研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。サスティナブルイノベーション研究領域の高田助教の研究課題が藤森科学技術振興財団の研究助成に採択
公益財団法人 藤森科学技術振興財団の研究助成にサスティナブルイノベーション研究領域の高田 健司助教の研究課題が採択されました。
藤森科学技術振興財団は、「より快適な社会の実現」に向けて社会の重要課題の解決に指針を与えるような先進的、萌芽的な機能(はたらき・しくみ)創造につながる科学技術研究へ幅広い助成を行っています。
*詳しくは、藤森科学技術振興財団ホームページをご覧ください。
- 採択期間:令和4年4月~令和5年3月
- 研究課題名:「バイオ由来ヒドロキシ酸とイタコン酸をベースとした環境分解型光変形材料の開発」
- 研究概要:本研究では、バイオ由来材料である桂皮酸系ポリエステルを強靭化させるために、イタコン酸系ポリアミドとの共重合手法を新たに開発し、環境低負荷な高機能材料の開発を目的としています。バイオ由来ヒドロキシ酸である桂皮酸をポリエステルとした材料は紫外線に対して物性を変化させる性質を有するため、古くから機能性バイオベースポリマーとして注目されてきました。この機能性材料であるポリ桂皮酸に同じくバイオベース原料として知られるイタコン酸を分子構造中に組み込み、環境分解性に優れた機能材料を開発します。
- 採択にあたって一言:本研究課題を採択頂き大変嬉しく存じます。また、藤森科学技術振興財団および本助成の選考委員会の皆様に深く感謝申し上げます。本研究成果が、近年のプラスチックごみ問題等に資するものになるよう精進してまいります。また、本研究に関して多大なアドバイスをいただいた金子達雄教授はじめ、様々な知見を頂いた研究室の皆様、および研究協力者の方々にこの場をお借りして厚く御礼申し上げます。
令和4年4月8日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2022/04/08-1.htmlリチウムイオン2次電池に高容量化と耐久性を容易にもたらす新型負極活物質(β-シリコンカーバイド系複合材料)の開発
リチウムイオン2次電池に高容量化と耐久性を容易にもたらす
新型負極活物質(β-シリコンカーバイド系複合材料)の開発
ポイント
- リチウムイオン2次電池の高容量化のためシリコン系負極が注目されているが、シリコン粒子の大きな体積膨張・収縮等の問題によって、安定した充放電が困難となっている。
- リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている閃亜鉛鉱型構造を有するβ-シリコンカーバイド/窒素ドープカーボン複合材料の簡易合成法を開発し、リチウムイオン2次電池用負極活物質として検証した。
- 合成した活物質を用いたアノード型ハーフセルでは1195mAhg-1の放電容量を300サイクルまで示し、本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても、高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
- 高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)、先端科学技術研究科 物質化学領域の松見 紀佳教授、バダム ラージャシェーカル講師、並びに東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程)のグループは、リチウムイオン2次電池*1の安定な高容量充放電を可能にする新規負極活物質の開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、近年、従来型負極であるグラファイトよりも大幅に大きな理論容量を示すシリコン系負極が多大な関心を集めている。一方で、シリコン粒子は充放電時の体積膨張・収縮が極めて大きく、充放電の際の粒子の破断や界面被膜の破壊、集電体からの剥離などの多様な問題により、一般に高容量を安定に発現することが非常に困難となっている。このような状況を改善するために、特殊なバインダー材料の開発などのアプローチが本研究グループも含め国内外において検討されてきた。
【研究の内容】
本研究においては、シリコン粒子に代わり、極めて安定な充放電サイクルを汎用のバインダー材料使用時においても示すシリコンカーバイド系活物質を開発した。ダイヤモンド型構造を有するシリコンにおいては、リチウム脱挿入に伴う大幅な体積膨張・収縮は避けがたいものであるが、閃亜鉛鉱型構造の無機化合物においては、リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている。その挙動にヒントを得つつ、閃亜鉛鉱型構造を有するβ-シリコンカーバイドと窒素ドープカーボン*2との複合材料を合成し、新規リチウムイオン2次電池用負極活物質として検証した。
合成法としては、(3-アミノプロポキシ)トリエトキシシランに水溶液中でアスコルビン酸ナトリウムを加え、シリコンナノ粒子分散水溶液を作製した。その後pH8.5においてドーパミンを、引き続いてメラミンを加えてから遠心分離、乾燥し、600oCもしくは1050oCの二通りの条件で焼成した(図1)。
得られた材料について、HRTEM、HAADF-STEM、XPS、XRD、Raman分光法等により構造を確認した(図2)。HRTEMからは、炭素系マトリックスにβ-シリコンカーバイドの結晶が埋め込まれている様子が観測された。HAADF-STEM HRTEMからは、β-シリコンカーバイドの(111)面に相当する0.25 nmの面間距離が観測され、マトリックス内に指紋状に分布する様子が観測された(図2(c))。
次に、合成した活物質を用いて負極を構築し、アノード型ハーフセル*3(Li/電解液/β-SiC)を作製し各種電気化学的評価を行った。サイクリックボルタモグラム*4においては、シャープなリチウムインターカレーションのピークに加えて、シリコン負極の場合と形状は異なるものの0.58 Vのブロードなリチウム脱インターカレーションのピークを共に示した。
また、充放電挙動においては、1050oCの焼成処理により合成した活物質(MAD1050)を用いた系では1195 mAhg-1の放電容量を300サイクルまで示した(図3(b))。本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に2月16日(英国時間)に掲載された。
なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | Journal of Materials Chemistry A |
| 題目 | Zinc blende inspired rational design of β-SiC based resilient anode material for lithium-ion batteries |
| 著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年2月16日(英国時間) |
| DOI | 10.1039/D1TA08516F |


|
図2.(a,b)合成した活物質(MAD1050)のTEM像
(a)β-SiC粒子のHRTEM像、(c)β-SiC粒子のHAADF-STEM像 (d,e)赤色ボックス部位のFT/IFT、(f)面間距離プロファイル (g,h)黄色ボックス部位のFT/IFT、(i,j)緑色ボックス部位のFT/IFT |

|
図3.合成した各負極活物質を用いたアノード型ハーフセルの充放電特性(a/b/d)
及び比較データ(c;シリコン負極) |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*3 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/18-1.html学生のZHOUさんが第29回日本ポリイミド・芳香族系高分子会議において優秀ポスター賞を受賞
学生のZHOU, Jiabeiさん(博士前期課程2年、環境・エネルギー領域、金子研究室)が第29回日本ポリイミド・芳香族系高分子会議において優秀ポスター賞を受賞しました。
日本ポリイミド・芳香族系高分子系会議では、芳香族系高分子を中心に幅広い分野における合成、材料分野を基軸として研究を展開する研究者・学生らの学術交流として、毎年、研究発表会を開催しています。今年はコロナ禍の影響で対面&オンラインのハイブリッド型で、令和3年12月10日に開催されました。
優秀ポスター賞は、発表会ポスターセッションにおいて優秀な研究発表を行った学生に授与されます。
*参考:第29回日本ポリイミド・芳香族系高分子会議
■受賞年月日
令和3年12月10日
■発表者名
Zhou Jiabei、Zhong Xianzhu、Nag Aniruddha、高田健司、金子達雄
■発表題目
Toughening of Ultrahigh Thermoresistant Biopolybenzimidazoles by Forming Porous Structure
■研究概要
本研究では、スーパーエンジニアリングプラスチックの中でも特に高レベルの力学的・熱的安定性を有するポリベンズイミダゾールの多孔質化による高タフネス化に成功しました。シリカ粒子の分散・除去によるハードテンプレート法で多孔質ポリベンズイミダゾールフィルムを作製したところ、フィルムの力学物性が大きく向上する性質を見出しました。走査型プローブ顕微鏡によりポリベンズイミダゾール表面の力学強度を観測したところ、シリカ分散により生じた空孔周辺の靭性が著しく向上し、その空孔率が増えるごとに高靭性を示すことが分かりました。従来、ポリベンズイミダゾールは高い化学的安定性から物性の改質は困難でしたが、本研究で確立した方法を用いれば複雑な工程無しで、成型物の物性を改良することができ、材料開発における重要な手法となることが期待されます。
■受賞にあたって一言
この度は、第29回日本ポリイミド・芳香族系高分子会議におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている金子達雄教授、高田健司助教にこの場をお借りして心より御礼を申し上げます。さらに、VISTECのNag Aniruddha様、株式会社島津製作所の長野浩一様、および多くのご助言をいただきました研究室のメンバーに深く感謝いたします。


令和3年12月28日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/12/28-1.html環境・エネルギー領域の高田助教の研究課題が松籟科学技術振興財団の研究助成に採択
公益財団法人 松籟科学技術振興財団の研究助成に環境・エネルギー領域の高田 健司助教の研究課題が採択されました。
松籟科学技術振興財団では、科学技術の振興に貢献するため、科学技術、特に天然物の有効利用、生理活性物質、有機新素材及び電子材料等、同財団の指定する課題分野にて優れた研究に携わる研究者への助成を行っています。
*詳しくは、松籟科学技術振興財団ホームページをご覧ください。
■研究者名
環境・エネルギー領域 高田 健司助教
■採択期間
令和4年4月~令和5年3月まで
■研究課題名
バイオマス由来ヒドロキシ酸を基盤としたフォトメカニカル材料の開発
■研究概要
フォトメカニカル材料は光によって材料の形状・形態を大きく変化させることが可能であり、古くからスマートマテリアルとしての利用が注目されていました。また、エネルギー効率の良い光を用いるという点からサスティナブルマテリアルとしても注目されており、その物性の精密制御や機能化法の確立が急務の課題となっています。本研究では、主鎖に桂皮酸を有するポリエステルの特徴的な構造に対して、リビング重合によるブロック/グラフトポリマー化による柔軟性の精密コントロールを達成し、多様な刺激応答性能を有するバイオベースプラスチックの提案を目的としています。
■採択にあたって一言
本研究課題を採択頂き大変嬉しく存じます。また、松籟科学技術振興財団、および本助成の選考委員会の皆様に深く感謝申し上げます。本研究が、地球の環境・エネルギー問題に資するものになるよう邁進してまいります。また、本研究に関して多大なアドバイスをいただいた金子達雄教授はじめ、様々な知見を頂いた研究室の皆様、および研究協力者の方々にこの場をお借りして厚く御礼申し上げます。
令和3年12月28日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/12/28-1.html学生の柿﨑さんが第70回高分子学会北陸支部研究発表会において優秀研究賞を受賞
学生の柿﨑 翔さん(博士前期課程1年、環境・エネルギー領域、金子研究室)が第70回高分子学会北陸支部研究発表会において高分子学会北陸支部優秀研究賞を受賞しました。
高分子学会北陸支部では、北陸地域を中心に幅広い分野における高分子科学を基軸として研究を展開する研究者・学生らの学術交流として、毎年、研究発表会を開催しています。今年はコロナ禍の影響で11月27日~28日にかけてオンラインにて開催されました。
優秀研究賞は、北陸支部研究発表会の「高分子化学部門」「高分子構造・高分子物理部門」「高分子機能部門」において、それぞれ優秀な研究発表を行った学生に授与されます。
■受賞年月日
令和3年11月28日
■研究題目、論文タイトル等
Syntheses of Polymer Composites of Itaconic Acid-derived Biobased Polyamide and Nylon 11
■研究者、著者
柿﨑翔、高田健司、金子達雄
■受賞対象となった研究の内容
本研究では、ヒマシ油から抽出される11-アミノウンデカン酸をベースとしたバイオナイロンに、同じくバイオ由来で得られるイタコン酸ベースバイオナイロンをコンポジット化することに成功しました。得られたバイオナイロンコンポジットにおける11-アミノウンデカン酸の組成が増えるごとに、成型物の伸び率が向上したことから、柔軟性に優れたバイオナイロンを得ることができました。さらに当該バイオナイロン成型物をタンパク質分解酵素であるペプシンにより処理したところ、樹脂が軟化し崩壊していく挙動を示しました。これは、生体内に入ったとしても臓器を傷つけずに排出されるなど、海洋プラごみ問題である海洋生物の誤飲事故などの防止につながる成果であり、特定の条件下でのみ分解する新しいバイオベースポリマー開発に大きく寄与する研究になります。
■受賞にあたって一言
この度は、第70回高分子学会北陸支部研究発表会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている金子達雄教授、高田健司助教にこの場をお借りして心より御礼を申し上げます。さらに、多くのご助言をいただきました研究室のメンバーに深く感謝いたします。


令和3年12月16日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/12/16-1.html学生の浅井さんが第70回高分子討論会において優秀ポスター賞を受賞
学生の浅井 優作さん(博士後期課程融合科学共同専攻1年、物質化学領域、松見研究室)が第70回高分子討論会において優秀ポスター賞を受賞しました。
高分子討論会は、高分子科学に携わる研究者・技術者が研究成果の発表を行い、発表内容に関し、参加者と充実した討論およびコミュニケーションができる場を提供することを開催の基本方針としています。
優秀ポスター賞は、高分子討論会において優れたポスター発表を行った発表者を表彰するため授与されるもので、もって発表を奨励し、高分子科学ならびに同会の発展に資することを目的としています。
第70回高分子討論会は、9月6日~8日にかけてオンラインで開催されました。
■受賞年月日
令和3年9月8日
■発表題目
共役系高分子によるIrO2の電子構造制御と酸素発生反応触媒性能への効果
■研究者、著者
〇浅井優作、Rajashekar Badam、松見紀佳
■受賞対象となった研究の内容
電気化学的水分解による水素製造法はシンプルで有望な方法である。しかし、アノードにおける酸素発生反応(OER)は電気化学的水分解の律速段階であり、効率的な触媒が求められる。本研究ではIrO2の電子構造をポリチオフェン系高分子によって制御することで、先行研究と比較して電流密度10 mAcm-2における過電圧を10~70 mV低下させるOER触媒を見出すに至った。
■受賞にあたって一言
この度は、2021年度第70回高分子討論会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、厳格かつ熱心にご指導を頂きました松見紀佳教授、Rajashekar Badam講師にこの場をお借りして心より御礼を申し上げます。さらに、多くのご助言をいただきました研究室の皆様にこの場をお借りして心より御礼を申し上げます。


令和3年11月4日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/11/04-2.html環境・エネルギー領域の高田助教の研究課題が泉科学技術振興財団の研究助成に採択
公益財団法人 泉科学技術振興財団の研究助成に環境・エネルギー領域の高田 健司助教の研究課題が採択されました。
泉科学技術振興財団では、科学技術の振興を図り、もって社会経済の発展に寄与することを目的として、高度機能性材料及びこれに関連する科学技術の基礎研究分野における真に独自の発想に基づく新しい研究に対して助成を行っています。
*詳しくは、泉科学技術振興財団ホームページをご覧ください。
■研究者名
環境・エネルギー領域 高田 健司助教
■採択期間
令和3年10月~令和4年9月
■研究課題名
高靭性バイオポリアミドを用いた自己支持性ナノ薄膜の作製と有機ELデバイスへの応用
■研究概要
眼鏡やディスプレイパネルに用いられるアクリル樹脂やポリカーボネートなどの透明樹脂は、有機ガラスと呼ばれ、様々な材料化の研究が行われています。一方で、材料の透明性の高さと力学物性(破壊強度、弾性率、靭性)はトレードオフの関係であり、高い透明性を維持しながらも高い力学強度を発揮する材料の開発は急務の課題でした。当研究課題では、これまでに開発したバイオ由来トルキシル酸という特殊な構造を持つポリアミドが透明な非晶性高分子でありながら極めて高い靭性を示すという研究成果を発展させ、これらの薄膜化の技術の確立とそれを用いたデバイス化の検討を行うことでバイオベース発光有機ELデバイスの試作検討を目的としています。
■採択にあたって一言
本研究課題を採択頂き大変嬉しく存じます。泉科学技術振興財団、および本助成の選考委員会の皆様に深く感謝申し上げます。近年、様々なバイオ由来材料が注目されている中で当研究が採択されたことは、それだけ重要な課題であるとご判断いただけたものと存じます。また、本研究に関して多大なアドバイスをいただいた金子達雄教授はじめ、様々な知見を頂いた研究室の皆様、および研究協力者の方々にこの場をお借りして深く御礼申し上げます。これを励みに研究を加速できればと思います。
令和3年10月7日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/10/7-1.html応用物理学領域の村田研究室の論文がThe Journal of Physical Chemistry Letters誌の表紙に採択
応用物理学領域の江口 敬太郎助教、村田 英幸教授の論文が米国化学会(ACS)刊行のThe Journal of Physical Chemistry Letters誌の表紙(Front cover)に採択されました。
■掲載誌
J. Phys. Chem. Lett. 2021, 12, 38, 9407-9412
掲載日2021年9月23日
■著者
Keitaro Eguchi* and Hideyuki Murata*
■論文タイトル
Evolution of the Ionization Energy in Two- and Three-Dimensional Thin Films of Pentacene Grown on Silicon Oxide Surfaces
■論文概要
分子薄膜が2次元構造から3次元構造に成長するにつれて、分子薄膜のイオン化エネルギーが小さくなることが理論計算により予測されていますが、実験的には確認されていませんでした。本研究では、光電子収量分光法を用いて2次元と3次元構造におけるペンタセン薄膜のイオン化エネルギーを測定し、ペンタセンを20層積層した3次元のペンタセン薄膜では、2次元のペンタセン薄膜に比べて、イオン化エネルギーが約0.2 eV小さくなることを初めて実証しました。
論文詳細:https://pubs.acs.org/doi/10.1021/acs.jpclett.1c02723
表紙詳細:https://pubs.acs.org/toc/jpclcd/12/38

令和3年10月6日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/10/6-1.html物質化学領域の松村教授が高分子学会三菱ケミカル賞を受賞
物質化学領域の松村 和明教授が公益社団法人高分子学会三菱ケミカル賞を受賞しました。
高分子学会は、高分子科学の基礎ならびに高性能材料などの応用分野に関する幅広い研究分野を対象とした会員数10,000を超える学術団体です。
三菱ケミカル賞は、高分子科学に基礎をおき、技術、産業に寄与する独創的かつ優れた研究業績を挙げた研究者に授与される賞です。
*参考:高分子学会三菱ケミカル賞受賞者
■受賞年月日
令和3年9月7日
■研究題目
両性電解質高分子の凍結保護効果の解明と生体材料応用
■研究内容
細胞の凍結保存技術は古くから開発されており、保護物質であるジメチルスルホキシド(DMSO)などを添加する必要がありました。松村教授らは、DMSOに比べて毒性が低く、しかも活性の高い高分子系の新規凍結保護物質を新たに見いだしました。その機序が既存の物質と異なることをNMRを用いた独自の手法で明らかとし、この機序を用いた再生医療用組織の凍結保存にも挑戦しています。さらに、和牛の受精卵や精子の凍結保護剤として産業応用もされています。また、凍結濃縮という凍結現象を用いた細胞内への物質送達手法を開発するなど、高分子化学と低温生物工学双方向の異分野融合型研究を進めています。
以上、基礎から産業応用に至るまで独創的かつ優れた研究成果であると国内外から高く評価されています。
■受賞にあたって一言
高分子学会よりこの度、三菱ケミカル賞を頂くことができ誠に光栄に思います。さらに高分子化学の発展に尽力して参ります。共同研究者や研究室の学生さんならびに研究費をご支援いただいた関係各所に厚くお礼申し上げます。


令和3年9月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/09/17-1.html高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功 ~高度な機器不要でPCR品質の検査を15~30分で可能に~
|
| 国立大学法人 北陸先端科学技術大学院大学 BioSeeds株式会社 |
高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功
~高度な機器不要でPCR品質の検査を15~30分で可能に~
ポイント
- 41℃でのワンポット等温RNAおよびDNA増幅反応(器具不要)
- 迅速かつ高感度(RT-PCRと同じように検出)
- シンプルで瞬時の検出(ラテラルフローストリップ)
- 非常に費用対効果が高い(テストあたりの推定コスト500円未満)
【概要】
| 北陸先端科学技術大学院大学(JAIST)とJAIST発のベンチャー企業であるBioSeeds(バイオシーズ)株式会社(石川県能美市)、および複数の研究機関からなる研究者チームは、唾液から直接、極めて微量のSARS-CoV-2を検出できる高度な等温核酸増幅法(RICCAテスト)を開発しました。この方法は、シンプルなワンポット(一つの容器だけを用いる)方式のRNAウイルスの等温核酸増幅検出法で、高度な機器や、特別な実験室・検査室を必要としません。そのため、検査室にサンプルを送る必要が無く、総測定時間15~30分で、その場で即時に検出結果を得られます。これまでに、唾液中の低コピー数のSARS-CoV-2の直接検出に成功しております。研究者チームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。 |
【背景・研究成果】
COVID-19の感染を食い止めるための最も効果的な方法は、症状のあるなしにかかわらず、感染の疑いのある人を特定して隔離することです。SARS-CoV-2のアルファからデルタまでの4種の懸念される変異株(VOC:variant of concern)およびイータからミューまでの5種の注目すべき変異株(VOI:variant of interest)が数カ月のうちに世界中に広まったように、新しい感染性ウイルス株が急速に出現しているため、COVID-19の迅速かつ高感度で信頼性の高い検査法の利用は、病気、さらにはパンデミックの制御に不可欠です。現在、世界的に流行しているCOVID-19では、主にRT-PCRによる検査が行われています。しかし、この検査室を必要とする方法は、サンプルの前処理が必要であることや、高価な装置(蛍光光度計付きサーマルサイクラー)が必要なことから、現場での検査は難しく、また短時間での大量検査にも課題があります。PCRに類似した分子検査を行う方法として、LAMP (Loop-mediated Isothermal Amplification) やSDA (Strand Displacement Amplification) などの様々な等温核酸増幅法が現在使用されています。しかし、これらの方法は、PCRと比較して特異性や感度が低いことが報告されています。また、これらの方法の多くは、実験室でのウイルスRNAの分離、溶解、精製、増幅など、面倒な前処理を必要とします。
この問題を解決するために、JAISTのマニッシュ ビヤニ特任教授率いるチームは、ウイルスRNAの標的配列を、特別な装置を必要とせず、現場で正確に検出できる高感度かつ超高速な方法を開発し、この検出法をRICCA(RNA Isothermal Co-assisted and Coupled Amplification)と名付けました。
現在、RICCAを使用して、既にSARS-CoV-2のアルファ株とデルタ株の2つの変異株を検出しており、他の変異株にも適応可能と考えられます。RICCAアッセイに必要なものは、ヒートブロック(恒温槽)と、25種類の試薬を含む混合液があらかじめ入ったチューブだけであり、RNA特異的増幅とDNA特異的増幅を同時に行うことができます。RICCAのコストは現在のRT-PCR法等と比較しても安価であり、より広範囲な用途に適用可能と考えられます。したがって、RICCAにより、COVID-19分子診断の「ラボフリー、ラボクオリティー」のメガテストプラットフォーム(医療検査室レベルの集団検診に向けた基本的な方法)も実現できる可能性があります。また、将来的には、このプラットフォームを使って他の感染性ウイルスを検査することも可能です。
RICCAは、COVID-19の検査に必要な設備を簡単に調達できない発展途上国では特に有用です。ビヤニ特任教授のチームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。また、RICCAのロボット化およびモバイルプラットフォームの設計を行っています(卓上プロトタイプはBioSeeds株式会社で開発中)。このプラットフォームが実現すれば、サンプル輸送の負担を軽減し、COVID-19診断を消費者が直接実施することも可能となり、遠隔地や資源の乏しい環境で大規模な集団検査を行うことが可能となります。
この最新の研究成果の一部は、国際的な科学誌(Scientific Reports)において、京都大学(保川清教授)、大阪母子医療センター(柳原格部長)、関西学院大学(藤原伸介教授)、東北大学(児玉栄一教授)、JAIST(ビヤニ特任教授、高木昌宏教授、高村禅教授)の研究者チームと共同で行った研究成果として紹介されています。

図:SARS-CoV-2ウイルスを、直接その場で検査する新規な方法(RICCA)(A)とそれによる熱不活化SARS-CoV-2ウイルスの検出結果(A')。 閉鎖的なサンプル保持容器(B)とそれを用いた、10%ヒト唾液中での熱不活性化SARS-CoV-2ウイルスの検出例 (B')。
【謝辞】
本研究成果の一部は、AMED(日本医療研究開発機構)新興・再興感染症に対する革新的医薬品等開発推進研究事業 JP20fk0108143、AMEDウイルス等感染症対策技術開発事業 JP20he0622020、JST(科学技術振興機構) 研究成果展開事業研究成果最適展開支援プログラム A-STEP 産学共同 (育成型)JPMJTR20UU の支援を受けたものです。
【参考文献】
| 論文名 | Development of robust isothermal RNA amplification assay for lab-free testing of RNA viruses |
| 雑誌名 | Scientific Reports |
| 著者名 | Radhika Biyani, Kirti Sharma, Kenji Kojima, Madhu Biyani, Vishnu Sharma, Tarun Kumawat, Kevin Maafu Juma, Itaru Yanagihara, Shinsuke Fujiwara, Eiichi Kodama, Yuzuru Takamura, Masahiro Takagi, Kiyoshi Yasukawa and Manish Biyani |
| 掲載日 | 2021年8月6日 |
| DOI | https://doi.org/10.1038/s41598-021-95411-x |
令和3年9月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/08-1.htmlメムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発
|
| 学校法人 龍谷大学 国立大学法人 奈良先端科学技術大学院大学 国立大学法人 北陸先端科学技術大学院大学 |
メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発
超コンパクト・低電力消費の人工知能への応用を期待
ポイント
- メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発した。従来の人工知能と比べると、劇的なコンパクト化・低電力消費が期待できる。
- メムキャパシタとして、強誘電体キャパシタを用いることで、構造を単純なものとし、薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となる。DC電流が無く、過渡電流も減り、電力消費が大幅に減る。
- 自律局所学習として、メムキャパシタのヒステリシス特性を上手く利用することにより、結合強度の制御回路など無しに、ニューロモーフィックシステムに学習させることができ、やはり将来の高集積化が容易となる。
- 研究の成果は、「IEEE Transactions on Neural Networks and Learning Systems」(Impact Factor=10.451)に掲載。
【概要】
| 龍谷大学 先端理工学部電子情報通信課程の木村睦研究室は、奈良先端科学技術大学院大学 先端科学技術研究科 中島 康彦教授、北陸先端科学技術大学院大学 先端科学技術研究科 徳光 永輔教授(応用物理学領域)らと共同で、メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発しました。 メムキャパシタは、印加電圧の履歴によりキャパシタンスが変化する回路素子で、本研究では、強誘電体キャパシタを用いることで、構造を単純なものとし、Bi3.25La0.75Ti3O12 (BLT)の薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となります。従来の大規模な模倣回路やメモリスタ(可変抵抗素子)の代わりに、メムキャパシタ(可変容量素子)を用いるため、DC電流が無く、過渡電流も減り、電力消費が大幅に減ります。 また、自律局所学習は、単一素子が自分自身の駆動条件のみで特性を変化させる学習方式であり、やはり将来の高集積化が容易となります。従来のシナプス素子の結合強度の制御回路など無しに、メムキャパシタの電圧履歴のキャパシタンス特性を上手く利用することにより、メムキャパシタだけで、ニューロモーフィックシステムに学習させることができます。 従来の人工知能と比べると、劇的なコンパクト化・低電力消費が期待できます。 |
【研究の背景】
「人工知能」は、現在、さまざまな用途に用いられ、将来、SDGs・Society 5.0・IoTといった未来社会に不可欠な情報インフラです。人工知能のための代表的な技術が、生物の脳の機能を模倣することで、自己組織化・自己学習・並列分散処理・障害耐性などの特長をもつ「ニューラルネットワーク」です。しかしながら、従来のものは、ハイスペックなハードウェアで実行される複雑・長大なソフトウェアで、人工知能のために最適化されておらず、コンピュータのサイズは巨大で、電力消費は膨大であり、また、並列分散処理・障害耐性などの特長は限定的でした。ニューラルネットワークを基本的なハードウェアのレベルから生体の脳の構造で模倣し、ニューロン素子やシナプス素子を実装するのが、「ニューロモーフィックシステム」です。しかしながら、従来のものは、人工知能としての最適化が不十分で、上記の特長は完全には得られていませんでした。この原因は、(1) 大規模な模倣回路やメモリスタ(可変抵抗素子)を使うため、DC電流・過渡電流が大きく、電力消費が大きい (2) 大規模なシナプス素子の結合強度の制御回路を使うため、サイズが大きいということによります。
【研究の目的】
そこで、本研究では、ニューロモーフィックシステムにおいて、(1) 模倣回路やメモリスタ(可変抵抗素子)の代わりに、メムキャパシタ(可変容量素子)を用いるため、DC電流が無く、過渡電流も減り、電力消費が大幅に減る (2) シナプス素子の結合強度の制御回路の代わりに、自律局所学習を用いるため、サイズが小さいということを目的とします。
【メムキャパシタ】
メムキャパシタは、印加電圧の履歴によりキャパシタンスが変化する回路素子です。本研究では、強誘電体キャパシタを用いることで、構造を単純なものとし、Bi3.25La0.75Ti3O12(BLT)の薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となります。ここでは、クロスバー型でメムキャパシタを作製し、印加電圧の履歴により強誘電体キャパシタの自発分極が変化することで、キャパシタンスが変化する回路素子を実現しています。

メムキャパシタ
【自律局所学習】
自律局所学習は、単一素子が自分自身の駆動条件のみで特性を変化させる学習方式であり、やはり将来の高集積化が容易となります。メムキャパシタの電圧履歴のキャパシタンス特性を上手く利用することにより、シナプス素子の結合強度の制御回路など無しに、メムキャパシタだけで、ニューロモーフィックシステムに学習させることができます。学習フェーズでは、シンプルに、クロスバー型の横電極と縦電極に電圧を印加するだけで、必要なキャパシタンスの変化が誘起されます。推論フェーズでも、シンプルに、横電極に電圧印加し、縦電極の電圧を読み取るだけです。

自律局所学習
【ニューロモーフィックシステム】
メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを、実際に組み立てました。アルファベットの「T」と「L」を記憶させ、わずかに異なるパターンを入力するとき、記憶した「T」または「L」のより近いほうが出力されることを確認しました。この動作は「連想記憶」というもので、文字認識や画像認識に直接に応用できるものであると同時に、問題設定により、さまざまな人工知能の取り扱う課題に応用できるものです。

ニューロモーフィックシステム

連想記憶の実験結果
【研究の意義と今後の展開】
従来の人工知能では、たとえば、いま最も有名なコグニティブシステムは、サイズは冷蔵庫10台ほど、電力消費は数百kWと言われています。本研究の基本的な成果をもとに、同様の機能のシステムを構築することを想定すると、サイズはLSI 1チップ、電力消費は20W程度と、劇的なコンパクト化・低電力消費が期待できます。SDGs・Society 5.0において、世界的なエネルギ危機を回避し、IoTにおいて、各々の機器へ搭載することが可能となります。なお、先行研究として、メモリスタと外部学習を用いるニューロモーフィックシステム(M. Prezioso, Nature, 521, 61, 2015)と比較すると、本研究で同様の機能が、低電力消費のメムキャパシタと、外部学習なしの局所自律学習で、実現できています。
【論文情報】
| 論文名 | Neuromorphic System using Memcapacitors and Autonomous Local Learning (メムキャパシタと自律局所学習を用いるニューロモーフィックシステム) |
| 掲載誌 | IEEE Transactions on Neural Networks and Learning Systems (TNNLS) |
| 著者 | 木村 睦(龍谷大学・奈良先端科学技術大学院大学)、石崎 勇真、宮部 雄太、吉田 誉、 小川 功人、横山 朋陽(龍谷大学)、羽賀 健一、徳光 永輔(北陸先端科学技術大学院大学)、 中島 康彦(奈良先端科学技術大学院大学) |
| DOI | 10.1109/TNNLS.2021.3106566 |
| 掲載日 | 2021年9月1日にオンライン版に掲載 |
令和3年9月3日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/03-1.htmlイノベーション・ジャパン2021~大学見本市Onlineに本学が出展
8月23日(月)~9月17日(金)の期間、国内最大規模の産学マッチングイベントである「イノベーション・ジャパン2021~大学見本市Online」がオンライン開催されます。
本学からは大学等シーズ展示に以下の出展をします。
| 一般公開期間 | 2021年8月23日(月) ~9月17日(金) |
| 公式サイト | https://innovationjapan-univ.jst.go.jp ※閲覧無料・来場登録あり |
| 大学等 シーズ展示 |
生命機能工学領域 藤本 健造 教授 「高速DNA/RNA解析に向けた光化学的DNA/RNA操作法の開発」 【出展分野】超スマート社会 【研究者プレゼン】8月23日(月)13:00~14:15 |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発 ―電子顕微鏡とデータ科学による究極の精密測定―
![]() |
| 国立大学法人 北陸先端科学技術大学院大学 国立大学法人 九州大学 |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発
―電子顕微鏡とデータ科学による究極の精密測定―
ポイント
- 電子顕微鏡とデータ科学を組み合わせることで、局所ひずみを高精度に測定
- 0.2%というわずかな局所ひずみをも検出できる精密さを達成
- 棒状ナノ粒子には表面形状の曲率変化に起因する約0.5%の局所膨張ひずみが生じることを発見
| 北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の麻生 浩平助教、大島 義文教授と、九州大学・大学院工学研究院のJens Maebe大学院生 (修士課程、当時)、Xuan Quy Tran研究員、山本 知一助教、松村 晶教授は、原子分解能電子顕微鏡法とデータ科学的手法であるガウス過程回帰を組み合わせることによって、ナノメートルサイズの粒子の中のわずか0.2%という局所ひずみを測定できる解析手法の開発に成功しました。開発した手法によって金のナノ粒子を解析したところ、棒状の粒子の内部では、先端付近で長さ方向に0.5%膨張したひずみを見出しました。この膨張ひずみは、粒子の先端部分で表面の形状(曲率)が変化しているために生じたこともわかりました。ナノ粒子の形状に由来して内部に局所ひずみが生じるという新たな発見と、ひずみを精密に捉える新規な手法は、ナノ物質内での原子配列と機能の理解に役立つと期待されます。 本研究成果は、2021年7月7日(米国東部標準時間)に科学雑誌「ACS Nano」誌のオンライン版で公開されました。 本研究は、日本学術振興会(JSPS)科研費基盤研究(B) (25289221、18H01830)と科学技術振興機構(JST)戦略的創造研究推進事業 ACCEL「元素間融合を基軸とする物質開発と応用展開」(研究代表者:北川 宏、研究分担者:松村 晶、プログラムマネージャー:岡部 晃博、研究開発期間:2015年8月~2021年3月、(JPMJAC1501))の支援を受けて行われました。 |
【研究背景と内容】
わずかな原子間距離の局所変化 (局所ひずみ) によって、磁性や触媒特性などといった様々な材料物性が左右されます。そのため、材料の局所ひずみを精密に測定する手法が求められてきました。ここ20年間で走査透過電子顕微鏡(STEM)の空間分解能が大きく向上して、原子状態の観察と解析が可能になりました。ナノメートルサイズの金の粒子をSTEMで観察したのが図1aです。ナノ粒子の内部に原子位置に対応した明るい点が整列して現れて見えます。原子は一見すると結晶構造を作って規則正しく周期的に配列しています。
しかし、図1aのSTEM像から原子の位置を特定して詳しく解析すると、場所によって原子は周期配列からわずかにずれて変位していることがわかりました。それをマップにしたのが図1bです。紙面左方向に大きく変位する原子が暗い青、紙面右方向に大きく変位する原子が明るい黄色でそれぞれ表されています。マップを遠目から見てみると、左から右手に向かって滑らかに、青色から黄色へと変化しているように見えます。しかし局所的には波のような細かい変化が全体を覆っています。この細かな変化は、像から原子位置を正しく特定できなかったために含まれる揺らぎノイズで、変位の変化率に相当するひずみを求めるうえで大きな障害になります。このノイズ成分を低減するには、長い時間 (カメラの露光時間に相当) をかけて計測して像質を改善するのがこれまでの一般的方法でしたが、計測時間が長くなるとその間の装置の機械的・電気的な状態のわずかな乱れの影響で像がゆがんでしまうという問題がありました。
そこで研究グループは、様々な分野で活用されているデータ科学手法のガウス過程回帰に着目しました。ガウス過程回帰では、データの真の姿は滑らかに変化すると仮定して、観測データにはこの真の姿に細かな揺らぎノイズが付加されていると考え、この順序をさかのぼることでデータの真の姿を予測します。ガウス過程回帰を図1bのマップに適用したところ、滑らかに変化する主要な成分だけを取り出すことに成功しました (図1c)。得られた変位の棒の長さ方向の変化率を求めて、局所的なひずみの分布をマップしたのが図1dです。開発した手法の精度を確かめるために、元データから直に、およびガウス過程回帰を適用して求めた場合のひずみ値の分布を比較したのが図1eです。元データでは標準偏差で1.1%の広がりがあるのに対して、ガウス過程回帰を用いることでその広がりが0.2 %に狭くなっており、ノイズ成分の除去によって有意に観測されるひずみ量の下限が大きく改善しました。
図1dに戻って見ると、棒の胴体部分と先端の半球部分の境目付近が明るい黄色になっており、この部分では棒の長さ方向に約0.5%膨張した局所ひずみが生じています。ナノ粒子では、表面積を小さくしようとして表面から内部に向かって力が作用するために、収縮ひずみが生じていると考えられていました。しかし、円筒状の胴体部と半球状の先端部からなる棒状の粒子では、2つの部分の表面曲率が異なることから内部にかかる力の向きと大きさに違いが生まれて、局所的に膨張するひずみ場が生ずることがわかりました。このように、原子位置の精密な解析が可能になって、ナノ粒子の局所形状によって内部のひずみの状態が変化することが発見できました。この新たな発見と、本成果で生み出された精密な解析手法は、ナノ構造材料の原子配置とそれによって引き起こされる機能に関する理解を深めることにつながると期待されます。

(b) 元データから得た原子変位マップ。紙面左方向への大きい変位が暗い青、紙面右方向への大きい変位が明るい黄色で表示される。細かく変化するノイズ成分が目立っている。
(c) ガウス過程回帰によって予測された真の変位。ノイズ成分の除去に成功している。
(d) 紙面横方向の変位の変化率(局所ひずみ)マップ。明るい黄色になっている両端部分では膨張ひずみが生じている。
(e) 元データとガウス過程回帰後のひずみ分布。ガウス過程回帰を用いることで、分布の広がりが1.1%から0.2%にまで狭まっており、微小な局所ひずみの検出が可能になった。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(B)(25289221、18H01830)
・科学技術振興機構(JST)戦略的創造研究推進事業ACCEL (JPMJAC1501)
【論文情報】
| 雑誌名 | ACS Nano |
| 題名 | Subpercent Local Strains Due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis |
| 著者名 | Kohei Aso*, Jens Maebe, Xuan Quy Tran, Tomokazu Yamamoto, Yoshifumi Oshima,Syo Matsumura |
| 掲載日 | 2021年7月7日(米国東部標準時間)にオンラインで掲載 |
| DOI | 10.1021/acsnano.1c03413 |
令和3年7月13日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/07/13-1.html環境・エネルギー領域の大平教授の研究課題が「NEDO先導研究プログラム/新技術先導研究プログラム」に採択
環境・エネルギー領域の大平 圭介教授が提案した研究課題が、新エネルギー・産業技術総合開発機構(NEDO)の「NEDO先導研究プログラム/新技術先導研究プログラム(エネルギー・環境新技術先導研究プログラム)」に採択されました。
「NEDO先導研究プログラム/新技術先導研究プログラム」は、2030年頃以降の社会実装を見据えた革新的な技術・システムについて、原則、産学連携の体制で先導研究を実施し、革新性・独創性があり、将来的な波及効果が期待できる技術シーズの発掘及び国家プロジェクト化等への道筋をつけることを目標とします。
*詳しくは、NEDOホームページをご覧ください。
■研究課題名
新概念結晶シリコン太陽電池モジュールの開発
■研究概要
2050年のカーボンニュートラルに向けて、主力電源の一翼を担うことが期待される太陽光発電において、太陽電池モジュールの劣化抑止と長寿命化は、最重要課題の一つです。また、寿命を迎えた太陽電池モジュールの大量廃棄時代に備え、部材の分別廃棄やリサイクルを容易にすることも、喫緊の課題です。本研究では、結晶シリコン太陽電池モジュールの革新的な構造として、封止材を用いないモジュールの開発に取り組みます。封止材を無くすことで、紫外光照射による封止材の黄変、封止材からの酸発生による電極の腐食、封止材を介したナトリウム移動にともなう電圧誘起劣化などに起因する発電性能低下を根本的に解決できます。さらに、太陽電池セルが封止材で接着されていないため、故障したモジュールの修理・再利用が可能となるばかりでなく、廃棄時の分解・分別や、部材リサイクルも容易となります。本研究は、新潟大学、青山学院大学、岐阜大学と共同で実施します。
令和3年5月14日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/05/14-4.html消化酵素で分解するナイロンを開発 ―プラスチック誤飲事故の軽減、海洋生態系維持へ―
|
| 国立大学法人 北陸先端科学技術大学院大学 独立行政法人 環境再生保全機構 |
消化酵素で分解するナイロンを開発
―プラスチック誤飲事故の軽減、海洋生態系維持へ―
ポイント
- 海洋プラスチックごみは誤飲するなど海洋生物への悪影響がある
- 従来の生分解性プラスチックは性能が低い問題がある
- 植物由来分子であるイタコン酸とアミノ酸からナイロンの開発に成功
- 従来ナイロンよりも高性能かつ人工胃液で分解・崩壊する性質を発見
| 環境再生保全機構(ERCA)が実施する環境研究総合推進費の一環として、北陸先端科学技術大学院大学・先端科学技術研究科 環境・エネルギー領域の金子 達雄教授らは、植物由来分子であるイタコン酸とアミノ酸であるロイシンからバイオナイロンを合成する手法を見出し、従来のナイロンよりも高耐熱・高力学強度であり、かつ胃に含まれる消化酵素であるペプシンで分解するバイオナイロンを開発しました。 海洋プラスチックごみ問題が深刻化する中、鳥類やクジラ類などの海洋生物が誤ってプラスチックごみを飲み込むことによる生態系への被害が問題視されています。生分解性プラスチックの中には海洋環境で分解するものがあり、中には消化酵素で分解するものも開発されているため本問題を解決するために重要であると考えられています。しかし、そのほとんどは柔軟なポリエステルであり耐熱性や力学強度の点で問題があります。このため用途は限られ、主に使い捨て分野で使用されているのが現状です。今回、金子教授らは、麹菌などが糖を変換して生産するイタコン酸および天然分子として有名なロイシンなどを原料にして、一般的なナイロンの原料の一つであるヘキサメチレンジアミンなどを反応させることでバイオナイロンを合成する条件を見出しました。得られたバイオナイロンはガラス転移温度が100℃を超え、力学強度が85MPaを超える高性能ナイロンであることも確認されました。これはナイロン中に硬い構造であるヘテロ環が含まれることに起因します。 また、アミノ酸には右手と左手の関係のような鏡像体が存在することが知られていますが、この鏡像関係にある一対のアミノ酸を混合するとナイロンの物性が向上することも見出されました。特に、L-ロイシンから得られるナイロン樹脂は胃中の消化酵素であるペプシンの存在下で崩壊し分子量も低下することが分かりました。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。 本成果は2021年4月30日に独国科学誌「Advanced Sustainable Systems」(インパクトファクター4.87(2019-2020))のオンライン版で公開されました。 |
| 本開発成果は、以下の事業・開発課題によって得られました。 研究開発期間:令和2年度~4年度(予定) 事業名 :環境再生保全機構(ERCA)環境研究総合推進費 開発課題名 :「バイオマス廃棄物由来イタコン酸からの海洋分解性バイオナイロンの開発」 チームリーダー:金子達雄(北陸先端科学技術大学院大学 教授) ERCA環境研究総合推進費は、気候変動問題への適応、循環型社会の実現、自然環境との共生、環境リスク管理等による安全の確保など、持続可能な社会構築のための環境政策の推進にとって不可欠な科学的知見の集積及び技術開発の促進を目的として、環境分野のほぼ全領域にわたる研究開発を推進しています。 |
<開発の背景と経緯>
植物などの生体に含まれる分子を用いて得られるバイオマスプラスチックは材料中に二酸化炭素を固定することにより、二酸化炭素濃度を削減し、低炭素社会構築に有効であるとされています。その中でも生分解性を有するものは、昨今深刻化する海洋プラスチックごみ問題の解決の糸口を与えるものと注目されています。特に、鳥類やクジラ類などの死骸の胃の中を調査するとプラスチックごみが蓄積している場合があり、それが原因で死に至った可能性が指摘されています。つまり、プラスチックごみの誤飲による生態系への被害が問題視されています。生分解性プラスチックの中には海洋環境で分解するものがあり、中には消化酵素で分解するものも開発されているため本問題を解決するためのキー材料となると考えられています。しかし、生分解性プラスチックのほとんどは柔軟なポリエステルで耐熱性や力学強度の点で問題があります。このため用途は限られ、主に使い捨て分野で使用されているのが現状です。たとえばPHBHと呼ばれる脂肪族ポリエステルは代表的な海洋分解性プラスチックを与えますが、その主骨格は一般的な工業用プラスチックに用いられる高分子に比べて柔軟であり、そのガラス転移温度は0℃付近であり室温での使用のためには高結晶化が余儀なくされます。また力学強度も20-30MPa付近です。(参考:ポリエチレン、塩ビ、ポリプロピレンなどの汎用プラスチックは20-70 MPa程度)
研究チームは、麹菌などが糖を変換して生産するイタコン酸を用いてバイオナイロンを開発することを目的として研究を進めていますが、アミノ酸であるロイシンなどを導入した新たなモノマーを合成し、一般的なナイロンの原料の一つであるヘキサメチレンジアミンなどを反応させることでバイオナイロンを合成する条件を見出しました(図1)。得られたバイオナイロンはガラス転移温度が100℃を超え、力学強度が85MPaを超える高性能ナイロンであることも確認されました(表1)。この高性能発現はナイロン中に硬い構造であるヘテロ環が含まれることに由来します。
最後に、L-ロイシンから得られるナイロン樹脂を合成し、これが胃中の消化酵素であるペプシンの存在下で崩壊(図2)し分子量も低下することが見いだされました(図3)。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。
<代表的作成方法>
ロイシン由来のジカルボン酸1-((S)-1-カルボキシ-3-メチルブチル)-5-オキソピロリジン-3-カルボン酸とヘキサメチレンジアミン(1.3g、10mol)をそれぞれアセトニトリルに溶解させた後に溶液を混合することでナイロン塩を析出させました(収率96%)。白色のナイロン塩を真空乾燥後170-180℃、50-60 rpmで激しく攪拌しバルクで重合しました。6時間後、粘性のあるポリマー溶融物が形成されました。これをDMFに溶解しアセトンに再沈殿することで精製を行いました。
<今回の成果>
今回の成果は大きく分けて2つ示すことができます。
1)鏡像関係にあるアミノ酸を分子鎖で混合したナイロンを合成することで、結晶化度および熱的力学的物性が向上することを発見
一般に再生可能な原料から得られる高分子は、熱的力学的性能が低く製造コストも高くなります。したがって、化石ベースのリソースと比較してパフォーマンスを向上させることができる合成アプローチを開発し、バイオベースのモノマーを利用することが重要です。ここでは、再生可能なイタコン酸とアミノ酸(D-またはL-ロイシン)から派生した新規な光学活性ジカルボン酸の生産に成功しました。まず、イタコン酸由来のイタコン酸ジメチルを出発物質として、剛直な不斉中心を持つ複素環式ジカルボン酸モノマーを高純度で得ました。これらのモノマーからアモルファスでありホモキラリティーを有するD-またはL-ロイシン由来のポリアミドを合成し、かつこれらをモノマー段階で混合したもの、オリゴマー段階で混合し追重合を行ったものを対象として研究を進めました(図1)。その結果、D-ロイシン由来のポリマー鎖とL-ロイシン由来のポリマー鎖との複合体は結晶化し、その結晶化度は36%に達しました。これは、キラル相互作用に由来するものと考えられます。得られた樹脂は、ガラス転移温度Tgが約117°C、溶融温度Tmが約213°Cであり、ポリアミド11などの従来のポリアミド(Tg約57°C)よりも高い値を示しました。さらに2.2〜3.8 GPaの高いヤング率および86〜108 MPaの高い力学強度を示しました(表1)。
2)バイオナイロン樹脂がペプシンの作用により崩壊し分解することを発見
バイオナイロンの酵素分解を、哺乳類の胃の消化酵素であるペプシンを使用して調べました。少量(150 mg)のポリアミド樹脂(Mw; 24,300-26,400 g / mol)と1 wt%のペプシン(5 ml)をpH 4.0のバッファーに入れて分解試験を行いました(対照実験はペプシンなし)。サンプルをインキュベーター内で37°Cで6週間振とうした結果、時間の経過に伴い平均分子量が24,300〜26,400 g / molから14,600〜16,500 g / molに減少することがわかりました(図3)。ペプシンによるナイロンの分解中の視覚的変化も崩壊現象として確認されました(図2)。研究チームは以前に、イタコン酸由来ポリアミドのピロリドンの開環反応を報告しましたが、今回発見した酵素分解はピロリドンの開環を誘発したと考えられます。ここで発見したペプシン分解は、哺乳類が当該ナイロン系プラスチックを誤飲した場合でも、哺乳類の消化管の安全性を維持することにつながる可能性があります。
<今後の展開>
本成果によりイタコン酸由来バイオナイロンの構造的な広がりが提案できました。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。
<参考図>
図1 (A)イタコン酸とアミノ酸からなるジカルボン酸モノマーの合成
(B)(A)のジカルボン酸とヘキサメチレンジアミンからのバイオナイロンの重合反応式
表1 バイオナイロンの物性表


図2 バイオナイロンがペプシン存在下で崩壊していく様子
図3 ペプシンを作用させたD-ロイシン由来バイオナイロンのGPC
【論文情報】
| 雑誌名 | Advanced Sustainable Systems |
| 題名 | High-performance BioNylons from Itaconic and Amino Acids with Pepsin Degradability (ペプシン分解性を示すイタコン酸とアミノ酸からの高性能バイオナイロン) |
| 著者名 | Mohammad Asif Ali,Tatsuo Kaneko* |
| 掲載日 | 2021年4月30日にオンライン版に掲載 |
| DOI | 10.1002/adsu.202100052 |
令和3年5月10日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/05/10-1.html宮竹小学校の児童が来学 -本学がより身近になりました-
2月12日(金)、能美市立宮竹小学校の3年生15名が附属図書館の見学やJAISTギャラリーでのパズル体験を行いました。本棚に並ぶ多くの図書、貴重図書室の『解体新書』(杉田玄白著)や『アトランティコ手稿』(レオナルド・ダ・ヴィンチ著)を目にし、本学職員の解説に熱心に聞き入っていました。また、実際に触って解いて遊ぶことができるパズルの数々に興味津々な様子で、一生懸命にパズルを解いていました。
また、2月24日(水)に同校の4年生23名が理科特別授業を受けました。
特別授業では、ナノマテリアルテクノロジーセンターの赤堀准教授(応用物理学領域)及び木村技術専門職員が講師となり、十分な新型コロナウイルス感染症対策を行った上で、液体窒素を用いた様々な科学実験を行いました。
液体窒素によって、花やスーパーボール、乾電池などの身近な物が化学反応を起こす光景に、子供たちは目を輝かせて見入っていました。
今回の企画は、科学技術の世界に触れることのできるまたとない機会となりました。

3年生が貴重図書室を見学(附属図書館)

液体窒素を用いた科学実験を行う4年生
令和3年3月1日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/03/01-2.html


