注1)の組み合わせから、通常の自己集合では得ることが困難な最も対称性の低いC1の分子対称性を持つ分子集合体が得られることを発見しました(図2)。

図2. 有機化合物と遷移金属錯体を用いたC1対称性分子集合体の形成
さらに、分子自己集合によって遷移金属錯体の物性が大きく変化することも明らかにしました。遷移金属錯体が有機分子と分子集合体を形成すると、金属錯体の発光特性が大きく向上(高エネルギー化・高効率化・長寿命化)しました。次に研究グループは、用いた遷移金属錯体が2種類の光学異性体の混合物であることに目をつけ、低対称な分子集合構造がキラル光学特性(注3)に与える影響を調べました。その結果、分子自己集合に基づく低対称化(Symmetry-breaking assembly)によって、キラルな遷移金属錯体から観測される円偏光発光の異方性因子glum値が向上することを明らかにしました(図3)。類似な遷移金属錯体を用いてもSymmetry-breaking assemblyを伴わない場合はglum値に変化がなかったことから、このglum値の変化は低対称構造に由来する物性変化であると結論しました。

図3. 分子低対称化にともなうキラル光物性の変化
【今後の展開】
従来の分子自己集合では、得られる化合物の構造は対称性の高い構造という常識があり、低対称構造体を自己集合によって合成することは困難とされてきました。本研究では分子自己集合の常識を覆し、C1対称性を持つ分子集合体を得ることに成功し、その低対称構造に由来する特徴的な物性変化も明らかにしました。この研究成果は、低対称構造を有する分子集合体を得るための新たなアプローチを提供するだけでなく、低対称な分子集合体を用いた機能性材料の礎となる可能性があります。
【謝辞】
本研究は、科研費「若手研究(課題番号:JP19K15589)」、科研費「基盤研究C(課題番号:JP20K05542)」「新学術領域研究「配位アシンメトリー」(課題番号:JP19H04569、JP19H04587)」、「新学術領域研究「水圏機能材料」(課題番号:JP22H04554)」、「文部科学省 マテリアル先端リサーチインフラ(課題番号:JPMXP1222JI0014)」、JSPS国際交流事業「ナノ空間を反応場・デバイスとして活用する物質科学国際拠点の構築」(整理番号R2906)、長崎大学卓越大学院プログラム(整理番号1814)、日揮・実吉奨学会研究助成、野口遵研究助成、小笠原敏晶記念財団一般研究助成、泉科学技術振興財団研究助成、高橋産業経済研究財団研究助成
の支援により実施されました。
【発表雑誌】
| 雑誌名 | 「Nature Communications」(オンライン版:1月11日) |
| 論文タイトル | Symmetry-Breaking Host-guest Assembly in a Hydrogen-bonded Supramolecular System |
| 著者 | Shinnosuke Horiuchi, Takumi Yamaguchi, Jacopo Tessarolo, Hirotaka Tanaka, Eri Sakuda, Yasuhiro Arikawa, Eric Meggers, Guido H. Clever, Keisuke Umakoshi |
| DOI | https://doi.org/10.1038/s41467-023-35850-4 |
【用語解説】
遷移金属イオンと有機化合物が配位結合によって複合体となった化合物の総称。その中でも正の電荷を帯びたものはカチオン性と呼ばれる。
分子の位置と構造情報に関する状態量。分子の位置が平均化され構造情報が少ない集合構造は高配置エントロピーを持ち、全ての分子の位置が個別に観測され構造情報に富んだ集合構造は低配置エントロピーの構造となる。
元の構造とその鏡像が重なり合わない性質をキラリティと言い、この性質を持つことを形容詞系でキラルと表す。キラル分子特有の光学特性をキラル光学特性と言い、化合物の立体構造に由来した物性値である。
令和5年1月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/01/16-1.html炭素1原子層厚のグラフェン膜を使った超低電圧・急峻動作のナノ電子機械スイッチ開発に成功 - 究極の低消費電力エレクトロニクスや集積センサシステム実現に期待 -
炭素1原子層厚のグラフェン膜を使った
超低電圧・急峻動作のナノ電子機械スイッチ開発に成功
- 究極の低消費電力エレクトロニクスや集積センサシステム実現に期待 -
ポイント
- 単層グラフェン膜で作製した両持ち梁を、機械的に上下させて安定動作するNEMS(ナノ電子機械システム)スイッチを世界で初めて実現
- スイッチング電圧<0.5 Vの超低電圧動作と急峻なオン・オフ切替え(電流スイッチング傾き≈20 mV/dec)を実現。従来の半導体技術を用いたNEMSスイッチに比べて約2桁の低電圧化を達成
- 制御電極表面に単層の六方晶窒化ホウ素原子層膜を備えることで、従来のグラフェンNEMSスイッチの問題であったグラフェン膜張り付き(スティクション)を解消し、5万回のオン・オフ繰り返し動作を実現
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域の水田 博教授、マノハラン ムルガナタン元JAIST講師、デンマーク工科大学のゴク フィン ヴァン博士研究員(元JAIST博士研究員)らは、単層グラフェン[用語解説1](原子1層厚の炭素原子シート)膜で作製した両持ち梁を、0.5V未満の超低電圧で機械的に上下させ、5万回繰り返しても安定動作するNEMS(ナノ電子機械システム)[用語解説2]スイッチの開発に世界で初めて成功しました。本デバイスを用いれば、スイッチオフ状態での漏れ電流を原理的にゼロにすることが可能となり、現在のエレクトロニクス分野で深刻な問題となっている集積回路やセンサシステムの待機時消費電力[用語解説3]の飛躍的な低減が実現し、今後のオートノマス(自律化)ITシステムの実現に向けた革新的パワーマネジメント技術として期待されます。 |
【背景と経緯】
現在のIT技術は、シリコン集積回路の基本素子であるMOSFET(金属酸化物半導体電界効果トランジスタ)の堅調な微細化に支えられ発展を遂げてきました。最新のマイクロプロセッサでは、数十億個という膨大な数の高速MOSFETをチップに集積することで、大量のデータを瞬時に計算・処理しています。しかし、この半導体微細化の追求に伴って、MOSFETのオフリーク電流(トランジスタをスイッチオフした状態での漏れ電流)の増大が深刻な問題となっています。オフリーク電流によりシステム待機時の消費電力(スタンバイパワー)は急増し、現代の集積回路システムにおいてはシステム稼動時の消費電力(アクティブパワー)と同等の電力消費となっています。スタンバイパワーを低減するために、現在、デバイス・回路・システム全てのレベルにおいてさまざまな対策が検討されています。このうちデバイスレベルでは、トンネルトランジスタや負性容量電界効果トランジスタなどいくつかの新原理のスイッチングトランジスタが提案され、研究開発が進められていますが、未だ従来のMOSFETを凌駕するオフリーク電流特性を実現するには至っていません。
【研究の内容】
水田教授、マノハラン元講師らの研究チームは、原子層材料であるグラフェンをベースとしたナノメータスケールでの電子機械システム(Nano Electro-Mechanical Systems: NEMS)技術による新原理のスイッチングデバイスを開発してきました。2014年には、2層グラフェンで形成した両持ち梁を静電的に動かし、金属電極上にコンタクトさせて動作するグラフェンNEMSスイッチの原理実験に成功しています。しかし、このスイッチではオン・オフ動作を繰り返すうちにグラフェンが金属表面に張り付く(スティクション)問題が生じ、繰り返し動作に限界がありました。
今回、研究チームは、制御電極表面に単層の六方晶窒化ホウ素[用語解説4]原子層膜を備えることで(図1参照)、グラフェンと電極間に働くファンデルワールス力[用語解説5]を低減させ、スティクションの発生を抑制して安定したオン・オフ動作を5万回繰り返すことに世界で初めて成功しました(図2参照)。また、素子構造の最適化を併せて行うことでスイッチング電圧が0.5 V未満という超低電圧を達成し、従来の半導体技術を用いたNEMSスイッチに比べて約2桁の低電圧化を実現しました。同時に、従来のNEMSスイッチでは不可避であったオン電圧とオフ電圧のずれ(ヒステリシス)の解消にも成功しました。
5万回を超える繰り返し動作を経ても、5桁近いオン・オフ電流比や、電流スイッチング傾き≈20 mV/decの急峻性が維持され、それらの経時劣化が極めて小さいことも確認されました。
本成果は、2022年12月22日にWiley社が発行する材料科学分野のトップジャーナルである「Advanced Functional Materials」に掲載されました。
本成果を含めて、水田教授は「ナノメータスケールにおける電子-機械複合機能素子の研究」の業績で2018年度科学技術分野の文部科学大臣表彰科学技術賞 研究部門を受賞しています。
【今後の展望】
これらの優れた性能と信頼性の高さから、本新型NEMSスイッチは、今後の超高速・低消費電力システムの新たな基本集積素子やパワーマネジメント素子として大いに期待されます。さらに、今回の新型スイッチの作製においては、大面積化が可能なCVD[用語解説6]グラフェン膜とhBN膜を採用しており、将来の大規模集積化と量産への展望も広がります。

図1.開発に成功した超低電圧動作グラフェンNEMSスイッチの(a)作製方法, (b)構造, (c)CVDグラフェン膜とhBN膜のラマンスペクトル, (d)作製した素子のSEM(電子顕微鏡)写真

図2.オン・オフの繰り返し動作測定結果:(a)印加電圧(上)と電流応答(下)、(b)繰り返し測定直後と(c)25,000回繰り返し後のオン・オフ電流特性。特性の経時劣化は極めて小さい。
【論文情報】
| 掲載誌 | Advanced Functional Materials (Volume32, Issue52) |
| 論文題目 | Sub 0.5 Volt Graphene-hBN van der Waals Nanoelectromechanical (NEM)Switches |
| 著者 | Manoharan Muruganathan, Ngoc Huynh Van, Marek E. Schmidt, Hiroshi Mizuta |
| 掲載日 | 2022年12月22日 |
| DOI | 10.1002/adfm.202209151 |
【用語解説】
2004年に発見された、炭素原子が蜂の巣状の六角形結晶格子構造に配列した単原子シート。
半導体集積回路作製技術によって形成されたナノメータスケールの機械的可動構造を有するデバイス。
電源に接続された集積回路・システムが、電源の切れている状態でも消費する電力。
グラフェンのユニットセルの2個の炭素原子の代わりに、窒素原子(N)とホウ素原子(B)で蜂の巣状格子構造を構成する化合物。電気的に絶縁体である。
原子や分子の間に働く力(分子間力)の一種。
さまざまな物質の薄膜を形成する蒸着法の一つで、基板物質上に目的とする膜の成分元素を含む原料ガスを供給し、化学反応・分解を通して薄膜を堆積する方法。
令和5年1月10日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/01/10-1.html微生物合成したバイオマス由来化合物の添加によるリチウムイオン2次電池用正極の安定化
![]() |
国立大学法人北陸先端科学技術大学院大学 国立大学法人筑波大学 |
微生物合成したバイオマス由来化合物の添加による
リチウムイオン2次電池用正極の安定化
ポイント
- リチウムイオン2次電池の正極材料としての活用が活発に検討されているLiNMC系正極は、その安定化のために、有効な添加剤を活用するアプローチが重要である。
- 微生物合成により得られたバイオマス由来のピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))がリチウムイオン2次電池のLiNi1/3Mn1/3Co1/3O2正極の安定化に有効な添加剤であることを見出した。
- 微生物合成を採用することにより、比較的複雑な構造を有する添加剤を簡易かつ低コストに、また低環境負荷な手法で合成することが可能となる。
- DMBAPは汎用の電解液よりも最高被占軌道(HOMO)が高く酸化されやすいため、電解液に先立ち正極表面で酸化され、好ましい界面を形成しつつ、電解液の過度な分解を抑制した。その結果、界面抵抗を顕著に低下させるに至った。SEM(走査型電子顕微鏡)像においてもDMBAPがLiNi1/3Mn1/3Co1/3O2正極の形態の変性を抑制することが示された。
- カソード型ハーフセル (3.0 V-4.5 V)において、DMBAP 2 mg/mlを電解液(EC/DEC/LiPF6)に添加した系においては、1Cの電流密度における100サイクル後の放電容量は83.3 mAhg-1であり、DMBAP非添加系における放電容量の42.6 mAhg-1を大幅に上回った。さらにDMBAPによる電池系の安定化効果はフルセルにおいても顕著であった。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の物質化学フロンティア研究領域 松見紀佳教授、ラージャシェーカル バダム元講師、アグマン グプタ研究員、高森紀行大学院生(博士後期課程2年)、筑波大学生命環境系 高谷直樹教授、桝尾俊介助教、皆川一元大学院生は、微生物合成したピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))がリチウムイオン2次電池のLiNi1/3Mn1/3Co1/3O2正極の安定化に有効な添加剤であることを見出した。 |
【研究の内容と背景】
近年、リチウムイオン2次電池[用語解説1]開発において、高電圧化に有効なLiNMC系正極(LiNixMnyCozO2; x+y+z = 1)の活用が活発に検討されている。一方、正極材料としては比較的不安定なLiNMC系正極を安定化するためには有効な添加剤を活用するなどのアプローチが重要である。北陸先端科学技術大学院大学の松見教授らの研究グループでは、この添加剤の活用について、正極添加剤BIANODAの合理的な設計法[参考文献1,2]について報告したが、有機合成化学的な添加剤の合成においては材料の精製等がやや煩雑であった。
そこで今回は微生物合成によってピラジンアミン化合物(2,5-ジメチル-3,6-ビス(4-アミノベンジル)ピラジン(DMBAP))を合成し、LiNMC系正極用添加剤として検討した。本化合物もBIANODAと同様にHOMOが高く、重合性官能基を持つこと、正極活物質の劣化因子であるフッ化水素(HF)をトラップ可能な構造であること、遷移金属への配位子構造等を併せ持つなど、LiNMC系正極の安定化剤として理想的な構造を有している(図1)。この微生物合成を採用することにより、比較的複雑な構造を有する添加剤を簡易かつ低コストに、また低環境負荷な手法で合成することが可能となる。
また、筑波大学の高谷教授らのグループでは、Pseudomonas fluorescens SBW25の遺伝子クラスターがDMBAPの微生物合成に有用であることを見出しており[参考文献3]、さらにグルコースを原料としてDMBAPを発酵生産する組換え細菌も見出している[参考文献3]。
このような系の積極的活用は、新たなカテゴリーの電池用添加剤ライブラリーを見出すとともに電池材料のバイオマス代替を促進する上で大変魅力的である。
本研究では、まずLiNi1/3Mn1/3Co1/3O2/電解液(エチレンカーボネート(EC)/ジエチレンカーボネート(DEC)/ヘキサフルオロリン酸リチウム(LiPF6))/Li型ハーフセルにおいて、電解液に2 mg/mlのDMBAPを添加し、正極安定化剤としての性能を評価した。カソード型ハーフセルのサイクリックボルタモグラム (3.0 V- 4.5 V)の第一サイクルにおいては、DMBAP添加系においては非添加系には見られない酸化ピークが観測され、添加剤に基づいた被膜形成挙動が示唆された。
添加剤DMBAPの量を変化させつつ充放電特性評価を行うと、電解液への添加量が 2 mg/mlの系において最善の性能が観測された。DMBAP 2 mg/mlを電解液(EC/DEC/LiPF6)に添加した系においては1Cの電流密度における100サイクル後の放電容量は83.3 mAhg-1であり、DMBAP非添加系における放電容量の42.6 mAhg-1を大幅に上回った(図2(b))。また、DMBAP添加系においては、リチウム挿入・脱離反応のオーバーポテンシャルの低下も観測された(図2(d))。さらにDMBAPによる電池系の安定化効果はフルセルにおいても顕著であった。
次に、カソード型ハーフセル[用語解説2]における界面形成挙動の解析のため動的インピーダンス(DEIS)測定を行った。各電圧下におけるそれぞれのインピーダンススペクトルに関する等価回路フィッティングを行い、カソード側の界面抵抗(CEI)を算出したところ、DMBAP添加系においてはすべての測定条件下において非添加系よりも抵抗が低く、DMBAPの界面抵抗低減効果が顕著であることが明らかとなった。
また、LiNi1/3Mn1/3Co1/3O2正極を電解液(EC/DEC/LiPF6)中で保管した系においては、SEM(走査型電子顕微鏡)像において形態の変性が観測されるが、DMBAPを共存させた系においては形態変化は抑制され(図3)、DMBAPによる安定化効果が再び示された。
本成果は、ネイチャー・リサーチ社刊行のScientific Reportのオンライン版に11月25日に掲載された。
本研究は、内閣府の戦略的イノベーション創出プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
【今後の展開】
リチウムイオン2次電池の開発においては、作用機構が異なる他の添加剤との併用により、さらなる相乗効果につながることが期待される。
さらに、遷移金属組成の異なる様々なLiNMC 系正極(LiNixMnyCozO2; x+y+z = 1)を効果的に安定化することが期待できる。
既に国内において特許出願済みであり、今後は、企業との共同研究を通して将来的な社会実装を目指す。特に、電池セルの高電圧化技術の普及と電池材料のバイオマス代替を促進することを通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | Scientific Reports(Springer-Nature) |
| 題目 | Microbial pyrazine diamine is a novel electrolyte additive that shields high-voltage LiNi1/3Co1/3Mn1/3O2 cathodes |
| 著者 | Agman Gupta, Rajashekar Badam, Noriyuki Takamori, Hajime Minakawa, Shunsuke Masuo, Naoki Takaya and Noriyoshi Matsumi* |
| WEB掲載日 | 2022年11月25日(英国時間) |
| DOI | 10.1038/s41598-022-22018-1 |

|
図1.DMBAPによるLiNMC系正極安定化の概念図
重合性官能基(-NH2)を持つこと、フッ化水素(HF)をトラップ可能な構造であること、遷移金属への配位子構造(C₄H₄N₂)等を併せ持つことなど、安定化剤として理想的な構造を有する。 |

|
図2.(a)様々な電流密度におけるカソード型ハーフセル(DMBAP添加物存在下及び非添加系)の充放電挙動
(b) 1Cにおけるカソード型ハーフセル(DMBAP添加物存在下及び非添加系)の充放電挙動 (c) DMBAP添加物存在下及び非添加系の容量維持率の比較 (d) 1CにおけるDMBAP添加物存在下及び非添加系のオーバーポテンシャルの比較 |

|
図3.(a) LiNMC 系正極
(b) 電解液(エチレンカーボネート(EC)/ジエチレンカーボネート(DEC)/ヘキサフルオロリン酸リチウム(LiPF6))処理後のLiNMC系正極 (c) DMBAPを添加した電解液で処理後のLiNMC系正極のSEM像 |
【参考文献】
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、カソード極/電解質/Liの構成からなる半電池を意味する。
令和4年11月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/11/30-1.htmlリチウムイオン2次電池の急速充放電を実現する新しいナノシート系負極活物質の開発
リチウムイオン2次電池の急速充放電を実現する新しいナノシート系負極活物質の開発
ポイント
- リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。
- TiB2(二ホウ化チタン)粉末のH2O2による酸化処理、遠心分離、凍結乾燥により簡便に得られる二ホウ化チタンナノシートをリチウムイオン2次電池の負極活物質として適用した。
- 二ホウ化チタンナノシートを負極活物質としたアノード型ハーフセルで充放電挙動を評価した結果、比較的低い充放電レートの0.025 Ag-1では約380 mAhg-1の放電容量を示した。
- 当該アノード型ハーフセルにおいて、1 Ag-1 (充電時間約10分)の電流密度では、174 mAhg-1の放電容量を1000サイクル維持した(容量維持率89.4 %)。さらに超急速充放電条件(15~20 Ag-1)を適用すると、9秒~14秒の充電で50~60 mAhg-1の放電容量を10000サイクル維持するに至り(容量維持率80%以上)、高い安定性が確認された。
- 急速放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の先端科学技術研究科 松見紀佳教授(物質化学フロンティア研究領域)、ラージャシェーカル バダム元講師(物質化学フロンティア領域)、アカーシュ ヴァルマ元大学院生(博士前期課程修了)、東嶺孝一技術専門員らの研究グループとインド工科大学ガンディナガール校カビール ジャスジャ准教授、アシャ リザ ジェームス大学院生は、リチウムイオン2次電池*1において二ホウ化チタンナノシートの負極活物質への適用が急速充放電能の発現に有効であることを見出した。 |
【研究の内容と背景】
リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。しかしながら、その実現には固体中のリチウムイオンの拡散速度の向上や電極―電解質界面の特性、活物質の多孔性などの諸ファクターの検討を要している。これまで急速充放電用途のナノ材料系負極活物質としては、チタン酸リチウムのナノシートや酸化チタン/炭素繊維コンポジットなどが検討されてきたほか、新しい2次元(2D)材料*2への関心が広がりつつあり、グラフェン誘導体や金属カーバイド系材料にも検討が及んでいる。
本研究においては、TiB2(二ホウ化チタン)のH2O2による酸化処理、遠心分離、凍結乾燥による簡便なプロセスで作製可能なTiB2ナノシートをリチウムイオン2次電池負極活物質として適用し、アノード型ハーフセルを構築して急速充放電能について検討した。
合成は、共同研究者であるインド工科大学准教授カビール氏らが報告している手法*3に従い、TiB2粉末を過酸化水素水と脱イオン水との混合溶液に懸濁させ、24時間の攪拌後に遠心分離し、上澄みを-35oCで24時間凍結させた後に72時間凍結乾燥することにより粉末状のTiB2ナノシートを得た(図1)。得られた材料のキャラクタリゼーションは前述の手法に従い、XRD、HRTEM、FT-IR、XPS等の各測定により行った。
電池セルの作製において、負極の組成としてはTiB2ナノシートを55 wt%、アセチレンブラックを35 wt%、PVDF(ポリフッ化ビニリデン)を10 wt%を用い、NMP(N-メチルピロリドン)を溶媒とした懸濁液から銅箔集電体にコーティングした。電解液としては 1.0 M LiPF6 のEC/DEC (1:1 v/v)溶液を用い、対極にはリチウム箔を用いた。
TiB2ナノシートを負極活物質としたアノード型ハーフセル*4のサイクリックボルタモグラム(図2)においては、第一サイクルにおいてのみ0.65 V (vs Li/Li+)に電解液の分解ピークが現れたが、それ以降は消失した。リチウム脱離に相当するピークは2つ観測され、0.28 Vにおけるピークはリチウムが複数インターカレートしたTiB2からの脱リチウムピーク、0.45VにおけるピークはTiB2の再生に至る脱リチウムピークにそれぞれ相当する。約1.5 Vからの比較的高いリチウム挿入電位は、チタン酸リチウムやホウ素ドープTiO2とほぼ同様であった。
また、このアノード型ハーフセルの充放電挙動では、比較的低い充放電レートの0.025 Ag-1では約380 mAhg-1の放電容量を示した(図3)。
アノード型ハーフセルにおいて、1 Ag-1(充電時間約10分)の電流密度では、174 mAhg-1の放電容量を1000サイクル維持し、容量維持率は89.4 %を示した(図3)。さらに超急速充放電条件である15-20 Ag-1を適用すると、9秒~14秒の充電で50-60 mAhg-1の放電容量を10000サイクル維持するに至り、容量維持率は80%以上であった。
本成果は、ACS Applied Nano Materials (米国化学会)のオンライン版に9月19日に掲載された。なお、本研究は、文部科学省の「大学の世界展開力強化事業」採択プログラムに基づいた北陸先端科学技術大学院大学とインド工科大学ガンディナガール校(JAIST-IITGN)の協働教育プログラム(ダブルディグリープログラム)のもとで実施した。
【今後の展開】
TiB2ナノシートの積極的活用により、急速充放電能を有する次世代型リチウムイオン2次電池の発展に向けた多くの新たな取り組みにつながり、関連研究が活性化するものと期待される。
さらに活物質の面積あたりの担持量を向上させつつ電池セル系のスケールアップを図り、産業的応用への橋渡し的条件においても検討を継続する。
既に日本国内及びインドにおいて特許出願済みであり、今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | ACS Applied Nano Materials(米国化学会) |
| 題目 | Titanium Diboride-Based Hierarchical Nanosheets as Anode Material for Li-ion Batteries |
| 著者 | Akash Varma, Rajashekar Badam, Asha Liza James, Koichi Higashimine, Kabeer Jasuja * and Noriyoshi Matsumi* |
| WEB掲載日 | 2022年9月19日 |
| DOI | 10.1021/acsanm.2c03054 |

| 図1.TiB2ナノシートの合成とキャラクタリゼーション (a)バルクのTiB2粉末 (b)過酸化水素水(H2O2) (3% v/v)にTiB2を分散した黒色の分散液 (c) 24時間攪拌後のTiB2の溶解と遠心分離後の上澄みの使用 (d)凍結乾燥後の粉末のナノ構造 (e) FESEM像 (f) TiB2 粉末及び TiB2ナノシートのFTIRスペクトル (g)ホウ素のハニカム状平面にチタンがサンドイッチされた結晶構造 (h) Si/SiO2 ウエハに担持させたTiB2ナノシートの光学像 (i) TiB2ナノシートのHRTEM像。ポーラスなシート状構造を示す。 |

| 図2.TiB2ナノシートを負極活物質としたアノード型ハーフセルのサイクリックボルタモグラム (a) 電圧範囲0.01-2.5V ;掃引速度 0.1 mV/s (b) 電圧範囲0.5-2.5V ;掃引速度 0.1, 0.3, 0.5, 0.7, and 1 mV/s. |

| 図3.TiB2ナノシートを負極活物質としたアノード型ハーフセルの充放電挙動 (a)レート特性の検討結果 (b)充放電曲線 (c)長期サイクル特性 |
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
グラフェンや遷移金属ジカルコゲニドなどの2次元(2D)層状無機ナノ材料は、その優れた物理的および化学的特性のために最近注目されている化合物で、光触媒や太陽電池、ガスセンター、リチウムイオン電池、電界効果トランジスタ、スピントロニクスなどへの応用が期待されている。
James, Asha Liza; Lenka, Manis; Pandey, Nidhi; Ojha, Abhijeet; Kumar, Ashish; Saraswat, Rohit; Thareja, Prachi; Krishnan, Venkata; Jasuja, Kabeer
Nanoscale (2020), 12 (32), 17121-17131CODEN: NANOHL; ISSN:2040-3372. (Royal Society of Chemistry)
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和4年9月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/09/30-1.htmlマイクロロボットを"流れ"作業で迅速に作製 -生体分子モーターによる人工筋肉で自在にプリント・動的再構成可能に-
![]() |
国立大学法人 大阪大学 国立大学法人 北陸先端科学技術大学院大学 国立大学法人東海国立大学機構 岐阜大学 |
マイクロロボットを"流れ"作業で迅速に作製
-生体分子モーターによる人工筋肉で自在にプリント・動的再構成可能に-
【ポイント】
- マイクロ流路※1の中で、光に応答する材料を流しながら、マイクロロボット※2のボディと駆動源となるアクチュエータ※3を連続的に生産・組み立てを行う「マイクロロボットその場組み立て法」を開発
- 様々な機能をもつマイクロロボットの迅速な作製に成功
- より高機能なマイクロロボットの実現と、マイクロロボットの量産化に期待
【概要】
| 大阪大学・大学院工学研究科の森島圭祐教授、王穎哲特任研究員(常勤)は、 北陸先端科学技術大学院大学・先端科学技術研究科 バイオ機能医工学研究領域の平塚祐一准教授、岐阜大学・工学部の新田高洋教授との共同研究で、マイクロ流路内で、マイクロロボットの部品をプリント成形し、その場で組み立てることに成功しました。マイクロロボットの機械構造は光応答性ハイドロゲル※4でつくられ、アクチュエータは同じチームが開発した生体分子モーターからなる人工筋肉を利用しました。このアクチュエータと機械部品をマイクロ流路内で組み立てることにより、マイクロロボット製造の柔軟性と効率が向上しました。この方法で、様々な機能のマイクロロボットが実現されました。また、この成果により、これまで困難であった、特に柔軟な構造を持つマイクロソフトロボットの実現や、マイクロロボットの量産化が期待されます。 本研究成果は、2022年8月24日午後2時(米国時間)に発行される科学雑誌「Science Robotics」の表紙を飾りました。 |
【研究の背景】
マイクロロボット、特に柔軟な構造を持つロボットは、生物医学などの分野で非常に幅広い応用の可能性があるものの、小さなロボットにアクチュエータなど様々な機械部品を組み込むことは困難で、高機能のマイクロロボット開発の障害となっています。従来の方法では、通常、機械構造やアクチュエータなど、マイクロロボットの様々な部品を異なる場所で製造し、一つ一つ組み上げていくピック アンド プレース アセンブリによってマイクロロボットがつくられていました。この方法は時間と労力がかかり、また多くの制限があることが課題となっています。
【研究の内容】
本研究では、自然界の生体内システムの自己組織化プロセスに着想を得て、2021年に発表したプリント可能な生体分子モーターからなる人工筋肉(1)(2)に基づき、ロボット部品をその場で加工・組み立てしてマイクロロボットを製造する方法を開発しました。マイクロ流路内で、マスクレスリソグラフィー※5により、ハイドロゲル材料の機械的構造をプリントし、次に生体分子モーターからなる人工筋肉がハイドロゲル機構の狙った位置に直接プリントすることで、機構を駆動して目的の仕事を実施します(図1) 。 このその場組み立てにより、マイクロロボットを迅速に次々と生産することができます。
また、マイクロロボットに新しい人工筋肉を再プリントすることにより、アクチュエータを迅速に動的再構成し、複雑な仕事を行うマイクロロボットを実現しました(図2)。
さらに、生体分子モーターを使用する本研究とは異なる、生きた筋肉細胞を用いるアプローチとして細胞ハイブリッドロボット※6が注目されています。細胞ハイブリッドロボットは、柔軟性が高く、環境負荷が低いという利点があるものの、筋肉細胞の培養に数日かかってしまうという問題があります。本研究では、設計の柔軟性を向上させながら、製造プロセスを大幅に簡素化することに成功しました。今後のオンチッププリンティング技術の向上や人工筋肉の性能向上により、現在の細胞ハイブリッドロボットのボトルネックを打破し、実用化に向けた一歩を踏み出すことが期待される手法であると考えています。
(1) https://www.nature.com/articles/s41563-021-00969-6
(2) https://www.jaist.ac.jp/whatsnew/press/2021/04/20-1.html

図1 マイクロロボットその場組み立て法

図2 その場組み立て法によって製造したマイクロロボットが生体分子モーターからなる人工筋肉によって駆動する様子
【本研究成果が社会に与える影響(本研究成果の意義)】
今回の研究により、自然界の生体分子モーターによって運動が創発する自己組織化現象をオンチップ微小空間上で工学的に制御し、自在にデザインできる加工プロセスをボトムアップ的な発想でより簡便に実現できました。これにより、これまで超微小部品をトップダウン的に組み立てることが大きなボトルネックであったために遅れていた、マイクロロボットの組み立てやマイクロソフト機構のオンデマンド生産が可能になりました。今後、様々な機能を付与したマイクロロボットがオンチップ上で連続的にオンデマンド生産することが可能になり、化学エネルギーだけで駆動する超小型マイクロロボットが健康医療応用など様々な分野に展開、波及していくことが期待できます。
【特記事項】
本研究は、日本学術振興会(JSPS)科研費 基盤研究(S)(課題番号22H04951)、基盤研究(A)(課題番号22H00196)、基盤研究(B)(課題番号19H02106)、学術変革領域研究(A)(課題番号21H05880)、挑戦的萌芽研究(課題番号21K18700)、新エネルギー・産業技術総合開発機構(NEDO)「次世代人工知能・ロボット中核技術開発」(JPNP15009)の支援を受けて行われました。
【論文情報】
| タイトル | In situ integrated microrobots driven by artificial muscles built from biomolecular motors |
| 著者名 | Yingzhe Wang, Takahiro Nitta, Yuichi Hiratsuka ,and Keisuke Morishima |
| DOI | https://www.science.org/doi/10.1126/scirobotics.aba8212 |
【用語説明】
ガラスや高分子材料で作製した数ミリメートルから数マイクロメートルの流路で、効率的に化学反応などを起こすことができる。微小なバイオセンサーや化学分析装置に利用されている。
数ミリメートル以下のサイズのロボットで、医療などへの応用が期待されている。
モーターやエンジンなどのように電気や化学エネルギーなどを利用して、動きや力を発生する装置。
紫外線などの光を照射することでゼリー状に固まる物質。
光照射による微細加工技術で、半導体デバイスなどの製造に利用されている。
培養細胞と機械部品を融合させて作製したロボット。
【SDGs目標】

【参考URL】
森島圭祐教授 研究者総覧URL https://rd.iai.osaka-u.ac.jp/ja/90351526dc15ef59.html
生命機械融合ウェットロボティクス領域URL http://www-live.mech.eng.osaka-u.ac.jp/
令和4年8月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/08/26-1.htmlリチウムイオン2次電池用シリコン負極を大幅に安定化する自己修復型ポリマーコンポジットバインダーを開発
リチウムイオン2次電池用シリコン負極を大幅に安定化する
自己修復型ポリマーコンポジットバインダーを開発
ポイント
- リチウムイオン2次電池の高容量化のため、シリコン負極が注目されているが、シリコン粒子の大きな体積変化等の問題によって安定した充放電が困難となっている。
- リチウムイオン2次電池用シリコン負極を安定化する目的で、BIAN(ビスイミノアセナフテン)構造を有する共役系高分子とポリアクリル酸との水素結合ネットワークから成るコンポジットバインダーを開発した。
- アノード型ハーフセルを構築し充放電特性を評価したところ、600サイクル後に2100 mAhg-1を維持し、極めて高い安定性を示した。
- 充放電後における界面抵抗が極めて低いことや、充放電後の負極の構造的耐久性も高く、劣化は極めて軽微であることが分かった。
- 高容量放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 物質化学フロンティア研究領域の松見 紀佳教授、バダム ラージャシェーカル講師、アグマン グプタ研究員らのグループは、リチウムイオン2次電池*1用シリコン系負極を大幅に安定化するポリマーコンポジットバインダーの開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、EV車の更なる普及を見据えたエネルギー密度の向上を目的として、従来型負極であるグラファイトの理論放電容量を大幅に上回るシリコンの活用に関心が高まっており、カーボンニュートラルの見地からも高容量蓄電池の早期実用化が望まれている。また、シリコンは地殻に豊富に含まれる元素でありコスト面の利点が明白で、元素戦略の観点からも活用が期待される。
一方、シリコン負極においては、充放電時における大幅なシリコン粒子の体積変化が問題となっており、シリコン粒子の大幅な体積膨張による破断などの問題がある。また、充放電によってシリコン上に形成された界面被膜の破壊、集電体からの剥離、シリコン上に生成するクラック上の新たなシリコン面からの電解液の分解による厚いSEI被膜形成などの諸問題による大幅な内部抵抗の上昇によって、電池性能の劣化にも至っている。
【研究の内容】
本研究においては、負極の環境で還元され伝導性を発現するn型共役系高分子バインダー(ビスイミノアセナフテン骨格を有する共役系高分子、P-BIAN)と、この高分子(ポリマー)と水素結合性ネットワークを形成するポリアクリル酸(PAA)を組み合わせることにより、内部抵抗の低減と自己修復機能との相乗的な効果によりシリコン系負極を大幅に安定化できるコンポジットバインダーを開発した(図1)。両ポリマー間の水素結合形成はXPS測定(N1s)から確認された。
また、本コンポジットバインダーを用いてアノード型ハーフセル*2[アノード:Si/C/(P-BIAN/PAA)/AB =25/30/25/20 by wt%]を構築し、充放電特性を評価したところ、600サイクル後に2100 mAhg-1を維持し、極めて高い安定性を示した(図2)。さらに、サイクリックボルタンメトリー*3からは、可逆的で明瞭なリチウム脱挿入挙動や、電解液の分解抑制が示された。
次に、動的インピーダンス測定(DEIS)を行ったところ、本系における充放電後のSEI抵抗は、比較対象のポリアクリル酸バインダー系の場合の約1/6程度となった。
充放電試験後に電池セルを分解し負極を分析したところ、XPSにおいて負極内部の諸元素の環境に由来するピークが明瞭に観測されたことから、表面に形成したSEIは非常に薄いことが分かった。加えて、SEM観測においては400サイクル後においてもクラック形成は極めて軽微であり、比較対象(ポリアクリル酸)と対照的であったことから、本系においては充放電後の界面抵抗が極めて低いことが明らかとなった。また、充放電後の負極のSEMによる分析結果においても構造的耐久性が高く、有意な劣化が見られないことが分かった。
本成果は、ACS Applied Energy Materials (米国化学会)のオンライン版に4月29日に掲載された。なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する。(国内特許出願済み)
今後は、企業との共同研究を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | ACS Applied Energy Materials |
| 題目 | Heavy-Duty Performance from Silicon Anodes Using Poly(BIAN)/Poly(acrylic acid)-Based Self-Healing Composite Binder in Lithium-Ion Secondary Batteries |
| 著者 | Agman Gupta, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年4月29日 |
| DOI | 10.1021/acsaem.2c00278 |

|
図1.(a) 高分子化BIAN(P-BIAN)及びポリアクリル酸(PAA)の構造式
(b) P-BIAN/PAAコンポジットバインダーの設計戦略 (c)P-BIAN/PAAのコンポジット生成に伴う強靭さ及び自己修復能による力学的特性の向上のイメージ図 |

|
図2.(a) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルのサイクリックボルタモグラム
(b) P-BIAN/PAA系バインダーとPAAバインダーを有するSi系負極を用いたアノード型ハーフセルとの500 mAg-1における充放電サイクル特性の比較 (c) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルの充放電曲線(500 mAg-1) (d) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルと比較系(PAAバインダー系)との容量維持率の推移の比較 |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*3 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年5月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/05/12-1.htmlナノ物質の強度を決める表面1層の柔らかさ ―電子顕微鏡観察下での金属ナノ接点のヤング率測定―
![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 金沢大学 |
ナノ物質の強度を決める表面1層の柔らかさ
―電子顕微鏡観察下での金属ナノ接点のヤング率測定―
ポイント
- 金ナノ接点の物質強度(ヤング率)は接点が細くなると減少した。
- 独自開発の顕微メカニクス計測法でこの計測実験に成功。
- 最表面層のヤング率のみがバルク値の約1/4に減少。
- ナノ電気機械システム(NEMS)の開発に指針を与える成果である。
| 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域の大島義文教授、富取正彦教授、張家奇研究員、及び金沢大学 理工研究域 数物科学系の新井豊子教授は、[111]方位を軸とした金ナノ接点を引っ張る過程を透過型電子顕微鏡で観察しながら、等価ばね定数と電気伝導の同時に測定する手法(顕微メカニクス計測法)によって、金ナノ接点のヤング率がサイズに依存することを明らかにした。 金[111]ナノ接点は砂時計のようなくびれ形状を持つ。そのくびれは、0.24nm引っ張るたびに、より小さな断面積をもつ(111)原子層1層が挿入されることで段階的に細くなっていく。この観察事実を基に、挿入前後の等価ばね定数値の差分から、挿入された(111)原子層の等価ばね定数を求め、さらにこの(111)原子層の形状とサイズを考慮してヤング率を算出した。サイズが2 nm以下になると、ヤング率は約80 GPaから30 GPaへと徐々に減少した。この結果から、最外層のヤング率が約22 GPaと、バルク値(90GPa)の約1/4であることを見出した。このような材料表面での機械的強度の差は、ナノ電気機械システム(NEMS)の材料設計において考慮すべき重要な特性である。 本研究成果は、2022年4月5日(米国東部標準時間)に科学雑誌「Physical Review Letters」誌のオンライン版で公開された。なお、本研究は、日本学術振興会(JSPS)科研費、18H01825、18H03879、笹川科学研究助成、丸文財団交流研究助成を受けて行われた。 |
金属配線のサイズが数nmから原子スケールレベル(金属ナノワイヤ)になると、量子効果や表面効果によって物性が変化することが知られている。金属ナノワイヤの電気伝導は、量子効果によって電子は特定の決められた状態しか取れなくなるためその状態数に応じた値になること、つまり、コンダクタンス量子数(2e2/h (=12.9 kΩ-1);e: 素電荷量、h: プランク定数)の整数倍になることが明らかになっている。近年、センサーへの応用が期待されナノ機械電気システムの開発が進められており、金属ナノワイヤを含むナノ材料のヤング率などといった機械的性質の理解が課題となっている。この解決に、例えば、透過型電子顕微鏡(TEM)にシリコン製カンチレバーを組み込んだ装置を用いて、カンチレバーの曲がりから金属ナノワイヤに加えた力を求め、それによって生じた変位をTEM像で得ることで、ヤング率が推量されている。しかし、この測定法は、個体差があるカンチレバーのばね定数を正確に知る必要があり、かつ、サブオングストロームの精度で変位を求める必要があるため、定量性が十分でないと指摘されている。
本研究チームは、原子配列を直接観察できる透過型電子顕微鏡(TEM)のホルダーに細長い水晶振動子(長辺振動水晶振動子(LER)[*1])を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする顕微メカニクス計測法を世界で初めて開発した(図1上段)。この手法では、水晶振動子の共振周波数が、物質との接触で相互作用を感じることによって変化することを利用する。共振周波数の変化量は物質の等価バネ定数に対応するので、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)で、TEMによる原子像がぼやけることはない。この手法は、上述した従来の手法の問題点を克服しており、高精度測定を実現している。
本研究では、[111]方位を軸とした金ナノ接点(金[111]ナノ接点)をLER先端と固定電極間に作製し(図1上段参照)、この金[111]ナノ接点を一定速度で引っ張りながら構造を観察し、同時に、その電気伝導、および、ばね定数を測定した(図1下段)。金[111]ナノ接点は砂時計のようなくびれをもつ形状であり、0.24nm引っ張る度により狭い断面をもつ(111)原子層1層がくびれに挿入されることで段階的に細くなることを観察した。これは、図1下段のグラフで電気伝導がほぼ0.24nm周期で階段状に変化することに対応していた。この事実から、挿入された(111)原子層の等価ばね定数を挿入前後の等価ばね定数の差分から算出することができ、さらに、この(111)原子層の形状やサイズを考慮することでヤング率を見積もった。なお、28回の引っ張り過程を測定して可能な限り多数のヤング率を見積もることで統計的にサイズ依存性を求めた(図2)。その結果、ヤング率は、サイズが2 nm以下になると、サイズが小さくなるとともに約80 GPaから30 GPaへと徐々に減少した。この結果から、最外層のヤング率が約22 GPaと、バルク値(90GPa)の約1/4であることを見出した。このような材料表面の強度は、ナノ電気機械システム(NEMS)の材料設計でも考慮すべき重要な特性である点で大きな成果である。

図1
(上段)金ナノコンタクトの等価ばね定数を計測する顕微メカニクス計測法。透過型電子顕微鏡(TEM)を用いて金ナノ接点の構造観察をしながら、長辺振動水晶振動子(LER)を用いて等価ばね定数を計測できる。
(下段)(左)金ナノ接点の引っ張り過程における変位に対する電気伝導及び等価ばね定数の変化を示すグラフ。(右)変位Aと変位Bで得た金ナノ接点のTEM像と最もくびれた断面の構造モデルを示す。黄色が内部にある原子、青が最表面原子である。

図2
金[111]ナノ接点の引っ張り過程を28回測定して、統計的に求めた金[111]ナノ接点ヤング率のサイズ依存性である。横軸は、断面積である。赤丸が実験値であり、誤差は、同じ断面の金(111)原子層に対して得られたヤング率のばらつきを示す。青丸は、第一原理計算によって得た結果である。
【論文情報】
| 掲載誌 | Physical Review Letters |
| 論文題目 | Surface Effect on Young's Modulus of Sub-Two-Nanometer Gold [111] Nanocontacts |
| 著者 | Jiaqi Zhang, Masahiko Tomitori, Toyoko Arai, and Yoshifumi Oshima |
| 掲載日 | 2022年4月5日(米国東部標準時間) |
| DOI | 10.1103/PhysRevLett.128.146101 |
【用語説明】
[*1] 長辺振動水晶振動子(LER)
長辺振動水晶振動子(LER、図1参照)は、細長い振動子(長さ約3 mm、幅約0.1 mm)を長辺方向に伸縮振動させることで、周波数変調法の原理で金属ナノ接点などの等価バネ定数(変位に対する力の傾き)を検出できる。特徴は、高い剛性(1×105 N/m)と高い共振周波数(1×106 Hz)である。特に、前者は、化学結合の剛性(等価バネ定数)測定に適しているだけでなく、小さい振幅による検出を可能とすることから、金属ナノ接点を壊すことなく弾性的な性質を得ることができ、さらには、原子分解能TEM像も同時に得られる点で大きな利点をもつ。
令和4年4月11日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/04/11-1.htmlダイヤモンドのNV中心を用いた温度計測に成功 ~非線形光学による新しい量子センシングの可能性~
![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 |
ダイヤモンドのNV中心を用いた温度計測に成功
~非線形光学による新しい量子センシングの可能性~
| 温度センサーは接触型と非接触型に大別されます。接触型の温度センサーには抵抗温度計、サーミスタや熱電対などが、非接触型の温度センサーには量子準位の変化で温度を読み取る量子センサーが主に用いられています。非接触型量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心と呼ばれる格子欠陥を用いたセンサーは、高空間分解能・高感度を必要とする細胞内計測やデバイス評価装置のセンサーへの応用が期待されています。 高純度のダイヤモンドは結晶学的に対称性が高く、対象点を中心に結晶を反転させると結晶構造が重なる空間反転対称性を持っています。結晶の対称性は、結晶の光学的性質を決定する上で重要な役割を担っており、空間反転対称性の有無は、非線形光学効果の発現を左右します。本研究チームは近年、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)が発現することを報告しました。このSHGは、結晶にレーザー光を照射した際に、そのレーザー周波数の2倍の周波数の光が発生する現象です。 この成果を基に、本研究では、20℃から300℃の温度範囲において、SHG強度の変化を調べ、高温では屈折率変化による光の位相不整合によりSHG強度が大きく減少することを発見しました。 本研究成果は、ダイヤモンドベースの非線形光学による温度センシングの実現に向けた効率的かつ新しい方法を提示するものと言えます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 応用物理学領域
安 東秀准教授
【研究の背景】
温度センサーは、エアコン、冷蔵庫、自動車エンジン、パソコンなどさまざまな電子機器に使用されており、温度管理や機器の性能維持に重要な役割を果たしています。温度センサーにはさまざまな種類がありますが、大きくは接触型と非接触型に分類されます。接触型の温度センサーには抵抗温度計、サーミスタ、熱電対などが用いられ、一方、非接触型の温度センサーには量子センサー注1)が主に使われています。
特に、ダイヤモンド中の窒素−空孔(NV)中心注2)を用いた非接触型量子センサーは、NV中心における量子準位間発光の共振マイクロ波周波数が温度によって変化することを原理とし、高空間分解能・高感度を必要とする細胞内計測や、デバイス評価装置のセンサーへの応用などが期待されています。ダイヤモンドのNV中心は、置換型窒素原子と炭素原子の隣の空孔からなる原子状欠陥(図1挿入図)です。
表面近傍(深さ数十ナノメートル)にNV中心を導入するには、一般に窒素イオン注入と高温アニールの組み合わせがよく用いられます。近年、ダイヤモンドのNV中心は、発光など豊かな光物性から、量子計算のためのフォトニックデバイス技術、単一光子源などへの応用が期待され、高い注目を集めています。さらに、ダイヤモンドのNV中心を用いた量子センシングが注目され、電場(電流)、磁場(スピン)の計測や、温度センサーに利用されています。一方、結晶の対称性、中でも空間反転対称性注3)の有無は、物質の光学的性質を決定する上で重要な役割を担っています。本研究チームは近年、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)注4)を発現することを報告しましたa)。
今回、本研究チームは、NV含有ダイヤモンド結晶に赤外域の超短パルスレーザーを照射することで、第二高調波、および第三高調波の発光強度の温度依存性について研究し、非線形光学効果に基づいた温度センサーとしての可能性を探りました。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ波長800nmで瞬く超短パルスレーザー注5)を波長1350nmの赤外パルス光に変換し、NV中心を導入した高純度ダイヤモンド単結晶に励起光として照射しました。これにより、ダイヤモンドの表面近傍から発生したカスケード型第三高調波(cTHG)と第二高調波の強度変化を、20℃~300℃の温度範囲で調べました。図2は、20℃(室温)から240℃までのさまざまな温度でNV含有ダイヤモンド結晶から得られた典型的な発光スペクトルを示します。室温の20℃においては、複屈折性を有するNV含有ダイヤモンド試料の角度を調整することにより、ほぼ完全な位相整合注6)が精巧に行われました。この時、SHGについては約4.7 × 10-5、cTHGについては約3.0 × 10-5の光変換効率が得られています。しかし、温度上昇に伴い、SHG および cTHG の強度は急激に減少することが分かります。
また、20℃から300℃までの非線形発光の温度同調曲線を、さらに光学調整を行わずに20℃の間隔で記録したところ、SHGとcTHGの積分強度は、低温領域(100℃以下)では、ほとんど温度変化しないことが分かりました。しかし、高温領域(150℃から300℃)では、SHG強度、cTHG強度ともに温度の上昇とともに急激に低下し、室温で得られる信号強度に比べてほぼ1桁低い信号強度が観測されました。一方、NV中心を導入する前の純粋なダイヤモンド結晶のTHG強度は、温度の上昇とともにゆっくり減少することが分かりました。ダイヤモンド結晶では、屈折率の温度変化による位相不整合により、格子温度の上昇に伴ってSHG強度が減少したと考えられます(図3)。このように、NV含有ダイヤモンドのSHGから得られる温度センサーとしての感度(dI/dT=0.81%/℃)は、高純度ダイヤモンドのTHGから得られる温度感度(dI/dT=0.25%/℃)よりも3倍以上大きく、非線形光学効果に基づいた温度センシング技術開発への大きな可能性を示すものでした。
【今後の展開】
本研究チームは、2次の非線形光学効果である第二高調波発生や電気−光学効果を用いた量子センシング技術を深化させ、最終的にダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングの研究を進めています。NV含有ダイヤモンドにおいては、NV中心の配向をそろえることでSHGの変換効率が高まると期待されます。また、NV含有ダイヤモンドは、チップ状に加工することで、走査型プローブ顕微鏡のプローブとしての役割も果たし、さまざまな先端材料に対して有効なナノメートル分解能をもつ温度センサーを実現できる可能性を秘めています。今後は、フェムト秒(1000兆分の1)パルスレーザー技術が持つ高い時間分解能と、走査型プローブ顕微鏡注7)が持つ高い空間分解能とを組み合わせ、ダイヤモンドのNV中心から引き出したSHGなどの2次の非線形光学効果が、電場や温度のセンシングに幅広く応用できることを示していきます。
【参考図】

| 図1.本研究に用いた実験装置の概略 挿入図は、ダイヤモンド結晶中の窒素―空孔(NV)中心の原子構造を示している。 |

図2.実験結果
第二高調波発生(SHG)とカスケード型第三高調波発生(cTHG)スペクトルの結晶温度依存性。五つの値:20℃(室温)、90℃、160℃、200℃、240℃に、黒、濃い赤、オレンジ、緑、紫の線が対応する。

| 図3.ダイヤモンド結晶における位相整合 NVダイヤモンド結晶における温度、屈折率(赤線)、およびSHG強度の関係を示す。 |
【用語解説】
注1)量子センサー
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測するセンサーのこと。
注2)窒素−空孔(NV)中心
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」は、ダイヤモンドの着色にも寄与する色中心(カラーセンター)と呼ばれる格子欠陥となる。NV中心には、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
注3)空間反転対称性
三次元空間の直交座標系(x, y, z)において、結晶中の全ての原子を(x, y, z) → (-x, -y, -z)と反転操作しても元の結晶と完全に一致すること。
注4)第二高調波発生
同じ周波数(波長)を持つ二つの光子が非線形光学結晶に入射すると、入射した光子の2倍の周波数(半分の波長)の光が発生する現象のこと。2次の非線形光学効果(電場振幅の二乗に比例する効果)の一種である。同様に、第三高調波発生は三つの光子から入射した光子の3倍の周波数の光が発生する3次の非線形光学効果である。
注5)超短パルスレーザー
パルスレーザーの中でも、特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注6)位相整合
基本波レーザー光とそれから発生する第二高調波(或いは第三高調波)の位相速度が一致することである。位相整合を満たす方法として、複屈折性を有する結晶の角度を回転させることで二つの異なる波長に対する屈折率を位相整合条件に一致させることができる。位相不整合が起こると第二高調波の強度が減少することが知られている。
注7)走査型プローブ顕微鏡
小さいプローブ(探針)を試料表面に近接させ、探針を表面に沿って動かす(走査する)ことで、試料の原子レベルの表面構造のみならず、温度や磁性などの物理量も画像化できる顕微鏡である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング」(グラント番号:JPMJCR1875)(研究代表者:長谷 宗明)による支援を受けて実施されました。
【参考文献】
a) Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase, 2021, Second-harmonic generation in bulk diamond based on inversion symmetry breaking by color centers. ACS Photonics 8, 988-993 (doi:1021/acsphotonics.0c01806).
【掲載論文】
| 題 目 | Temperature-dependent second-harmonic generation from color centers in diamond. (ダイヤモンドの色中心からの温度依存的な第二高調波発生) |
| 著者名 | Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase |
| 掲載誌 | Optics Letters |
| 掲載日 | 2022年3月1日(著者版先行公開) |
| DOI | 10.1364/OL.455437 |
令和4年3月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/03/09-1.htmlリチウムイオン2次電池に高容量化と耐久性を容易にもたらす新型負極活物質(β-シリコンカーバイド系複合材料)の開発
リチウムイオン2次電池に高容量化と耐久性を容易にもたらす
新型負極活物質(β-シリコンカーバイド系複合材料)の開発
ポイント
- リチウムイオン2次電池の高容量化のためシリコン系負極が注目されているが、シリコン粒子の大きな体積膨張・収縮等の問題によって、安定した充放電が困難となっている。
- リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている閃亜鉛鉱型構造を有するβ-シリコンカーバイド/窒素ドープカーボン複合材料の簡易合成法を開発し、リチウムイオン2次電池用負極活物質として検証した。
- 合成した活物質を用いたアノード型ハーフセルでは1195mAhg-1の放電容量を300サイクルまで示し、本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても、高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
- 高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)、先端科学技術研究科 物質化学領域の松見 紀佳教授、バダム ラージャシェーカル講師、並びに東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程)のグループは、リチウムイオン2次電池*1の安定な高容量充放電を可能にする新規負極活物質の開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、近年、従来型負極であるグラファイトよりも大幅に大きな理論容量を示すシリコン系負極が多大な関心を集めている。一方で、シリコン粒子は充放電時の体積膨張・収縮が極めて大きく、充放電の際の粒子の破断や界面被膜の破壊、集電体からの剥離などの多様な問題により、一般に高容量を安定に発現することが非常に困難となっている。このような状況を改善するために、特殊なバインダー材料の開発などのアプローチが本研究グループも含め国内外において検討されてきた。
【研究の内容】
本研究においては、シリコン粒子に代わり、極めて安定な充放電サイクルを汎用のバインダー材料使用時においても示すシリコンカーバイド系活物質を開発した。ダイヤモンド型構造を有するシリコンにおいては、リチウム脱挿入に伴う大幅な体積膨張・収縮は避けがたいものであるが、閃亜鉛鉱型構造の無機化合物においては、リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている。その挙動にヒントを得つつ、閃亜鉛鉱型構造を有するβ-シリコンカーバイドと窒素ドープカーボン*2との複合材料を合成し、新規リチウムイオン2次電池用負極活物質として検証した。
合成法としては、(3-アミノプロポキシ)トリエトキシシランに水溶液中でアスコルビン酸ナトリウムを加え、シリコンナノ粒子分散水溶液を作製した。その後pH8.5においてドーパミンを、引き続いてメラミンを加えてから遠心分離、乾燥し、600oCもしくは1050oCの二通りの条件で焼成した(図1)。
得られた材料について、HRTEM、HAADF-STEM、XPS、XRD、Raman分光法等により構造を確認した(図2)。HRTEMからは、炭素系マトリックスにβ-シリコンカーバイドの結晶が埋め込まれている様子が観測された。HAADF-STEM HRTEMからは、β-シリコンカーバイドの(111)面に相当する0.25 nmの面間距離が観測され、マトリックス内に指紋状に分布する様子が観測された(図2(c))。
次に、合成した活物質を用いて負極を構築し、アノード型ハーフセル*3(Li/電解液/β-SiC)を作製し各種電気化学的評価を行った。サイクリックボルタモグラム*4においては、シャープなリチウムインターカレーションのピークに加えて、シリコン負極の場合と形状は異なるものの0.58 Vのブロードなリチウム脱インターカレーションのピークを共に示した。
また、充放電挙動においては、1050oCの焼成処理により合成した活物質(MAD1050)を用いた系では1195 mAhg-1の放電容量を300サイクルまで示した(図3(b))。本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に2月16日(英国時間)に掲載された。
なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | Journal of Materials Chemistry A |
| 題目 | Zinc blende inspired rational design of β-SiC based resilient anode material for lithium-ion batteries |
| 著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年2月16日(英国時間) |
| DOI | 10.1039/D1TA08516F |


|
図2.(a,b)合成した活物質(MAD1050)のTEM像
(a)β-SiC粒子のHRTEM像、(c)β-SiC粒子のHAADF-STEM像 (d,e)赤色ボックス部位のFT/IFT、(f)面間距離プロファイル (g,h)黄色ボックス部位のFT/IFT、(i,j)緑色ボックス部位のFT/IFT |

|
図3.合成した各負極活物質を用いたアノード型ハーフセルの充放電特性(a/b/d)
及び比較データ(c;シリコン負極) |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*3 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/18-1.htmlレッドビート由来のベタレイン色素がアミロイドβペプチドの凝集を阻害することを発見
![]() |
石川県公立大学法人 石川県立大学 国立大学法人 北陸先端科学技術大学院大学 |
レッドビート由来のベタレイン色素が
アミロイドβペプチドの凝集を阻害することを発見
| レッドビート由来のベタレイン色素が、アルツハイマー病の原因の一つとされているアミロイドβペプチドの凝集を阻害する効果を様々な分析法を用いて明らかにしました。さらに、アルツハイマー病のモデル線虫を用いた実験においても、その効果を確認することができました。 |
【概要】
石川県立大学の研究グループ(森正之准教授、今村智弘講師、東村泰希准教授、古賀博則客員教授、松本健司教授、高木宏樹准教授)は、北陸先端科学技術大学院大学 生命機能工学領域 大木進野教授と共同で、植物色素ベタレインの一つであるベタニンがアミロイドβペプチドの凝集を抑制する働きを持つことを発見しました。本研究成果は、学術誌「Plant Foods for Human Nutrition」で公表されました。
ベタレイン色素は、植物色素の一つでありオシロイバナやサボテン、雑穀のキヌアなどのナデシコ目植物で主に合成されています。ベタレイン色素は高い抗酸化活性によって、抗がん作用、抗炎症作用、コレステロール(LDL)酸化抑制作用などを持つことが示されており、本研究グループもHIV-1プロテアーゼの阻害活性を持つことを見出しています(参考文献)。このようにベタレイン色素は、多様な生理活性を持つことから、近年その効能に注目が集まっています。
本研究で扱ったレッドビートは、ヒユ科植物であり、ロシアなどで郷土料理「ボルシチ」に用いられています。レッドビートは、根の部分にベタレイン色素(主にベタニン、イソベタニン)を多く蓄積しており(図1)、別名「食べる輸血」と呼ばれ様々な生理機能を持つスーパーフードとして注目されています。
近年、高齢者の増加に伴ってアルツハイマー病による認知症患者数が増加し、罹患者のみならず介護者への肉体的・精神的負担が社会問題となっています。アルツハイマー病の原因の一つとして、アミロイドβ(Aβ)ペプチドが凝集し、脳内に沈着・蓄積することが考えられます。アルツハイマー病に関しては、決定的な治療薬が確立していないため、若い時期から、Aβの蓄積を予防することと、Aβの凝集を阻害することが重要です。
本研究では、レッドビートから抽出・精製したベタレイン色素について、Aβの凝集阻害効果の有無をThTアッセイ、電子顕微鏡、円二色性分光計や核磁気共鳴装置を用いた立体構造解析を用いて評価しました。その結果、レッドビート由来のベタレイン色素はAβの凝集を阻害する活性を持つことを明らかにしました(図2)。さらに、Aβ遺伝子を発現するアルツハイマー病モデル線虫にレッドビート由来のベタレイン色素を与え、線虫の形質出現を遅延させる事を見出しました(図3)。これらの結果より、レッドビート由来のベタレイン色素がAβの凝集を阻害することで、生物のアルツハイマー病態を緩和する機能を有する可能性を見出すことができました。今後の更なる研究により、アルツハイマー病の予防への活用が期待されます。本成果は国際特許(PCT)出願中です。また、分析機器の使用に関して、文部科学省のナノテクノロジープラットフォーム事業の支援を受けました。
【発表論文】
| 論文タイトル | Red-beet betalain pigments inhibit amyloid-β aggregation and toxicity in amyloid-β expressing Caenorhabditis elegans |
| 論文著者 | Tomohiro Imamura, Noriyoshi Isozumi, Yasuki Higashimura, Hironori Koga, Tenta Segawa, Natsumi Desaka, Hiroki Takagi, Kenji Matsumoto, Shinya Ohki, and Masashi Mori |
| 雑誌 | Plant Foods for Human Nutrition |
| DOI | 10.1007/s11130-022-00951-w |
【参考文献】
| 論文タイトル | Isolation of amaranthin synthetase from Chenopodium quinoa and construction of an amaranthin production system using suspension-cultured tobacco BY-2 cells |
| 論文著者 | Tomohiro Imamura, Noriyoshi Isozumi, Yasuki Higashimura, Akio Miyazato, Hiroharu Mizukoshi, Shinya Ohki, and Masashi Mori |
| 雑誌 | Plant Biotechnology Journal |
| DOI | 10.1111/pbi.13032 |

図1 レッドビート(テーブルビート)と、それに含まれるベタレイン色素

図2 レッドビート由来ベタレイン色素のアミロイドβ (Aβ)凝集阻害効果
レッドビート由来のベタレイン色素を加えたものはAβ凝集が観察されない。
(A)透過型電子顕微鏡を用いたAβの観察。スケールバー200 nm。
(B, C)NMRを用いたAβの測定。Aβ単独のNMRシグナル(B)。レッドビート由来のベタレイン色素を加えたAβのNMRシグナル(C)。Day 0のNMRシグナルが凝集していないAβ40のNMRシグナル。

図3 Aβ発現線虫の麻痺形質を利用した評価試験
50 µMレッドビート由来ベタレイン色素の処理は、アルツハイマー病モデル線虫の麻痺形質の発現を遅らせる。
(A)時間経過と共に麻痺形質を示さないAβ発現線虫の割合。
(B)未処理区で観察された麻痺形質を示す線虫。
(C)50 µMベタレイン色素処理区で観察された健常な形質を示す線虫。
【用語説明】
ベタレイン色素: カロテノイド、フラボノイドと共に植物の代表的な色素の1つ。ベタレイン色素は、紫から赤色を示すベタシアニンと黄色から橙色を示すベタキサンチンに分類される。特徴として、分子内にカロテノイド、フラボノイドには見られない窒素原子を持つ。基本骨格としてベタラミン酸を有する。
アルツハイマー病: 記憶、思考、行動に問題を起こす脳の病気。認知症の症例において、アルツハイマー病は、その60-80%を占めるとされている。
アミロイドβ (Aβ): 脳内で作られるたんぱく質から生じるペプチド。アルツハイマー病患者の脳に観察される老人斑の構成成分であり、Aβが重合・凝集することがアルツハイマー病の原因の一つと考えられている。Aβの長さは40アミノ酸残基程度であり代表的なものとして、40アミノ酸残基のAβ40と42アミノ酸残基のAβ42が知られている。
ThTアッセイ: アミロイド線維に特異的に結合し蛍光を発する試薬チオフラビンT(Thioflavin T, ThT)を用いて、アミロイドβペプチドの重合を測定する方法。
円二色性: 試料(光学活性物質)に右回りおよび左回りの円偏光を照射し、その吸収の差を測定して立体構造を解析する手法。
核磁気共鳴(NMR)装置: 強力な磁場中に置いた試料に電磁波を照射して応答信号を得る装置。信号を解析することで、試料の構造や運動性を知ることができる。
令和4年2月15日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/15-1.htmlダイヤモンド量子イメージングプローブの新規作製法を開発 -ナノ量子イメージングに道-
ダイヤモンド量子イメージングプローブの新規作製法を開発
-ナノ量子イメージングに道-
ポイント
- レーザー加工と集束イオンビーム加工を用いた走査ダイヤモンド量子イメージングプローブの作製法の開発に成功
- 高性能化へ向けた加工自由度の高いナノ量子センシング・イメージングプローブ作製法として期待
| 北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 応用物理学領域の貝沼 雄太大学院生(博士後期課程)、安 東秀准教授らは、京都大学、産業技術総合研究所と共同で、レーザー加工と集束イオンビーム加工注1)によりダイヤモンド中の窒素-空孔複合体中心(NV中心(図1[右]))注2)と呼ばれる極小な量子センサーをプローブ先端に含有するナノ量子イメージングプローブ(図1[左])の新規作製法の開発に成功しました。 |
【背景と経緯】
近年、新しいデバイスやセンサーの創出による環境・エネルギー問題の解決、安心安全な社会の実現、これらによる人類社会の持続的繁栄への貢献が求められています。この中で量子計測・センシング技術は、量子力学を原理とした従来とは異なる革新的な技術を提供する分野であり、将来の社会基盤を支えるしくみを一新すると期待されています(量子技術イノベーション)。その中でも、ダイヤモンド中の欠陥構造であるNV中心を用いた量子計測技術は、室温・大気中で動作可能なこと、センサーサイズがナノスケールであることより注目を集めており、特に、NV中心を走査プローブとして用いた際にはナノスケールの量子イメージングの実現が期待されています。
従来、走査NV中心プローブの作製にはフォトリソグラフィーと電子線リソグラフィーを用いたリソグラフィー法が用いられていましたが、この方法ではプロセスが複雑であること、再加工ができないという課題がありました。今回の研究では、レーザー加工と集束イオンビーム加工(FIB)による加工自由度の高い走査NV中心プローブの作製法を開発し、さらに磁気イメージングの動作を実証しました。
【研究の内容】
図2に示すように、まず、表面下約40ナノメートルにNV中心を有するダイヤモンド結晶の板を、レーザー加工によりロッド状の小片に加工した上で、水晶振動子型の原子間力顕微鏡の先端に取り付けました。続いて、FIB加工においてドーナツ型の加工形状を用いることで、当該小片の中心位置に存在するNV中心の加工ダメージを回避して走査ダイヤモンドNV中心プローブを作製しました。このNV中心プローブを走査しながら磁気テープ上に記録された磁気構造からの漏洩磁場を光学的磁気共鳴検出法(ODMR)注3)により計測し、磁気構造のイメージングに成功しました(図3)。
本研究成果は、2021年12月28日(米国東部標準時間)に米国物理学協会の学術誌「Journal of Applied Physics」のオンライン版に掲載されました。
【今後の展開】
本研究では、レーザー加工とFIB加工による加工自由度の高い走査NV中心プローブの作製法の開発に成功しました。今後、プローブの形状や表面状態を最適化することで、より高性能な走査ダイヤモンドNV中心プローブを作製し量子イメージング分野に貢献することが期待されます。

図1 ダイヤモンド中の窒素(N)-空孔(V)複合体中心(NV中心)[右]と、
走査ダイヤモンドNV中心プローブ[左]

図2 レーザー加工とFIB加工による走査ダイヤモンドNV中心プローブの作製

図3 走査ダイヤモンドNV中心プローブによる磁気テープの磁気構造イメージング
【論文情報】
| 掲載誌 | Journal of Applied Physics |
| 論文題目 | Scanning diamond NV center magnetometor probe fabricated by laser cutting and focused ion beam milling |
| 著者 | Yuta Kainuma, Kunitaka Hayashi, Chiyaka Tachioka, Mayumi Ito, Toshiharu Makino, Norikazu Mizuochi, and Toshu An |
| 掲載日 | 2021年12月28日(米国東部標準時間) |
| DOI | 10.1063/5.0072973 |
【研究助成費】
本研究の一部は、次の事業の支援を受けて実施されました。
・科学技術振興機構(JST)戦略的創造研究推進事業CREST (JPMJCR1875)、
次世代研究者挑戦的研究プログラム(未来創造イノベーション研究者支援プログラム)(JPMJSP2102)
・澁谷学術文化スポーツ振興財団
・日本学術振興会(JSPS)科研費 基盤研究(C) (21K04878)
・文部科学省 光・量子飛躍フラッグシッププログラム(Q-LEAP, JPMXS0118067395)
【用語解説】
注1)集束イオンビーム加工(Focused Ion Beam, FIB)
イオンビームにより材料をナノスケールで加工する加工法。本研究では、ガリウム(Ga)イオンを用いてダイヤモンド片をプローブ形状に加工した。
注2)NV中心
ダイヤモンド中の窒素(N)不純物と空孔(V)が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定的にスピン量子状態が存在する。
注3)光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
令和4年1月5日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/01/05-1.htmlナノ粒子と近赤外レーザー光でマウス体内のがんを検出・治療できる! ~ ガンマ線架橋したゼラチン-液体金属ナノ粒子の開発により実現 ~
![]() |
国立大学法人北陸先端科学技術大学院大学 国立研究開発法人量子科学技術研究開発機構 |
ナノ粒子と近赤外レーザー光でマウス体内のがんを検出・治療できる!
~ ガンマ線架橋したゼラチン-液体金属ナノ粒子の開発により実現 ~
ポイント
- 液体金属に生体分子を吸着させた複合体へのガンマ線照射によりコア-シェル型の構造を持つナノ粒子の作製に成功
- ガンマ線架橋したゼラチン-液体金属ナノ粒子がEPR効果により腫瘍に集積し、マウスに移植したがんの可視化と、光熱変換によるがん治療が可能であることを実証
- 当該ナノ粒子と近赤外光を組み合わせた新たながん診断・治療技術の創出に期待
| 北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 物質化学領域の都 英次郎准教授とセキ ウン大学院生(博士前期課程)は、量子科学技術研究開発機構(理事長・平野 俊夫、千葉県千葉市)、高崎量子応用研究所 先端機能材料研究部(群馬県高崎市)の田口 光正上席研究員(「生体適合性材料研究プロジェクト」プロジェクトリーダー)、木村 敦上席研究員と共同で、量子ビーム(ガンマ線*1)架橋技術を用いて、ガリウム-インジウム合金から成る液体金属*2 表面に様々な生体高分子(ゼラチン、DNA、レシチン、牛血清蛋白質)がコートされ、安定な状態を保つことができるコア-シェル型*3 のユニークな構造を有すナノ粒子の作製に成功した(図1)。得られたゼラチン-液体金属ナノ粒子は、EPR効果*4 によって大腸がんを移植したマウス体内の腫瘍内に集積し、生体透過性の高い近赤外レーザー光*5 により、がん患部の可視化と光熱変換による治療が可能であることを実証した。さらに、マウスがん細胞とヒト正常細胞を用いた細胞毒性試験と生体適合性試験を行い、いずれの検査からもゼラチン-液体金属ナノ粒子が生体に与える影響は極めて少ないことがわかった。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待される。 |
【研究背景と内容】
ガリウム・インジウム(Ga/In)合金からなる室温で液体の金属(液体金属)は、高い生体適合性と優れた物理化学的特性を有することが知られており、とりわけナノ粒子化した液体金属をバイオメディカル分野に応用する研究に大きな注目が集まっている。研究チームでも、液体金属をがん患部に送り込むことができれば、生体透過性の高い近赤外レーザー光を用いることで、患部の可視化や光熱変換を利用した、新たながんの診断や治療が実現できるのではないかと考え、研究をスタートさせた。
液体金属をナノ粒子化するためには煩雑な合成プロセスが必要であり、ナノ粒子化した液体金属の構造や機能を溶媒中で安定的に保持させることは難しい。そこで、研究チームは、液体金属をがん患部まで送り、がん細胞内に取り込ませるために、液体金属表面に生体高分子(ゼラチン、DNA、レシチン、牛血清蛋白質)を吸着させたコア-シェル型ナノ粒子の作製を試みた。Ga/In液体金属と生体分子の混合物に超音波照射することで、コア-シェル型ナノ粒子を形成できることを見出したが、そのままではナノ粒子の構造を水中で安定的に維持させることはできなかった。
この問題を解決するために、ナノ粒子表面の生体高分子がバラバラにならないよう、量子ビーム(ガンマ線)架橋反応を利用すれば、架橋剤などの細胞毒性を有する薬剤を用いることなく、生体高分子の特性を保持したまま安定化できると考えた。この方法でガンマ線架橋したゼラチン-液体金属ナノ粒子は、30日以上の粒径安定性を有していること、細胞に対し高い膜浸透性を有し毒性が無いこと、近赤外レーザー光照射により発熱が起こることが確認できたため、がん患部の可視化と治療効果について試験を行った。
大腸がんを移植して10日後のマウスに、ゼラチン-液体金属ナノ粒子を投与し、4時間後に740~790 nmの近赤外光を当てたところがん患部だけが蛍光を発している画像が得られ、当該ナノ粒子がEPR効果によりがん組織に取り込まれていることが分かった(図2(左))。そこで、当該ナノ粒子が集積した患部に対して808 nmの近赤外レーザー光を照射したところ、光熱変換による効果で26日後には、がんを完全に消失させることに成功した(図2(右))。
さらに、ゼラチン-液体金属ナノ粒子の細胞毒性と生体適合性を評価した。2種類の細胞[マウス大腸がん由来細胞(Colon-26)、ヒト胎児肺由来正常線維芽細胞(MRC5)]を培養する培養液中に、ゼラチン-液体金属ナノ粒子を、添加量を変えて投与・分散させ、24時間後に細胞内小器官であるミトコンドリアの活性を指標として細胞生存率を測定した結果、細胞生存率の低下は見られず、細胞毒性はなかった(図3)。また、ゼラチン-液体金属ナノ粒子をマウスの静脈から投与し、生体適合性を血液検査(1週間調査)と体重測定(約1ヵ月調査)により評価したが、いずれの項目でもゼラチン-液体金属ナノ粒子が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発した生体高分子のナノ粒子コーティング技術が、革新的がん診断・治療法の基礎に成り得ることを示すだけでなく、ナノテクノロジー、光学、量子ビーム工学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、2021年12月20日に先端材料分野のトップジャーナル「Applied Materials Today」誌(Elsevier発行)のオンライン版に掲載された。なお、本研究は、日本学術振興会科研費(基盤研究A)及び総合科学技術・イノベーション会議 官民研究開発投資拡大プログラム(Public/Private R&D Investment Strategic Expansion PrograM:PRISM)の支援のもと行われたものである。

図1. ガンマ線を利用した生体分子-液体金属ナノ複合体の合成と当該ナノ粒子を活用した光がん療法の概念。
LM: 液体金属、NIR: 近赤外、FL: 蛍光。

図2. ナノ粒子をがん患部に集積・可視化(左)し、光照射によりがんを治療(右)。

図3. CCK-8法によるゼラチン-液体金属ナノ粒子の細胞毒性評価。
赤:マウスの大腸がん細胞、グレー:ヒトの正常細胞、
RIPA: Radioimmunoprecipitation Buffer(細胞や組織の溶解に
使用される緩衝液、本実験の陽性対照に利用)
【論文情報】
| 掲載誌 | Applied Materials Today |
| 論文題目 | Sonication- and γ-ray-mediated biomolecule-liquid metal nanoparticlization in cancer optotheranostics |
| 著者 | Qi Yun, Atsushi Kimura, Mitsumasa Taguchi, Eijiro Miyako* |
| 掲載日 | 2021年12月20日にオンライン版に掲載 |
| DOI | 10.1016/j.apmt.2021.101302 |
【関連研究情報】
北陸先端科学技術大学院大学(JAIST)、先端科学技術研究科物質化学領域の都研究室では、近赤外レーザー光により容易に発熱するナノ材料の特性(光発熱特性)に注目し、これまでに、"三種の神器"を備えた多機能性グラフェン(2020年4月23日 JAISTからプレス発表)、ナノテクノロジーと遺伝子工学のマリアージュ(2020年8月17日 JAISTからプレス発表)、がん光細菌療法の新生(2021年2月16日JAISTからプレス発表)などの光がん療法を開発している。
量子科学技術研究開発機構(QST)、先端機能材料研究部プロジェクト「生体適合性材料研究」では、量子ビーム微細加工技術による先端医療デバイスの創製の一環として、これまでに、診断や創薬における微量検体の分析性能が数10倍に!(2019年6月25日 QSTからプレス発表)、平面状の細胞シートが立体的に!細胞が自分の力でシートを3次元化(2021年7月14日QSTからプレス発表)などの機能性材料作製技術を開発している。
【用語説明】
*1 ガンマ線
ガンマ線とは、放射性同位元素(コバルト60など)の崩解によって放出される量子ビームの一種。
*2 液体金属
室温以下あるいは室温付近で液体状態を示す金属のこと。例えば、水銀(融点マイナス約39℃)、ガリウム(融点約30℃)、ガリウム-インジウム合金(融点約15℃)がある。
*3 コア-シェル型
コアは核、シェルは殻を意味し、一つの粒子で核と殻の素材が異なるものをこのように呼ぶ。
*4 EPR効果
100nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみがん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
*5 近赤外レーザー光
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
令和3年12月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/12/21-1.htmlリチウムイオン2次電池の急速充放電を実現する負極活物質を開発 ~バイオベースポリマー由来高濃度窒素ドープカーボン~
リチウムイオン2次電池の急速充放電を実現する負極活物質を開発
~バイオベースポリマー由来高濃度窒素ドープカーボン~
ポイント
- リチウムイオン2次電池の急速充放電技術の価値が国際的に高まっており、これに適した材料の開発が期待されている。
- 耐熱性バイオベースポリマーであるポリベンズイミダゾールを焼成することにより、高濃度窒素ドープカーボンを得ることに成功した。
- 得られた窒素ドープカーボンを負極活物質としてアノード型ハーフセルを構築し充放電試験を行ったところ、本活物質は急速充放電に対してグラファイトとの比較において大幅に優れた適性を示した。
- 急速充放電に適した電極材料として、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用展開が期待される。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 松見 紀佳教授(物質化学領域)、金子 達雄教授(環境・エネルギー領域)、バダム ラージャシェーカル講師(物質化学領域)、東嶺孝一技術専門員、Yueying Peng元研究員、Kottisa Sumala Patnaik(博士前期課程2年)は、リチウムイオン2次電池*1の急速充放電を可能にする新たな負極活物質の開発に成功した。 |
【研究背景と内容】
今日、次世代リチウムイオン2次電池開発においては、高容量化、高電圧化、難燃化など多様な開発の方向性が展開されている。なかでも最も重要性を増しているものとして、急速充放電の実現が挙げられる。現状、ガソリン車にガソリンスタンドで給油するためには数分を要するのみであるため、電気自動車(EV)が要する長い充電時間は、消費者の購買意欲を低減させている主要因の一つと考えられる。そのような状況にもかかわらず、多くの国々は将来的なガソリン車の生産中止の意向を決定しており、今後、急速充電に対応する関連技術の国際的な価値は極めて高いものとなっていくことが予想される。これらの背景のもと、米国エネルギー省(DOE:Department of Energy)においても超高速充電(XFC:extreme fast charging)の目標として15分以内での充電の実現を掲げてきた。
アノード(負極)側の活物質において、充放電速度の向上に適用可能な設計戦略としては、炭素系材料における層間距離の拡張によりイオンの拡散速度を上昇させることに加え、窒素などのヘテロ元素ドープが潜在的に有効な手法として検討されてきた。しかし、層間距離やヘテロ元素濃度を自在に制御する手法は確立されていない。
そのような背景のもと、本研究グループでは、含窒素型芳香環密度が高く高耐熱性を有するバイオベースポリマー*2のポリベンズイミダゾールを前駆体とすることにより、焼成後に高濃度窒素ドープハードカーボン*3を得た(図1)。バイオベースポリマーを前駆体とすることにより、低炭素化技術としての相乗的効果が期待される。得られた材料は17 wt%という高濃度の窒素を有していた。低分子前駆体の場合には焼成過程で多量の含ヘテロ元素成分が揮発してしまうが、高耐熱性高分子を前駆体とすることで大幅に窒素導入率を向上させることができた。
また、ポリベンズイミダゾールを800℃で焼成して得られた窒素ドープカーボンに関してXRD測定で層間距離(dスペーシング)を観測すると3.5Åであり、通常のグラファイトの3.3Åと比較して顕著に拡張した(図2A)。一般に、広いdスペーシングは系内のリチウムの拡散を促し、リチウム脱挿入の速度を向上させる。ラマンスペクトルはId/Ig比が0.98と極めて高く、(通常のグラファイトでは0.18)、効果的な欠陥の導入によりイオン拡散において好影響を有することが期待された(図2B)。また、XPSスペクトル(N1s)においては、窒素がグラファイティック窒素、ピロリジニック構造、ピリジニック構造等としてそれぞれ導入されている様子を観測した(図2C)。
得られた窒素ドープカーボンを負極活物質としてアノード型ハーフセル*4を構築し充放電試験を行ったところ、本活物質は急速充放電に対して優れた適性を示した。同様の充放電条件においてグラファイトと比較して大幅に優れた放電容量を示した(図3)。また、13分充電条件(0.74 Ag-1)においては1,000サイクル後に153 mAhg-1 (容量維持率89%)を示し、1.5分充電条件(7.4 Ag-1)においては1,000サイクル後に86 mAg-1 (容量維持率90%)を示すなど、良好な耐久性を示した。さらにフルセルにおいても好ましい充放電挙動を示した。
なお、本研究は、戦略的イノベーション創出プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
本成果は、Chemical Communications (英国王立化学会)オンライン版に11月25日(英国時間)に掲載された。
【今後の展開】
前駆体である高分子材料においては様々な構造の改変が可能であるほか、焼成条件の相違においても様々な異なる高濃度窒素ドープハードカーボンの化合物が得られ、さらなる高性能化につながると期待できる。
前駆体高分子には様々な有機合成化学的アプローチを適用可能であり、本研究が示すアプローチにより、急速充放電能を示す負極活物質材料における構造―特性相関の研究の進展が期待できる。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開を期待したい。


図2. (A) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)とグラファイトのXRDパターンの比較、(B) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)とグラファイトのラマンスペクトルの比較、(C) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)のXPS N1s スペクトル

図3. (A) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)及びグラファイトを用いて作製した負極型ハーフセルの充放電レート特性、(B) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)及びグラファイトを用いて作製した負極型ハーフセルの長期サイクル特性、(C) 各レートにおける(0.37, 0.74, 3.72, 7.44, 11.16, 18.60 Ag-1 )800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)を負極活物質としたハーフセルの長期サイクル特性
【論文情報】
| 雑誌名 | Chemical Communications |
| 題目 | Extremely Fast Charging Lithium-ion Battery Using Bio-Based Polymer-Derived Heavily Nitrogen Doped Carbon |
| 著者 | Kottisa Sumala Patnaik, Rajashekar Badam, Yueying Peng, Koichi Higashimine, Tatsuo Kaneko and Noriyoshi Matsumi* |
| 掲載日 | 2021年11月25日(英国時間)にオンライン版に掲載 |
| DOI | 10.1039/d1cc04931c |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 バイオベースポリマー:
生物資源由来の原料から合成される高分子材料の総称。低炭素化技術として、その利用の拡充が期待されている。
*3 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*4 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和3年12月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/12/09-1.html





