研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。最先端ナノ材料グラフェンを用いた電界センサ素子で、雷雲が生み出す電界の検出に成功 -襲雷予測に向けた「広域雷雲監視ネットワーク」実現に期待-

![]() ![]() ![]() |
北陸先端科学技術大学院大学 音羽電機工業株式会社 東京工業大学 |
最先端ナノ材料グラフェンを用いた電界センサ素子で、雷雲が生み出す電界の検出に成功
- 襲雷予測に向けた「広域雷雲監視ネットワーク」実現に期待 -
北陸先端科学技術大学院大学 先端科学技術研究科/環境・エネルギー領域のアフサル カリクンナン研究員、マノハラン ムルガナタン講師、水田 博教授の研究チームは、音羽電機工業株式会社、東京工業大学と共同で、グラフェン(炭素原子シート)を用いた超小型電界センサ素子を開発し、雷雲が生み出す大気電界(最小検出電界~67V/m)を、センサにグラフェンを使用して検出することに世界で初めて成功しました。
本研究成果に関し、11月26日に、北陸先端科学技術大学院大学において記者発表を行いました。
<記者発表出席者>
・北陸先端科学技術大学院大学 先端科学技術研究科/環境・エネルギー領域
水田 博 教授
マノハラン ムルガナタン 講師
アフサル カリクンナン 研究員
・音羽電機工業株式会社 技術本部
圓山 武志 取締役 本部長
工藤 剛史 部長
・東京工業大学 地球インクルーシブセンシング研究機構
堀 敦 URA(リサーチ・アドミニストレーター)
<ポイント>
- 超小型グラフェン電界センサで、雷雲が生み出す大気電界の検出に世界で初めて成功。
- 雷雲内の電荷の分布を反映した大気電界のプラス・マイナス極性判定にも成功。
複雑な雷現象のメカニズム解明と襲雷予測の精度向上に期待。 - 既存技術に比べて大幅な小型化と低消費電力化を実現。
<研究背景と内容>
雷の事故による世界の死者数は年間6千~2万4千人と推定され、日本では毎年数名が亡くなっています。また、雷サージ(雷による異常電圧・電流)は情報システムや生産ラインなどに甚大な影響を与えます。こうした被害を軽減するには、早期に襲雷/避難情報を提供する予測システムを開発し、人々に行動変容を促す必要があります。高精度な襲雷予測には広域かつ高密度な雷雲監視ネットワーク作りが重要ですが、そのためには電界センサの小型化と省電力化が大きな課題となっています。
これに対して研究チームは、ナノ炭素材料のグラフェン(炭素原子が蜂の巣状の六角形結晶格子構造に配列した単原子シート)膜を検出用チャネルとした微細センサ素子を開発しました(図1参照)。このグラフェン電界センサを用いて、雷雲が生み出す大気電界の時間変化を電気的に検出することに世界で初めて成功しました。最小検出電界は約67V/mで、これは晴天時の地表付近における大気電界レベルです。さらにこの電界センサでは、大気電界の極性の判別も可能です(図2参照)。これにより、雷雲内部の電荷分布の推定が容易になり、複雑な雷現象のメカニズム解明に大きく寄与するものと予想されます。
このグラフェンセンサをモジュール化して、屋外で雷雨時に動作試験を行ったところ(図3参照)、20km以上離れた地点での落雷を電界ピーク信号として検出することに成功しました。信号検出のタイミングは、既存のフィールドミル型電界検出装置(重量~1kg, 要外部電源)と精度よく一致しています。今回の電界センサは、従来のフィールドミル装置と比べて、電界検出部の寸法で約2万分の1の小型化(ミルの直径:170mm ⇒ グラフェンチャネル寸法:10mm)と、低消費電力化(太陽電池駆動)を実現しています。さらに、測定された電界の時間発展データを特異スペクトル変換法で解析することで、5km圏内の落雷を32分前に予測できることも見出しています。これらの新技術を統合すれば、既存技術では困難だった多数のセンサ素子を広域に配置した落雷検出ネットワークの構築が容易となり、高精度な襲雷予測の実現に向けた大きな前進が期待できます。
本成果は、第82回応用物理学会秋季学術講演会で発表されました。
・題名:Enhancing Electric Field Sensitivity in Graphene Devices by hBN Encapsulation(11a-N306-9)
・題名:雷予測精度向上のための特異スペクトル変換法を用いた電界波形解析(9p-Z22-10)
本成果は、科学技術振興機構(JST)による以下の研究助成によって得られました。
・事業名:センター・オブ・イノベーション(COI)プログラム
研究課題名:「『サイレントボイスとの共感』地球インクルーシブセンシング研究拠点」
研究代表者:サテライト拠点代表 水田 博(北陸先端科学技術大学院大学 教授)
研究開発期間:平成29年度~令和3年度
・事業名:研究成果最適展開支援プログラム(A-STEP)トライアウト JPMJTM20DS
研究課題名:「襲雷予測システムのためのグラフェン超高感度電界センサの開発」
研究代表者:マノハラン ムルガナタン(北陸先端科学技術大学院大学 講師)
研究開発期間:令和2年度~令和3年度
図1 グラフェン雷センサイメージ図
図2 (a)開発したセンサの構造, (b)電界検出感度特性, (c)電界極性判定
図3 (a)フィールドテストの様子, (b)グラフェン電界センサの検出信号と既存のフィールドミル電界計の検出信号の比較,
(c)検出地点から10km以内での雷発生状況
令和3年11月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/11/26-1.html触媒ビッグデータから「触媒世界地図」を描写 ~ブラックボックス化していた触媒設計を紐解く~
![]() ![]() ![]() |
国立大学法人 北海道大学 国立大学法人 北陸先端科学技術大学院大学 国立研究開発法人 科学技術振興機構 |
触媒ビッグデータから「触媒世界地図」を描写
~ブラックボックス化していた触媒設計を紐解く~
ポイント
- 触媒の組成・実験条件の知識ネットワーク「触媒世界地図」を触媒ビッグデータから描写。
- 触媒世界地図を用いた触媒設計が可能となり、新たな活性触媒を発見。
- 大規模な科学データからの材料・触媒設計の技術基盤になることを期待。
【概要】
北海道大学 大学院理学研究院の髙橋 啓介准教授、髙橋 ローレン学術研究員らの研究グループは、北陸先端科学技術大学院大学 先端科学技術研究科 物質化学領域の谷池 俊明教授らと共同で、触媒ビッグデータから触媒の知識を表現した「触媒世界地図*1」を描写しました。 これまで研究グループは、多数の触媒データを高速で自動取得可能なハイスループット実験装置によりメタン酸化カップリング反応*2における触媒ビッグデータ(6万件)の構築に成功してきましたが、この規模の触媒データからどのように知識を抽出し触媒設計に結びつけるかが触媒インフォマティクス*3において大きな課題でした。 そこでメタン酸化カップリング反応におけるハイスループット実験装置により得られた触媒ビッグデータに対して、オントロジー*4(知識の関係性をネットワークとして記述)の概念を活用することにより、触媒ビックデータから元素組成・実験条件・C2収率等の関係性を描写し、触媒の世界地図を作成することに成功しました。この触媒の世界地図により各要件の関係性が明白となり、そこで得られた情報から触媒設計が実現しました。 結果、触媒の世界地図からKVEu-BaO(20%C2収率)、LiTiW-BaO(19%C2収率)、EuMgZr-BaO(19%C2収率)、MoKW-BaO(19%C2収率)等の未報告の活性触媒を設計し、実験実証することに成功しました。 本手法は触媒ビッグデータや材料ビッグデータにも適用できるため、大規模な科学データからの材料・触媒設計の技術基盤になることが期待されます。 本研究成果は、2021年9月22日(水)にChemical Science誌にてオンライン公開されました。 |
元素と収率の関係、元素と実験条件の関係等が表現された触媒世界地図
【背景】
触媒は化学反応の反応速度を速める材料であり、自動車の排気ガスの浄化からエネルギーの変換まで幅広い分野で実用化されています。これまでの触媒開発は、研究者の熟練の経験や勘で試行錯誤して開発していました。その中で、マテリアルズインフォマティクス・触媒インフォマティクスの登場により材料・触媒科学は大きな転換期を迎えています。
マテリアルズインフォマティクス・触媒インフォマティクスでは、第4の科学であるデータ科学を用い、材料・触媒データのパターンから材料・触媒設計を行います。いわば、これまでの研究者の経験や勘をデータ科学で再現することを目的としています。しかし、材料・触媒ビッグデータから知識・設計をどのように抽出するかが大きな障壁となっています。特に機械学習等のデータ科学手法では機械がどう学習したのかを説明することができず、理論的解釈による設計が難しいという問題があります。
そのため、理論に基づいた触媒設計を行う必要がありました。
【研究手法】
メタン酸化カップリング反応を対象とし、独自開発したハイスループット実験装置で得られたメタン酸化カップリング反応の触媒ビッグデータに対して、オントロジーの概念を元にデータ内の知識と関係性をネットワークとして表現しました。
【研究成果】
触媒ビックデータから触媒の世界地図を作成することに成功しました。この触媒の世界地図により元素組成・実験条件・C2収率等の関係性が明白となり、そこで得られた情報から触媒設計を行うことに成功しました。結果、触媒の世界地図からKVEu-BaO(20%C2収率)、LiTiW-BaO(19%C2収率)、EuMgZr-BaO(19%C2収率)、MoKW-BaO(19%C2収率)等の未報告の活性触媒を設計・実験実証することに成功しました。
【今後への期待】
触媒ビッグデータからどのように触媒科学の知識を取り出すかが大きな課題でしたが、オントロジーという概念を元に知識のネットワークを設計することにより、触媒ビッグデータから知識の抽出・触媒設計が可能になることを初めて提案しました。この方法は今後の触媒ビッグデータや材料ビッグデータにも適用することができるため、大規模な科学データからの知識・材料設計の技術基盤になることが期待されます。
【謝辞】
本研究は、科学技術振興機構(JST)戦略的創造研究推進事業CREST研究領域「多様な天然炭素資源の活用に資する革新的触媒と創出技術」(研究総括:上田 渉)における「実験・計算・データ科学の統合によるメタン変換触媒の探索・発見と反応機構の解明・制御」(研究代表者:髙橋 啓介)の支援を受けて行われました。
【論文情報】
論文名 | Constructing Catalyst Knowledge Networks from Catalysts Big Data in Oxidative Coupling for Methane for Designing Catalysts(メタン酸化カップリング反応ビッグデータから触媒の知識ネットワークの構築と触媒設計) |
著者名 | 髙橋 ローレン1 , Thanh Nhat Nguyen2, 中野渡 淳2、藤原 綾2、谷池 俊明2、髙橋 啓介1 (1北海道大学大学院理学研究院、2北陸先端科学技術大学院大学) |
雑誌名 | Chemical Science(英国王立化学会が発行する化学ジャーナル) |
DOI | 10.1039/D1SC04390K |
公表日 | 2021年9月22日(水)(オンライン公開) |
【用語解説】
*1 触媒世界地図...触媒ビックデータから元素組成・実験条件・C2収率等の関係性をネットワークとして描写したもの。
*2 メタン酸化カップリング反応...普遍的に存在するメタンはそのままでは化学的な有用性が低く、これを触媒によって別の有用化合物へ変換することが望ましい。メタンの酸化的カップリングとは、メタンと酸素分子の反応を通してエタンやエチレンを直接合成する高難度反応である。
*3 触媒インフォマティクス...データ科学手法を用いて触媒設計・触媒解析を行う学問。
*4 オントロジー...物事をどの様に概念化したかを記述する学問。
令和3年9月24日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/24-1.html高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功 ~高度な機器不要でPCR品質の検査を15~30分で可能に~

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 BioSeeds株式会社 |
高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功
~高度な機器不要でPCR品質の検査を15~30分で可能に~
ポイント
- 41℃でのワンポット等温RNAおよびDNA増幅反応(器具不要)
- 迅速かつ高感度(RT-PCRと同じように検出)
- シンプルで瞬時の検出(ラテラルフローストリップ)
- 非常に費用対効果が高い(テストあたりの推定コスト500円未満)
【概要】
北陸先端科学技術大学院大学(JAIST)とJAIST発のベンチャー企業であるBioSeeds(バイオシーズ)株式会社(石川県能美市)、および複数の研究機関からなる研究者チームは、唾液から直接、極めて微量のSARS-CoV-2を検出できる高度な等温核酸増幅法(RICCAテスト)を開発しました。この方法は、シンプルなワンポット(一つの容器だけを用いる)方式のRNAウイルスの等温核酸増幅検出法で、高度な機器や、特別な実験室・検査室を必要としません。そのため、検査室にサンプルを送る必要が無く、総測定時間15~30分で、その場で即時に検出結果を得られます。これまでに、唾液中の低コピー数のSARS-CoV-2の直接検出に成功しております。研究者チームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。 |
【背景・研究成果】
COVID-19の感染を食い止めるための最も効果的な方法は、症状のあるなしにかかわらず、感染の疑いのある人を特定して隔離することです。SARS-CoV-2のアルファからデルタまでの4種の懸念される変異株(VOC:variant of concern)およびイータからミューまでの5種の注目すべき変異株(VOI:variant of interest)が数カ月のうちに世界中に広まったように、新しい感染性ウイルス株が急速に出現しているため、COVID-19の迅速かつ高感度で信頼性の高い検査法の利用は、病気、さらにはパンデミックの制御に不可欠です。現在、世界的に流行しているCOVID-19では、主にRT-PCRによる検査が行われています。しかし、この検査室を必要とする方法は、サンプルの前処理が必要であることや、高価な装置(蛍光光度計付きサーマルサイクラー)が必要なことから、現場での検査は難しく、また短時間での大量検査にも課題があります。PCRに類似した分子検査を行う方法として、LAMP (Loop-mediated Isothermal Amplification) やSDA (Strand Displacement Amplification) などの様々な等温核酸増幅法が現在使用されています。しかし、これらの方法は、PCRと比較して特異性や感度が低いことが報告されています。また、これらの方法の多くは、実験室でのウイルスRNAの分離、溶解、精製、増幅など、面倒な前処理を必要とします。
この問題を解決するために、JAISTのマニッシュ ビヤニ特任教授率いるチームは、ウイルスRNAの標的配列を、特別な装置を必要とせず、現場で正確に検出できる高感度かつ超高速な方法を開発し、この検出法をRICCA(RNA Isothermal Co-assisted and Coupled Amplification)と名付けました。
現在、RICCAを使用して、既にSARS-CoV-2のアルファ株とデルタ株の2つの変異株を検出しており、他の変異株にも適応可能と考えられます。RICCAアッセイに必要なものは、ヒートブロック(恒温槽)と、25種類の試薬を含む混合液があらかじめ入ったチューブだけであり、RNA特異的増幅とDNA特異的増幅を同時に行うことができます。RICCAのコストは現在のRT-PCR法等と比較しても安価であり、より広範囲な用途に適用可能と考えられます。したがって、RICCAにより、COVID-19分子診断の「ラボフリー、ラボクオリティー」のメガテストプラットフォーム(医療検査室レベルの集団検診に向けた基本的な方法)も実現できる可能性があります。また、将来的には、このプラットフォームを使って他の感染性ウイルスを検査することも可能です。
RICCAは、COVID-19の検査に必要な設備を簡単に調達できない発展途上国では特に有用です。ビヤニ特任教授のチームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。また、RICCAのロボット化およびモバイルプラットフォームの設計を行っています(卓上プロトタイプはBioSeeds株式会社で開発中)。このプラットフォームが実現すれば、サンプル輸送の負担を軽減し、COVID-19診断を消費者が直接実施することも可能となり、遠隔地や資源の乏しい環境で大規模な集団検査を行うことが可能となります。
この最新の研究成果の一部は、国際的な科学誌(Scientific Reports)において、京都大学(保川清教授)、大阪母子医療センター(柳原格部長)、関西学院大学(藤原伸介教授)、東北大学(児玉栄一教授)、JAIST(ビヤニ特任教授、高木昌宏教授、高村禅教授)の研究者チームと共同で行った研究成果として紹介されています。
図:SARS-CoV-2ウイルスを、直接その場で検査する新規な方法(RICCA)(A)とそれによる熱不活化SARS-CoV-2ウイルスの検出結果(A')。 閉鎖的なサンプル保持容器(B)とそれを用いた、10%ヒト唾液中での熱不活性化SARS-CoV-2ウイルスの検出例 (B')。
【謝辞】
本研究成果の一部は、AMED(日本医療研究開発機構)新興・再興感染症に対する革新的医薬品等開発推進研究事業 JP20fk0108143、AMEDウイルス等感染症対策技術開発事業 JP20he0622020、JST(科学技術振興機構) 研究成果展開事業研究成果最適展開支援プログラム A-STEP 産学共同 (育成型)JPMJTR20UU の支援を受けたものです。
【参考文献】
論文名 | Development of robust isothermal RNA amplification assay for lab-free testing of RNA viruses |
雑誌名 | Scientific Reports |
著者名 | Radhika Biyani, Kirti Sharma, Kenji Kojima, Madhu Biyani, Vishnu Sharma, Tarun Kumawat, Kevin Maafu Juma, Itaru Yanagihara, Shinsuke Fujiwara, Eiichi Kodama, Yuzuru Takamura, Masahiro Takagi, Kiyoshi Yasukawa and Manish Biyani |
掲載日 | 2021年8月6日 |
DOI | https://doi.org/10.1038/s41598-021-95411-x |
令和3年9月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/08-1.htmlメムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発
![]() ![]() ![]() |
学校法人 龍谷大学 国立大学法人 奈良先端科学技術大学院大学 国立大学法人 北陸先端科学技術大学院大学 |
メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発
超コンパクト・低電力消費の人工知能への応用を期待
ポイント
- メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発した。従来の人工知能と比べると、劇的なコンパクト化・低電力消費が期待できる。
- メムキャパシタとして、強誘電体キャパシタを用いることで、構造を単純なものとし、薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となる。DC電流が無く、過渡電流も減り、電力消費が大幅に減る。
- 自律局所学習として、メムキャパシタのヒステリシス特性を上手く利用することにより、結合強度の制御回路など無しに、ニューロモーフィックシステムに学習させることができ、やはり将来の高集積化が容易となる。
- 研究の成果は、「IEEE Transactions on Neural Networks and Learning Systems」(Impact Factor=10.451)に掲載。
【概要】
龍谷大学 先端理工学部電子情報通信課程の木村睦研究室は、奈良先端科学技術大学院大学 先端科学技術研究科 中島 康彦教授、北陸先端科学技術大学院大学 先端科学技術研究科 徳光 永輔教授(応用物理学領域)らと共同で、メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発しました。 メムキャパシタは、印加電圧の履歴によりキャパシタンスが変化する回路素子で、本研究では、強誘電体キャパシタを用いることで、構造を単純なものとし、Bi3.25La0.75Ti3O12 (BLT)の薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となります。従来の大規模な模倣回路やメモリスタ(可変抵抗素子)の代わりに、メムキャパシタ(可変容量素子)を用いるため、DC電流が無く、過渡電流も減り、電力消費が大幅に減ります。 また、自律局所学習は、単一素子が自分自身の駆動条件のみで特性を変化させる学習方式であり、やはり将来の高集積化が容易となります。従来のシナプス素子の結合強度の制御回路など無しに、メムキャパシタの電圧履歴のキャパシタンス特性を上手く利用することにより、メムキャパシタだけで、ニューロモーフィックシステムに学習させることができます。 従来の人工知能と比べると、劇的なコンパクト化・低電力消費が期待できます。 |
【研究の背景】
「人工知能」は、現在、さまざまな用途に用いられ、将来、SDGs・Society 5.0・IoTといった未来社会に不可欠な情報インフラです。人工知能のための代表的な技術が、生物の脳の機能を模倣することで、自己組織化・自己学習・並列分散処理・障害耐性などの特長をもつ「ニューラルネットワーク」です。しかしながら、従来のものは、ハイスペックなハードウェアで実行される複雑・長大なソフトウェアで、人工知能のために最適化されておらず、コンピュータのサイズは巨大で、電力消費は膨大であり、また、並列分散処理・障害耐性などの特長は限定的でした。ニューラルネットワークを基本的なハードウェアのレベルから生体の脳の構造で模倣し、ニューロン素子やシナプス素子を実装するのが、「ニューロモーフィックシステム」です。しかしながら、従来のものは、人工知能としての最適化が不十分で、上記の特長は完全には得られていませんでした。この原因は、(1) 大規模な模倣回路やメモリスタ(可変抵抗素子)を使うため、DC電流・過渡電流が大きく、電力消費が大きい (2) 大規模なシナプス素子の結合強度の制御回路を使うため、サイズが大きいということによります。
【研究の目的】
そこで、本研究では、ニューロモーフィックシステムにおいて、(1) 模倣回路やメモリスタ(可変抵抗素子)の代わりに、メムキャパシタ(可変容量素子)を用いるため、DC電流が無く、過渡電流も減り、電力消費が大幅に減る (2) シナプス素子の結合強度の制御回路の代わりに、自律局所学習を用いるため、サイズが小さいということを目的とします。
【メムキャパシタ】
メムキャパシタは、印加電圧の履歴によりキャパシタンスが変化する回路素子です。本研究では、強誘電体キャパシタを用いることで、構造を単純なものとし、Bi3.25La0.75Ti3O12(BLT)の薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となります。ここでは、クロスバー型でメムキャパシタを作製し、印加電圧の履歴により強誘電体キャパシタの自発分極が変化することで、キャパシタンスが変化する回路素子を実現しています。
メムキャパシタ
【自律局所学習】
自律局所学習は、単一素子が自分自身の駆動条件のみで特性を変化させる学習方式であり、やはり将来の高集積化が容易となります。メムキャパシタの電圧履歴のキャパシタンス特性を上手く利用することにより、シナプス素子の結合強度の制御回路など無しに、メムキャパシタだけで、ニューロモーフィックシステムに学習させることができます。学習フェーズでは、シンプルに、クロスバー型の横電極と縦電極に電圧を印加するだけで、必要なキャパシタンスの変化が誘起されます。推論フェーズでも、シンプルに、横電極に電圧印加し、縦電極の電圧を読み取るだけです。
自律局所学習
【ニューロモーフィックシステム】
メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを、実際に組み立てました。アルファベットの「T」と「L」を記憶させ、わずかに異なるパターンを入力するとき、記憶した「T」または「L」のより近いほうが出力されることを確認しました。この動作は「連想記憶」というもので、文字認識や画像認識に直接に応用できるものであると同時に、問題設定により、さまざまな人工知能の取り扱う課題に応用できるものです。
ニューロモーフィックシステム
連想記憶の実験結果
【研究の意義と今後の展開】
従来の人工知能では、たとえば、いま最も有名なコグニティブシステムは、サイズは冷蔵庫10台ほど、電力消費は数百kWと言われています。本研究の基本的な成果をもとに、同様の機能のシステムを構築することを想定すると、サイズはLSI 1チップ、電力消費は20W程度と、劇的なコンパクト化・低電力消費が期待できます。SDGs・Society 5.0において、世界的なエネルギ危機を回避し、IoTにおいて、各々の機器へ搭載することが可能となります。なお、先行研究として、メモリスタと外部学習を用いるニューロモーフィックシステム(M. Prezioso, Nature, 521, 61, 2015)と比較すると、本研究で同様の機能が、低電力消費のメムキャパシタと、外部学習なしの局所自律学習で、実現できています。
【論文情報】
論文名 | Neuromorphic System using Memcapacitors and Autonomous Local Learning (メムキャパシタと自律局所学習を用いるニューロモーフィックシステム) |
掲載誌 | IEEE Transactions on Neural Networks and Learning Systems (TNNLS) |
著者 | 木村 睦(龍谷大学・奈良先端科学技術大学院大学)、石崎 勇真、宮部 雄太、吉田 誉、 小川 功人、横山 朋陽(龍谷大学)、羽賀 健一、徳光 永輔(北陸先端科学技術大学院大学)、 中島 康彦(奈良先端科学技術大学院大学) |
DOI | 10.1109/TNNLS.2021.3106566 |
掲載日 | 2021年9月1日にオンライン版に掲載 |
令和3年9月3日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/03-1.html触媒遺伝子「触媒シークエンシング」を発見 ~触媒インフォマティクスを駆使した新しい触媒開発に成功~
![]() ![]() ![]() |
国立大学法人 北海道大学 国立大学法人 北陸先端科学技術大学院大学 国立研究開発法人 科学技術振興機構 |
触媒遺伝子「触媒シークエンシング」を発見
~触媒インフォマティクスを駆使した新しい触媒開発に成功~
ポイント
- 触媒遺伝子「触媒シークエンシング」を触媒ビッグデータから発見。
- 触媒組成を従来の周期表の元素記号ではなく、ゲノム配列のように記号で表現。
- 触媒遺伝子を用いた触媒設計を提案し、実験実証に成功。
【概要】
北海道大学大学院理学研究院の髙橋 啓介准教授、髙橋 ローレン学術研究員、藤間 淳特任准教授、宮里 一旗特任助教らの研究グループは、北陸先端科学技術大学院大学先端科学技術研究科物質化学領域の谷池 俊明教授らと共同で、触媒遺伝子「触媒シークエンシング」を触媒ビッグデータから発見しました。 これまで触媒組成は周期表の元素記号で表現されてきましたが、反応場での真の触媒の状態は複雑なため、触媒組成を記述する真の触媒記述子*1の決定が困難を極めています。そのため機械学習などを用いる触媒インフォマティクス*2において、触媒物性を記述する上で情報的制約がありました。 そこで本研究では、独自に開発したハイスループット実験装置で得られたメタン酸化カップリング反応の触媒ビッグデータに対して、触媒インフォマティクス・信号処理*3・パターン認識*4・自然言語処理*5を駆使し、新たな触媒の記述方法である「触媒の遺伝子」を定義し提案しました。この「触媒の遺伝子」を用いることで、触媒組成の情報を、生物の塩基配列のように記号で表現することが可能となります。この触媒特有の配列を「触媒シークエンシング」と名付けました。この「触媒シークエンシング」を用いると、従来の元素記号での表記では全く異なる触媒組成であっても、同じ機能を持つ触媒は同じ「触媒の遺伝子」として表現することが可能となります。触媒組成は周期表の元素記号で表現されるのが一般的でしたが、本研究により提案された「触媒遺伝子」により、今後触媒は「触媒シークエンシング」で記述することが可能となります。 この「触媒遺伝子」の有効性を確認するため、同じ「触媒遺伝子」を持つ触媒群の元素を再編成することにより、同じ触媒遺伝子を持つ触媒の設計を行い、実験実証にも成功しました。結果、高いC2収率を達成する新規触媒が発見でき、「触媒遺伝子」が触媒設計に大変有用であることが証明されました。また発見された触媒が既知の触媒と似た遺伝子を持っているのか、もしくは全く新種の触媒遺伝子なのかなど、バイオインフォマティクスで見られる遺伝子解析のような、全く新しい視点での触媒情報の解析が可能となり、より発展的かつ実用的な適用が期待できます。 本研究成果は、米国東部時間2021年7月30日(金)午前6時公開のThe Journal of Physical Chemistry Letters誌にてオンライン版が掲載されました。 |
【背景】
マテリアルズインフォマティクス・触媒インフォマティクスの登場により材料・触媒科学は大きな転換期を迎えています。マテリアルズインフォマティクス・触媒インフォマティクスでは、第4の科学であるデータ科学を用い、材料・触媒データのパターンから材料・触媒設計を行います。そのような中、触媒組成は周期表の元素記号で表現されてきましたが、反応場での真の触媒の状態は複雑なため、触媒組成を記述する真の触媒記述子の決定が困難を極めています。そのため機械学習などの触媒インフォマティクスにおいて、触媒組成の記述方法が大きな障壁となっています。周期表の元素記号に頼らず、触媒の特徴を反映した触媒組成の記述方法を決定する必要があります。
【研究手法】
独自開発したハイスループット実験装置で得られたメタン酸化カップリング反応の触媒ビッグデータを用い、触媒インフォマティクス・信号処理・パターン認識・自然言語処理を駆使し、触媒ビッグデータに隠されているパターンから「触媒の遺伝子」を提案しました。
【研究成果】
発見された「触媒の遺伝子」は生物の塩基配列のように記号で表現することができます。この触媒特有の配列を「触媒シークエンシング」と名付けました(図1)。この「触媒シークエンシング」を用いると、従来の元素記号での表記では全く異なる触媒組成であっても、同じ機能を持つ触媒は同じ「触媒の遺伝子」として表現することが可能となります。「触媒遺伝子」を持つ触媒群の元素を再編成することにより、同じ触媒遺伝子を持つ触媒の設計を行い、実験実証にも成功しました。
【今後への期待】
今回提案した「触媒遺伝子」は、様々な触媒データに適用することにより、発見された触媒が既知の触媒と似た遺伝子を持っているのか、もしくは全く新種の触媒遺伝子なのかなど、バイオインフォマティクスで見られる遺伝子解析のような、全く新しい視点での触媒情報の解析が可能となります。したがって、触媒インフォマティクスにおける触媒データの取り扱い手法の基盤技術として、より発展的かつ実用的な適用が期待できます。
【謝辞】
なお、本研究は、科学技術振興機構(JST)戦略的創造研究推進事業CREST研究領域「多様な天然炭素資源の活用に資する革新的触媒と創出技術」(研究総括:上田 渉)における「実験・計算・データ科学の統合によるメタン変換触媒の探索・発見と反応機構の解明・制御」(研究代表者:髙橋 啓介)の支援を受けて行われました。
【参考図】
図1 発見された触媒遺伝子-触媒シークエンシング
【論文情報】
論文名 | Catalysis Gene Expression Profiling: Sequencing and Designing Catalysts(触媒遺伝子発現プロファイリング:触媒シークエンシングと設計) |
著者名 | 髙橋 啓介1 、藤間 淳1、宮里 一旗1、中野渡 淳2、藤原 綾2、Thanh Nhat Nguyen2、谷池 俊明2、 髙橋 ローレン1(1北海道大学大学院理学研究院、2北陸先端科学技術大学院大学) |
雑誌名 | The Journal of Physical Chemistry Letters(物理化学の専門誌) |
DOI | 10.1021/acs.jpclett.1c02111 |
公表日 | 日本時間2021年7月30日(金)午後8時(米国東部時間2021年7月30日(金)午前6時)(オンライン公開) |
【用語解説】
*1 触媒記述子...触媒の特徴を数値化して表現したもの。
*2 触媒インフォマティクス...データ科学手法を用いて触媒設計・触媒解析を行う学問。
*3 信号処理...信号を数理処理によって解析・処理する技術。
*4 パターン認識...データの中から規則性を取り出す技術。
*5 自然言語処理...言語や記号をコンピューターで処理する技術。
令和3年8月2日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/08/02-1.htmlナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発 ―電子顕微鏡とデータ科学による究極の精密測定―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 九州大学 |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発
―電子顕微鏡とデータ科学による究極の精密測定―
ポイント
- 電子顕微鏡とデータ科学を組み合わせることで、局所ひずみを高精度に測定
- 0.2%というわずかな局所ひずみをも検出できる精密さを達成
- 棒状ナノ粒子には表面形状の曲率変化に起因する約0.5%の局所膨張ひずみが生じることを発見
北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の麻生 浩平助教、大島 義文教授と、九州大学・大学院工学研究院のJens Maebe大学院生 (修士課程、当時)、Xuan Quy Tran研究員、山本 知一助教、松村 晶教授は、原子分解能電子顕微鏡法とデータ科学的手法であるガウス過程回帰を組み合わせることによって、ナノメートルサイズの粒子の中のわずか0.2%という局所ひずみを測定できる解析手法の開発に成功しました。開発した手法によって金のナノ粒子を解析したところ、棒状の粒子の内部では、先端付近で長さ方向に0.5%膨張したひずみを見出しました。この膨張ひずみは、粒子の先端部分で表面の形状(曲率)が変化しているために生じたこともわかりました。ナノ粒子の形状に由来して内部に局所ひずみが生じるという新たな発見と、ひずみを精密に捉える新規な手法は、ナノ物質内での原子配列と機能の理解に役立つと期待されます。 本研究成果は、2021年7月7日(米国東部標準時間)に科学雑誌「ACS Nano」誌のオンライン版で公開されました。 本研究は、日本学術振興会(JSPS)科研費基盤研究(B) (25289221、18H01830)と科学技術振興機構(JST)戦略的創造研究推進事業 ACCEL「元素間融合を基軸とする物質開発と応用展開」(研究代表者:北川 宏、研究分担者:松村 晶、プログラムマネージャー:岡部 晃博、研究開発期間:2015年8月~2021年3月、(JPMJAC1501))の支援を受けて行われました。 |
【研究背景と内容】
わずかな原子間距離の局所変化 (局所ひずみ) によって、磁性や触媒特性などといった様々な材料物性が左右されます。そのため、材料の局所ひずみを精密に測定する手法が求められてきました。ここ20年間で走査透過電子顕微鏡(STEM)の空間分解能が大きく向上して、原子状態の観察と解析が可能になりました。ナノメートルサイズの金の粒子をSTEMで観察したのが図1aです。ナノ粒子の内部に原子位置に対応した明るい点が整列して現れて見えます。原子は一見すると結晶構造を作って規則正しく周期的に配列しています。
しかし、図1aのSTEM像から原子の位置を特定して詳しく解析すると、場所によって原子は周期配列からわずかにずれて変位していることがわかりました。それをマップにしたのが図1bです。紙面左方向に大きく変位する原子が暗い青、紙面右方向に大きく変位する原子が明るい黄色でそれぞれ表されています。マップを遠目から見てみると、左から右手に向かって滑らかに、青色から黄色へと変化しているように見えます。しかし局所的には波のような細かい変化が全体を覆っています。この細かな変化は、像から原子位置を正しく特定できなかったために含まれる揺らぎノイズで、変位の変化率に相当するひずみを求めるうえで大きな障害になります。このノイズ成分を低減するには、長い時間 (カメラの露光時間に相当) をかけて計測して像質を改善するのがこれまでの一般的方法でしたが、計測時間が長くなるとその間の装置の機械的・電気的な状態のわずかな乱れの影響で像がゆがんでしまうという問題がありました。
そこで研究グループは、様々な分野で活用されているデータ科学手法のガウス過程回帰に着目しました。ガウス過程回帰では、データの真の姿は滑らかに変化すると仮定して、観測データにはこの真の姿に細かな揺らぎノイズが付加されていると考え、この順序をさかのぼることでデータの真の姿を予測します。ガウス過程回帰を図1bのマップに適用したところ、滑らかに変化する主要な成分だけを取り出すことに成功しました (図1c)。得られた変位の棒の長さ方向の変化率を求めて、局所的なひずみの分布をマップしたのが図1dです。開発した手法の精度を確かめるために、元データから直に、およびガウス過程回帰を適用して求めた場合のひずみ値の分布を比較したのが図1eです。元データでは標準偏差で1.1%の広がりがあるのに対して、ガウス過程回帰を用いることでその広がりが0.2 %に狭くなっており、ノイズ成分の除去によって有意に観測されるひずみ量の下限が大きく改善しました。
図1dに戻って見ると、棒の胴体部分と先端の半球部分の境目付近が明るい黄色になっており、この部分では棒の長さ方向に約0.5%膨張した局所ひずみが生じています。ナノ粒子では、表面積を小さくしようとして表面から内部に向かって力が作用するために、収縮ひずみが生じていると考えられていました。しかし、円筒状の胴体部と半球状の先端部からなる棒状の粒子では、2つの部分の表面曲率が異なることから内部にかかる力の向きと大きさに違いが生まれて、局所的に膨張するひずみ場が生ずることがわかりました。このように、原子位置の精密な解析が可能になって、ナノ粒子の局所形状によって内部のひずみの状態が変化することが発見できました。この新たな発見と、本成果で生み出された精密な解析手法は、ナノ構造材料の原子配置とそれによって引き起こされる機能に関する理解を深めることにつながると期待されます。
(b) 元データから得た原子変位マップ。紙面左方向への大きい変位が暗い青、紙面右方向への大きい変位が明るい黄色で表示される。細かく変化するノイズ成分が目立っている。
(c) ガウス過程回帰によって予測された真の変位。ノイズ成分の除去に成功している。
(d) 紙面横方向の変位の変化率(局所ひずみ)マップ。明るい黄色になっている両端部分では膨張ひずみが生じている。
(e) 元データとガウス過程回帰後のひずみ分布。ガウス過程回帰を用いることで、分布の広がりが1.1%から0.2%にまで狭まっており、微小な局所ひずみの検出が可能になった。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(B)(25289221、18H01830)
・科学技術振興機構(JST)戦略的創造研究推進事業ACCEL (JPMJAC1501)
【論文情報】
雑誌名 | ACS Nano |
題名 | Subpercent Local Strains Due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis |
著者名 | Kohei Aso*, Jens Maebe, Xuan Quy Tran, Tomokazu Yamamoto, Yoshifumi Oshima,Syo Matsumura |
掲載日 | 2021年7月7日(米国東部標準時間)にオンラインで掲載 |
DOI | 10.1021/acsnano.1c03413 |
令和3年7月13日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/07/13-1.html新型コロナウイルスの重症化に関与するタンパク質ORF8の特異な性質を発見

![]() ![]() |
石川県公立大学法人 石川県立大学 国立大学法人 北陸先端科学技術大学院大学 |
新型コロナウイルスの重症化に関与するタンパク質ORF8の特異な性質を発見
新型コロナウイルスの重症化に関与するタンパク質ORF8は、過酷な環境下でも高い安定性、復元力を保つという特異な性質を持つことを発見しました。ORF8は、70度においても天然状態を保持し、70度以上で変性させても、温度が下がると天然状態に戻ること、酸性条件で変性するが、弱アルカリ条件にすると天然状態に戻ることを明らかにしました。 |
【概要】
石川県立大学 森正之准教授が中心となり、今村智弘講師、東村泰希准教授、松本健司教授および北陸先端科学技術大学院大学 生命機能工学領域の大木進野教授と共同で、新型コロナウイルス(SARS-CoV-2)の重症化関与タンパク質ORF8の特異な性質を発見しました。本研究成果は、速報誌「Biochemical and Biophysical Research Communications」に公開されました。
SARS-CoV-2が引き起こす新型コロナウイルス感染症(COVID-19)は、基礎疾患や肥満の罹患者が重篤化しやすく、全世界で大問題となっています。新型コロナウイルスが持つORF8タンパク質は、SARS-CoV-2において特徴的なタンパク質です。これまでの解析により、ORF8は、免疫機能に重要な役割を持つMHCクラスIタンパク質の働きを抑え、細胞障害性T細胞を介した免疫応答を損なう働きがあることが報告されております。さらに、ORF8遺伝子領域が欠失したSARS-CoV-2株や1つのアミノ酸残基が変異したORF8(L84S)を持つウイルス株では、重症化しにくいことが報告されています。このことから、ORF8タンパク質は、COVID-19の重症化に関与することが示唆されています。
ORF8タンパク質は分子内に3か所のジスルフィド結合(S-S結合)を持ち、さらにS-S結合で二量体になる複雑なタンパク質です。そのため大腸菌での均一なORF8の合成は極めて困難です。しかし、我々は、タバコ培養細胞(タバコBY-2細胞)を用いて均一なORF8タンパク質の大量合成に成功しました(図1)。
タンパク質は一般的に、熱や酸、アルカリの影響を受けると、ひもが絡まったような変性という状態になって沈殿します。通常は、生卵が加熱されるとタンパク質が変性しゆで卵になるように、いったん変性したタンパク質は元の状態に戻りません。ORF8タンパク質がどのような条件で変性するかはその機能を知るうえで重要です。そこで、本研究では、タバコBY-2細胞で合成した野性型ORF8と変異型ORF8(L84S)の温度およびpHを変化させORF8の状態変化を核磁気共鳴(NMR)装置で解析しました。その結果、ORF8は耐熱性がとても高く70度付近まで天然状態を保持し、70度以上で変性しました。しかし、一般的なタンパク質と異なり、温度を下げると天然状態に戻ることがわかりました(図2)。またORF8は、弱酸性条件で変性してしまうこと、中性条件に戻すと元の天然状態に戻ることがわかりました。これらの結果は、ORF8が特別安定なタンパク質であることを意味します。また、興味深いことに、変異型ORF8(L84S)はORF8に比べて熱および酸への耐性がより高いことがわかりました(図2)。これらの特異な性質は、OFR8の機能と関係していることが予想されます。今後、この知見をもとにした解析を行うことにより、COVID-19の重症化をおさえる治療法が確立する可能性が期待されます。
【発表論文】
論文タイトル | Similarities and differences in the conformational stability and reversibility of ORF8, an accessory protein of SARS-CoV-2, and its L84S variant |
論文著者 | Shinya Ohki; Tomohiro Imamura; Yasuki Higashimura; Kenji Matsumoto; Masashi Mori |
雑誌 | Biochemical and Biophysical Research Communications |
図1 タバコ培養細胞を用いたORF8タンパク質の大量生産
タバコBY-2細胞で生産したORF8タンパク質は全て二量体を形成する。(A) ORF8タンパク質を合成するタバコBY-2細胞 (B)タバコBY-2細胞の大量培養 (C)培養液中に放出されたORF8タンパク質 (D)精製しNMR解析に用いたORF8タンパク質。WT:野生型ORF8タンパク質、L84S: 変異型ORF8タンパク質、矢じり:ORF8タンパク質、M:分子量マーカー
図2 ORF8 (wild type)とその変異体L84Sの各温度での1H-NMRスペクトルのメチル基領域の拡大図 *印は、昇温後に再びその温度に戻したことを表す。
ORF8、L84Sともに70度くらいまではスペクトルに大きな変化が見られない。これは、立体構造が保持されていることを示している。ORF8では70度、L84Sでは75度のときにピークが広幅化し、特に0 ppm付近ではピークが消失しかかっている。これは、試料が多量体化もしくは会合により熱変性状態になったことを示している。ところが、両試料ともに温度を下げたときのスペクトルは実験開始時のスペクトルと一致している。これは、変性状態の試料が天然状態に戻ったことを示している。
【用語説明】
細胞傷害性T細胞:リンパ球T細胞の一種。異物となる異常細胞(ウイルス感染細胞、がん細胞など)を認識し、それらを攻撃して破壊する細胞。
MHCクラスIタンパク質:免疫応答に関わるタンパク質。細胞内のタンパク質に由来するペプチド断片を細胞表面に輸送し、細胞障害性T細胞に提示するタンパク質。
ジスルフィド結合(S-S結合):2つのシステインによって形成される共有結合で、タンパク質の立体構造形成に重要な役割をはたす。
二量体:2個のタンパク質が、物理的・化学的な力によって形成した分子。
核磁気共鳴(NMR)装置:強力な磁場中に置いた試料に電磁波を照射して応答信号を得る装置。信号を解析することで、試料の構造や運動性を知ることができる。
令和3年6月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/06/09-1.html高分子薄膜における水素イオンの界面輸送で新知見

![]() ![]() ![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 名古屋工業大学 学校法人立教学院 立教大学 国立大学法人 山形大学 |
高分子薄膜における水素イオンの界面輸送で新知見
ポイント
- カルボン酸基の濃度を制御した弱酸性高分子を合成し、水素イオンの輸送を薄膜状で評価
- カルボン酸基は、少なくとも二種類の状態で存在
- カルボン酸基が低濃度になると、カルボン酸基が薄膜界面により多く存在
- カルボン酸基の濃度の低下に伴い水素イオンの輸送経路は内部輸送から界面輸送が支配的
北陸先端科学技術大学院大学・先端科学技術研究科 物質化学領域の長尾 祐樹 准教授、スワンスントン アトチャヤ氏(大学院博士後期課程在籍)は、名古屋工業大学・大学院工学研究科 生命・応用化学専攻の山本 勝宏 准教授、立教大学・理学部の永野 修作 教授、山形大学・学術研究院(理学部主担当)の松井 淳 教授との共同研究で、燃料電池や生体活動等で重要となる水素イオンの輸送において、モデル高分子薄膜のカルボン酸基の濃度を制御することで、水素イオンの輸送経路が薄膜内部と界面で切り替わる現象を発見しました。本成果により、エネルギー変換システムの高度化やイオンを能動的に制御するための界面分子設計に関する研究の加速が期待されます。 本研究成果は、2021年5月21日(英国時間)に電気化学会刊行のElectrochemistry誌のオンライン版で公開されました。なお、本研究は日本学術振興会(JSPS)科研費基盤研究(C)、科研費基盤研究(B)、科研費 新学術領域研究「ハイドロジェノミクス」の支援を受けて行われました。 |
【研究背景と内容】
生体系ではタンパク質等の高次構造が、イオン輸送チャネルの制御を行い、イオン輸送の外場刺激応答を実現しています。また、生体材料界面でのイオン輸送は1960年代から議論が続いています。この機能を人工的に設計・構築することは未だ容易ではありません。長尾准教授らは、イオンの中でも水素イオンに着目し、水素イオンを人工的かつ能動的に制御するための要素技術に関して研究を推進してきました。
酸の素である水素イオンは、材料中を輸送されることで燃料電池や生体活動等のエネルギー変換システムで重要な役割を果たします。この水素イオンは、材料内部の非常に小さなスケールの通り道に沿って輸送されると考えられてきました。近年、エネルギー変換システムの高度化に伴い、高性能化のために材料の内部だけでなく端(エッジ)である界面の分子設計も重要視されています。しかし、材料界面における水素イオンの輸送に関する基礎研究は十分に行われていません。今回長尾准教授らは、生体材料ではなく、酸の素の一種であるカルボン酸基の濃度を制御した合成高分子を用いて、薄膜中の水素イオンの通り道について研究を実施しました。その結果、水素イオンが薄膜内部を通る道が不足すると、水素イオンは薄膜の表側と裏側に相当する薄膜界面に沿って輸送されることを明らかにしました。
本研究では、ポリスチレンと呼ばれる高分子の側鎖にカルボン酸基が化学修飾された高分子を合成しました(図1)。比較のためにカルボン酸基の濃度を高いものから低いものまで四種類合成しました。高分子を薄膜化し、赤外線を用いて分子構造を調べた結果、酸の素となるカルボン酸基の状態が少なくとも二種類あることがわかりました。一つはカルボン酸基が単体で存在する状態(フリーな状態)、もう一つは二つのカルボン酸基がお互いに向き合った二量体で存在する状態(ダイマー状態)でした。ダイマー状態は、二つの水素イオンが二つのカルボン酸基に挟まれた状態となり、水素結合と呼ばれる結合で安定化されています。研究グループは、カルボン酸基の濃度を高くすると、フリーな状態のカルボン酸基の量が相対的に増加し、ダイマー状態のカルボン酸基の量が減少する傾向を見出しました。さらに、カルボン酸基の濃度が低い場合には、フリーなカルボン酸基が薄膜の内部ではなく界面により多く存在することも明らかにしました。高分子薄膜中ではカルボン酸基は均一に存在しておらず、その濃度によって存在状態が異なることもわかりました。
この結果から研究グループは、カルボン酸基の濃度を低くすると、薄膜界面にフリーなカルボン酸基が集合し、水素イオンが薄膜内部ではなく界面に沿って輸送される仮説を検討しました。具体的には、水素イオン輸送の性能指標の一つにあたる水素イオン伝導度の評価を、インピーダンス法と呼ばれる手法を用いて実施しました。結果は仮説を裏付けるものであり、カルボン酸基の濃度が高い薄膜では、水素イオンが薄膜内部で輸送されることが支配的であるのに対して、カルボン酸基の濃度が低い薄膜では、水素イオンは薄膜内部ではなく薄膜界面に沿って輸送されることがわかりました(図2)。これはフリーなカルボン酸基が薄膜の内部ではなく界面により多く存在することと、薄膜内部には水素イオンの輸送にあまり寄与しないと思われるダイマー状態のカルボン酸基が多いためであると考えられます。この結果から、水素イオンは材料内部を必ずしも通らずに、通りやすい道があれば材料の端である界面に沿って輸送されることもあることが示されました。
図1 本研究に用いた高分子材料
図2 高分子薄膜における水素イオンが輸送されるイメージ。内部輸送(上)と界面輸送(下)
【今後の展開】
高分子材料中の水素イオンの輸送は、材料内部の通り道に沿って輸送されると考えられてきました。しかし本研究では、酸の素や構造の状況によっては、水素イオンは材料内部ではなく界面に沿った輸送が支配的になることがわかりました。このイオンの界面輸送は無機材料では既に知られていましたが、高分子材料においても界面輸送が可能であることから、界面の分子設計に活かせる可能性があります。また、これまで説明できなかった水素イオンの輸送現象の理解にアプローチすることもできるかもしれません。特にカルボン酸基は生体活動で重要な役割を担っています。今後長尾准教授らは、エネルギー変換システムの高度化に加え、イオン輸送の人工的かつ能動的な制御を目指して、得られた知見を活かしていきます。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(C)(JP18K05257)
・日本学術振興会(JSPS)科研費 基盤研究(B)(JP21H01997)
・日本学術振興会(JSPS)科研費 新学術領域研究「ハイドロジェノミクス」(JP21H00020)
【論文情報】
雑誌名 | Electrochemistry |
題名 | "Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations" |
著者名 | Athchaya Suwansoontorn, Katsuhiro Yamamoto, Shusaku Nagano, Jun Matsui, Yuki Nagao* |
掲載日 | 2021年5月21日(英国時間)に著者原稿版がオンラインで掲載 |
DOI | 10.5796/electrochemistry.21-00042 |
令和3年5月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/05/28-1.html消化酵素で分解するナイロンを開発 ―プラスチック誤飲事故の軽減、海洋生態系維持へ―
![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 独立行政法人 環境再生保全機構 |
消化酵素で分解するナイロンを開発
―プラスチック誤飲事故の軽減、海洋生態系維持へ―
ポイント
- 海洋プラスチックごみは誤飲するなど海洋生物への悪影響がある
- 従来の生分解性プラスチックは性能が低い問題がある
- 植物由来分子であるイタコン酸とアミノ酸からナイロンの開発に成功
- 従来ナイロンよりも高性能かつ人工胃液で分解・崩壊する性質を発見
環境再生保全機構(ERCA)が実施する環境研究総合推進費の一環として、北陸先端科学技術大学院大学・先端科学技術研究科 環境・エネルギー領域の金子 達雄教授らは、植物由来分子であるイタコン酸とアミノ酸であるロイシンからバイオナイロンを合成する手法を見出し、従来のナイロンよりも高耐熱・高力学強度であり、かつ胃に含まれる消化酵素であるペプシンで分解するバイオナイロンを開発しました。 海洋プラスチックごみ問題が深刻化する中、鳥類やクジラ類などの海洋生物が誤ってプラスチックごみを飲み込むことによる生態系への被害が問題視されています。生分解性プラスチックの中には海洋環境で分解するものがあり、中には消化酵素で分解するものも開発されているため本問題を解決するために重要であると考えられています。しかし、そのほとんどは柔軟なポリエステルであり耐熱性や力学強度の点で問題があります。このため用途は限られ、主に使い捨て分野で使用されているのが現状です。今回、金子教授らは、麹菌などが糖を変換して生産するイタコン酸および天然分子として有名なロイシンなどを原料にして、一般的なナイロンの原料の一つであるヘキサメチレンジアミンなどを反応させることでバイオナイロンを合成する条件を見出しました。得られたバイオナイロンはガラス転移温度が100℃を超え、力学強度が85MPaを超える高性能ナイロンであることも確認されました。これはナイロン中に硬い構造であるヘテロ環が含まれることに起因します。 また、アミノ酸には右手と左手の関係のような鏡像体が存在することが知られていますが、この鏡像関係にある一対のアミノ酸を混合するとナイロンの物性が向上することも見出されました。特に、L-ロイシンから得られるナイロン樹脂は胃中の消化酵素であるペプシンの存在下で崩壊し分子量も低下することが分かりました。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。 本成果は2021年4月30日に独国科学誌「Advanced Sustainable Systems」(インパクトファクター4.87(2019-2020))のオンライン版で公開されました。 |
本開発成果は、以下の事業・開発課題によって得られました。 研究開発期間:令和2年度~4年度(予定) 事業名 :環境再生保全機構(ERCA)環境研究総合推進費 開発課題名 :「バイオマス廃棄物由来イタコン酸からの海洋分解性バイオナイロンの開発」 チームリーダー:金子達雄(北陸先端科学技術大学院大学 教授) ERCA環境研究総合推進費は、気候変動問題への適応、循環型社会の実現、自然環境との共生、環境リスク管理等による安全の確保など、持続可能な社会構築のための環境政策の推進にとって不可欠な科学的知見の集積及び技術開発の促進を目的として、環境分野のほぼ全領域にわたる研究開発を推進しています。 |
<開発の背景と経緯>
植物などの生体に含まれる分子を用いて得られるバイオマスプラスチックは材料中に二酸化炭素を固定することにより、二酸化炭素濃度を削減し、低炭素社会構築に有効であるとされています。その中でも生分解性を有するものは、昨今深刻化する海洋プラスチックごみ問題の解決の糸口を与えるものと注目されています。特に、鳥類やクジラ類などの死骸の胃の中を調査するとプラスチックごみが蓄積している場合があり、それが原因で死に至った可能性が指摘されています。つまり、プラスチックごみの誤飲による生態系への被害が問題視されています。生分解性プラスチックの中には海洋環境で分解するものがあり、中には消化酵素で分解するものも開発されているため本問題を解決するためのキー材料となると考えられています。しかし、生分解性プラスチックのほとんどは柔軟なポリエステルで耐熱性や力学強度の点で問題があります。このため用途は限られ、主に使い捨て分野で使用されているのが現状です。たとえばPHBHと呼ばれる脂肪族ポリエステルは代表的な海洋分解性プラスチックを与えますが、その主骨格は一般的な工業用プラスチックに用いられる高分子に比べて柔軟であり、そのガラス転移温度は0℃付近であり室温での使用のためには高結晶化が余儀なくされます。また力学強度も20-30MPa付近です。(参考:ポリエチレン、塩ビ、ポリプロピレンなどの汎用プラスチックは20-70 MPa程度)
研究チームは、麹菌などが糖を変換して生産するイタコン酸を用いてバイオナイロンを開発することを目的として研究を進めていますが、アミノ酸であるロイシンなどを導入した新たなモノマーを合成し、一般的なナイロンの原料の一つであるヘキサメチレンジアミンなどを反応させることでバイオナイロンを合成する条件を見出しました(図1)。得られたバイオナイロンはガラス転移温度が100℃を超え、力学強度が85MPaを超える高性能ナイロンであることも確認されました(表1)。この高性能発現はナイロン中に硬い構造であるヘテロ環が含まれることに由来します。
最後に、L-ロイシンから得られるナイロン樹脂を合成し、これが胃中の消化酵素であるペプシンの存在下で崩壊(図2)し分子量も低下することが見いだされました(図3)。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。
<代表的作成方法>
ロイシン由来のジカルボン酸1-((S)-1-カルボキシ-3-メチルブチル)-5-オキソピロリジン-3-カルボン酸とヘキサメチレンジアミン(1.3g、10mol)をそれぞれアセトニトリルに溶解させた後に溶液を混合することでナイロン塩を析出させました(収率96%)。白色のナイロン塩を真空乾燥後170-180℃、50-60 rpmで激しく攪拌しバルクで重合しました。6時間後、粘性のあるポリマー溶融物が形成されました。これをDMFに溶解しアセトンに再沈殿することで精製を行いました。
<今回の成果>
今回の成果は大きく分けて2つ示すことができます。
1)鏡像関係にあるアミノ酸を分子鎖で混合したナイロンを合成することで、結晶化度および熱的力学的物性が向上することを発見
一般に再生可能な原料から得られる高分子は、熱的力学的性能が低く製造コストも高くなります。したがって、化石ベースのリソースと比較してパフォーマンスを向上させることができる合成アプローチを開発し、バイオベースのモノマーを利用することが重要です。ここでは、再生可能なイタコン酸とアミノ酸(D-またはL-ロイシン)から派生した新規な光学活性ジカルボン酸の生産に成功しました。まず、イタコン酸由来のイタコン酸ジメチルを出発物質として、剛直な不斉中心を持つ複素環式ジカルボン酸モノマーを高純度で得ました。これらのモノマーからアモルファスでありホモキラリティーを有するD-またはL-ロイシン由来のポリアミドを合成し、かつこれらをモノマー段階で混合したもの、オリゴマー段階で混合し追重合を行ったものを対象として研究を進めました(図1)。その結果、D-ロイシン由来のポリマー鎖とL-ロイシン由来のポリマー鎖との複合体は結晶化し、その結晶化度は36%に達しました。これは、キラル相互作用に由来するものと考えられます。得られた樹脂は、ガラス転移温度Tgが約117°C、溶融温度Tmが約213°Cであり、ポリアミド11などの従来のポリアミド(Tg約57°C)よりも高い値を示しました。さらに2.2〜3.8 GPaの高いヤング率および86〜108 MPaの高い力学強度を示しました(表1)。
2)バイオナイロン樹脂がペプシンの作用により崩壊し分解することを発見
バイオナイロンの酵素分解を、哺乳類の胃の消化酵素であるペプシンを使用して調べました。少量(150 mg)のポリアミド樹脂(Mw; 24,300-26,400 g / mol)と1 wt%のペプシン(5 ml)をpH 4.0のバッファーに入れて分解試験を行いました(対照実験はペプシンなし)。サンプルをインキュベーター内で37°Cで6週間振とうした結果、時間の経過に伴い平均分子量が24,300〜26,400 g / molから14,600〜16,500 g / molに減少することがわかりました(図3)。ペプシンによるナイロンの分解中の視覚的変化も崩壊現象として確認されました(図2)。研究チームは以前に、イタコン酸由来ポリアミドのピロリドンの開環反応を報告しましたが、今回発見した酵素分解はピロリドンの開環を誘発したと考えられます。ここで発見したペプシン分解は、哺乳類が当該ナイロン系プラスチックを誤飲した場合でも、哺乳類の消化管の安全性を維持することにつながる可能性があります。
<今後の展開>
本成果によりイタコン酸由来バイオナイロンの構造的な広がりが提案できました。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。
<参考図> 図1 (A)イタコン酸とアミノ酸からなるジカルボン酸モノマーの合成
(B)(A)のジカルボン酸とヘキサメチレンジアミンからのバイオナイロンの重合反応式
表1 バイオナイロンの物性表
図2 バイオナイロンがペプシン存在下で崩壊していく様子
図3 ペプシンを作用させたD-ロイシン由来バイオナイロンのGPC
【論文情報】
雑誌名 | Advanced Sustainable Systems |
題名 | High-performance BioNylons from Itaconic and Amino Acids with Pepsin Degradability (ペプシン分解性を示すイタコン酸とアミノ酸からの高性能バイオナイロン) |
著者名 | Mohammad Asif Ali,Tatsuo Kaneko* |
掲載日 | 2021年4月30日にオンライン版に掲載 |
DOI | 10.1002/adsu.202100052 |
令和3年5月10日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/05/10-1.html次世代燃料電池のアニオン交換薄膜において水酸化物イオン伝導度の評価法を確立

次世代燃料電池のアニオン交換薄膜において
水酸化物イオン伝導度の評価法を確立
ポイント
- 高分子薄膜状のアニオン交換膜の水酸化物イオン伝導度と含有水分子量の評価法を確立
- サンプルの合成から評価まで、空気中の二酸化炭素の影響を排除
- 0.05 S cm-1の高い水酸化物イオン伝導性(Br-型のアニオン交換薄膜の2倍以上)
- 次世代燃料電池の性能向上への貢献が期待
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科 物質化学領域の長尾 祐樹准教授、オウ ホウホウ 大学院生(博士後期課程在籍)、ワン ドンジン 大学院生(博士前期課程修了)らは、次世代燃料電池で注目されるアニオン交換薄膜において、空気中の二酸化炭素の影響を受けない状態で、水酸化物イオン伝導度と含有水分子量の評価法を確立することに成功しました。長年求められてきたこの評価法の確立は、当該分野において世界初の成果になります。本成果により、次世代燃料電池の性能向上に関する研究の加速が期待されます。 本研究成果は、2021年4月29日(英国時間)にWiley社刊行のChemSusChem誌のオンライン版で公開されました。なお、本研究は日本学術振興会(JSPS)科研費基盤(C)、科研費基盤(B)、科研費 新学術領域研究「ハイドロジェノミクス」の支援を受けて行われました。 |
【研究背景と内容】
資源の少ない日本が脱炭素化を進めながら持続的な発展をするためには、多様なエネルギー資源を確保することが喫緊の課題です。長尾准教授らは、これまで水素社会に貢献する燃料電池の性能向上に関する研究を推進してきました。
長尾准教授らは、現在の燃料電池に利用されるプロトン交換膜に加え、次世代燃料電池で利用が検討されているアニオン交換膜における、水酸化物イオン伝導性の研究に取り組んでいます。この次世代燃料電池は、従来必要とされてきた白金などの貴金属触媒に依存せずに動作が可能であることから、世界的に研究報告例が増加しています。アニオン交換膜とは、陰イオンが膜の内部を移動可能な材料であり、特に水酸化物イオンが高速に移動する材料はこの燃料電池に欠かせません。水酸化物イオンが内部を移動するアニオン交換膜は、空気中の二酸化炭素と容易に反応する特徴があり、燃料電池の性能を低下させることが知られています。アニオン交換膜の水酸化物イオン伝導性を評価するためには、膜を水に浸漬することで空気中の二酸化炭素の影響を排除する必要がありました。しかし、実際の燃料電池では、アニオン交換膜は水に浸った状態で動作していないため、二酸化炭素の影響を排除した、より燃料電池の動作環境に近い加湿状態での評価法が求められてきました。
アニオン交換膜のもう一つの重要な役割は、燃料電池の反応場である電極触媒界面に薄膜状で存在することにより、アニオン交換膜から電極触媒へ水酸化物イオンを高速に輸送することです。しかし、これまでは水酸化物イオン型のアニオン交換薄膜の水酸化物イオン伝導性と含有水分子量を評価する方法がありませんでした。今回、長尾准教授らは、モデル高分子として合成したアニオン交換膜を基板上に薄膜化し、薄膜の作成から各種物性評価の終了までの間、空気中の二酸化炭素の影響を受けない評価方法を確立し、世界で初めてアニオン交換薄膜における水酸化物イオン伝導性と含有水分子量を明らかにしました。
研究成果として、水酸化物イオン型のアニオン交換薄膜(OH-型、図1)は、0.05 S cm-1と比較的高い水酸化物イオン伝導性を示すことや、臭化物イオン型のアニオン交換薄膜(Br-型)と比較すると約2倍のイオン伝導度を有することがわかりました(図2)。さらに、厚膜状のアニオン交換膜と270nmの厚さの薄膜では、水酸化物イオン伝導度が同程度であることも明らかにしました。この結果はプロトン交換膜で知られている、厚さが薄くなるにつれてイオン伝導度が低下する傾向と異なる知見となりました。
図1 アニオン交換膜(Poly[9,9-bis(6'-(N,N,N-trimethylammonium)-hexyl)-9H-fluorene)-alt-(1,4-benzene)] (PFB+), X = OH and Br)
図2 アニオン交換薄膜におけるイオン伝導度の比較
【今後の展開】
空気中の二酸化炭素の影響を受けない状態で、アニオン交換薄膜の水酸化物イオン伝導度と含有水分子量の相関に関する知見を得た例は世界初となります。これらの研究成果は、次世代燃料電池の反応場を設計する上で重要な知見となりえます。今後長尾准教授らは、確立した評価手法を利用して、分子構造の異なる複数のアニオン交換膜の評価を推進することで、得られた知見が普遍性を有するのかどうかを含め検討していく予定です。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(C)(JP18K05257)
・日本学術振興会(JSPS)科研費 基盤研究(B)(JP21H01997)
・日本学術振興会(JSPS)科研費 新学術領域研究「ハイドロジェノミクス」(JP21H00020)
【論文情報】
雑誌名 | ChemSusChem |
題名 | OH- Conductive Properties and Water Uptake of Anion Exchange Thin Films |
著者名 | Fangfang Wang, Dongjin Wang, and Yuki Nagao* |
掲載日 | 2021年4月29日(英国時間)にオンライン版に暫定版が掲載 |
DOI | 10.1002/cssc.202100711 |
令和3年5月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/05/07-1.html世界初!個々の原子間の結合強度の測定に成功 ―強くて伸びる白金原子の鎖状物質―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 金沢大学 |
世界初! 個々の原子間の結合強度の測定に成功
―強くて伸びる白金原子の鎖状物質―
ポイント
- 個々の原子の並びを見ながら、その結合強度を測る手法(顕微メカニクス計測法)の開発
- 白金原子が一列に並んだ鎖状物質を作製し、その結合強度を測定
- 結合強度が高く、よく伸びる白金原子の鎖状物質
- 原子スケールで制御された機能性物質探索への期待
北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の大島 義文教授、富取 正彦教授、張家奇 大学院生(博士後期課程)、石塚慧介 大学院生(博士後期課程)、環境・エネルギー領域の前園 涼教授、本郷 研太准教授、及び金沢大学・理工研究域 数物科学系の新井 豊子教授は、International School for Advanced Studies (SISSA)のErio Tosatti教授との共同研究で、物質を構成する個々の原子の並びを観察しながら、その結合強度を計測できる顕微メカニクス計測法を開発した。この手法を使って、白金原子が一列に並んだ鎖状物質が強い結合強度を持つとともに、白金の塊(バルク)と比較してかなり大きく引き伸ばしても破断しないという特異な性質を持つことを発見した。実験結果を第一原理計算で解析したところ、この鎖状物質は、エネルギーが最小になる安定構造を取っているわけではなく、その形成に必要な張力が極小な構造であることを突きとめた。この鎖状物質がもつこの特有な性質の解明は、今後ますます期待される原子スケールで制御された機能性物質の創製に指針を与える大きな成果である。 本研究成果は、2021年4月29日(米国東部標準時間)に科学雑誌「Nano Letters」誌のオンライン版で公開された。なお、本研究は、日本学術振興会(JSPS)科研費, 18H01825, 18H03879、笹川科学研究助成, 2020-2006、ERC ULTRADISS Contract No. 834402, the Italian Ministry of University and Research through PRIN UTFROM N. 20178PZCB5の助成を受けて行われた。 |
原子が鎖状に並んだ1次元物質の力学的性質は、同じ組成や構造を持つバルク物質と大きく異なることが理論計算によって予想されていた。しかし、1次元物質の性質はわずかな原子の変位にも敏感に変化するため測定例が少なく、解明が進んでいない。原子配列構造とその力学的性質の相関を明らかにできれば、1次元物質などの性質を決めるメカニズムの解明に繋がる。このメカニズムこそが、1次元物質を活用した新しい原理で動作する電子デバイスやセンサー開発の指針となる。
最近、私たちは、原子配列を直接観察できる透過型電子顕微鏡(TEM)のホルダーに細長い水晶振動子を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする顕微メカニクス計測法を世界で初めて開発した(図1)。この手法では、水晶振動子の共振周波数が、物質との接触で相互作用を感じることによって変化することを利用する。共振周波数の変化量は物質の等価バネ定数に対応するので、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)で、TEMによる原子像がぼやけることはない。この手法は、従来の手法(小さなSi製テコを利用してその変位から力を計測する手法、TEM-AFM法[*1])では困難だった結合強度の高精度測定を実現している。
本研究では、このTEMホルダー内部で白金原子鎖を150個作製してその特性を詳細に調べ、白金原子鎖における原子結合強度が25 N/mであることを突きとめた。この値は、白金のバルク結晶の原子結合強度20 N/mよりも25%高い。また、原子間結合の長さ(0.25 nm)は最大0.06 nmも延びることが分かった。これは原子結合の最大弾性ひずみが24%になることを示しており、バルク結晶の値(5%以下)と比較して著しく高い(図2)。さらに、第一原理計算の結果を合わせて考察することで、このような特異な原子結合の性質は、白金原子鎖がエネルギー的に最安定な構造ではなく、形成に必要な張力が極小となる構造を取ることによって生まれることがわかった。
本研究は、1次元物質がもつ特異な原子結合に関わる性質を明らかにし、理論計算と組み合わせることによって形成メカニズムを突きとめた点に大きな成果がある。今後ますます期待される原子スケールで制御された機能性物質の創製に指針を与える大きな成果である。
図1.個々の原子の並びを観察しながら、原子間の結合強度を計測する顕微メカニクス計測法。透過型電子顕微鏡(TEM)を用いてナノ物質の構造観察をしながら、長辺振動水晶振動子(LER)を用いて物質の結合強度を計測できる。この測定によって、赤矢印で示す部位の白金原子鎖の原子間結合強度が25 N/mであることがわかった。
図2. 左上は透過型電子顕微鏡(TEM)像、左下はそのシミュレーション像である。原子4個からなる原子鎖が得られている。その観察時に測定された電気伝導(コンダクタンス量子単位G0でプロット)とばね定数の時間変化を、それぞれ右上と右下に示す。赤い矢印で示す領域は形成した原子鎖を破断することなく引っ張ることができた時間帯である。毎秒0.08 nmの速度で引っ張っており、白金原子鎖は破断なく約0.1 nm伸びた。
【論文情報】
雑誌名 | Nano Letters |
題名 | Peculiar Atomic Bond Nature in Platinum Monatomic Chains |
著者名 | Jiaqi Zhang, Keisuke Ishizuka, Masahiko Tomitori, Toyoko Arai, Kenta Hongo, Ryo Maezono, Erio Tosatti, Yoshifumi Oshima* |
掲載日 | 2021年4月29日(米国東部標準時間)にオンライン版に掲載 |
DOI | 10.1021/acs.nanolett.1c00564 |
【用語解説】
[*1] TEM-AFM法(透過型電子顕微鏡と原子間力顕微鏡を組み合わせた測定法)
従来の測定法の一つ。ナノ物質に接触したSiカンチレバーを引っ張ると、Siカンチレバーがたわむ(変位する)。このたわみ(変位)から、ナノ物質に負荷されている力を求める。一方、この負荷された力によって変形したナノ物質を透過型電子顕微鏡によって計測することで、このナノ物質の機械的強度を得る。ただし、10 nm以下のサイズをもつナノ物質は1Åしか変形しない(原子間距離は2-3Åである)。このような変形を高い精度で測定することは難しく、ナノ物質の強度測定にばらつきが出てしまうという課題があった。
令和3年4月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/04/30-1.html生体分子モーターで動く人工筋肉、光で自在に作製可能 ― マイクロ・ソフトロボットの3Dプリントの実現に期待 ―

![]() ![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人東海国立大学機構 岐阜大学 国立大学法人 大阪大学 |
生体分子モーターで動く人工筋肉、光で自在に作製可能
― マイクロ・ソフトロボットの3Dプリントの実現に期待 ―
ポイント
- 光照射した場所に自在な形状に作製できる人工筋肉の開発に成功
- 遺伝子工学的に改変した生体分子モーターからなる光応答性の分子システムを開発
- ミリメートルスケールの微小機械の駆動を実証
- マイクロロボットやソフトロボットの3Dプリントの実現に期待
北陸先端科学技術大学院大学・先端科学技術研究科 生命機能工学領域の平塚祐一准教授、杜釗 大学院生(博士前期課程)は、岐阜大学・工学部の新田高洋准教授、大阪大学・大学院工学研究科 機械工学専攻の森島圭祐教授、王穎哲 大学院生(博士後期課程/特任研究員)との共同研究で、筋肉のような収縮性のファイバー(以下、人工筋肉)を、光照射した場所に自在に形成させることに成功した。この人工筋肉は、生物の動きに関わるタンパク質である生体分子モーターを遺伝子工学的に改変することにより実現した。光の照射形状を変えることで自由な形状・大きさの人工筋肉が造形でき、ミリメートルスケールの微小機械の動力に利用できることを実証した。この成果は将来、これまで困難であったマイクロロボットやソフトロボットの3Dプリンタによる製造への応用が期待される。 本研究成果は、2021年4月19日(英国時間)に科学雑誌「Nature Materials」誌のオンライン版で公開された。なお、本研究は新エネルギー・産業技術総合開発機構(NEDO)「次世代人工知能・ロボット中核技術開発」(JPNP15009)、日本学術振興会(JSPS)科研費 新学術領域研究「分子ロボティクス」の支援を受けて行われた。 |
【研究背景と内容】
生物のエンジン「筋肉」は、モータータンパク質[*1]と呼ばれる生体分子モーターから構築されており、数百マイクロメートル(マイクロは100万分の1)から数十メートルまでスケーラビリティにとんだアクチュエータである。生物のエネルギー源(アデノシン三リン酸 (ATP))を用いて高い効率で力学的仕事を行うという、従来のアクチュエータと比べ質的に異なる特性を持ち、これまでには無い産業分野での応用が期待されている。しかし、筋肉自体または筋肉細胞をアクチュエータとして利用する試みは基礎研究レベルでは報告されているが、筋肉細胞の安定性・保存性の問題やアクチュエータとして組み込む技術が未発達のため、実用化には至っていない。また、筋肉組織の構成分子はほぼ同定されているが、それら構成分子から筋肉を再構築する技術は知られていなかった。
本研究では、生体内の収縮性ファイバーの形成過程に着想を得て、人工筋肉を自在に形成させる分子システムを開発した。モータータンパク質の一種であるキネシンを遺伝子工学的に改変し、フィラメント状にすることにより、レールタンパク質である微小管[*2]と混ぜるだけで、モータータンパク質の動的な機能により自己組織的に人工筋肉を形成させることができた。さらに、光照射によりモーター分子のフィラメント化を開始させ、照射した部位のみに人工筋肉を形成させることを可能とした(図1)。この人工筋肉を大きさ数ミリメートルの機械構造内に形成させることにより微小機械を駆動させることに成功した(図2)。
筋肉のような柔軟で低エネルギー・低環境負荷なアクチュエータの産業応用は期待されているが、上述のように実用化には至っていない。本研究では、生体の運動素子であるモータータンパク質分子を数ミリメートル以上の組織に構築することにより、生物の筋肉に似た機能・性質を持つ人工筋肉の製造を可能とした。特に光照射により人工筋肉の形成を開始可能なことから、たとえば光造形型の3Dプリンタに組み込めば人工筋肉の光造形などが可能になることが将来期待でき、生体材料で駆動するマイクロロボットやソフトロボットの3Dプリント技術の基盤技術となる可能性が高い。
【今後の展開】
本研究で開発された人工筋肉は、現時点では形成・収縮が同時に起こり、かつ収縮は一回のみで用途も限定される。今後、制御用の分子システムを開発することにより、可逆または振動可能な人工筋肉を開発しマイクロロボットやソフトロボットへの実装を目指す。
図1.光照射による人工筋肉形成のコンセプト図
モータータンパク質の一種キネシンを遺伝子工学的に改変し、光照射によりキネシンがフィラメント状になるように設計(K456m13とCaMLMM)。キネシンフィラメントは自身の運動能により微小管を引っ張り、自己組織的に筋肉に似た収縮性の繊維を形成する。
図2. 人工筋肉の応用例
大きさ数ミリメートルのシリコンゴム製の微小構造の周囲に、光照射により人工筋肉を形成させ、その構造を駆動させた。右上)マイクログリッパ:光照射後に人工筋肉(オレンジ色)が形成し、20秒後にグリッパが閉じる。右下)昆虫型デバイス:人工筋肉により左右に動く。左上)ロボットアーム型デバイス。左中)微小歯車の組み立て。左下)細胞サイズの微小ビーズの集積。
【研究資金】
・新エネルギー・産業技術総合開発機構(NEDO)「次世代人工知能・ロボット中核技術開発」(JPNP15009)
・日本学術振興会(JSPS)科研費 新学術領域研究「分子ロボティクス」(JP24104004)
・日本学術振興会(JSPS)科研費 基盤研究(B)(JP18H01407)
【論文情報】
雑誌名 | Nature Materials |
題名 | "A printable active network actuator built from an engineered biomolecular motor" |
著者名 | Takahiro Nitta, Yingzhe Wang, Zhao Du, Keisuke Morishima and Yuichi Hiratsuka* |
掲載日 | 2021年4月19日(英国時間)にオンライン版に掲載 |
DOI | 10.1038/s41563-021-00969-6 |
【用語解説】
[*1] モータータンパク質(motor protein)
生体の動きに関与するタンパク質の総称。大きさ数ナノメートル〜数十ナノメートルの分子で、代表的なものとして筋収縮に働くミオシン、細胞内の物質輸送に働くキネシン、鞭毛運動等に働くダイニンなどが挙げられる。これらは繊維状のタンパク質であるアクチンまたは微小管の上を生体のエネルギーであるATP(アデノシン三リン酸)の加水分解エネルギーを利用して一方向に動く。
[*2] 微小管(microtubule)
細胞骨格を構成する繊維状タンパク質のひとつ。大きさ数ナノメートルのチューブリンが筒状に重合することにより直径25ナノメートルの管状の繊維を形成する。キネシンやダイニンなどモータータンパク質が動くレールとして働く。
令和3年4月20日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/04/20-1.html先端科学技術研究科の桶葭准教授が文部科学大臣表彰 若手科学者賞受賞
先端科学技術研究科の桶葭准教授が文部科学大臣表彰 若手科学者賞受賞
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科 環境・エネルギー領域の桶葭 興資(おけよし こうすけ)准教授が、令和3年度科学技術分野の文部科学大臣表彰 若手科学者賞を受賞することが決定し、文部科学省から4月6日に発表されました。
*文部科学省の発表はこちら
文部科学大臣表彰とは、科学技術に関する研究開発、理解増進等において顕著な成果を収めた者について、その功績を讃え贈られるものです。 今回の受賞は、桶葭准教授の下記の業績が評価されたことによります。
若手科学者賞
■受賞者 先端科学技術研究科 准教授 桶葭 興資
■業績名 「水と共生する生体模倣高分子材料に関する研究」
【業績】 持続可能な社会の構築に向けて、エネルギーやマテリアルの革新が緊急課題にある21世紀の今日、数十億年の歴史を持つ生体組織が水と歩んだ進化に学ぶものは大きい。 氏は、ネイチャーテクノロジーに根差した観点から、高分子を用いた種々の生体模倣材料を創製した。高分子網目に光エネルギー変換回路の機能分子を組み込むことで、水素生成の高効率化を実現し、水分解の光化学反応を起こす反応場として人工光合成ゲル「人工葉緑体」を提唱した。一方で、自然界の乾燥環境がつくる水の蒸発界面に着目して「界面分割現象」を発見した。これを利用し、生体高分子の多糖を再組織化させる独自技術を切り拓いた。 本研究成果は、水と共に自己組織化するマテリアルの科学技術、ひいては生物多様性を育む地球社会に貢献すると期待される。 |
【主要論文】
・「Polymeric design for electron transfer in photoinduced hydrogen generation through coil-globule transition.」Angewandte Chemie International Edition 58, 7304 (2019).
・「Emergence of polysaccharide membrane walls through macro-space partitioning via interfacial instability.」Scientific Reports 7, 5615 (2017).
令和3年4月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/04/06-1.htmlダイヤモンドを用いた広帯域波長変換に成功 ~新しい量子センシング技術の糸口に~

![]() ![]() ![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンドを用いた広帯域波長変換に成功
~新しい量子センシング技術の糸口に~
強い光と物質の相互作用に関する研究は、1960年にレーザーが開発されて以降、非線形光学分野として発展してきました。その中でも特に活発に研究されているのが高調波発生です。非線形光学結晶にレーザー光を照射した際に、その周波数の整数倍の光が放出される現象で、2倍の周波数の光が発生する場合を第二高調波発生、3倍の場合を第三高調波発生と呼びます。レーザー光の波長を変換する際などに用いられます。そして近年は、光共振器や光導波路などの光通信用技術としてダイヤモンド非線形光学が進展してきました。 本研究では、ダイヤモンドの表面近傍に窒素−空孔(NV)センターと呼ばれる欠陥を導入してダイヤモンド結晶の対称性を操作し、第二高調波、第三高調波発生など、広帯域の波長変換を行うことに成功しました。 この実験で波長変換の効率を評価したところ、第二高調波が第三高調波と同程度の高効率で生成されていました。その理由として、第二高調波がダイヤモンドの表面に極めて近い深さ約35nm(nmは10億分の1メートル)の領域で発生し、第三高調波の駆動力となっていることが明らかになりました。 また、このダイヤモンド中NVセンターの非線形光学効果により、波長1350~1600nmの赤外光が、波長450~800nmの可視~近赤外光にわたる広い帯域で波長変換でき、短い波長ほどその変換効率が高いことも判明しました。 ダイヤモンド中NVセンターによる第二高調波発生、すなわち電場振幅の二乗に比例する2次の非線形光学効果が可能となれば、ダイヤモンド結晶では今までできなかった電場による屈折率変調(電気−光学効果)なども可能となり、ダイヤモンド非線形光学の新領域を開拓できます。さらに、第二高調波発生や電気−光学効果などを利用した新しい量子センシングの開発への貢献も期待されます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 先端科学技術研究科 応用物理学領域
安 東秀准教授
【研究の背景】
天然のダイヤモンド単結晶は、地球のマントルにおいて超高温かつ超高圧下で生成されます。高純度のダイヤモンド単結晶は希少で高価なため、産業応用は限られていました。しかし、20世紀中頃から、不純物濃度が極めて低い高純度ダイヤモンド単結晶が人工的に安価に作製できるようになり、エレクトロニクスや光学分野で応用されるようになりました。
高純度ダイヤモンド単結晶は結晶学的に対称性が高く、空間反転対称性を持つ(対称点を中心に結晶を反転させると結晶構造が重なる)ため、非線形光学の観点では2次の非線形感受率注1)がゼロとなり、2次の非線形光学効果が発現しません。そのため、光学分野でのダイヤモンドの研究開発は、光カー効果注2)や2光子吸収注3)など、もっぱら3次の非線形光学効果を基に光共振器や光導波路に関する研究が行われてきました。応用上でも重要である2次の非線形光学効果の研究はほとんど行われて来なかったのです。しかし、最近の研究で、高純度ダイヤモンド単結晶に窒素−空孔(Nitrogen-Vacancy: NV)センター注4)と呼ばれる格子欠陥を導入することにより、欠陥準位を介したマイクロ波による発光制御が可能になり、この原理を用いた量子センシング注5)の研究が活発になっています。
今回、本研究チームは、高純度ダイヤモンド単結晶の表面近傍にNVセンターを導入してダイヤモンド単結晶の対称性を操作し、第二高調波注6)および第三高調波の発生について研究しました。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ赤外域の波長で瞬く超短パルスレーザー注7)を、NVセンターを導入した高純度ダイヤモンド単結晶に照射し、表面近傍から発生した第三高調波に加えて、第二高調波を世界で初めて観察することに成功しました。
具体的には、波長1350nmの赤外パルスレーザー光を励起光として照射すると、第二高調波が1/2波長の約675nmに、また第三高調波が1/3波長の約450nmに発生することが明らかになりました(参考図1)。この時、レーザーを照射されたダイヤモンド単結晶は紫色(赤色と青色の混成色)に発光していることが分かります(参考図1挿入写真)。
従来のダイヤモンド中NVセンターの研究では、連続発振グリーンレーザー(波長532nm)を照射した際に、NVセンターの欠陥準位を介した発光が、約660nmを中心とした波長領域に現れることが分かっています。このような既知の発光である可能性を取り除き、今回観測された約675nmの発光が第二高調波発生であることを確かめるため、励起レーザーの波長を掃引して波長変換特性を調べました。その結果、励起レーザーの波長の変化に応じて、第二高調波だけでなく第三高調波の発光波長が逐次変化することが確かめられました(参考図2)。これにより、今回観測された発光は、常に660nmを中心とした波長領域に観測される従来の欠陥準位を介した発光ではなく、欠陥により結晶の対称性が崩れることによる2次の非線形光学効果、すなわち第二高調波発生であることが明らかになりました。さらに、その変換効率は短波長ほど大きくなり、最高で5x10-5に達することが分かりました。今回、第二高調波がダイヤモンドの表面近傍約35nmの非常に薄い領域から発生していることを鑑みても、極めて高い変換効率であることが分かります。
また、励起レーザーの偏光角を回転させることで、第二高調波と第三高調波の発光強度の変化を調べたところ、それらの偏光角依存性はNVセンターを導入する前の高純度ダイヤモンドのパターンとは明らかに異なることが分かりました(参考図3)。特に、NVセンターを導入したダイヤモンドでは、第二高調波と第三高調波のパターンが若干の回転を除けば非常に似ていることが分かり(参考図3bとc)、これらのことから、第三高調波は第二高調波が駆動力になっていることも示唆されました。
【今後の展開】
本研究チームは、2次の非線形光学効果である第二高調波発生や電気−光学効果を用いた量子センシング技術を深化させ、最終的にダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングの研究を進めています。今後は、フェムト秒パルスレーザー技術が持つ高い時間分解能と、走査型プローブ顕微鏡注8)が持つ高い空間分解能とを組み合わせ、ダイヤモンドのNVセンターから引き出した2次の非線形光学効果が、電場や温度のセンシングに応用できることを示していきます。さらに、今回の成果は、ダイヤモンドNVセンターにより、2次の非線形光学効果のみならず、4次、6次以上の高次の非線形光学効果の開発に貢献することが期待されます。
【参考図】
図1.本研究に用いた実験手法と結果
NVセンターを導入したダイヤモンドに波長1350nmの励起光を照射し、その発光スペクトルを分光器で測定すると、波長約675nmに第二高調波(SHG)が、また約450nmに第三高調波(THG)が発生することが分かった。これは、エネルギーω(波長にすると1350nm)の2光子からエネルギー2ω(波長にすると675nm)の第二高調波がNVセンターによる結晶の対称性の崩れから発生していることに相当する(挿入図)。
図2.変換効率の発光波長依存性
第二高調波(SHG)と第三高調波(THG)の変換効率を励起レーザーの波長を変化させて記録した。
図3.発光強度の励起光偏光角依存性とエネルギーダイヤグラム
高純度ダイヤモンド(Pure diamond)(a)およびNVセンターを導入したダイヤモンド(NV diamond)において、第二高調波(SHG) (b)と第三高調波(THG) (c)の発光強度の励起光偏光角依存性をプロットしたもの。(d) 第二高調波発生から第三高調波発生へ向かうエネルギーダイヤグラムを示す。
【用語解説】
注1) 非線形感受率
物質の光への応答は、パルスレーザー光のように光電場振幅が大きくなると振幅に比例せず、非線形な非線形光学効果となる。非線形感受率は非線形光学効果の大きさを特徴づける光学定数である。
注2) 光カー効果
媒質中に光が入射した際に、媒質の屈折率が光強度に比例して変化する現象で、1875年にJohn Kerrによって発見された3次の非線形光学効果(電場振幅の三乗に比例する効果)の一種である。
注3) 2光子吸収
二つの光子が同時に媒質に吸収される現象で、3次の非線形光学効果の一種である。
注4) 窒素−空孔(NV)センター
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)センター」は、ダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NVセンターには、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NVセンターを持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
注5) 量子センシング
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
注6) 第二高調波
二つの同じ周波数(波長)を持つ光子が非線形光学結晶に入射すると、入射した光子の2倍の周波数(半分の波長)の光を発生する現象のこと。2次の非線形光学効果(電場振幅の二乗に比例する効果)の一種である。
注7) 超短パルスレーザー
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注8) 走査型プローブ顕微鏡
小さいプローブ(探針)を試料表面に近接させ、探針を表面に沿って動かす(走査する)ことで、試料の原子レベルの表面構造のみならず、温度や磁性などの物理量も画像化できる顕微鏡である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)による支援を受けて実施されました。
【掲載論文】
題名 | Second-harmonic generation in bulk diamond based on inversion symmetry breaking by color centers. (色中心による反転対称性の破れに基づくバルクダイヤモンドの第二高調波発生) |
著者名 | Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase |
掲載誌 | ACS Photonics |
掲載日 | 2021年3月18日 |
DOI | 10.1021/acsphotonics.0c01806 |
令和3年3月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/03/18-1.htmlリチウムイオン2次電池の長期的耐久性の課題解決に資する超高耐久性バインダーを開発

リチウムイオン2次電池の長期的耐久性の課題解決に資する
超高耐久性バインダーを開発
ポイント
- リチウムイオン2次電池の長期的耐久性の課題の解決に資する超高耐久性負極バインダーの開発に成功した。
- 1700回の充放電サイクルを経ても95%の容量維持率を示した。
- 本バインダー材料を用いた系ではPVDF系で顕著であった電解液の電気分解が抑制された。
- 充放電サイクル後に、本バインダー材料を用いた電池系ではPVDF系と比較して大幅に低い(45%減少)内部抵抗が観測された。
- 各種電気化学測定により、負極内部のリチウムイオンの拡散性に優れていることが分かった。本バインダー系ではイオンの拡散係数がPVDF系を15%上回った。
- ヤング率、引張強度のいずれにおいても本バインダーはPVDFと比較して大幅に優れた力学的強靭さを示した。
- 電極―電解質界面抵抗を低減できる高耐久性バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の先端科学技術研究科 物質化学領域の松見 紀佳教授、環境・エネルギー領域の金子 達雄教授、バダム ラージャシェーカル講師、アグマン グプタ博士後期課程学生、アニルッダ ナグ元博士研究員は、リチウムイオン2次電池*1の耐久性を大幅に向上させる負極バインダー材料(図1)の開発に成功した。 リチウムイオン2次電池は、一般ユーザーが広く認識しているように充放電能力が経年劣化することが知られている。この問題は、EV用途を始めとする高付加価値製品においては更に深刻な課題となる。リチウムイオン2次電池の劣化要因は極めて多岐にわたるが、様々な電極内における副反応によるバインダーを含む電極複合材料の変性、電極/集電体の接着力の劣化が主要因の一つと考えられている。 本バインダー材料は、アセナフテキノンと1,4-フェニレンジアミンとを酸触媒の存在下で重縮合することにより合成した(図2)。 開発したリチウムイオン2次電池用バインダーは、長く検討されてきたポリフッ化ビニリデン(PVDF)と比較すると、LUMO*2,3が低い電子構造的特徴を有し(図3)、その結果として電解液の過剰な分解による厚い被膜形成を効果的に抑制した。 サイクリックボルタンメトリー*4後に見積もられたイオン拡散係数はPVDF系と比較して15%高い値となった。また、リチウム脱挿入ピークの電位差(オーバーポテンシャル)は本バインダー材料系においてPVDF系と比較して100mV減少し、より容易なリチウムイオンの拡散を支持する結果となった。充放電後の電池セルの界面抵抗*5も本バインダーにおいて大幅に低い値を示した(62Ω;PVDF系では110Ω)(図4)。 その結果として本バインダー高分子系では1735回の充放電サイクルを経ても95%の容量維持率を示し、非常に優れた耐久性が明らかとなった(図5)。 長期充放電後の負極のXPS測定より、バインダー材料由来の窒素原子に由来するピークが明瞭に観測されたことから、電極表面に形成されている被膜は極めて薄いことが示唆された。また、バインダー構造の一部が顕著にリチウムドープされていることも明らかとなった。長期充放電後の負極のSEM像では、PVDF系では500サイクル後に大きなクラックの形成と共に集電体から剥離した様子も観測されたが、本バインダー系では1735サイクル後にも僅かなクラックの形成が観測されるにとどまった。 なお、本研究はJST未来社会創造事業の支援を受けて実施された。 |
本成果は「ACS Applied Energy Materials」(米国化学会)オンライン版に2月17日に掲載された。
題目 | Bis-imino-acenaphthenequinone-Paraphenylene-Type Condensation Copolymer Binder for Ultralong Cyclable Lithium-ion Rechargeable Batteries |
著者 | Agman Gupta, Rajashekar Badam, Aniruddha Nag, Tatsuo Kaneko and Noriyoshi Matsumi |
DOI | 10.1021/acsaem.0c02742 |
【今後の展開】
セル構成や充放電条件を最適化し、最も優れた特性を有する蓄電デバイスの創出に結びつける。
更に異なる材料組成から成る高容量負極材料への適用を進めつつある。
電極―電解質界面抵抗を大幅に低減できる機能性高分子バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が見込まれる。
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 LUMO:
電子が占有していない分子軌道の中でエネルギー準位が最も低い軌道を最低空軌道(LUMO; Lowest Unoccupied Molecular Orbital)と呼ぶ。
*3 HOMO:
電子が占有している分子軌道の中でエネルギー準位が最も高い軌道を最高被占軌道(HOMO; Highest Occupied Molecular Orbital)と呼ぶ。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
*5 電極―電解質界面抵抗:
エネルギーデバイスにおいては一般的に個々の電極の特性や個々の電解質の特性に加えて電極―電解質界面の電荷移動抵抗がデバイスのパフォーマンスにとって重要である。交流インピーダンス測定を行うことによって個々の材料自身の特性、電極―電解質界面の特性等を分離した成分としてそれぞれ観測し、解析することが可能である。
令和3年3月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/03/01-1.htmlがん光細菌療法の新生

がん光細菌療法の新生
ポイント
- 高い腫瘍標的能を有し、近赤外光によって様々な機能を発現する光合成細菌の発見
- 当該細菌を活用したがん診断・治療技術の創出
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科物質化学領域の楊 羲研究員、博士前期課程学生の小松 慧、博士後期課程学生のラグー シータル、都 英次郎准教授らは、光合成細菌を使ってマウス体内のガン細胞の検出と治療を同時に可能にする技術の開発に成功した。 世界的にがんの罹患者数、死亡者数は増加している。体内の高精度ながん細胞検出技術ならびにがん細胞を根絶可能な治療法の開発は、がん医療における究極の目的である。 本研究では、低酸素状態の腫瘍環境内で高選択的に集積・生育・増殖が可能で、かつ生体透過性の高い近赤外レーザー光*1によって様々な機能を発現する非病原性の紅色光合成細菌*2を発見した(図1)。また、当該細菌の特性を活用することで体内の腫瘍を高選択的に検出し、標的部位のみを効果的に排除することが可能な "がん光細菌療法"という新しい概念・技術を創出することに成功した。 本研究で提案する概念・技術は、ナノ・マイクロテクノロジー、光学、微生物工学といった幅広い研究領域に貢献し、将来的に先進医療分野において世界の科学・技術をリード可能な革新的がん診断・治療法に成り得ると期待している。 本成果は、2021年2月15日にナノサイエンス・ナノテクノロジー分野のトップジャーナル「Nano Today」誌(Elsevier発行)のオンライン版に掲載された。なお、本研究成果は日本学術振興会科研費[基盤研究A、国際共同研究加速基金(国際共同研究強化)]の支援のもと行われたものである。 |
![]() 図1. がん光細菌療法の概念。NIR: 近赤外、FL: 蛍光、ROS: 活性酸素種、PA: 光音響。 |
【論文情報】
掲載誌 | Nano Today(Elsevier発行) |
論文題目 | Optically activatable photosynthetic bacteria-based highly tumor specific immunotheranostics |
著者 | Xi Yang, Satoru Komatsu, Sheethal Reghu, Eijiro Miyako* |
掲載日 | 2021年2月15日にオンライン版に掲載 |
DOI | 10.1016/j.nantod.2021.101100 |
【関連研究情報】
北陸先端科学技術大学院大学(JAIST)、先端科学技術研究科物質化学領域の都研究室では、近赤外レーザー光により容易に発熱するナノ材料の特性(光発熱特性)に注目し、これまでに、"三種の神器"を備えた多機能性グラフェン(2020年4月23日 JAISTからプレス発表)、ナノテクノロジーと遺伝子工学のマリアージュ(2020年8月17日 JAISTからプレス発表)などの光がん療法を開発している。
【用語解説】
*1 近赤外レーザー光
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
*2 紅色光合成細菌
近赤外光を利用して光合成を行う細菌。水の分解による酸素発生は行わない。
令和3年2月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/02/16-1.html