研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。ダイヤモンド中に10兆分の1秒で瞬く磁化を観測 ~超高速時間分解磁気センシング実現に期待~
![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド中に10兆分の1秒で瞬く磁化を観測
~超高速時間分解磁気センシング実現に期待~
| 磁石や電流が発する磁気の大きさと向きを検出するデバイスや装置を磁気センサーと呼びます。現在では、生体中における微弱な磁気から電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの応用分野が広がりつつあります。磁気センサーの中で最も高感度を誇るのが、超伝導量子干渉素子(SQUID)で、1 nT(ナノテスラ、ナノは10億分の1)以下まで検出可能です。また、ダイヤモンドの点欠陥である窒素−空孔(NV)センターと走査型プローブ顕微鏡(SPM)技術を組み合わせることで、数十nm(ナノメートル)の空間分解能を持つ量子センシングが可能になると期待されています。 このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきましたが、時間分解能はマイクロ秒(マイクロは100万分の1)の範囲にとどまっています。このため、磁場を高い時間分解能で測定できる新しい磁気センシング技術の開発が望まれていました。 本研究では、表面近傍にNVセンターを導入したダイヤモンド単結晶に超短光パルスを照射し、それにより10兆分の1秒で瞬く結晶中の磁化を検出することに成功しました。検出感度を見積もると、約35 mT(ミリテスラ、ミリは1000分の1)となりました。また、計測の時間分解能は、超短光パルスにより磁化を発生させたことにより、約100フェムト秒(フェムトは1000兆分の1)となりました。 本研究成果により、NVセンターでは従来困難だった高速に時間変化する磁気のセンシングも可能であることが示され、高い時間分解能と空間分解能を兼ね備えた新たな磁気センシングの開拓につながることが期待されます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀准教授
【研究の背景】
磁石や電流が発する磁気の大きさと向きを検出するのが磁気センサーです。現在では、生体中における微弱な磁気から、電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの研究開発が進んでいます。磁気センサーには、比較的簡便なトンネル磁気抵抗素子注1)によるものや、超伝導体のリングを貫く磁束の変化を電流で読み取る超伝導量子干渉素子(SQUID)注2)などがあります。その中でも最高感度を誇るのがSQUIDで、1 nT(ナノテスラ)以下の磁場をも検出できるほどです。しかし、超伝導体を用いるSQUIDは電気回路や極低温などの高度な取扱いを要します。このため、近年では、ダイヤモンドの点欠陥である窒素−空孔(NV)センター注3)を用いた磁気センサーの開発が進んでいます。特に、負に帯電したNVスピン状態を利用した全光読み出しシステムが、室温でも動作する量子磁力計として注目されています。また、NVセンターの利用と、走査型プローブ顕微鏡(SPM)注4)技術を組み合わせることで、数十nmの空間分解能注5)で量子センシング注6)を行うことが可能になります。
このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきました。その一方で、時間分解能注7)はマイクロ秒の範囲にとどまっています。このため、磁場をより高い時間分解能で測定できる新しい量子センシング技術の開発が望まれていました。
そうした中、NVセンターを高濃度に含むダイヤモンド単結晶膜において、入射された連続発振レーザーの直線偏光が回転することが分かり、ダイヤモンドにおける磁気光学効果が実証されました。NVセンターに関連する集団的な電子スピンが磁化として機能することが示唆されていますが、この手法では時間分解能を高めることができません。他方、逆磁気光学効果、すなわち光パルスで磁気を作り出すという光磁気効果に対するダイヤモンドNVセンターの研究については、行われてきませんでした。しかし、この光磁気効果を開拓することは、ダイヤモンドの非線形フォトニクスの新しい機能性を追求する上で非常に重要です。また、ダイヤモンドNVセンターのスピンを用いた非接触かつ室温動作の量子センシング技術を、高い時間分解能という観点でさらに発展させるためにも、光磁気効果の開拓が必要だと考えられます。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注8)を円偏光にして、NVセンターを導入した高純度ダイヤモンド単結晶に照射し、結晶中に発生した超高速で生成・消滅する磁化を検出することに成功しました。
実験ではまず、波長800nmの近赤外パルスレーザー光をλ/4波長板により円偏光に変換し、NVセンターを導入した高純度ダイヤモンド単結晶に励起光として照射しました。その結果、磁気光学効果の逆過程(光磁気効果)である逆ファラデー効果注9)により、ダイヤモンド中に磁化を発生できることを見いだしました(参考図1挿入図)。この磁化が生じている極短時間の間に直線偏光のプローブ光を照射すると、磁化の大きさに比例してプローブ光の偏光ベクトルが回転します。これを磁気光学カー回転と呼びます。磁気光学カー回転の時間変化はポンプープローブ分光法で測定しました(図1)。測定の結果、逆ファラデー効果で生じるダイヤモンド中の磁化は、約100フェムト秒の応答として誘起されることが確かめられました(図2左)。NVセンターを導入していないダイヤモンドでも磁化は発生しますが、導入すると、発生する磁化が増幅されることも明らかになりました(図2右)。
次に、励起レーザーの偏光状態を直線偏光から右回り円偏光、そして直線偏光に戻り、次に左回り円偏光と逐次変化させることで、波長板の角度とカー回転角(θ )の関係を調べました。すると、NVセンターを導入する前の高純度ダイヤモンド単結晶では、逆ファラデー効果を示すsin 2θ 成分および非線形屈折率変化である光カー効果を示す sin 4θ 成分のみが観測されました。一方、NVセンターを導入したダイヤモンドでは、それらの成分に加えて、新規にsin 6θ の成分を持つことが明らかになりました(図3a)。さらに、励起光強度を変化させながら各成分を解析したところ、sin 2θ 成分およびsin 4θ 成分は励起光強度に対して一乗で増加しますが(図3b,c)、新規のsin 6θ の成分の大きさは励起光強度に対して二乗で変化することが分かりました(図3d)。これらのことから、 sin 6θ の成分は、NVセンターが有するスピンが駆動力となり、ダイヤモンド結晶中に発生した非線形な磁化(逆コットン・ムートン効果注10))であることが示唆されました。また、この付加的で非線形な磁化により、図2で観測された磁化の増幅が説明できました。この非線形な磁化による磁場検出感度を見積もると、約35 mT(ミリテスラ)となりました。SQUIDの検出感度には及びませんが、本手法では約100フェムト秒という高い時間分解能が得られることが示されたといえます。
【今後の展開】
本研究チームは、今回観測に成功した光磁気効果を用いた量子センシング技術をさらに高感度化し、ダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングに深化させることを目指して研究を進めていきます。今後は、ダイヤモンドNVセンターが駆動力となった逆コットン・ムートン効果を磁気センシングに応用することで、先端材料の局所磁場やスピン流を高空間・高時間分解能で測定することが可能となります。さらに、パワーデバイス、トポロジカル材料・回路、ナノバイオ材料など実際のデバイスの動作条件下で、例えば磁壁のダイナミクスや磁化反転などデバイス中に生じるダイナミックな変化を、フェムト秒の時間分解能で観察できることになり、先端デバイスの高速化や高性能化への貢献が期待されます。
【参考図】

| 図1 本研究に用いた実験手法 パルスレーザーから出たフェムト秒レーザー光はビームスプリッタでポンプ光とプローブ光に分割され、それぞれ波長板と偏光子を通過した後、ポンプ光は光学遅延回路を経由した後レンズで試料に照射される。プローブ光も同様に試料に照射された後、偏光ビームスプリッタにより分割されて二つの検出器で光電流に変換される。その後、電流増幅された後、デジタルオシロスコープで信号積算される。右上の挿入図は、逆ファラデー効果の模式図を示し、右回り(σ+)または左回り(σ-)の円偏光励起パルスによりダイヤモンド結晶中に上向き(H+)または下向きの磁化(H-)が生じる。なおデジタルオシロスコープでは、下向きの磁化が観測されている。 |

| 図2 高純度ダイヤモンド(NVなし)およびNVセンターを導入したダイヤモンド(NVあり)における時間分解カー回転測定の結果。赤色および青色の実線はそれぞれ、右回り円偏光、左回り円偏光により励起した実験結果を示す。 |

| 図3 NVセンターを導入したダイヤモンドにおけるカー回転の解析結果 (a) 下図(青丸)はカー回転角の波長板の角度(θ )に対するプロットである。黒い実線はCsin 2θ + Lsin 4θ による最小二乗回帰曲線(フィット)を示す。上図(赤丸)は下図の最小二乗回帰の残差を示す。太い実線はFsin 6θ による最小二乗回帰曲線(フィット)を示す。また最上部は偏光状態の変化(直線偏光→右回り円偏光→直線偏光→左回り円偏光→直線偏光)を表す。(b) Csin 2θ の振幅Cを励起フルエンスに対してプロットした図。 (c) Lsin 4θ の振幅Lを励起フルエンスに対してプロットした図。(d) Fsin 6θ の振幅Fを励起フルエンスに対してプロットした図。(b)と(c)の実線は一次関数によるフィットを示し、(d) の実線は二次関数によるフィットを示す。 |
【用語解説】
注1)トンネル磁気抵抗素子
2枚の磁性体の間に非常に薄い絶縁体を挟んだ構造(磁性体/絶縁体/磁性体)からなる素子。磁性体は金属であり、電圧を加えると、薄いポテンシャル障壁を通り抜けるという量子力学的なトンネル効果により絶縁体を介したトンネル電流が流れる。各磁性体の磁化の向きが平行な場合と反平行な場合で、素子の電気抵抗が大きく変化する。これをトンネル磁気抵抗効果という。よって、この効果を原理とした素子をトンネル磁気抵抗素子と呼ぶ。
注2)超伝導量子干渉素子(QUID)
超伝導体のリングにジョセフソン接合(二つの超伝導体間にトンネル効果によって超伝導電流が流れるようにした接合のこと)を含む素子を、超伝導量子干渉素子(SQUID)と呼ぶ。リングを貫く磁束が変化すると、ジョセフソン接合を流れるトンネル電流が変化するため、高感度の磁気センサーとして用いられる。
注3)窒素−空孔(NV)センター
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)センター」はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となる。NVセンターには、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。
注4)走査型プローブ顕微鏡(SPM)
微小な探針(プローブ)で試料表面をなぞることにより、試料の凹凸を観察する顕微鏡の総称である。細胞やデバイスなどにおいて、分子や原子などナノメートルの構造を観察するのに用いられる。代表的なものに原子間力顕微鏡(AFM)などがある。
注5)空間分解能
近い距離にある2つの物体を区別できる最小の距離である。この距離が小さいほど空間分解能が高く、微細な画像データの測定が可能になる。
注6)量子センシング
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
注7)時間分解能
観測するデータに識別可能な変化を生じさせる最小の時間変化量である。最小時間変化量が小さいほど時間分解能が高く、高速で変化する画像などのデータ識別が可能となる。
注8)超短パルスレーザー
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注9)逆ファラデー効果
ファラデー効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは平行である。逆ファラデー効果はこれとは逆に、円偏光したレーザー光を物質に入射することで、入射した方向に平行に磁化が生じる現象のことをいう。磁性体に限らず、あらゆる物質で生じる非線形光学過程である。
注10)逆コットン・ムートン効果
コットン・ムートン効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に、光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは垂直である。逆コットン・ムートン効果は、逆に、磁界が印可された物質に直線偏光のレーザー光を入射した際に、入射した方向に垂直に磁化が生じる現象であり、磁性体などで生じる高次の非線形光学過程である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング(JPMJCR1875)」(研究代表者:長谷 宗明)、および独立行政法人 日本学術振興会 科学研究費補助金「サブサイクル時間分解走査トンネル顕微鏡法の開発と応用」(研究代表者:重川 秀実)による支援を受けて実施されました。
【掲載論文】
| 題 目 | Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals. (ダイヤモンド結晶中の窒素空孔センターが誘起する超高速光磁気効果) |
| 著者名 | Ryosuke Sakurai, Yuta Kainuma, Toshu An, Hidemi Shigekawa, and Muneaki Hase |
| 掲載誌 | APL Photonics |
| 掲載日 | 2022年6月15日(現地時間) |
| DOI | 10.1063/5.0081507 |
令和4年6月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/06/16-1.html令和3年度地域連携事業 宮竹小学校の児童が来学 -附属図書館・JAISTギャラリー見学&理科特別授業-
2月4日(金)、能美市立宮竹小学校の3年生21名が附属図書館の見学やJAISTギャラリーでのパズル体験を行いました。本棚に並ぶ多くの図書や、貴重図書室の『解体新書』(杉田玄白著)や『アトランティコ手稿』(レオナルド・ダ・ヴィンチ著)を目にし、本学職員の解説を熱心に聞き入っていました。
また、実際に触って解いて遊ぶことができるパズルの数々に興味津々な様子で、本学の学生が解説しながらパズルを解く実演では、多くの児童が積極的に質問する様子が見られました。
2月24日(木)には、同校の4年生15名が、理科の特別授業を受けました。特別授業では、ナノマテリアルテクノロジーセンターの赤堀准教授(応用物理学領域)及び木村技術専門職員が講師となり、液体窒素及び液体酸素を用いた様々な科学実験を行いました。
子供たちは、酸素や窒素、空気などの気体が入った風船を液体窒素で冷やしたときの反応の違いや、液体窒素や液体酸素によって、花やスーパーボール、線香などの身近な物が化学反応を起こす様子を不思議そうに観察していました。
今回の特別授業は科学技術の世界に触れることのできる貴重な機会となりました。

貴重図書室を見学する3年生
(附属図書館)

JAISTギャラリーでのパズル実演

風船を用いた科学実験を
見つめる4年生
令和4年2月25日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/02/25-2.htmlリチウムイオン2次電池に高容量化と耐久性を容易にもたらす新型負極活物質(β-シリコンカーバイド系複合材料)の開発
リチウムイオン2次電池に高容量化と耐久性を容易にもたらす
新型負極活物質(β-シリコンカーバイド系複合材料)の開発
ポイント
- リチウムイオン2次電池の高容量化のためシリコン系負極が注目されているが、シリコン粒子の大きな体積膨張・収縮等の問題によって、安定した充放電が困難となっている。
- リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている閃亜鉛鉱型構造を有するβ-シリコンカーバイド/窒素ドープカーボン複合材料の簡易合成法を開発し、リチウムイオン2次電池用負極活物質として検証した。
- 合成した活物質を用いたアノード型ハーフセルでは1195mAhg-1の放電容量を300サイクルまで示し、本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても、高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
- 高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)、先端科学技術研究科 物質化学領域の松見 紀佳教授、バダム ラージャシェーカル講師、並びに東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程)のグループは、リチウムイオン2次電池*1の安定な高容量充放電を可能にする新規負極活物質の開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、近年、従来型負極であるグラファイトよりも大幅に大きな理論容量を示すシリコン系負極が多大な関心を集めている。一方で、シリコン粒子は充放電時の体積膨張・収縮が極めて大きく、充放電の際の粒子の破断や界面被膜の破壊、集電体からの剥離などの多様な問題により、一般に高容量を安定に発現することが非常に困難となっている。このような状況を改善するために、特殊なバインダー材料の開発などのアプローチが本研究グループも含め国内外において検討されてきた。
【研究の内容】
本研究においては、シリコン粒子に代わり、極めて安定な充放電サイクルを汎用のバインダー材料使用時においても示すシリコンカーバイド系活物質を開発した。ダイヤモンド型構造を有するシリコンにおいては、リチウム脱挿入に伴う大幅な体積膨張・収縮は避けがたいものであるが、閃亜鉛鉱型構造の無機化合物においては、リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている。その挙動にヒントを得つつ、閃亜鉛鉱型構造を有するβ-シリコンカーバイドと窒素ドープカーボン*2との複合材料を合成し、新規リチウムイオン2次電池用負極活物質として検証した。
合成法としては、(3-アミノプロポキシ)トリエトキシシランに水溶液中でアスコルビン酸ナトリウムを加え、シリコンナノ粒子分散水溶液を作製した。その後pH8.5においてドーパミンを、引き続いてメラミンを加えてから遠心分離、乾燥し、600oCもしくは1050oCの二通りの条件で焼成した(図1)。
得られた材料について、HRTEM、HAADF-STEM、XPS、XRD、Raman分光法等により構造を確認した(図2)。HRTEMからは、炭素系マトリックスにβ-シリコンカーバイドの結晶が埋め込まれている様子が観測された。HAADF-STEM HRTEMからは、β-シリコンカーバイドの(111)面に相当する0.25 nmの面間距離が観測され、マトリックス内に指紋状に分布する様子が観測された(図2(c))。
次に、合成した活物質を用いて負極を構築し、アノード型ハーフセル*3(Li/電解液/β-SiC)を作製し各種電気化学的評価を行った。サイクリックボルタモグラム*4においては、シャープなリチウムインターカレーションのピークに加えて、シリコン負極の場合と形状は異なるものの0.58 Vのブロードなリチウム脱インターカレーションのピークを共に示した。
また、充放電挙動においては、1050oCの焼成処理により合成した活物質(MAD1050)を用いた系では1195 mAhg-1の放電容量を300サイクルまで示した(図3(b))。本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に2月16日(英国時間)に掲載された。
なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | Journal of Materials Chemistry A |
| 題目 | Zinc blende inspired rational design of β-SiC based resilient anode material for lithium-ion batteries |
| 著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年2月16日(英国時間) |
| DOI | 10.1039/D1TA08516F |


|
図2.(a,b)合成した活物質(MAD1050)のTEM像
(a)β-SiC粒子のHRTEM像、(c)β-SiC粒子のHAADF-STEM像 (d,e)赤色ボックス部位のFT/IFT、(f)面間距離プロファイル (g,h)黄色ボックス部位のFT/IFT、(i,j)緑色ボックス部位のFT/IFT |

|
図3.合成した各負極活物質を用いたアノード型ハーフセルの充放電特性(a/b/d)
及び比較データ(c;シリコン負極) |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*3 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/18-1.html学生の筑間さんと渡部さんが2021年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞
学生の筑間 弘樹さん(博士前期課程2年、物質化学領域、谷池研究室)と渡部 康羽さん(博士後期課程3年、生命機能工学領域、藤本研究室)が2021年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞しました。
北陸地区講演会と研究発表会は、毎年秋に、金沢大学、福井大学、富山大学、北陸先端科学技術大学院大学のいずれかの大学にて開催しています。特別講演のほか、ポスター発表があり、200~300名が参加しています。
今回、2021年度北陸地区講演会と研究発表会は、11月12日にオンラインにて開催されました。
■受賞年月日
令和3年11月16日
【筑間 弘樹さん】
■発表題目
触媒ナノ粒子の構造決定を目的としたニューラルネットワークポテンシャルの構築
■発表者名
筑間弘樹、高棹玄徳、BEHLER Jörg、谷池俊明
■研究概要
近年の計算機や第一原理計算の発展によって複雑な材料の高精度なシミュレーションが可能となった一方、第一原理計算の限界は物理化学的な直感や実験結果に基づいて初期構造を推定する経験的な過程にあった。この問題を解決するため、第一原理計算と遺伝的アルゴリズムを組み合わせた非経験的構造決定が試みられてきたが、第一原理計算手法の計算コストが構造決定の律速であった。本研究では、過去研究によって蓄積されたZiegler-Natta触媒一次粒子に関する第一原理計算データセットを用いて、第一原理計算を高精度に再現できるニューラルネットワークポテンシャル(NNP)を構築することで非経験的構造決定を高速に再現することに成功した。
■受賞にあたって一言
この度は、2021年度日本化学会北陸地区講演会と研究発表会におきまして、ポスター賞をいただけたことを光栄に思います。終始熱心なご指導を頂きました谷池俊明教授のご指導なしでは決して得られるものではなかったと思います。共同研究者である高棹玄徳さんには研究の方針や考察の方法など、細部にわたるご指導をいただきました。ゲッティンゲン大学のBEHLER Jörg教授には数々の適切なご助言、ご協力をいただきました。ここに感謝いたします。さらに、谷池研究室の皆様にこの場をお借りして心より御礼を申し上げます。
【渡部 康羽さん】
■発表題目
超高速RNA光架橋反応を用いた16S rRNA検出困難領域を標的とした新規FISH法の開発
■発表者名
渡部康羽、渡辺ななみ、藤本健造
■研究概要
生体内においてRNAは様々な高次構造を形成するため、核酸プローブの侵入を阻害していた。本研究では、複雑な高次構造を形成する大腸菌16S rRNAの検出困難領域を標的とした光操作法の開発を行った。複数の光架橋性核酸プローブを用いることにより、複雑な高次構造を有するRNAに対する光架橋反応を実現した。
■受賞にあたって一言
この度は、2021年度日本化学会北陸地区講演会と研究発表会におきまして、このような賞を頂けたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導いただいている藤本健造教授にこの場をお借りして心より御礼申し上げます。また、多くのご助言やディスカッションに乗って頂いた藤本研究室の皆様に深く感謝いたします。
令和3年11月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/11/25-1.html物質化学領域のBADAM講師が田中貴金属記念財団 萌芽賞を受賞
物質化学領域のBADAM, Rajashekar講師(松見研究室)が一般財団法人田中貴金属記念財団 萌芽賞を受賞しました。
田中貴金属記念財団は、貴金属に関する研究への助成を行い、貴金属の新分野を開拓醸成し、学術、技術ならびに社会経済の発展に寄与することを目的としています。
本助成金制度は、「貴金属が拓く新しい世界」へのさまざまなチャレンジを支援するため、1999年度から毎年実施されています。第22回目となる今回は、貴金属が貢献できる新しい技術や研究・開発に対して、あらゆる分野から研究を募集し、その結果、合計171件の応募があり、この中から合計26件の研究に対し、総額1,610万円の研究助成金を授与しています。
■受賞年月日
令和3年3月31日
■研究題目
水分解に適した効率的酸素発生触媒活性を有する強い金属―基盤相互作用を伴うIrO2系有機・無機ハイブリッド触媒
■受賞対象となった研究の内容
Dr Rajashekar Badam, has been working on various energy materials especially electrocatalysts for oxygen redox reactions for fuel cell and electrolyser applications to name a few. His passion to mitigate environmental issues lead to the research in green hydrogen production using water electrolysis. Water electrolysis is one of the cleanest ways to produce hydrogen. Oxygen evolution reaction (OER) at anode being kinetically and thermodynamically more demanding, need an efficient catalyst. IrO2 is the best-known catalyst which is stable in acidic medium but with high overpotential (~330 mV). Changing the morphology and electronic structure of IrO2 by alloying with other metals was found to reduce the overpotential but poor stability due to agglomeration of nanoparticles and leaching of alloying metal are the key problems to be answered. In this regard, they are working on a novel strategy of anchoring IrO2 nanopartlcles to electrochemically stable conducting polymer with coordination sites. The strong metal substrate interaction between IrO2 nanoparticles and high heteroatom content in the polymer lead to high durability and reduced overpotential making water electrolyser a viable method for green hydrogen production.
ラージャシェーカル バダム博士は様々なエネルギー関連材料、とりわけ電気化学触媒(燃料電池用の酸素還元触媒や水分解反応触媒)に注力した研究を行っています。グリーンな水分解反応など、環境問題の解決を指向した研究を進めています。水分解反応は水素を得るための最もクリーンな反応であり、アノード電極側での酸素発生反応が速度論的にも熱力学的にも技術課題になっています。IrO2は酸性条件でも安定ですが、高い過電圧を有しています。IrO2を他の金属と組み合わせることでモルフォロジーや電子構造を改変でき、過電圧を低下させることができますが、同時にナノ粒子の凝集や、合金触媒からの脱離が問題となります。この点に関して、彼らはIrO2を電気化学的に安定な導電性高分子中の配位子に配位させることに取り組んでいます。強い金属―基板相互作用がIrO2と高ヘテロ元素濃度を有するポリマー間で起こることは高い触媒の安定性と過電圧の低下につながり、水分解反応をグリーンな水素製造法として実現可能なものにすることにつながると期待しています。
■受賞にあたって一言
I would like to thank Tanaka Kikinzoku Memorial Foundation and the selection committee for bestowing me with this prestigious award. I would like to thank Professor Matsumi for all the guidance, Matsumi lab members and my family for the support. I take this opportunity to dedicate this award to the almighty God.
令和3年5月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/05/25-1.html応用物理学領域の麻生助教と環境・エネルギー領域の桶葭准教授の研究課題が旭硝子財団の研究助成に採択
公益財団法人 旭硝子財団の研究助成「物理・情報分野 研究奨励」に応用物理学領域 麻生 浩平助教、「化学・生命分野 若手継続グラント」に環境・エネルギー領域 桶葭 興資准教授の研究課題が採択されました。
旭硝子財団は、次世代社会の基盤を構築するような独創的な研究への助成事業を通じて、人類が真の豊かさを享受できる社会および文明の創造に寄与しています。
「研究奨励」プログラムでは、若手研究者による基礎的・萌芽的な研究が支援されます。また、「若手継続グラント」プログラムでは、過去3年間に同財団の「研究奨励」プログラムを終了した若手研究者の中から意欲と提案力のある将来有望な研究者が選抜され、研究が支援されます。
*詳しくは、旭硝子財団ホームページをご覧ください。
「物理・情報分野 研究奨励」
【研究者名】応用物理学領域 麻生 浩平助教
■採択期間
令和3年4月1日~令和5年3月31日
■研究課題
固体内イオン伝導の解明に向けた電子顕微鏡とデータ科学による動的解析
■研究概要
リチウムイオン電池では、充放電に伴って電池内部をリチウムイオンが移動していきます。しかし、イオンがどのように移動していくのかは未だによく分かっていません。そこで本研究では、ナノメートル程度の空間スケール、かつ従来よりも短い時間スケールでリチウムイオンのダイナミクスを可視化することを目指します。実験手法として、電池を動作させて電気特性を測定しながら電池の構造を観察する、オペランド電子顕微鏡法を用います。オペランド電子顕微鏡像は大量の画像からなる動画として得られるため、手動での解析は困難です。そこで、動画からイオンの移動に関わる情報のみを抽出するために、データ科学の手法を活用します。リチウムイオンは電池内部でどのように動いていくのかという問いに対して、これまでにない実験的な知見を与えられると期待しています。
■採択にあたって一言
旭硝子財団、ならびに選考委員の皆様に心から感謝いたします。本研究を進めるにあたり数々のご協力を頂きました研究室の方々、ナノマテリアルテクノロジーセンターの皆様、および共同研究者の皆様方に感謝申し上げます。
「化学・生命分野 若手継続グラント」
【研究者名】環境・エネルギー領域 桶葭 興資准教授
■採択期間
令和3年4月1日~令和6年3月31日
■研究課題名
多糖の非平衡環境下における時空間マター
■研究概要
ソフトマテリアルの散逸構造はシンプルな数式で表現されるが、過渡的現象の議論にとどまっており、材料化には困難を極めています。これに対し本研究では、多糖の非平衡環境下における界面現象を時空間的に解明します。これによって、生体組織の幾何学構造形成に倣ったマテリアルデザインが拓かれると同時に、高分子科学、コロイド科学、流体科学などを背景としたバイオミメティクス戦略の展開が期待できます。
■採択にあたって一言
採択頂き大変嬉しく存じます。旭硝子財団、および本助成の選考委員会の皆様に深く感謝申し上げます。また共同研究者の皆様、および研究室の皆様に深く感謝申し上げます。科学と技術の発展に貢献できる様、誠心誠意励んで参ります。
令和3年5月14日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/05/14-2.html応用物理学領域の麻生助教が中部電気利用基礎研究振興財団の研究助成に採択
応用物理学領域の麻生 浩平助教が公益財団法人 中部電気利用基礎研究振興財団の研究助成に採択されました。
中部電気利用基礎研究振興財団は電気の利用及びこれに関連する基礎的な技術に関する試験研究等に対する助成を行うことにより、電気の効果的な利用の拡大を図り、我が国経済の健全な発展と国民生活の向上に寄与することを目的としています。
■採択期間
令和3年4月1日~令和5年3月31日
■研究課題
リチウムイオン電池の充放電にともなうイオン伝導過程の電子顕微鏡解析
■研究概要
リチウムイオン電池は、充放電に伴って電池内部でリチウムイオンが移動していきます。しかし、物質中でイオンがどのように移動していくのかは未だによく分かっていません。そこで本研究では、ナノメートル程度の空間スケール、かつ従来よりも短い時間スケールでリチウムイオンのダイナミクスを可視化することを目指します。開発した手法を用いて、リチウムイオンの移動の仕方と、原子の並びの乱れといった結晶状態との関係解明に挑戦します。リチウムイオン電池にはどのような結晶状態が適しているのか、これまでにない実験的な知見を与えられると期待しています。
■採択にあたって一言
中部電気利用基礎研究振興財団および選考委員の皆様に心から感謝いたします。本研究を進めるにあたり数々のご協力を頂きました研究室の方々、ナノマテリアルテクノロジーセンターの皆様、および共同研究者の皆様方に感謝申し上げます。
令和3年3月26日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/03/26-1.html宮竹小学校の児童が来学 -本学がより身近になりました-
2月12日(金)、能美市立宮竹小学校の3年生15名が附属図書館の見学やJAISTギャラリーでのパズル体験を行いました。本棚に並ぶ多くの図書、貴重図書室の『解体新書』(杉田玄白著)や『アトランティコ手稿』(レオナルド・ダ・ヴィンチ著)を目にし、本学職員の解説に熱心に聞き入っていました。また、実際に触って解いて遊ぶことができるパズルの数々に興味津々な様子で、一生懸命にパズルを解いていました。
また、2月24日(水)に同校の4年生23名が理科特別授業を受けました。
特別授業では、ナノマテリアルテクノロジーセンターの赤堀准教授(応用物理学領域)及び木村技術専門職員が講師となり、十分な新型コロナウイルス感染症対策を行った上で、液体窒素を用いた様々な科学実験を行いました。
液体窒素によって、花やスーパーボール、乾電池などの身近な物が化学反応を起こす光景に、子供たちは目を輝かせて見入っていました。
今回の企画は、科学技術の世界に触れることのできるまたとない機会となりました。

3年生が貴重図書室を見学(附属図書館)

液体窒素を用いた科学実験を行う4年生
令和3年3月1日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/03/01-2.html科学技術振興機構(JST)「研究成果最適展開支援プログラム(A-STEP)」に3件が採択
科学技術振興機構(JST)の「研究成果最適展開支援プログラム(A-STEP)産学共同(育成型)」及び「研究成果最適展開支援プログラム(A-STEP)トライアウト」に本学から以下の3件の研究課題が採択されました。
A-STEPは、大学・公的研究機関等で生まれた科学技術に関する研究成果を国民経済上重要な技術として実用化することで、研究成果の社会還元を目指す技術移転支援プログラムで、大学等が創出する社会実装志向の多様な技術シーズの掘り起こしや、先端的基礎研究成果を持つ研究者の企業探索段階からの支援を、適切なハンズオン支援の下で研究開発を推進することで、中核技術の構築や実用化開発等の推進を通じた企業への技術移転を行います。
また、大学等の研究成果の技術移転に伴う技術リスクを顕在化し、それを解消することで企業による製品化に向けた開発が可能となる段階まで支援することを目的とし、研究開発の状況に応じて、リスクの解消に適した複数のメニューを設けています。
*詳しくは、JSTホームページをご覧ください。
「研究成果最適展開支援プログラム(A-STEP)産学共同(育成型)」
- 研究課題名:高感度FETと等温増幅法によるウイルス・病原菌センサー開発
- 研究課題名:分離回収可能なタンパク質凝集抑制ナノ構造体
- 研究概要:機能性タンパク質の凝集抑制高分子ナノ構造体を創生し、バイオ医薬品の製造効率の向上を目指すとともに、長期保存、安定化剤としての応用展開を目指す。バイオ医薬品は、製造工程において凝集などによる効率低下や長期保存性が問題となっている。我々は双性イオン高分子がタンパク凝集抑制などの安定化作用を示すことを報告してきている。本申請ではこの化合物の分子設計の最適化を行い、磁性ナノ粒子やナノゲルの様なナノ構造体とする事で、分離回収可能な保護デバイスを創出する。この高分子は、凝集してしまったタンパク質をリフォールディングする事も可能であり、応用面のみならず学術面からの重要性も高い。
- 採択にあたって一言:世界の医薬品の主流が低分子医薬品からバイオ医薬品へシフトしている中で、抗体医薬などの安定性の問題を解決するための凝集抑制高分子の開発を行っています。今回採択された研究課題では、添加した状態でタンパク質医薬品を安定化させ、必要な時には完全に分離回収できる安全かつ高性能な凝集抑制構造体を開発します。この成果により、これまで不安定で産業化できなかった効果の高いバイオ医薬品の開発やその長期保存技術に貢献したいと考えています。
「研究成果最適展開支援プログラム(A-STEP)トライアウト」
- 研究課題名:襲雷予測システムのためのグラフェン超高感度電界センサの開発
- 研究概要:雷の事故による世界の死者は年間2万4千人にのぼり、我が国の電気設備における雷被害額は年間2千億円にのぼっている。雷雲の接近により、地表では電界が発生し、変化する。従って、正と負の電界センシングが雷の予測に極めて重要である。既存の超小型電界センサは、極性判定ができないため、これまで、雷に伴う事故について、落雷後の分析はあるが、落雷前の検知は出来ていなかった。グラフェン電界センサは負の電界を検出することができ、超高感度化と正・負が実現できれば、襲雷を予測することができる。
- 採択にあたって一言:襲雷を予測するためには、ピンポイント性、リアルタイム性が要求されます。今回、グラフェン電界センサの超高感度化の研究を進め、音羽電機工業株式会社と共同で、学校、消防、自治体などに襲雷予測システムを設置し、地域社会の持続的な発展に貢献していきたいと思います。
令和2年11月20日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/11/20-1.html学生の米澤さんの論文がWiley社刊行Surface and Interface Analysis誌でTOP DOWNLOADED PAPER(2018-2019)の1つに選出
学生の米澤 隆宏さん(2020年3月博士後期課程修了、応用物理学領域、高村研究室)による、国際学術誌Surface and Interface Analysisに掲載された論文 "Atomistic study of GaSe/Ge(111) interface formed through van der Waals epitaxy" が、2018年1月~2019年12月の間に同誌に掲載された論文の中で、オンライン掲載後12ヶ月のダウンロード数において上位10%を記録したため、掲載直後に最も多く読まれた、immediate impactのある論文の1つとして認められました。
■選出された論文のタイトル
Atomistic study of GaSe/Ge(111) interface formed through van der Waals epitaxy
■著者
Takahiro Yonezawa, Tatsuya Murakami, Koichi Higashimine, Antoine Fleurence, Yoshifumi Oshima, and Yukiko Yamada-Takamura
■対象となった研究の内容
光デバイスや電子デバイス、スピントロニクスデバイス等への応用が期待される半導体層状物質のGaSeは従来、Se原子が三角柱型に配置された単位層構造のみを有すると考えられてきました。それに対して本研究では、分子線エピタキシー法によるGe基板上へのGaSe薄膜成長時に、従来報告例のない反三角柱型のSe原子配置をもつ単位層が基板との界面に局所形成されることを断面走査透過電子顕微鏡観察により明らかにしました。
■選出にあたっての一言
本研究の遂行にあたり熱心にご指導くださった応用物理学領域の高村由起子先生、大島義文先生、アントワーヌ・フロランス先生に心より感謝いたします。また、多くの技術的なご指導をしてくださったナノマテリアルテクノロジーセンターの村上達也様、東嶺孝一様にも深く感謝いたします。今後、この新たなGaSe相の生成機構や通常のGaSe相との構造の違いに起因した特異物性が解明されることにより、本成果がGaSe薄膜の、ひいては層状物質薄膜全体の成長技術の進展と応用可能性の拡大につながることを期待します。

令和2年5月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/05/25-1.html宮竹小学校の児童が来学 -本学がより身近になりました-
2月4日(火)、能美市立宮竹小学校の3年生24名がJAISTギャラリーや附属図書館の見学を行いました。実際に触って解いて遊ぶことができるパズルの数々や本棚に並ぶ多くの図書に興味津々な様子でした。
また、2月18日(火)に同校の4年生16名が理科特別授業を受けました。
特別授業では、ナノマテリアルテクノロジーセンターの赤堀准教授(応用物理学領域)及び木村技術専門職員が講師となり、液体窒素を用いた様々な科学実験を行いました。
液体窒素によって、花やスーパーボール、乾電池などの身近な物が化学反応を起こす光景に、子供たちは目を輝かせて見入っていました。
今回の企画は、科学技術の世界に触れるまたとない機会となりました。

3年生がパズルを体験(JAISTギャラリー)

液体窒素を用いた科学実験を行う4年生
令和2年2月20日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/02/20-1.html高分子の相転移を利用した人工光合成に成功-可視光エネルギーによる高効率な水素生成を達成-
高分子の相転移を利用した人工光合成に成功
-可視光エネルギーによる高効率な水素生成を達成-
ポイント
- 実際の光合成に習った光エネルギー変換システムの構築
- 高分子の可逆的相転移挙動を利用して高効率な水素生成に成功
|
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、先端科学技術研究科環境・エネルギー領域の桶葭興資講師らは東京大学大学院の吉田亮教授と共同で、電子伝達分子を持つ刺激応答性高分子を合成し、高分子の相転移によって電子伝達を加速させる人工光合成システムを構築した。
石油ショック以来、持続可能社会の実現に向けて人工光合成*1が注目を浴び、様々なシステムが考案されてきた。しかし、実際の葉緑体が持つ光合成システムにあるような、水分子との連動的な電子伝達組織の構築が未だ提案されてこなかった。これに対し本研究では、機能分子間の電子伝達に駆動力が生じるよう、高分子の相転移を利用した人工光合成システムを設計した。 まず、刺激応答性高分子*2のポリ(N-イソプロピルアクリルアミド)(poly(NIPAAm))*3に電子伝達分子ビオロゲン*4を導入すると、その酸化/還元*5状態によって高分子の相転移*6温度が異なることを見出した。この高分子poly(NIPAAm-co-Viologen) は一定温度下で酸化/還元変化により可逆的なコイル - グロビュール転移*7を伴い、加速的に電子伝達して水素を生成する。光エネルギーが与えられた際、光励起電子をビオロゲン分子が受けると、その周辺の高分子は疎水的となる。これが、界面活性剤で分散された触媒ナノ粒子近傍の疎水的な空間に潜り込み、電子を渡して水素生成する。実際、可視光エネルギーを用いた水素生成は、相転移温度付近で10%を超え、高い量子効率が達成された。 従来の溶液システムによる人工光合成では、液相中で機能性分子や触媒ナノ粒子が乱雑な分散状態のため電子伝達も乱雑となり、反応が進むにつれて分子凝集による機能低下が問題であった。これとは大きく異なり、粒子間に高分子が介在することで粒子凝集を抑制すると同時に、高分子の相転移によって電子伝達の加速が得られた。 高分子相転移現象は、ソフトアクチュエータ*8やドラッグデリバリーシステム*9の開発に広く利用されてきたが、今回の光エネルギー変換への利用は画期的である。本成果により、可視光エネルギーによる人工光合成システム「人工葉緑体」の構築が期待される。 ![]() 本成果は、4月25日付WILEY発行Angewandte Chemie International Edition (オンライン版) に掲載された。なお、本研究は科学研究費補助金などの支援を受けて行われた。 |
<今後の展開>
可視光エネルギーにより水を完全分解 (2H2O + hν → 2H2 + O2) する反応場として、高分子網目中に機能分子を配置した光エネルギー変換システムを構築することが期待される。
<論文情報>
| 掲載誌 | Angewandte Chemie International Edition (WILEY) |
| 論文題目 | Polymeric Design for Electron Transfer in Photoinduced Hydrogen Generation through a Coil-Globule Transition |
| 著者 | Kosuke Okeyoshi, Ryo Yoshida |
| 掲載日 | 2019年4月25日付、オンライン版 |
| DOI | 10.1002/anie.201901666 |
<用語解説>
*1. 人工光合成
光合成を人為的に行う技術のこと。自然界での光合成は、水・二酸化炭素と、太陽光などの光エネルギーから化学エネルギーとして炭水化物などを合成するものであるが、広義の人工光合成には太陽電池を含むことがある。自然界での光合成を完全に模倣することは実現していないが、部分的には技術が確立している。
*2. 刺激応答性高分子
温度やpHなど外部刺激に応答して可逆的に親・疎水性など物理化学的性質を変化させる高分子のこと。
*3. ポリ(N-イソプロピルアクリルアミド)
この高分子水溶液は、32度付近で下限臨界温度型の相転移挙動を示す。最も広く研究されている刺激応答性高分子。
*4. ビオロゲン
4,4'-ビピリジンの窒素原子上をアルキル化したピリジニウム塩のこと。農薬の他、生物学や光触媒反応、エレクトロクロミック材料などの研究で使用されている。
*5. 酸化/還元
酸化還元反応とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のこと。
*6. 相転移
ある系の相が別の相へ変わることを指す。熱力学または統計力学的において、相はある特徴を持った系の安定な状態の集合として定義される。
*7. コイル - グロビュール転移
分子鎖が広がったランダムコイル状態から凝集したグロビュール状態をとること。またその逆の状態変化のこと。今回の場合、高分子がランダムコイル状態で親水的、グロビュール状態で疎水的な性質を持つ。
*8. ソフトアクチュエータ
軽量で柔軟な材料が変形することによりアクチュエータとして機能する材料、素子、デバイスのこと。
*9. ドラッグデリバリーシステム
体内の薬物分布を量的・空間的・時間的に制御し、コントロールする薬物伝達システムのこと。
令和元年5月15日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/05/15-1.html宮竹小学校4年生を対象に理科特別授業を実施
1月29日(火)、能美市立宮竹小学校の4年生22名を対象に理科特別授業を実施しました。これは、児童に理科への関心をより深めてもらう取組として、同小学校から本学に対して企画の依頼があったものです。
特別授業では、ナノマテリアルテクノロジーセンターの赤堀准教授(応用物理学領域)及び木村技術専門職員が講師となり、液体窒素を用いた様々な科学実験を行いました。
液体窒素によって、花やスーパーボール、乾電池などの身近な材料が化学反応を起こす光景に、子供たちは目を輝かせて見入っていました。
また、特別授業終了後にはJAISTギャラリーの見学を行いました。実際に触って解いて遊ぶことができるパズルの数々に、子供たちは興味津々な様子でした。
今回の企画は、子供たちにとって、先端科学技術の世界に触れるまたとない機会となりました。

特別授業の様子

パズルで遊ぶ子供たち
平成31年2月1日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2019/02/01-1.html修了生の高橋さんが公益財団法人井上科学振興財団の第35回井上研究奨励賞を受賞
修了生の高橋 麻里さん(平成30年3月博士後期課程修了、物質化学領域・前之園研究室)が公益財団法人井上科学振興財団の第35回井上研究奨励賞を受賞しました。
井上研究奨励賞は、理学、医学、薬学、工学、農学等の分野で過去3年の間に博士の学位を取得した37歳未満の研究者で、優れた博士論文を提出した若手研究者に対し、公益財団法人井上科学振興財団より贈呈される名誉ある賞です。
第35回井上研究奨励賞においては、全国の大学から推薦された140名の優れた候補者の中から、厳正なる選考の結果40名に贈呈されます。贈呈式は2019年2月4日、東京都内にて開催される予定です。
■受賞年月日
平成30年12月6日
■博士論文題目
細胞小器官の高選択的磁気分離技術構築に向けた磁性-プラズモンハイブリッドナノ粒子の創製とオートファゴソームの単離への応用に関する研究
平成30年12月7日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2018/12/07-1.html宮竹小学校4年生を対象に理科の特別授業を実施
3月9日(金)、能美市立宮竹小学校の4年生28名に理科の特別授業を実施しました。これは、児童に理科への関心をより深めてもらう取組として、同小学校から本学に対して企画の依頼があったものです。
特別授業では、ナノマテリアルテクノロジーセンターの赤堀 誠志准教授(応用物理学領域)、木村 一郎技術専門職員及び仲林 裕司主任技術職員が講師となって、液体窒素を用いた科学実験を行いました。
液体窒素によって、花や乾電池などの身近な材料が化学反応を起こす光景に、子供たちは目を輝かせて見入っていました。子供たちにとって、先端科学技術の世界に触れるまたとない機会となりました。

木村技術専門職員による説明

液体窒素の実験風景
平成30年3月12日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2018/03/12-3.html修了生のRajashekar Badamさんと物質化学領域の松見教授らの論文がSpringer-Nature刊行のPolymer Journal誌のFront Coverに採択
修了生のRajashekar Badamさん(平成28年9月博士後期課程修了、物質化学領域・松見研究室)と物質化学領域の松見 紀佳教授らの論文がSpringer-Nature刊行のPolymer Journal誌のFront Coverに採択されました。
■掲載誌
Polymer Journal (Springer-Nature)
■著者
Rajashekar Badam、Raman Vedarajan、Noriyoshi Matsumi
■論文タイトル
3D-Polythiophene Foam on a TiO2 Nanotube Array as a Substrate for Photogenerated Pt Nanoparticles as an Advanced Catalyst for the Oxygen Reduction Reaction
■論文概要
燃料電池やリチウム―空気電池における律速段階として効率の改善が図られている酸素還元反応においては、炭素/白金系触媒を中心にした検討が進められている。しかし、炭素系材料の電気化学的安定性は概してあまり高いものではなく代替系の開発が期待されている。今回は二酸化チタンナノチューブ上にイオン液体をベクターとしてチオフェンを電解重合させることにより二酸化チタンナノチューブを鋳型としたハニカム状ポリチオフェンを生成させた。得られた有機・無機ハイブリッド電極上に犠牲試薬を用いない光還元法により白金ナノ粒子を生成させ、複合電極の酸素還元触媒活性について検討した。得られた材料は優れた酸素還元触媒活性を示し、インピーダンス測定結果の解析からとりわけ低い電極―電解質界面の電荷移動抵抗を有することが明らかとなった。
参考URL : https://www.nature.com/pj/volumes/50/issues/2
平成30年2月15日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2018/02/16-1.html


