研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。物質化学フロンティア研究領域の都准教授らの論文がAdvanced Science誌の扉絵に採択
物質化学フロンティア研究領域の都 英次郎准教授らの「阿吽の呼吸で癌を倒す!-灯台下暗し:最強の薬は腫瘍の中に隠されていた-」に係る論文が、Advanced Science誌の扉絵に採択されました。
なお、本研究は、科研費基盤研究(A)(23H00551)、科研費挑戦的研究(開拓)(22K18440)、科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Advanced Science, Volume 10, Issue20
扉絵掲載日:2023年7月26日
■著者
Yamato Goto, Seigo Iwata, Mikako Miyahara, Eijiro Miyako*
■論文タイトル
Discovery of Intratumoral Oncolytic Bacteria Toward Targeted Anticancer Theranostics
■論文概要
腫瘍組織から強力な抗腫瘍作用のある複数の細菌[A-gyo(阿形)、UN-gyo(吽形)、AUN(阿吽)と命名]の単離に成功しました。なかでもAUN(A-gyoとUN-gyoからなる複合細菌)は、様々な癌腫に対して高い抗腫瘍活性を示すだけでなく、近赤外光を照射すると、標的とする腫瘍内で強い蛍光を発現することが明らかになっています。
扉絵詳細:https://onlinelibrary.wiley.com/doi/10.1002/advs.202370131
論文詳細:https://onlinelibrary.wiley.com/doi/10.1002/advs.202301679

令和5年7月28日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/07/28-1.htmlサスティナブルイノベーション研究領域の高田助教が新化学技術推進協会 新化学技術奨励賞を受賞
サスティナブルイノベーション研究領域の高田 健司助教が公益社団法人新化学技術推進協会(JACI)の第12回新化学技術研究奨励賞を受賞しました。
JACIでは、産学官交流連携活動の一環として、新化学技術研究奨励賞を設けています。本奨励賞は、化学産業界が必要とする技術課題を設定し、その実現に貢献することができる若手研究者の独創的な萌芽的研究テーマを発掘・奨励する目的で毎年公募しています。
※参考:JACIホームページ
■受賞年月日
令和5年6月26日
■研究題目
「バイオアラミドの水溶化/水不溶化を利用したバイオコンポジット材料の創成」
■研究概要
本研究では、バイオ由来でありながら驚異的な力学強度を示す桂皮酸二量体由来のポリアミド(バイオアラミド)の水溶性をコントロールすることで他の水溶性樹脂と複合化(コンポジット化)して、さらに強い材料を作ることを目的としています。本研究の達成によってバイオ分子である桂皮酸や水溶性天然高分子をベースとした新しい材料への展開が期待できます。
■受賞にあたって一言
本研究課題に関して受賞できたこと大変光栄に存じます。新化学技術推進協会および本奨励賞の選考委員の皆様に深く感謝申し上げます。本研究成果により得られる材料が新時代のイノベーションを切り拓けるよう邁進してまいります。また、研究に関して多くのディスカッションとアドバイスをいただいた金子達雄客員教授はじめ、本研究提案のインスピレーションを与えていただいた研究室の皆様、および研究協力者の方々にこの場をお借りして厚く御礼申し上げます。
令和5年7月4日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2023/07/07-3.htmlサスティナブルイノベーション研究領域の大平教授の研究課題が「NEDO先導研究プログラム」に採択
サスティナブルイノベーション研究領域の大平 圭介教授の研究課題が、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の2023年度「NEDO先導研究プログラム」のエネルギー・環境新技術先導研究プログラムに採択されました。
NEDO先導研究プログラムは脱炭素社会の実現や新産業の創出に向けて、〔1〕エネルギー・環境分野(エネルギー・環境新技術先導研究プログラム)、〔2〕新産業創出に結びつく産業技術分野(新産業・革新技術創出に向けた先導研究プログラム)において、2040年以降(先導研究開始から15年以上先)の実用化・社会実装を見据えた革新的な技術シーズを発掘・育成し、国家プロジェクトを含む産学連携体制による共同研究等につなげていくことを目的として、先導研究を実施するものです。
NEDOは〔1〕および〔2〕について公募を実施し、応募件数139件中25件のテーマを採択しました。
*参考:国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)
■研究課題名
次世代型超高効率太陽光パネルの実現に向けた要素技術の研究開発
■研究テーマ名
リサイクル容易な曲面・超軽量結晶Si太陽電池モジュールの開発
■研究期間
2023年5月~2026年3月
■研究概要
本研究では、封止材を用いない、あるいは剥離可能な封止材を用いた新概念結晶Si太陽電池のモジュールの開発に取り組みます。モジュールに使用する各部材が接着されていないため、廃棄の際の分解・分別や、部材リサイクルが容易となります。さらに、耐荷重や形状の問題で設置が難しかった建材への太陽光発電導入につながるよう、軽量化と曲面加工が可能となるモジュールの実現も目指します。本研究は、京セラ、新潟大学、青山学院大学、岐阜大学と共同で実施します。
■採択にあたって一言
近未来に予測されている太陽電池モジュールの大量廃棄時代に備え、廃棄や部材リサイクルの問題への対応が急務となっています。しかし、廃棄・リサイクルに適した太陽電池モジュールの開発は、あまり活発に行われていません。本研究を通して、太陽電池モジュールの構造を根本から見直し、新たなスタンダードとなるようなモジュールを実現したいと思います。
令和5年5月18日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/05/17-1.html協調ロボットの未来:広範囲触覚・近接センシングの簡易な実現に成功
協調ロボットの未来:広範囲触覚・近接センシングの簡易な実現に成功
ポイント
- 周囲の環境や人に対する安全な動作を実現するための近接覚と、利用者に対して安心感を提供する触覚、2つの感覚を備えたセンシングロボットアームの開発に成功した。
- 広範囲なセンシング機能を備えていながら、複雑な配線がなく、シンプルかつ耐久性の高い設計を実現した。
- センシング装置におけるデジタルツインを構築することによって、データ駆動型のセンシング機能を備えることができ、Sim2Real[用語説明]の効果を高めることにも成功した。
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)人間情報学研究領域のホ アン ヴァン(Ho Anh Van)准教授は、視覚による触覚・近接検知装置を備えたロボットアームの開発に成功した。これにより、ロボットと人間とのインターフェースに関して、人工知能(AI)を活かした人間とCyber-Physical System (CPS) [用語説明]環境における、新たな価値を創出する研究につながることが期待される。 |
【研究の背景と目的】
これまでの産業用ロボットの考え方では、人間とロボットは作業領域が明確に分離されており、ロボットは人間の安全半径内に立ち入ることが許されなかった。これは、第一義的には人間を危険から守るためだが、一方で、産業用ロボットの安全性に関する技術・研究の発展を阻害していた側面がある。安全性の確保は、最低限のセンシング技術と簡易なフェイルセーフ機能で十分とされ、研究開発のリソースは、より製品の競争力を高めるためのロボットの高速化・高精度化に注ぎ込まれてきた。しかしながら、近年の我が国における労働力不足や長引くコロナ禍による新しい生活様式の中で、これまで人間の手で行ってきた作業をロボットで代替しようとする動きが急速に高まってきている。さらに、全ての人が健康的な生活を送ることができる社会を目指すSDGsの大きな流れが加わり、現在ロボット技術に人間との調和、つまりロボットが人間と共存し、さらに人間とコラボレーションすることが強く求められている。
例えば、ロボットが人間をサポートする技術として、アームで人間を支える介護ロボットでは、介護サービスの提供を受ける人間が安心感を得られる触覚センシングの活用が検討されている。触覚は、人間同士の触れ合いにおいては愛情や信頼、思いやりを伝える重要な感覚である。しかし、ロボットの触覚技術は長年研究されてきているが、視覚技術の研究と比較すると未だ応用例は極めて少ない。また、同時に周囲の人間や環境に対する安全性を確保するためには、ロボットが周辺状況を高い精度で検知する必要があるが、特に外付けのカメラを利用する場合に、アームや利用者によって遮蔽される領域が多く、アームの近接領域の検出が困難となっている。
このような問題点に鑑み、今回、利用者が安心感を得られる接触と、安全な動作を実現する近接の両方の感覚を兼ね備えたロボットアームの技術を提案した。本研究において実現される近触覚・接覚のセンシング技術では、人間を含む周囲の環境を認識し、自立的な判断行動が可能となるロボットアームを開発することで、衝突回避等の安全性だけではなく、接触が許容される状況の判断および接触を通じた安心感の提供といった機能を有する、人工知能(AI)を搭載した協働ロボットの実現を目指す(図1)。

図1:本研究の位置付け
【研究の内容】
本研究では、低コストかつシンプルな構造を有する柔軟な触覚装置と、人間との接触を即時に検知することで、人間の行動を推定しながら人間と調和するロボットを実現した。このロボットは、人間の皮膚を模した柔軟なスキン上の複数の接触点へ加えられた力を、ロボットアームの両端に設置されたカメラが、スキンの変形の状態をリアルタイムで測定する技術によって実現した。さらに、透明なシリコンゴムと薄い柔軟な高分子分散液晶(PDLC)フィルムを組み合わせることで、柔軟なスキンの透明性をアクティブに切り替えることが可能となった(図2)。利用するPDLCフィルムは、外部から小さな電圧を印加することにより、透明/不透明を切り替えることができる。この透明/不透明の切り替えでは、近接覚と触覚の二つのモードを備え、またそのモードをシームレスに切り替えることができる。

図2:設計概念
(図2)
(右)近接覚モード(PDLCが透明):スキン内部の2台のカメラは、スキン近傍の外部オブジェクトを検知できる。
(左)触覚モード(PDLCが不透明):これまでの研究成果と同様、2台のカメラが接触または相互作用下でのスキンの歪みを検知し、触覚または力のセンシングが可能となる。
本研究で使用したロボットアームは、柔軟なスキンの内側に格子状のマーカーを備え、スキン内部に2台の小型カメラを配置している。スキンの透明性の能動的な切替えにより、近接覚と広範囲の触覚をセンシングする独創性の高い手法である。圧力センサを用いずカメラによるマーカーの変位から外力を算出することから、配線の複雑さやオクルージョン (光学遮蔽)などをほぼ完全に無くすことに成功しており、高いセンシング精度と耐久性を実現した。さらに、各モジュールの内圧を変えることでスキンの柔らかさを調整し、スキンに触れた人間に対する触感についても、制御可能である。さらに、深層学習を通じて多様な近接・接触動作・状況を予め学習させることで、人間と調和し、人間との複雑な近接・接触を実現する潜在的に高い適応性を持つと期待される。
図3:各動作モード
<参考動画>
動作ビデオ1:https://youtu.be/NN2u8YBLITY
動作ビデオ2:https://youtu.be/m8QzvDx_vpc
今日、ロボットは、いわゆる物理的な人間とロボットの相互作用(pHRI;physical Human-Robot Interaction)シナリオのように、安全半径の外で動作しつつ、人間と同じワークスペースを共有し(共存)、さらには人間と相互作用(コラボレーション)する必要がある。pHRIでは、ロボットは衝突の可能性を回避するだけでなく、避けられない物理的接触と意図的な物理的接触の両方を安全かつ信頼できる方法で対応することが期待されている。これを達成するために、深度カメラと力/トルクセンサーの組み合わせが提案されているが 、これは、外部カメラを使用するために、先述した視覚の遮蔽の問題を有している。近年、マルチモーダル知覚(触覚、近接など)を備えた大規模センサースキンが開発されたが、センサーネットワークのデータ取得と処理が複雑であるため、微調整が困難であり、衝突等の突発的な事故への応答が遅くなる可能性がある。
本研究は、ロボットの周りの多様な近接や接触動作・状況などをたった2台のカメラで検知することが可能なシンプルな構造をしており、信頼性を持つpHRIの実装方法となり得る。また、Sim2Realのプロセスで、実物の特性を再現できるデジタルツインにおいて、必要なデータ収集や学習などをシミュレーション環境で実施し、学習の結果を、実物に反映させることができ、今後の研究・開発の時間を大幅に縮小することも期待される。
本研究成果は、2023年2月28日にIEEE(米国電気電子学会)が発行する学術雑誌「IEEE Transactions on Robotics」のオンライン版に掲載された。また、2023年4月3日から7日までシンガポールで開催の、国際会議IEEE-RAS International Conference on Soft Robotics (RoboSoft 2023)で発表された。
なお、本研究は、国立研究開発法人科学技術振興機構(JST)・戦略的創造研究推進事業さきがけ「IoTが拓く未来」研究領域(JPMJPR2038)の支援を受け行った。
【今後の展開】
本研究によって、今後の展開が期待される製品・サービスとして、次の二つが挙げられる。一つ目は、利用者がより多くの事を自分自身でできるように支援し、さらに利用者に加え、周りの状況も考慮したロボットアームを備えた車椅子への活用である。二つ目に、サービスの提供を受ける利用者に安心感や大事にされているという感覚、思いやりなどを伝えることができる介護ロボットである。将来的に、これらの製品が介護保険等の給付対象として認可されることで普及促進へと繋がることが期待される。
【論文情報等】
| (1) | |
| 題目 | Simulation, Learning, and Application of Vision-Based Tactile Sensing at Large Scale |
| 雑誌名 | IEEE Transactions on Robotics |
| 著者 | Quan Khanh Luu, Nhan Huu Nguyen, and Van Anh Ho |
| 掲載日 | 2023年2月28日 |
| DOI | 10.1109/TRO.2023.3245983 |
| (2) | |
| 題目 | Soft Robotic Link with Controllable Transparency for Vision-based Tactile and Proximity Sensing |
| 国際会議名 | the 6th IEEE-RAS International Conference on Soft Robotics (RoboSoft 2023) |
| 著者 | Quan Luu, Dinh Nguyen, Nhan Huu Nguyen, anh Van Anh Ho |
| 発表日 | 2023年4月6日 |
【用語解説】
コンピュータ内のシミュレーション等で学習したモデルを現実世界に用いるという強化学習の手法。
実世界(フィジカル)におけるデータを収集し、サイバー世界でデジタル技術などを用いて分析・知識化を行い、それをフィジカル側にフィードバックすることで、産業の活性化や社会問題の解決を図っていく仕組み。
令和5年4月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/04/12-1.html物質化学フロンティア研究領域の後藤教授の論文がCarbon誌の表紙に採択
ナノマテリアルテクノロジーセンターの後藤和馬教授(物質化学フロンティア研究領域)の論文が、米国炭素学会機関紙「Carbon」の表紙(front cover)に採択されました。
本研究は、後藤研究室および京都大学、岡山大学による共同研究の成果です。
■掲載誌
Carbon, Vol. 206, Page 84-93.
掲載日:2023年3月25日
■著者
Hideka Ando(特別研究学生、後藤研究室), Katsuaki Suzuki, Hironori Kaji, Takashi Kambe, Yuta Nishina, Chiyu Nakano, Kazuma Gotoh
■論文タイトル
Dynamic nuclear polarization - nuclear magnetic resonance for analyzing surface functional groups on carbonaceous materials
■論文概要
炭素材料は、化学反応の触媒や燃料電池・二次電池の電極、バイオマテリアルなど多種多様な分野での応用が期待されている。本研究ではNMR(核磁気共鳴分光法)による炭素材料の表面構造分析の感度を改善するため、信号強度増幅剤を用いた動的核偏極NMRを用いた。これまで不可能と考えられていた炭素表面上の微量のメチル基、水酸基などの表面官能基の検出に成功し、炭素材料の性質に大きな影響を及ぼす表面構造の微細な違いが検出可能となった。
表紙詳細:https://www.sciencedirect.com/science/article/pii/S0008622323001549
論文詳細:https://doi.org/10.1016/j.carbon.2023.02.010

令和5年3月31日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2023/03/31-1.html学生の龍岡さんが第24回日本糖質学会ポスター賞及び2022年度糖鎖科学中部拠点奨励賞を受賞
学生の龍岡 博亮さん(博士後期課程3年、バイオ機能医工学研究領域、山口拓実研究室)が第24回日本糖質学会ポスター賞及び2022年度糖鎖科学中部拠点奨励賞を受賞しました。
日本糖質学会ポスター賞は、日本糖質学会年会において優れた研究成果発表を行った35歳以下の若手研究者を対象に、選考が行われます。このたび2022年度(第41回年会)の選考結果が発表され、龍岡さんが第24回日本糖質学会ポスター賞を受賞しました。
また、令和5年1月7日に行われた糖鎖科学中部拠点 第18回「若手の力」フォーラムにおいても龍岡さんは成果発表を行い、2022年度糖鎖科学中部拠点奨励賞を受賞しました。
*参考:日本糖質学会ポスター賞
■受賞年月日
令和5年1月7日
(2022年度糖鎖科学中部拠点奨励賞)
■受賞テーマ
溶液NMR法を用いた糖-水および水-水間相互作用の解析
(第24回日本糖質学会ポスター賞)
溶液NMR計測と分子シミュレーションを用いた糖-水および水-水間相互作用の解析
(2022年度糖鎖科学中部拠点奨励賞)
■研究概要
糖鎖の生物機能メカニズムには、糖鎖のコンフォメーションや運動性に加え、水和構造が密接に影響していると考えられます。しかし、糖鎖の水和に関する研究は、あまり進んでいません。本研究では、NMR法や分子シミュレーションを活用して水和挙動の探査に取り組み、糖鎖が、結合様式や水酸基の配向などわずかな構造の違いを利用して、異なる溶媒和環境を形成することを明らかにしました。得られた成果は、糖鎖の化学と生物学をつなぐ重要な知見となるものです。本研究の進展により、糖鎖の関与する生命機能の更なる理解とその応用へ向けた道が開けるものと期待されます。
■受賞にあたって一言
この度は、伝統ある日本糖質学会ポスター賞を受賞できたことを、大変光栄に思います。さらにそこからもう一歩研究を進め、中部地区の多くの若手が参加する糖鎖科学中部拠点「若手の力」フォーラムにおいて奨励賞をいただくことができました。糖鎖には、謎がたくさんあり、様々なアイデアやアプローチを試せる面白さがあります。日頃からご指導いただいている山口拓実准教授をはじめ共同研究者に恵まれ、合成化学や物理化学、計算化学にわたる様々な経験を積み、こうした方法を活かすことができました。研究の成果が、糖鎖研究のますますの発展につながったらと考えています。また、同期をはじめ研究室のメンバーと切磋琢磨することで、ここまで成し遂げることができました。あらためて感謝します。本研究はJAIST次世代特別研究員として支援を受けて実施しました。おかげで研究に集中して取り組むことができました、御礼申し上げます。

糖鎖科学中部拠点奨励賞
受賞の様子
令和5年1月30日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2023/01/30-1.html学生の柿﨑さんが第30回日本ポリイミド・芳香族系高分子会議にて優秀ポスター賞を受賞
学生の柿﨑 翔さん(博士前期課程2年、サスティナブルイノベーション研究領域、金子 達雄研究室)が第30回日本ポリイミド・芳香族系高分子会議にて優秀ポスター賞を受賞しました。
日本ポリイミド・芳香族系高分子会議では、芳香族系高分子を中心に幅広い分野における合成、材料分野を基軸として研究を展開する研究者・学生らの学術交流として、毎年研究発表会を開催しています。今年はコロナ禍を考慮しながらの対面形式で、令和4年12月10日に千葉県の東邦大学にて開催されました。
優秀ポスター賞は、発表会ポスターセッションにおいて優秀な研究発表を行った学生に授与されます。
■受賞年月日
令和4年12月10日
■発表者名
柿﨑翔、Yin Hongrong、高田健司、金子達雄
■発表題目
Syntheses of Photoresponsive poly(amide-ester)s using itaconic acid and cinnamic acid
■研究概要
本研究では、バイオ由来物質であるイタコン酸及びm-クマル酸を原料とした紫外線応答性ポリアミドエステルの合成に成功しました。得られたポリマーは二段階の溶融重縮合を経て合成され、m-クマル酸の組成の増加に伴って分子量並びにガラス転移点が上昇しました。さらに、当ポリマーから作製したフィルムに対して紫外線照射を行ったところ、m-クマル酸特有のE-Z異性化による凸変形が確認されました。これは、紫外線から得られるエネルギーを力に変換することができるバイオ由来ポリマーの開発に大きく寄与する研究になります。
■受賞にあたって一言
この度は、第30回日本ポリイミド・芳香族系高分子会議におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている金子達雄教授、高田健司助教にこの場をお借りして心より御礼を申し上げます。さらに、本研究に関して多くのご助言をいただきました研究室のメンバーに深く感謝いたします。


令和4年12月15日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2022/12/15-1.htmlリチウムイオン2次電池の急速充放電を実現する新しいナノシート系負極活物質の開発
リチウムイオン2次電池の急速充放電を実現する新しいナノシート系負極活物質の開発
ポイント
- リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。
- TiB2(二ホウ化チタン)粉末のH2O2による酸化処理、遠心分離、凍結乾燥により簡便に得られる二ホウ化チタンナノシートをリチウムイオン2次電池の負極活物質として適用した。
- 二ホウ化チタンナノシートを負極活物質としたアノード型ハーフセルで充放電挙動を評価した結果、比較的低い充放電レートの0.025 Ag-1では約380 mAhg-1の放電容量を示した。
- 当該アノード型ハーフセルにおいて、1 Ag-1 (充電時間約10分)の電流密度では、174 mAhg-1の放電容量を1000サイクル維持した(容量維持率89.4 %)。さらに超急速充放電条件(15~20 Ag-1)を適用すると、9秒~14秒の充電で50~60 mAhg-1の放電容量を10000サイクル維持するに至り(容量維持率80%以上)、高い安定性が確認された。
- 急速放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の先端科学技術研究科 松見紀佳教授(物質化学フロンティア研究領域)、ラージャシェーカル バダム元講師(物質化学フロンティア領域)、アカーシュ ヴァルマ元大学院生(博士前期課程修了)、東嶺孝一技術専門員らの研究グループとインド工科大学ガンディナガール校カビール ジャスジャ准教授、アシャ リザ ジェームス大学院生は、リチウムイオン2次電池*1において二ホウ化チタンナノシートの負極活物質への適用が急速充放電能の発現に有効であることを見出した。 |
【研究の内容と背景】
リチウムイオン2次電池開発において、急速充放電技術の確立は急を有する課題となっている。しかしながら、その実現には固体中のリチウムイオンの拡散速度の向上や電極―電解質界面の特性、活物質の多孔性などの諸ファクターの検討を要している。これまで急速充放電用途のナノ材料系負極活物質としては、チタン酸リチウムのナノシートや酸化チタン/炭素繊維コンポジットなどが検討されてきたほか、新しい2次元(2D)材料*2への関心が広がりつつあり、グラフェン誘導体や金属カーバイド系材料にも検討が及んでいる。
本研究においては、TiB2(二ホウ化チタン)のH2O2による酸化処理、遠心分離、凍結乾燥による簡便なプロセスで作製可能なTiB2ナノシートをリチウムイオン2次電池負極活物質として適用し、アノード型ハーフセルを構築して急速充放電能について検討した。
合成は、共同研究者であるインド工科大学准教授カビール氏らが報告している手法*3に従い、TiB2粉末を過酸化水素水と脱イオン水との混合溶液に懸濁させ、24時間の攪拌後に遠心分離し、上澄みを-35oCで24時間凍結させた後に72時間凍結乾燥することにより粉末状のTiB2ナノシートを得た(図1)。得られた材料のキャラクタリゼーションは前述の手法に従い、XRD、HRTEM、FT-IR、XPS等の各測定により行った。
電池セルの作製において、負極の組成としてはTiB2ナノシートを55 wt%、アセチレンブラックを35 wt%、PVDF(ポリフッ化ビニリデン)を10 wt%を用い、NMP(N-メチルピロリドン)を溶媒とした懸濁液から銅箔集電体にコーティングした。電解液としては 1.0 M LiPF6 のEC/DEC (1:1 v/v)溶液を用い、対極にはリチウム箔を用いた。
TiB2ナノシートを負極活物質としたアノード型ハーフセル*4のサイクリックボルタモグラム(図2)においては、第一サイクルにおいてのみ0.65 V (vs Li/Li+)に電解液の分解ピークが現れたが、それ以降は消失した。リチウム脱離に相当するピークは2つ観測され、0.28 Vにおけるピークはリチウムが複数インターカレートしたTiB2からの脱リチウムピーク、0.45VにおけるピークはTiB2の再生に至る脱リチウムピークにそれぞれ相当する。約1.5 Vからの比較的高いリチウム挿入電位は、チタン酸リチウムやホウ素ドープTiO2とほぼ同様であった。
また、このアノード型ハーフセルの充放電挙動では、比較的低い充放電レートの0.025 Ag-1では約380 mAhg-1の放電容量を示した(図3)。
アノード型ハーフセルにおいて、1 Ag-1(充電時間約10分)の電流密度では、174 mAhg-1の放電容量を1000サイクル維持し、容量維持率は89.4 %を示した(図3)。さらに超急速充放電条件である15-20 Ag-1を適用すると、9秒~14秒の充電で50-60 mAhg-1の放電容量を10000サイクル維持するに至り、容量維持率は80%以上であった。
本成果は、ACS Applied Nano Materials (米国化学会)のオンライン版に9月19日に掲載された。なお、本研究は、文部科学省の「大学の世界展開力強化事業」採択プログラムに基づいた北陸先端科学技術大学院大学とインド工科大学ガンディナガール校(JAIST-IITGN)の協働教育プログラム(ダブルディグリープログラム)のもとで実施した。
【今後の展開】
TiB2ナノシートの積極的活用により、急速充放電能を有する次世代型リチウムイオン2次電池の発展に向けた多くの新たな取り組みにつながり、関連研究が活性化するものと期待される。
さらに活物質の面積あたりの担持量を向上させつつ電池セル系のスケールアップを図り、産業的応用への橋渡し的条件においても検討を継続する。
既に日本国内及びインドにおいて特許出願済みであり、今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | ACS Applied Nano Materials(米国化学会) |
| 題目 | Titanium Diboride-Based Hierarchical Nanosheets as Anode Material for Li-ion Batteries |
| 著者 | Akash Varma, Rajashekar Badam, Asha Liza James, Koichi Higashimine, Kabeer Jasuja * and Noriyoshi Matsumi* |
| WEB掲載日 | 2022年9月19日 |
| DOI | 10.1021/acsanm.2c03054 |

| 図1.TiB2ナノシートの合成とキャラクタリゼーション (a)バルクのTiB2粉末 (b)過酸化水素水(H2O2) (3% v/v)にTiB2を分散した黒色の分散液 (c) 24時間攪拌後のTiB2の溶解と遠心分離後の上澄みの使用 (d)凍結乾燥後の粉末のナノ構造 (e) FESEM像 (f) TiB2 粉末及び TiB2ナノシートのFTIRスペクトル (g)ホウ素のハニカム状平面にチタンがサンドイッチされた結晶構造 (h) Si/SiO2 ウエハに担持させたTiB2ナノシートの光学像 (i) TiB2ナノシートのHRTEM像。ポーラスなシート状構造を示す。 |

| 図2.TiB2ナノシートを負極活物質としたアノード型ハーフセルのサイクリックボルタモグラム (a) 電圧範囲0.01-2.5V ;掃引速度 0.1 mV/s (b) 電圧範囲0.5-2.5V ;掃引速度 0.1, 0.3, 0.5, 0.7, and 1 mV/s. |

| 図3.TiB2ナノシートを負極活物質としたアノード型ハーフセルの充放電挙動 (a)レート特性の検討結果 (b)充放電曲線 (c)長期サイクル特性 |
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
グラフェンや遷移金属ジカルコゲニドなどの2次元(2D)層状無機ナノ材料は、その優れた物理的および化学的特性のために最近注目されている化合物で、光触媒や太陽電池、ガスセンター、リチウムイオン電池、電界効果トランジスタ、スピントロニクスなどへの応用が期待されている。
James, Asha Liza; Lenka, Manis; Pandey, Nidhi; Ojha, Abhijeet; Kumar, Ashish; Saraswat, Rohit; Thareja, Prachi; Krishnan, Venkata; Jasuja, Kabeer
Nanoscale (2020), 12 (32), 17121-17131CODEN: NANOHL; ISSN:2040-3372. (Royal Society of Chemistry)
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和4年9月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/09/30-1.htmlサスティナブルイノベーション研究領域の水田教授が応用物理学会からフェロー称号を受理
サスティナブルイノベーション研究領域の水田 博教授に公益社団法人応用物理学会からフェローの称号が授与され、表彰を受けました。
応用物理学会は、半導体、光・量子エレクトロニクス、新素材など、それぞれの時代で工学と物理学の接点にある最先端課題、学際的なテーマに次々と取り組みながら活発な学術活動を行っています。公益性の高い学会として広く活動を展開し、社会連携事業にも取り組んでいます。
*参考:公益社団法人応用物理学会ホームページ
■フェローの概要等
「応用物理学会フェロー表彰」制度は、同学会の会員表彰制度の一環として、2006年に創設されました。この表彰制度は、同学会における継続的な活動を通じて、学術・研究における業績、産業技術の開発・育成における業績、教育・公益活動を通した人材育成や教育における業績などにより、応用物理学の発展に貢献した在籍累計年数10年以上の正会員を対象とし、特に貢献が顕著であると認められた会員を表彰するものです。また、フェローの人数は同学会個人会員数の3%程度と定められています。
*参考:第16回(2022年度)応用物理学会フェロー表彰者
■授与日
令和4年9月20日
■表彰内容
ナノメータスケール電子-機械複合機能素子の研究
■水田教授からの一言
本フェロー表彰の対象となった研究は、企業から大学に異動した2003年頃に「従来の電子デバイスの中に機械的に動くパーツを入れたら面白いことができるのでは?」という単純な発想で開始したものです。約20年にわたり東工大、サウサンプトン大、本学と職場を移しながら継続し、特に本学ではグラフェンなど原子層材料を用いて、気相単分子センシングやナノスケール熱制御素子などの極限機能素子について原理探索から社会実装までを進めてきました。英国で働いた期間も長かったのですが、その間、応用物理学会では200件超の発表、分科会・研究委員会幹事、シンポジウム世話人、また応物主催/共催の国際学会の実行委員長・論文委員長など、微力ながら学会の活動に参画させていただきました。これらはひとえに学内外の多くの方々からいただいた多大なご支援、特に研究室の同僚の方々・学生の皆さんのご協力の賜物です。この場をお借りして心より御礼を申し上げます。
*水田教授は2012年に英国物理学会(IOP)フェローの称号も受理しています。
![]() 表彰を受けた水田教授(左) |
![]() |
![]() |
![]() |
| 記念盾とフェローバッジ | |
令和4年9月21日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/09/21-1.htmlサスティナブルイノベーション研究領域の宮田助教が第19回日本熱電学会学術講演会において優秀講演賞を受賞
サスティナブルイノベーション研究領域の宮田 全展助教が第19回日本熱電学会学術講演会において優秀講演賞を受賞しました。
日本熱電学会学術講演会は、熱電科学 · 技術、アルカリ温度差電池(AMTEC)、熱光電池(TPV)などに関する材料、素子、デバイス、モジュール、アセスメント等について幅広く議論するものです。優秀講演賞は、熱電科学、工学と技術の発展に貢献しうる優秀な講演論文を発表した者に授与されます。
今回、第19回日本熱電学会学術講演会は令和4年8月8日から10日にかけて新潟県長岡市のアオーレ長岡にて開催されました。
■受賞年月日
令和4年8月10日
■講演題目
二元系リン化物 AgP2 の電子・フォノン物性と Ag 原子の大きな非調和フォノン散乱
■受賞対象となった研究の内容
蒸気タービンによるエネルギー回収が困難な低温排熱から、エネルギー回収をおこなえる熱電変換材料が注目を集めています。中でも、リンPを主成分としたリン化物が候補物質として近年注目を集めつつありますが、格子熱伝導率が高いことが問題の一つとなっています。
本研究では、合成したリン化物AgP2が高いHall移動度と低い格子熱伝導率を両立することを発見し、その起源がキャリアの長い緩和時間、軽い有効質量、およびAg-Pの異方的結合・質量差によって引き起こされるAg原子の大きな非調和フォノン振動であることを、実験と第一原理電子・フォノン計算の両面から明らかにしました。これにより、「Ag原子が異方的結合をもつAg-P化物は、Agの非調和振動により低い格子熱伝導率を示す」という新たな材料設計指針を確立することに成功しました。
■受賞にあたって一言
この度、日本熱電学会より優秀講演賞を賜りまして大変光栄に思います。今回の受賞を励みに、当該研究分野の発展により貢献できるよう邁進してまいります。本研究の推進にあたり数多くのディスカッション・ご助言をいただきました小矢野幹夫教授をはじめ、研究室の学生の皆様、熱電学会関係各所の皆様に、この場を借りて厚く御礼申し上げます。また。本研究は日本学術振興会(JSPS)科研費 JP20K15021の助成を受けて実施されました。感謝御礼申し上げます。


令和4年8月18日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2022/08/18-2.html修了生のKulisara Budpudさんらの論文がWILEY社刊行Macromolecular Rapid Communications誌の表紙に採択
修了生のKulisara Budpudさん(令和3年9月博士後期課程修了、サスティナブルイノベーション研究領域、金子研究室)らの論文がWILEY社刊行のMacromolecular Rapid Communications誌の表紙に採択されました。
■掲載誌
Macromolecular Rapid Communications, Volume 43, Issue 11 (2022)
掲載日2022年6月7日
■論文タイトル
Super-Moisturizing Materials from Morphological Deformation of Suprapolysaccharides
■著者
Kulisara Budpud, Kosuke Okeyoshi*, Shoko Kobayashi, Maiko K Okajima, Tatsuo Kaneko*
■論文概要
サスティナブルイノベーション研究領域、金子研究室の修了生ブッドプッド クリサラさん、桶葭興資准教授、金子達雄教授らは、多糖の形態不安定性、特に、水中環境の変化に応じたミクロンファイバー状と微粒子状の可逆的な自己集合/分解を発見した。また、内部に架橋点が導入された微粒子は、空気中で超保湿マテリアルとして振る舞う。天然由来の多糖をナノメートルスケールから再組織化させたことも意義深い。持続可能な社会の構築に向け、光合成産物の多糖を先端材料化することは重要である。
参考
論文詳細:https://doi.org/10.1002/marc.202200163
表紙詳細:https://onlinelibrary.wiley.com/doi/10.1002/marc.202270029
令和4年6月14日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/06/14-1.htmlサスティナブルイノベーション研究領域の金子研究室の論文がLangmuir誌の表紙に採択
サスティナブルイノベーション研究領域の金子 達雄教授、高田 健司助教、学生の舟橋 靖芳さん(博士後期課程3年、金子研究室)らの論文が、米国化学会(American Chemical Society :ACS)刊行のLangmuir誌の表紙(Supplementary Cover)に採択されました。
■掲載誌
Langmuir 2022, 38, 17, 5128-5134
掲載日2022年5月3日
■著者
Yasuyoshi Funahashi, Yohei Yoshinaka, Kenji Takada*, and Tatsuo Kaneko*
■論文タイトル
Self-Standing Nanomembranes of Super-Tough Plastics
■論文概要
本研究では、高いタフネスを有するバイオベースプラスチックを用いて自己支持性ナノ薄膜の作製に成功しました。
ナノ薄膜は材料の表面保護からナノデバイスなど幅広い応用が期待されている機能性材料の一つです。特にこれらナノ薄膜を膜として単離するには、タフネス(強度、伸び率の関係)に優れた材料特性が要求されます。本研究では、著者らが従来から研究を進めてきた、高強度、高耐熱バイオベースポリアミドがこれらナノ薄膜作製に適した材料であると着目して、高分子構造の設計と強度の評価、そしてナノ薄膜の作製を試みました。その結果、当該バイオポリアミドは脂肪族ジカルボン酸と共重合化させることで、耐熱性を維持したまま非常に高いタフネスを発揮し、その数値は高強度バイオ繊維として知られるクモの糸にも匹敵するものでした。さらにこの高タフネス性によって、自己支持性のナノ薄膜を単離することができ、これらがナノデバイスやナノロボットへの応用の可能性を広げるものであることが提案されました。
本論文の表紙では、本研究によって得られたポリアミド薄膜の写真が採択され、光の干渉により虹色に見えるほどの薄膜が得られていることが分かります。
論文詳細:https://pubs.acs.org/doi/10.1021/acs.langmuir.1c02193
表紙詳細:https://pubs.acs.org/toc/langd5/38/17

令和4年5月13日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/05/13-2.htmlサスティナブルイノベーション研究領域の高田助教の研究課題が旭硝子財団の研究助成に採択
公益財団法人 旭硝子財団の研究助成「研究奨励」プログラムにサスティナブルイノベーション研究領域の高田 健司助教の研究課題が採択されました。
旭硝子財団は、次世代社会の基盤を構築するような独創的な研究への助成事業を通じて、人類が真の豊かさを享受できる社会および文明の創造に寄与することを目的とし、4つのプログラムにおいて研究助成を行っています。
「研究奨励」プログラムでは、若手研究者による基礎的・萌芽的な研究を支援します。
*詳しくは、旭硝子財団ホームページをご覧ください。
- 採択期間:令和4年4月~令和6年3月
- 研究課題名:「コーヒー酸をベースとした高タフネスポリアミド抗菌性接着剤の開発」
- 研究概要:カテコールを有した高分子は、接着材料や、ポリフェノール由来の抗酸化作用、抗菌、抗ウイルス性などの多彩な機能を発揮するため機能材料の官能基として有望です。しかしながら、これらカテコールを多量に有し、かつ強靭性に優れた材料は未だ開発されていません。本研究では、カテコールを有したバイオベース物質である「コーヒー酸」に着目し、その光反応性を精密に制御することで、高強度材料の代表であるポリアミドの新規モノマーの開発に挑戦します。本研究ではコーヒー酸を二量化させジカルボン酸とし、各種ジアミンとの重合により、抗菌・抗ウイルス性を有した接着性の強靭な(高タフネス)ポリアミドを開発することを目的としています。
- 採択にあたって一言:本研究課題を採択頂き大変嬉しく存じます。また、旭硝子財団および本助成の選考委員会の皆様に深く感謝申し上げます。本研究成果により得られる材料が、抗菌&抗ウイルス性の材料として、Withコロナの世の中に貢献できればと考えております。また、本研究に関して多くのディスカッションとアドバイスをいただいた金子達雄教授はじめ、研究室の皆様、および研究協力者の方々にこの場をお借りして厚く御礼申し上げます。
令和4年4月14日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/04/14-1.htmlサスティナブルイノベーション研究領域の高田助教の研究課題が藤森科学技術振興財団の研究助成に採択
公益財団法人 藤森科学技術振興財団の研究助成にサスティナブルイノベーション研究領域の高田 健司助教の研究課題が採択されました。
藤森科学技術振興財団は、「より快適な社会の実現」に向けて社会の重要課題の解決に指針を与えるような先進的、萌芽的な機能(はたらき・しくみ)創造につながる科学技術研究へ幅広い助成を行っています。
*詳しくは、藤森科学技術振興財団ホームページをご覧ください。
- 採択期間:令和4年4月~令和5年3月
- 研究課題名:「バイオ由来ヒドロキシ酸とイタコン酸をベースとした環境分解型光変形材料の開発」
- 研究概要:本研究では、バイオ由来材料である桂皮酸系ポリエステルを強靭化させるために、イタコン酸系ポリアミドとの共重合手法を新たに開発し、環境低負荷な高機能材料の開発を目的としています。バイオ由来ヒドロキシ酸である桂皮酸をポリエステルとした材料は紫外線に対して物性を変化させる性質を有するため、古くから機能性バイオベースポリマーとして注目されてきました。この機能性材料であるポリ桂皮酸に同じくバイオベース原料として知られるイタコン酸を分子構造中に組み込み、環境分解性に優れた機能材料を開発します。
- 採択にあたって一言:本研究課題を採択頂き大変嬉しく存じます。また、藤森科学技術振興財団および本助成の選考委員会の皆様に深く感謝申し上げます。本研究成果が、近年のプラスチックごみ問題等に資するものになるよう精進してまいります。また、本研究に関して多大なアドバイスをいただいた金子達雄教授はじめ、様々な知見を頂いた研究室の皆様、および研究協力者の方々にこの場をお借りして厚く御礼申し上げます。
令和4年4月8日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/04/08-1.htmlリチウムイオン2次電池に高容量化と耐久性を容易にもたらす新型負極活物質(β-シリコンカーバイド系複合材料)の開発
リチウムイオン2次電池に高容量化と耐久性を容易にもたらす
新型負極活物質(β-シリコンカーバイド系複合材料)の開発
ポイント
- リチウムイオン2次電池の高容量化のためシリコン系負極が注目されているが、シリコン粒子の大きな体積膨張・収縮等の問題によって、安定した充放電が困難となっている。
- リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている閃亜鉛鉱型構造を有するβ-シリコンカーバイド/窒素ドープカーボン複合材料の簡易合成法を開発し、リチウムイオン2次電池用負極活物質として検証した。
- 合成した活物質を用いたアノード型ハーフセルでは1195mAhg-1の放電容量を300サイクルまで示し、本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても、高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
- 高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)、先端科学技術研究科 物質化学領域の松見 紀佳教授、バダム ラージャシェーカル講師、並びに東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程)のグループは、リチウムイオン2次電池*1の安定な高容量充放電を可能にする新規負極活物質の開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、近年、従来型負極であるグラファイトよりも大幅に大きな理論容量を示すシリコン系負極が多大な関心を集めている。一方で、シリコン粒子は充放電時の体積膨張・収縮が極めて大きく、充放電の際の粒子の破断や界面被膜の破壊、集電体からの剥離などの多様な問題により、一般に高容量を安定に発現することが非常に困難となっている。このような状況を改善するために、特殊なバインダー材料の開発などのアプローチが本研究グループも含め国内外において検討されてきた。
【研究の内容】
本研究においては、シリコン粒子に代わり、極めて安定な充放電サイクルを汎用のバインダー材料使用時においても示すシリコンカーバイド系活物質を開発した。ダイヤモンド型構造を有するシリコンにおいては、リチウム脱挿入に伴う大幅な体積膨張・収縮は避けがたいものであるが、閃亜鉛鉱型構造の無機化合物においては、リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている。その挙動にヒントを得つつ、閃亜鉛鉱型構造を有するβ-シリコンカーバイドと窒素ドープカーボン*2との複合材料を合成し、新規リチウムイオン2次電池用負極活物質として検証した。
合成法としては、(3-アミノプロポキシ)トリエトキシシランに水溶液中でアスコルビン酸ナトリウムを加え、シリコンナノ粒子分散水溶液を作製した。その後pH8.5においてドーパミンを、引き続いてメラミンを加えてから遠心分離、乾燥し、600oCもしくは1050oCの二通りの条件で焼成した(図1)。
得られた材料について、HRTEM、HAADF-STEM、XPS、XRD、Raman分光法等により構造を確認した(図2)。HRTEMからは、炭素系マトリックスにβ-シリコンカーバイドの結晶が埋め込まれている様子が観測された。HAADF-STEM HRTEMからは、β-シリコンカーバイドの(111)面に相当する0.25 nmの面間距離が観測され、マトリックス内に指紋状に分布する様子が観測された(図2(c))。
次に、合成した活物質を用いて負極を構築し、アノード型ハーフセル*3(Li/電解液/β-SiC)を作製し各種電気化学的評価を行った。サイクリックボルタモグラム*4においては、シャープなリチウムインターカレーションのピークに加えて、シリコン負極の場合と形状は異なるものの0.58 Vのブロードなリチウム脱インターカレーションのピークを共に示した。
また、充放電挙動においては、1050oCの焼成処理により合成した活物質(MAD1050)を用いた系では1195 mAhg-1の放電容量を300サイクルまで示した(図3(b))。本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に2月16日(英国時間)に掲載された。
なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | Journal of Materials Chemistry A |
| 題目 | Zinc blende inspired rational design of β-SiC based resilient anode material for lithium-ion batteries |
| 著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年2月16日(英国時間) |
| DOI | 10.1039/D1TA08516F |


|
図2.(a,b)合成した活物質(MAD1050)のTEM像
(a)β-SiC粒子のHRTEM像、(c)β-SiC粒子のHAADF-STEM像 (d,e)赤色ボックス部位のFT/IFT、(f)面間距離プロファイル (g,h)黄色ボックス部位のFT/IFT、(i,j)緑色ボックス部位のFT/IFT |

|
図3.合成した各負極活物質を用いたアノード型ハーフセルの充放電特性(a/b/d)
及び比較データ(c;シリコン負極) |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*3 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/18-1.html学生のZHOUさんが第29回日本ポリイミド・芳香族系高分子会議において優秀ポスター賞を受賞
学生のZHOU, Jiabeiさん(博士前期課程2年、環境・エネルギー領域、金子研究室)が第29回日本ポリイミド・芳香族系高分子会議において優秀ポスター賞を受賞しました。
日本ポリイミド・芳香族系高分子系会議では、芳香族系高分子を中心に幅広い分野における合成、材料分野を基軸として研究を展開する研究者・学生らの学術交流として、毎年、研究発表会を開催しています。今年はコロナ禍の影響で対面&オンラインのハイブリッド型で、令和3年12月10日に開催されました。
優秀ポスター賞は、発表会ポスターセッションにおいて優秀な研究発表を行った学生に授与されます。
*参考:第29回日本ポリイミド・芳香族系高分子会議
■受賞年月日
令和3年12月10日
■発表者名
Zhou Jiabei、Zhong Xianzhu、Nag Aniruddha、高田健司、金子達雄
■発表題目
Toughening of Ultrahigh Thermoresistant Biopolybenzimidazoles by Forming Porous Structure
■研究概要
本研究では、スーパーエンジニアリングプラスチックの中でも特に高レベルの力学的・熱的安定性を有するポリベンズイミダゾールの多孔質化による高タフネス化に成功しました。シリカ粒子の分散・除去によるハードテンプレート法で多孔質ポリベンズイミダゾールフィルムを作製したところ、フィルムの力学物性が大きく向上する性質を見出しました。走査型プローブ顕微鏡によりポリベンズイミダゾール表面の力学強度を観測したところ、シリカ分散により生じた空孔周辺の靭性が著しく向上し、その空孔率が増えるごとに高靭性を示すことが分かりました。従来、ポリベンズイミダゾールは高い化学的安定性から物性の改質は困難でしたが、本研究で確立した方法を用いれば複雑な工程無しで、成型物の物性を改良することができ、材料開発における重要な手法となることが期待されます。
■受賞にあたって一言
この度は、第29回日本ポリイミド・芳香族系高分子会議におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている金子達雄教授、高田健司助教にこの場をお借りして心より御礼を申し上げます。さらに、VISTECのNag Aniruddha様、株式会社島津製作所の長野浩一様、および多くのご助言をいただきました研究室のメンバーに深く感謝いたします。


令和3年12月28日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/12/28-1.html




