研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。物質化学領域の松村教授が高分子学会三菱ケミカル賞を受賞
物質化学領域の松村 和明教授が公益社団法人高分子学会三菱ケミカル賞を受賞しました。
高分子学会は、高分子科学の基礎ならびに高性能材料などの応用分野に関する幅広い研究分野を対象とした会員数10,000を超える学術団体です。
三菱ケミカル賞は、高分子科学に基礎をおき、技術、産業に寄与する独創的かつ優れた研究業績を挙げた研究者に授与される賞です。
*参考:高分子学会三菱ケミカル賞受賞者
■受賞年月日
令和3年9月7日
■研究題目
両性電解質高分子の凍結保護効果の解明と生体材料応用
■研究内容
細胞の凍結保存技術は古くから開発されており、保護物質であるジメチルスルホキシド(DMSO)などを添加する必要がありました。松村教授らは、DMSOに比べて毒性が低く、しかも活性の高い高分子系の新規凍結保護物質を新たに見いだしました。その機序が既存の物質と異なることをNMRを用いた独自の手法で明らかとし、この機序を用いた再生医療用組織の凍結保存にも挑戦しています。さらに、和牛の受精卵や精子の凍結保護剤として産業応用もされています。また、凍結濃縮という凍結現象を用いた細胞内への物質送達手法を開発するなど、高分子化学と低温生物工学双方向の異分野融合型研究を進めています。
以上、基礎から産業応用に至るまで独創的かつ優れた研究成果であると国内外から高く評価されています。
■受賞にあたって一言
高分子学会よりこの度、三菱ケミカル賞を頂くことができ誠に光栄に思います。さらに高分子化学の発展に尽力して参ります。共同研究者や研究室の学生さんならびに研究費をご支援いただいた関係各所に厚くお礼申し上げます。


令和3年9月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/09/17-1.html高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功 ~高度な機器不要でPCR品質の検査を15~30分で可能に~

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 BioSeeds株式会社 |
高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功
~高度な機器不要でPCR品質の検査を15~30分で可能に~
ポイント
- 41℃でのワンポット等温RNAおよびDNA増幅反応(器具不要)
- 迅速かつ高感度(RT-PCRと同じように検出)
- シンプルで瞬時の検出(ラテラルフローストリップ)
- 非常に費用対効果が高い(テストあたりの推定コスト500円未満)
【概要】
北陸先端科学技術大学院大学(JAIST)とJAIST発のベンチャー企業であるBioSeeds(バイオシーズ)株式会社(石川県能美市)、および複数の研究機関からなる研究者チームは、唾液から直接、極めて微量のSARS-CoV-2を検出できる高度な等温核酸増幅法(RICCAテスト)を開発しました。この方法は、シンプルなワンポット(一つの容器だけを用いる)方式のRNAウイルスの等温核酸増幅検出法で、高度な機器や、特別な実験室・検査室を必要としません。そのため、検査室にサンプルを送る必要が無く、総測定時間15~30分で、その場で即時に検出結果を得られます。これまでに、唾液中の低コピー数のSARS-CoV-2の直接検出に成功しております。研究者チームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。 |
【背景・研究成果】
COVID-19の感染を食い止めるための最も効果的な方法は、症状のあるなしにかかわらず、感染の疑いのある人を特定して隔離することです。SARS-CoV-2のアルファからデルタまでの4種の懸念される変異株(VOC:variant of concern)およびイータからミューまでの5種の注目すべき変異株(VOI:variant of interest)が数カ月のうちに世界中に広まったように、新しい感染性ウイルス株が急速に出現しているため、COVID-19の迅速かつ高感度で信頼性の高い検査法の利用は、病気、さらにはパンデミックの制御に不可欠です。現在、世界的に流行しているCOVID-19では、主にRT-PCRによる検査が行われています。しかし、この検査室を必要とする方法は、サンプルの前処理が必要であることや、高価な装置(蛍光光度計付きサーマルサイクラー)が必要なことから、現場での検査は難しく、また短時間での大量検査にも課題があります。PCRに類似した分子検査を行う方法として、LAMP (Loop-mediated Isothermal Amplification) やSDA (Strand Displacement Amplification) などの様々な等温核酸増幅法が現在使用されています。しかし、これらの方法は、PCRと比較して特異性や感度が低いことが報告されています。また、これらの方法の多くは、実験室でのウイルスRNAの分離、溶解、精製、増幅など、面倒な前処理を必要とします。
この問題を解決するために、JAISTのマニッシュ ビヤニ特任教授率いるチームは、ウイルスRNAの標的配列を、特別な装置を必要とせず、現場で正確に検出できる高感度かつ超高速な方法を開発し、この検出法をRICCA(RNA Isothermal Co-assisted and Coupled Amplification)と名付けました。
現在、RICCAを使用して、既にSARS-CoV-2のアルファ株とデルタ株の2つの変異株を検出しており、他の変異株にも適応可能と考えられます。RICCAアッセイに必要なものは、ヒートブロック(恒温槽)と、25種類の試薬を含む混合液があらかじめ入ったチューブだけであり、RNA特異的増幅とDNA特異的増幅を同時に行うことができます。RICCAのコストは現在のRT-PCR法等と比較しても安価であり、より広範囲な用途に適用可能と考えられます。したがって、RICCAにより、COVID-19分子診断の「ラボフリー、ラボクオリティー」のメガテストプラットフォーム(医療検査室レベルの集団検診に向けた基本的な方法)も実現できる可能性があります。また、将来的には、このプラットフォームを使って他の感染性ウイルスを検査することも可能です。
RICCAは、COVID-19の検査に必要な設備を簡単に調達できない発展途上国では特に有用です。ビヤニ特任教授のチームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。また、RICCAのロボット化およびモバイルプラットフォームの設計を行っています(卓上プロトタイプはBioSeeds株式会社で開発中)。このプラットフォームが実現すれば、サンプル輸送の負担を軽減し、COVID-19診断を消費者が直接実施することも可能となり、遠隔地や資源の乏しい環境で大規模な集団検査を行うことが可能となります。
この最新の研究成果の一部は、国際的な科学誌(Scientific Reports)において、京都大学(保川清教授)、大阪母子医療センター(柳原格部長)、関西学院大学(藤原伸介教授)、東北大学(児玉栄一教授)、JAIST(ビヤニ特任教授、高木昌宏教授、高村禅教授)の研究者チームと共同で行った研究成果として紹介されています。
図:SARS-CoV-2ウイルスを、直接その場で検査する新規な方法(RICCA)(A)とそれによる熱不活化SARS-CoV-2ウイルスの検出結果(A')。 閉鎖的なサンプル保持容器(B)とそれを用いた、10%ヒト唾液中での熱不活性化SARS-CoV-2ウイルスの検出例 (B')。
【謝辞】
本研究成果の一部は、AMED(日本医療研究開発機構)新興・再興感染症に対する革新的医薬品等開発推進研究事業 JP20fk0108143、AMEDウイルス等感染症対策技術開発事業 JP20he0622020、JST(科学技術振興機構) 研究成果展開事業研究成果最適展開支援プログラム A-STEP 産学共同 (育成型)JPMJTR20UU の支援を受けたものです。
【参考文献】
論文名 | Development of robust isothermal RNA amplification assay for lab-free testing of RNA viruses |
雑誌名 | Scientific Reports |
著者名 | Radhika Biyani, Kirti Sharma, Kenji Kojima, Madhu Biyani, Vishnu Sharma, Tarun Kumawat, Kevin Maafu Juma, Itaru Yanagihara, Shinsuke Fujiwara, Eiichi Kodama, Yuzuru Takamura, Masahiro Takagi, Kiyoshi Yasukawa and Manish Biyani |
掲載日 | 2021年8月6日 |
DOI | https://doi.org/10.1038/s41598-021-95411-x |
令和3年9月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/08-1.htmlメムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発
![]() ![]() ![]() |
学校法人 龍谷大学 国立大学法人 奈良先端科学技術大学院大学 国立大学法人 北陸先端科学技術大学院大学 |
メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発
超コンパクト・低電力消費の人工知能への応用を期待
ポイント
- メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発した。従来の人工知能と比べると、劇的なコンパクト化・低電力消費が期待できる。
- メムキャパシタとして、強誘電体キャパシタを用いることで、構造を単純なものとし、薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となる。DC電流が無く、過渡電流も減り、電力消費が大幅に減る。
- 自律局所学習として、メムキャパシタのヒステリシス特性を上手く利用することにより、結合強度の制御回路など無しに、ニューロモーフィックシステムに学習させることができ、やはり将来の高集積化が容易となる。
- 研究の成果は、「IEEE Transactions on Neural Networks and Learning Systems」(Impact Factor=10.451)に掲載。
【概要】
龍谷大学 先端理工学部電子情報通信課程の木村睦研究室は、奈良先端科学技術大学院大学 先端科学技術研究科 中島 康彦教授、北陸先端科学技術大学院大学 先端科学技術研究科 徳光 永輔教授(応用物理学領域)らと共同で、メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを開発しました。 メムキャパシタは、印加電圧の履歴によりキャパシタンスが変化する回路素子で、本研究では、強誘電体キャパシタを用いることで、構造を単純なものとし、Bi3.25La0.75Ti3O12 (BLT)の薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となります。従来の大規模な模倣回路やメモリスタ(可変抵抗素子)の代わりに、メムキャパシタ(可変容量素子)を用いるため、DC電流が無く、過渡電流も減り、電力消費が大幅に減ります。 また、自律局所学習は、単一素子が自分自身の駆動条件のみで特性を変化させる学習方式であり、やはり将来の高集積化が容易となります。従来のシナプス素子の結合強度の制御回路など無しに、メムキャパシタの電圧履歴のキャパシタンス特性を上手く利用することにより、メムキャパシタだけで、ニューロモーフィックシステムに学習させることができます。 従来の人工知能と比べると、劇的なコンパクト化・低電力消費が期待できます。 |
【研究の背景】
「人工知能」は、現在、さまざまな用途に用いられ、将来、SDGs・Society 5.0・IoTといった未来社会に不可欠な情報インフラです。人工知能のための代表的な技術が、生物の脳の機能を模倣することで、自己組織化・自己学習・並列分散処理・障害耐性などの特長をもつ「ニューラルネットワーク」です。しかしながら、従来のものは、ハイスペックなハードウェアで実行される複雑・長大なソフトウェアで、人工知能のために最適化されておらず、コンピュータのサイズは巨大で、電力消費は膨大であり、また、並列分散処理・障害耐性などの特長は限定的でした。ニューラルネットワークを基本的なハードウェアのレベルから生体の脳の構造で模倣し、ニューロン素子やシナプス素子を実装するのが、「ニューロモーフィックシステム」です。しかしながら、従来のものは、人工知能としての最適化が不十分で、上記の特長は完全には得られていませんでした。この原因は、(1) 大規模な模倣回路やメモリスタ(可変抵抗素子)を使うため、DC電流・過渡電流が大きく、電力消費が大きい (2) 大規模なシナプス素子の結合強度の制御回路を使うため、サイズが大きいということによります。
【研究の目的】
そこで、本研究では、ニューロモーフィックシステムにおいて、(1) 模倣回路やメモリスタ(可変抵抗素子)の代わりに、メムキャパシタ(可変容量素子)を用いるため、DC電流が無く、過渡電流も減り、電力消費が大幅に減る (2) シナプス素子の結合強度の制御回路の代わりに、自律局所学習を用いるため、サイズが小さいということを目的とします。
【メムキャパシタ】
メムキャパシタは、印加電圧の履歴によりキャパシタンスが変化する回路素子です。本研究では、強誘電体キャパシタを用いることで、構造を単純なものとし、Bi3.25La0.75Ti3O12(BLT)の薄膜の液相プロセスを用いることで、作製プロセスも単純なものとしており、将来の高集積化が容易となります。ここでは、クロスバー型でメムキャパシタを作製し、印加電圧の履歴により強誘電体キャパシタの自発分極が変化することで、キャパシタンスが変化する回路素子を実現しています。
メムキャパシタ
【自律局所学習】
自律局所学習は、単一素子が自分自身の駆動条件のみで特性を変化させる学習方式であり、やはり将来の高集積化が容易となります。メムキャパシタの電圧履歴のキャパシタンス特性を上手く利用することにより、シナプス素子の結合強度の制御回路など無しに、メムキャパシタだけで、ニューロモーフィックシステムに学習させることができます。学習フェーズでは、シンプルに、クロスバー型の横電極と縦電極に電圧を印加するだけで、必要なキャパシタンスの変化が誘起されます。推論フェーズでも、シンプルに、横電極に電圧印加し、縦電極の電圧を読み取るだけです。
自律局所学習
【ニューロモーフィックシステム】
メムキャパシタと自律局所学習を用いるニューロモーフィックシステムを、実際に組み立てました。アルファベットの「T」と「L」を記憶させ、わずかに異なるパターンを入力するとき、記憶した「T」または「L」のより近いほうが出力されることを確認しました。この動作は「連想記憶」というもので、文字認識や画像認識に直接に応用できるものであると同時に、問題設定により、さまざまな人工知能の取り扱う課題に応用できるものです。
ニューロモーフィックシステム
連想記憶の実験結果
【研究の意義と今後の展開】
従来の人工知能では、たとえば、いま最も有名なコグニティブシステムは、サイズは冷蔵庫10台ほど、電力消費は数百kWと言われています。本研究の基本的な成果をもとに、同様の機能のシステムを構築することを想定すると、サイズはLSI 1チップ、電力消費は20W程度と、劇的なコンパクト化・低電力消費が期待できます。SDGs・Society 5.0において、世界的なエネルギ危機を回避し、IoTにおいて、各々の機器へ搭載することが可能となります。なお、先行研究として、メモリスタと外部学習を用いるニューロモーフィックシステム(M. Prezioso, Nature, 521, 61, 2015)と比較すると、本研究で同様の機能が、低電力消費のメムキャパシタと、外部学習なしの局所自律学習で、実現できています。
【論文情報】
論文名 | Neuromorphic System using Memcapacitors and Autonomous Local Learning (メムキャパシタと自律局所学習を用いるニューロモーフィックシステム) |
掲載誌 | IEEE Transactions on Neural Networks and Learning Systems (TNNLS) |
著者 | 木村 睦(龍谷大学・奈良先端科学技術大学院大学)、石崎 勇真、宮部 雄太、吉田 誉、 小川 功人、横山 朋陽(龍谷大学)、羽賀 健一、徳光 永輔(北陸先端科学技術大学院大学)、 中島 康彦(奈良先端科学技術大学院大学) |
DOI | 10.1109/TNNLS.2021.3106566 |
掲載日 | 2021年9月1日にオンライン版に掲載 |
令和3年9月3日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/03-1.htmlイノベーション・ジャパン2021~大学見本市Onlineに本学が出展
8月23日(月)~9月17日(金)の期間、国内最大規模の産学マッチングイベントである「イノベーション・ジャパン2021~大学見本市Online」がオンライン開催されます。
本学からは大学等シーズ展示に以下の出展をします。
一般公開期間 | 2021年8月23日(月) ~9月17日(金) |
公式サイト | https://innovationjapan-univ.jst.go.jp ※閲覧無料・来場登録あり |
大学等 シーズ展示 |
生命機能工学領域 藤本 健造 教授 「高速DNA/RNA解析に向けた光化学的DNA/RNA操作法の開発」 【出展分野】超スマート社会 【研究者プレゼン】8月23日(月)13:00~14:15 |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発 ―電子顕微鏡とデータ科学による究極の精密測定―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 九州大学 |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発
―電子顕微鏡とデータ科学による究極の精密測定―
ポイント
- 電子顕微鏡とデータ科学を組み合わせることで、局所ひずみを高精度に測定
- 0.2%というわずかな局所ひずみをも検出できる精密さを達成
- 棒状ナノ粒子には表面形状の曲率変化に起因する約0.5%の局所膨張ひずみが生じることを発見
北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の麻生 浩平助教、大島 義文教授と、九州大学・大学院工学研究院のJens Maebe大学院生 (修士課程、当時)、Xuan Quy Tran研究員、山本 知一助教、松村 晶教授は、原子分解能電子顕微鏡法とデータ科学的手法であるガウス過程回帰を組み合わせることによって、ナノメートルサイズの粒子の中のわずか0.2%という局所ひずみを測定できる解析手法の開発に成功しました。開発した手法によって金のナノ粒子を解析したところ、棒状の粒子の内部では、先端付近で長さ方向に0.5%膨張したひずみを見出しました。この膨張ひずみは、粒子の先端部分で表面の形状(曲率)が変化しているために生じたこともわかりました。ナノ粒子の形状に由来して内部に局所ひずみが生じるという新たな発見と、ひずみを精密に捉える新規な手法は、ナノ物質内での原子配列と機能の理解に役立つと期待されます。 本研究成果は、2021年7月7日(米国東部標準時間)に科学雑誌「ACS Nano」誌のオンライン版で公開されました。 本研究は、日本学術振興会(JSPS)科研費基盤研究(B) (25289221、18H01830)と科学技術振興機構(JST)戦略的創造研究推進事業 ACCEL「元素間融合を基軸とする物質開発と応用展開」(研究代表者:北川 宏、研究分担者:松村 晶、プログラムマネージャー:岡部 晃博、研究開発期間:2015年8月~2021年3月、(JPMJAC1501))の支援を受けて行われました。 |
【研究背景と内容】
わずかな原子間距離の局所変化 (局所ひずみ) によって、磁性や触媒特性などといった様々な材料物性が左右されます。そのため、材料の局所ひずみを精密に測定する手法が求められてきました。ここ20年間で走査透過電子顕微鏡(STEM)の空間分解能が大きく向上して、原子状態の観察と解析が可能になりました。ナノメートルサイズの金の粒子をSTEMで観察したのが図1aです。ナノ粒子の内部に原子位置に対応した明るい点が整列して現れて見えます。原子は一見すると結晶構造を作って規則正しく周期的に配列しています。
しかし、図1aのSTEM像から原子の位置を特定して詳しく解析すると、場所によって原子は周期配列からわずかにずれて変位していることがわかりました。それをマップにしたのが図1bです。紙面左方向に大きく変位する原子が暗い青、紙面右方向に大きく変位する原子が明るい黄色でそれぞれ表されています。マップを遠目から見てみると、左から右手に向かって滑らかに、青色から黄色へと変化しているように見えます。しかし局所的には波のような細かい変化が全体を覆っています。この細かな変化は、像から原子位置を正しく特定できなかったために含まれる揺らぎノイズで、変位の変化率に相当するひずみを求めるうえで大きな障害になります。このノイズ成分を低減するには、長い時間 (カメラの露光時間に相当) をかけて計測して像質を改善するのがこれまでの一般的方法でしたが、計測時間が長くなるとその間の装置の機械的・電気的な状態のわずかな乱れの影響で像がゆがんでしまうという問題がありました。
そこで研究グループは、様々な分野で活用されているデータ科学手法のガウス過程回帰に着目しました。ガウス過程回帰では、データの真の姿は滑らかに変化すると仮定して、観測データにはこの真の姿に細かな揺らぎノイズが付加されていると考え、この順序をさかのぼることでデータの真の姿を予測します。ガウス過程回帰を図1bのマップに適用したところ、滑らかに変化する主要な成分だけを取り出すことに成功しました (図1c)。得られた変位の棒の長さ方向の変化率を求めて、局所的なひずみの分布をマップしたのが図1dです。開発した手法の精度を確かめるために、元データから直に、およびガウス過程回帰を適用して求めた場合のひずみ値の分布を比較したのが図1eです。元データでは標準偏差で1.1%の広がりがあるのに対して、ガウス過程回帰を用いることでその広がりが0.2 %に狭くなっており、ノイズ成分の除去によって有意に観測されるひずみ量の下限が大きく改善しました。
図1dに戻って見ると、棒の胴体部分と先端の半球部分の境目付近が明るい黄色になっており、この部分では棒の長さ方向に約0.5%膨張した局所ひずみが生じています。ナノ粒子では、表面積を小さくしようとして表面から内部に向かって力が作用するために、収縮ひずみが生じていると考えられていました。しかし、円筒状の胴体部と半球状の先端部からなる棒状の粒子では、2つの部分の表面曲率が異なることから内部にかかる力の向きと大きさに違いが生まれて、局所的に膨張するひずみ場が生ずることがわかりました。このように、原子位置の精密な解析が可能になって、ナノ粒子の局所形状によって内部のひずみの状態が変化することが発見できました。この新たな発見と、本成果で生み出された精密な解析手法は、ナノ構造材料の原子配置とそれによって引き起こされる機能に関する理解を深めることにつながると期待されます。
(b) 元データから得た原子変位マップ。紙面左方向への大きい変位が暗い青、紙面右方向への大きい変位が明るい黄色で表示される。細かく変化するノイズ成分が目立っている。
(c) ガウス過程回帰によって予測された真の変位。ノイズ成分の除去に成功している。
(d) 紙面横方向の変位の変化率(局所ひずみ)マップ。明るい黄色になっている両端部分では膨張ひずみが生じている。
(e) 元データとガウス過程回帰後のひずみ分布。ガウス過程回帰を用いることで、分布の広がりが1.1%から0.2%にまで狭まっており、微小な局所ひずみの検出が可能になった。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(B)(25289221、18H01830)
・科学技術振興機構(JST)戦略的創造研究推進事業ACCEL (JPMJAC1501)
【論文情報】
雑誌名 | ACS Nano |
題名 | Subpercent Local Strains Due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis |
著者名 | Kohei Aso*, Jens Maebe, Xuan Quy Tran, Tomokazu Yamamoto, Yoshifumi Oshima,Syo Matsumura |
掲載日 | 2021年7月7日(米国東部標準時間)にオンラインで掲載 |
DOI | 10.1021/acsnano.1c03413 |
令和3年7月13日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/07/13-1.html環境・エネルギー領域の大平教授の研究課題が「NEDO先導研究プログラム/新技術先導研究プログラム」に採択
環境・エネルギー領域の大平 圭介教授が提案した研究課題が、新エネルギー・産業技術総合開発機構(NEDO)の「NEDO先導研究プログラム/新技術先導研究プログラム(エネルギー・環境新技術先導研究プログラム)」に採択されました。
「NEDO先導研究プログラム/新技術先導研究プログラム」は、2030年頃以降の社会実装を見据えた革新的な技術・システムについて、原則、産学連携の体制で先導研究を実施し、革新性・独創性があり、将来的な波及効果が期待できる技術シーズの発掘及び国家プロジェクト化等への道筋をつけることを目標とします。
*詳しくは、NEDOホームページをご覧ください。
■研究課題名
新概念結晶シリコン太陽電池モジュールの開発
■研究概要
2050年のカーボンニュートラルに向けて、主力電源の一翼を担うことが期待される太陽光発電において、太陽電池モジュールの劣化抑止と長寿命化は、最重要課題の一つです。また、寿命を迎えた太陽電池モジュールの大量廃棄時代に備え、部材の分別廃棄やリサイクルを容易にすることも、喫緊の課題です。本研究では、結晶シリコン太陽電池モジュールの革新的な構造として、封止材を用いないモジュールの開発に取り組みます。封止材を無くすことで、紫外光照射による封止材の黄変、封止材からの酸発生による電極の腐食、封止材を介したナトリウム移動にともなう電圧誘起劣化などに起因する発電性能低下を根本的に解決できます。さらに、太陽電池セルが封止材で接着されていないため、故障したモジュールの修理・再利用が可能となるばかりでなく、廃棄時の分解・分別や、部材リサイクルも容易となります。本研究は、新潟大学、青山学院大学、岐阜大学と共同で実施します。
令和3年5月14日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/05/14-4.html消化酵素で分解するナイロンを開発 ―プラスチック誤飲事故の軽減、海洋生態系維持へ―
![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 独立行政法人 環境再生保全機構 |
消化酵素で分解するナイロンを開発
―プラスチック誤飲事故の軽減、海洋生態系維持へ―
ポイント
- 海洋プラスチックごみは誤飲するなど海洋生物への悪影響がある
- 従来の生分解性プラスチックは性能が低い問題がある
- 植物由来分子であるイタコン酸とアミノ酸からナイロンの開発に成功
- 従来ナイロンよりも高性能かつ人工胃液で分解・崩壊する性質を発見
環境再生保全機構(ERCA)が実施する環境研究総合推進費の一環として、北陸先端科学技術大学院大学・先端科学技術研究科 環境・エネルギー領域の金子 達雄教授らは、植物由来分子であるイタコン酸とアミノ酸であるロイシンからバイオナイロンを合成する手法を見出し、従来のナイロンよりも高耐熱・高力学強度であり、かつ胃に含まれる消化酵素であるペプシンで分解するバイオナイロンを開発しました。 海洋プラスチックごみ問題が深刻化する中、鳥類やクジラ類などの海洋生物が誤ってプラスチックごみを飲み込むことによる生態系への被害が問題視されています。生分解性プラスチックの中には海洋環境で分解するものがあり、中には消化酵素で分解するものも開発されているため本問題を解決するために重要であると考えられています。しかし、そのほとんどは柔軟なポリエステルであり耐熱性や力学強度の点で問題があります。このため用途は限られ、主に使い捨て分野で使用されているのが現状です。今回、金子教授らは、麹菌などが糖を変換して生産するイタコン酸および天然分子として有名なロイシンなどを原料にして、一般的なナイロンの原料の一つであるヘキサメチレンジアミンなどを反応させることでバイオナイロンを合成する条件を見出しました。得られたバイオナイロンはガラス転移温度が100℃を超え、力学強度が85MPaを超える高性能ナイロンであることも確認されました。これはナイロン中に硬い構造であるヘテロ環が含まれることに起因します。 また、アミノ酸には右手と左手の関係のような鏡像体が存在することが知られていますが、この鏡像関係にある一対のアミノ酸を混合するとナイロンの物性が向上することも見出されました。特に、L-ロイシンから得られるナイロン樹脂は胃中の消化酵素であるペプシンの存在下で崩壊し分子量も低下することが分かりました。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。 本成果は2021年4月30日に独国科学誌「Advanced Sustainable Systems」(インパクトファクター4.87(2019-2020))のオンライン版で公開されました。 |
本開発成果は、以下の事業・開発課題によって得られました。 研究開発期間:令和2年度~4年度(予定) 事業名 :環境再生保全機構(ERCA)環境研究総合推進費 開発課題名 :「バイオマス廃棄物由来イタコン酸からの海洋分解性バイオナイロンの開発」 チームリーダー:金子達雄(北陸先端科学技術大学院大学 教授) ERCA環境研究総合推進費は、気候変動問題への適応、循環型社会の実現、自然環境との共生、環境リスク管理等による安全の確保など、持続可能な社会構築のための環境政策の推進にとって不可欠な科学的知見の集積及び技術開発の促進を目的として、環境分野のほぼ全領域にわたる研究開発を推進しています。 |
<開発の背景と経緯>
植物などの生体に含まれる分子を用いて得られるバイオマスプラスチックは材料中に二酸化炭素を固定することにより、二酸化炭素濃度を削減し、低炭素社会構築に有効であるとされています。その中でも生分解性を有するものは、昨今深刻化する海洋プラスチックごみ問題の解決の糸口を与えるものと注目されています。特に、鳥類やクジラ類などの死骸の胃の中を調査するとプラスチックごみが蓄積している場合があり、それが原因で死に至った可能性が指摘されています。つまり、プラスチックごみの誤飲による生態系への被害が問題視されています。生分解性プラスチックの中には海洋環境で分解するものがあり、中には消化酵素で分解するものも開発されているため本問題を解決するためのキー材料となると考えられています。しかし、生分解性プラスチックのほとんどは柔軟なポリエステルで耐熱性や力学強度の点で問題があります。このため用途は限られ、主に使い捨て分野で使用されているのが現状です。たとえばPHBHと呼ばれる脂肪族ポリエステルは代表的な海洋分解性プラスチックを与えますが、その主骨格は一般的な工業用プラスチックに用いられる高分子に比べて柔軟であり、そのガラス転移温度は0℃付近であり室温での使用のためには高結晶化が余儀なくされます。また力学強度も20-30MPa付近です。(参考:ポリエチレン、塩ビ、ポリプロピレンなどの汎用プラスチックは20-70 MPa程度)
研究チームは、麹菌などが糖を変換して生産するイタコン酸を用いてバイオナイロンを開発することを目的として研究を進めていますが、アミノ酸であるロイシンなどを導入した新たなモノマーを合成し、一般的なナイロンの原料の一つであるヘキサメチレンジアミンなどを反応させることでバイオナイロンを合成する条件を見出しました(図1)。得られたバイオナイロンはガラス転移温度が100℃を超え、力学強度が85MPaを超える高性能ナイロンであることも確認されました(表1)。この高性能発現はナイロン中に硬い構造であるヘテロ環が含まれることに由来します。
最後に、L-ロイシンから得られるナイロン樹脂を合成し、これが胃中の消化酵素であるペプシンの存在下で崩壊(図2)し分子量も低下することが見いだされました(図3)。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。
<代表的作成方法>
ロイシン由来のジカルボン酸1-((S)-1-カルボキシ-3-メチルブチル)-5-オキソピロリジン-3-カルボン酸とヘキサメチレンジアミン(1.3g、10mol)をそれぞれアセトニトリルに溶解させた後に溶液を混合することでナイロン塩を析出させました(収率96%)。白色のナイロン塩を真空乾燥後170-180℃、50-60 rpmで激しく攪拌しバルクで重合しました。6時間後、粘性のあるポリマー溶融物が形成されました。これをDMFに溶解しアセトンに再沈殿することで精製を行いました。
<今回の成果>
今回の成果は大きく分けて2つ示すことができます。
1)鏡像関係にあるアミノ酸を分子鎖で混合したナイロンを合成することで、結晶化度および熱的力学的物性が向上することを発見
一般に再生可能な原料から得られる高分子は、熱的力学的性能が低く製造コストも高くなります。したがって、化石ベースのリソースと比較してパフォーマンスを向上させることができる合成アプローチを開発し、バイオベースのモノマーを利用することが重要です。ここでは、再生可能なイタコン酸とアミノ酸(D-またはL-ロイシン)から派生した新規な光学活性ジカルボン酸の生産に成功しました。まず、イタコン酸由来のイタコン酸ジメチルを出発物質として、剛直な不斉中心を持つ複素環式ジカルボン酸モノマーを高純度で得ました。これらのモノマーからアモルファスでありホモキラリティーを有するD-またはL-ロイシン由来のポリアミドを合成し、かつこれらをモノマー段階で混合したもの、オリゴマー段階で混合し追重合を行ったものを対象として研究を進めました(図1)。その結果、D-ロイシン由来のポリマー鎖とL-ロイシン由来のポリマー鎖との複合体は結晶化し、その結晶化度は36%に達しました。これは、キラル相互作用に由来するものと考えられます。得られた樹脂は、ガラス転移温度Tgが約117°C、溶融温度Tmが約213°Cであり、ポリアミド11などの従来のポリアミド(Tg約57°C)よりも高い値を示しました。さらに2.2〜3.8 GPaの高いヤング率および86〜108 MPaの高い力学強度を示しました(表1)。
2)バイオナイロン樹脂がペプシンの作用により崩壊し分解することを発見
バイオナイロンの酵素分解を、哺乳類の胃の消化酵素であるペプシンを使用して調べました。少量(150 mg)のポリアミド樹脂(Mw; 24,300-26,400 g / mol)と1 wt%のペプシン(5 ml)をpH 4.0のバッファーに入れて分解試験を行いました(対照実験はペプシンなし)。サンプルをインキュベーター内で37°Cで6週間振とうした結果、時間の経過に伴い平均分子量が24,300〜26,400 g / molから14,600〜16,500 g / molに減少することがわかりました(図3)。ペプシンによるナイロンの分解中の視覚的変化も崩壊現象として確認されました(図2)。研究チームは以前に、イタコン酸由来ポリアミドのピロリドンの開環反応を報告しましたが、今回発見した酵素分解はピロリドンの開環を誘発したと考えられます。ここで発見したペプシン分解は、哺乳類が当該ナイロン系プラスチックを誤飲した場合でも、哺乳類の消化管の安全性を維持することにつながる可能性があります。
<今後の展開>
本成果によりイタコン酸由来バイオナイロンの構造的な広がりが提案できました。今後、海洋ごみの中でも被害の多い釣り糸や漁網などへの応用を目指し、さらには自動車エンジン周りなどで使用されているナイロンを代替する物質として設計する予定です。将来的には海洋ごみ問題解決への道しるべを提供するだけでなく、大気中二酸化炭素削減などへの波及効果も考えられます。
<参考図> 図1 (A)イタコン酸とアミノ酸からなるジカルボン酸モノマーの合成
(B)(A)のジカルボン酸とヘキサメチレンジアミンからのバイオナイロンの重合反応式
表1 バイオナイロンの物性表
図2 バイオナイロンがペプシン存在下で崩壊していく様子
図3 ペプシンを作用させたD-ロイシン由来バイオナイロンのGPC
【論文情報】
雑誌名 | Advanced Sustainable Systems |
題名 | High-performance BioNylons from Itaconic and Amino Acids with Pepsin Degradability (ペプシン分解性を示すイタコン酸とアミノ酸からの高性能バイオナイロン) |
著者名 | Mohammad Asif Ali,Tatsuo Kaneko* |
掲載日 | 2021年4月30日にオンライン版に掲載 |
DOI | 10.1002/adsu.202100052 |
令和3年5月10日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/05/10-1.html宮竹小学校の児童が来学 -本学がより身近になりました-
2月12日(金)、能美市立宮竹小学校の3年生15名が附属図書館の見学やJAISTギャラリーでのパズル体験を行いました。本棚に並ぶ多くの図書、貴重図書室の『解体新書』(杉田玄白著)や『アトランティコ手稿』(レオナルド・ダ・ヴィンチ著)を目にし、本学職員の解説に熱心に聞き入っていました。また、実際に触って解いて遊ぶことができるパズルの数々に興味津々な様子で、一生懸命にパズルを解いていました。
また、2月24日(水)に同校の4年生23名が理科特別授業を受けました。
特別授業では、ナノマテリアルテクノロジーセンターの赤堀准教授(応用物理学領域)及び木村技術専門職員が講師となり、十分な新型コロナウイルス感染症対策を行った上で、液体窒素を用いた様々な科学実験を行いました。
液体窒素によって、花やスーパーボール、乾電池などの身近な物が化学反応を起こす光景に、子供たちは目を輝かせて見入っていました。
今回の企画は、科学技術の世界に触れることのできるまたとない機会となりました。

3年生が貴重図書室を見学(附属図書館)

液体窒素を用いた科学実験を行う4年生
令和3年3月1日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/03/01-2.html高分子化合物による細胞の凍結保護効果の機序を解明-再生組織などの長期保存技術の開発に貢献-

![]() ![]() |
北陸先端科学技術大学院大学 理化学研究所 |
高分子化合物による細胞の凍結保護効果の機序を解明
-再生組織などの長期保存技術の開発に貢献-
ポイント
- 高分子化合物による細胞の凍結保護効果の機序の一端を解明。
- 細胞凍結保護効果を説明するため初めて固体NMRの手法を応用し、細胞の脱水制御に伴う細胞内氷晶抑制効果を説明した。
- この手法を利用することで、新しい効果的な凍結保護物質の分子設計が可能となり、再生医療分野などへの応用が期待できる。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科物質化学領域 松村和明教授、ラジャン・ロビン助教、理化学研究所放射光科学研究センターNMR先端応用・外部共用チーム 林文晶上級研究員、長島敏雄上級研究員らの研究グループは、高分子化合物による細胞の凍結過程における保護作用機序を明らかにした。 本研究成果は、細胞への毒性や分化への影響が低い凍結保護高分子の設計指針を明らかとすることで、再生医療分野で必要とされる幹細胞や再生組織などの効率的な凍結保存技術の開発に貢献することが期待できる。 本研究成果は、Springer Nature発行の科学雑誌「Communications Materials」誌に2021年2月9日オンライン版で公開された。なお、本研究は日本学術振興会科研費、キヤノン財団、文部科学省大学連携バイオバックアッププロジェクト、文部科学省先端研究施設共用促進事業の支援を受けて行われた。 |
【研究の背景】
医学生物学研究に必要な細胞は、細胞バンクなどから凍結状態で入手できる。細胞の凍結保存技術自体は1950年代に確立されており、おもにジメチルスルホキシド(DMSO)[*注1]が保護物質として細胞懸濁液に添加され、液体窒素温度にて凍結保存されている。一般的な樹立細胞などは既存の保存技術で問題なく保存可能な細胞が多いが、受精卵などの生殖細胞、ES細胞やiPS細胞[*注2]などの特殊な幹細胞などの中には凍結保存が困難なものが多く、効率的な保存技術の開発が望まれている。また、汎用保護剤であるDMSOは毒性があり、分化[*注3]への影響もあることから再生医療分野では代替の物質の開発が望まれているが、この半世紀ほどは新しい凍結保護物質の報告はほとんど見られなかった。高分子系の保護物質は細胞膜を容易には透過しないため、細胞への毒性や分化への影響を低くすることが可能である一方、細胞外から凍結保護を行うということから開発は困難とされてきた。2009年に松村らが両性電解質高分子[*注4]による凍結保護作用を発表し[1]、その後、多くの細胞種で凍結保護効果が確認されてきた。また、急速に凍結することで細胞内外の水の結晶化を抑制するガラス化保存技術[*注5]にも両性電解質高分子が利用され、受精卵や胚[2]や軟骨細胞シート[3]、スフェロイド[*注6] [4]などの保存に成功した。また、高分子化合物による凍結保護物質の報告は世界中で近年になって非常に多く行われており、多くの分野での応用が期待されている。しかしながら、その具体的なメカニズムはわかっていない。
【研究成果と手法】
これまでDMSOなどの低分子による細胞膜透過性の凍結保護物質については、細胞内の水の結晶化を抑制することが主な機序として報告されてきている。しかし、高分子凍結保護剤の細胞外からの保護作用の機序は詳細にはわかっておらず、最近の論文では細胞外の氷の結晶(氷晶)の成長抑制作用と説明されている。確かに氷晶は物理的に細胞を破壊するため、その抑制が重要であることは間違いがないが、一方で、細胞内に大きな氷晶が形成されることは、細胞内小器官の破壊を伴う致命的なダメージを与えるとされているため、細胞内氷晶の形成が抑制されていることが考えられる。細胞内氷晶の形成については、一般的には顕微鏡などで観察されるが、凍結時の細胞内の現象を正確に捉えることが難しいため、はっきりしたことは分からない状況であった。
研究グループらは、両性電解質高分子溶液の凍結保護の分子メカニズムを調べるため、固体NMR[*注7]の手法を初めて応用し、凍結保護という複雑かつ多面的な現象の特徴を塩や水、高分子の運動と状態からの視点で解き明かすことに成功した。
両性電解質高分子であるカルボキシル基導入ポリリジン(PLL-(0.65) (図1))溶液、比較対象として、凍結保護効果の高いDMSO溶液、凍結保護効果のあまり見られないアルブミン(BSA)溶液、ポリエチレングリコール(PEG)溶液、保護効果のない生理的食塩水について、0℃から-41℃までの水分子および塩(イオン)の運動性を固体NMR測定により評価した。その結果、低温時の水の運動性がPLL-(0.65)溶液において他の溶液に比べ顕著に抑制され粘性が上昇することがわかった(図2)。凍結条件下では、この粘性の高いポリマー溶液が細胞の周辺を取り囲むことにより、細胞内への氷晶の侵入による細胞内氷晶形成を抑制していることが示唆される。また、PLL-(0.65)溶液中では高分子鎖にNaイオンがトラップされ、低温域でのNaイオンの運動性が低下していることも確認された(図3)。これにより、浸透圧に寄与するNaイオンの濃度がPLL(0.65)溶液において低下し、急激な脱水を抑制し、温和な条件でかつ十分に細胞内を脱水できる最適条件を達成していることが細胞内氷晶の形成の抑制を示唆する結果となった。これらの機序を図4に模式図として表す。低温時に高分子が塩や水を包含した会合体を形成し、それらの運動性が低下することで温和な条件でかつ十分に脱水が起こると共に、細胞外溶液の粘性の上昇に伴う細胞外氷晶の成長も抑えられ、結果的に細胞内氷晶の形成が抑制されることが細胞の凍結保護を可能としていることが考えられる。この機序は細胞内に浸透する既存の凍結保護剤と異なることから、新たな機序に基づく凍結保護剤の開発につながる研究成果である。
【今後の展開】
固体NMR測定により高分子や塩、水の分子運動の観点から細胞凍結保護高分子の新規機序について考察することが可能となった。この手法により効果の高い凍結保護剤の設計指針が得られることが期待される。また、細胞だけでなく、再生組織などの2次元3次元の生体組織などの効率的な保存法、保存剤の開発に役立つことが期待できる。
![]() 図1 本研究で使用した両性電解質高分子であるカルボキシル化ポリリジンの構造。PLL-(0.65)は、コハク酸付加部位(m)が65%であるものを示す。 |
![]() 図2 1H NMRの水のピーク幅の温度依存性。PLL-(0.65)に顕著な広幅化が見られ、低温での粘性の急上昇が確認された。 |
![]() 図3 a) 23Na NMRのピーク面積から、各溶液中の凍結下、氷と共存する溶液状態にあるNaイオンの量を評価した。凍結下のPLL-(0.65)溶液において、溶液として振舞うNaイオンの量が低下した。b)Naイオン量から系中のNaCl濃度を計算した結果。PLL-(0.65)溶液中のNaCl濃度は温度低下と共に速やかに上昇し、低温下で緩やかに下降する。これは速やかかつ適度な細胞の脱水による細胞内氷晶形成の抑制を示唆している。 |
![]() 図4 PLL-(0.65)溶液による細胞の凍結保護効果の模式図。低温凍結下、1) 高分子が高い粘性を持つ会合体(マトリックス)を形成することで、細胞外からの氷核の流入を阻止し、2) 塩や水をマトリクス内にトラップすることにより、凍結後の脱水を温和な条件で制御するという2つの効果で細胞内の氷晶形成を抑制している。また、マトリックス形成による粘度上昇は、氷晶が細胞膜を刺激する事による細胞内氷晶形成も抑制していることが示唆された。 |
【参考文献】
[1] Matsumura K, Hyon SH, Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30, 4842-4849 (2009)
[2] Kawasaki Y, Kohaya N, Shibao Y, Suyama A, Kageyama A, Fujiwara K, Kamoshita M, Matsumura K, Hyon S-H, Ito J, Kashiwazaki N. Carboxylated ε-poly-L-lysine, a cryoprotective agent, is an effective partner of ethylene glycol for the vitrification of embryos at various preimplantation stages. Cryobiology, 97, 245-249 (2020)
[3] Hayashi A, Maehara M, Uchikura A, Matsunari H, MatsumuraK, Hyon SH, Sato M, Nagashima H. Development of an efficient vitrification method for chondrocyte sheets for clinical application. Regenerative Therapy, 14, 215-221 (2020)
[4] Matsumura K, Hatakeyama S, Naka T, Ueda H, Rajan R, Tanaka D, Hyon SH. Molecular design of polyampholytes for vitrification-induced preservation of three-dimensional cell constructs without using liquid nitrogen. Biomacromolecules, 21, 3017-3025 (2020)
【用語解説】
注1 ジメチルスルホキシド(DMSO)
分子式C2H6SOの有機溶媒の一種。実験室レベルから工業的規模に至るまで広く溶媒として使用される他、10%程度の溶液は細胞の凍結保存として使用されている。
注2 ES細胞やiPS細胞
多能性幹細胞の一種。ES細胞は胚性幹細胞、iPS細胞は人工多能性幹細胞の略である。生体外にて、理論上ほぼすべての組織に分化する分化多能性を保ちつつ、ほぼ無限に増殖させることができるため、有力な万能細胞の一つとして再生医療への応用が期待されている。現在はDMSOを使用した保存液で保存されているが、DMSOの分化への影響が危惧される。
注3 分化
多細胞生物において、個々の細胞が構造機能的に変化すること。
注4 両性電解質高分子
一分子中にプラスとマイナスの電荷を共にもつ高分子化合物。
注5 ガラス化保存技術
受精卵などの保存によく用いられている超低温保存の一つ。凍結時においても氷の結晶を形成しにくい溶質濃度の高いガラス化液を用い、保存した細胞が氷による物理的傷害を受けにくい。
注6 スフェロイド
三次元的な細胞のコロニーで、再生医療の組織形成のビルディングブロックとして期待されている。
注7 固体NMR
固体NMRとは固体試料を観測対象とした核磁気共鳴 (NMR) 分光法で、方向依存的な異方性相互作用の存在のため共鳴線の線幅が広いのが特徴である。通常、共鳴線の先鋭化のため、試料を静磁場に対してマジック角(54.7°)傾けて、超高速で回転(MAS:Magic Angle Spinning)させて測定を行う。本研究では、温度制御装置を備え付けた固体MAS検出器により、プロトンとナトリウムの核磁気共鳴スペクトルを測定し、低温時の水やNaイオン、高分子の運動性について議論した。
【論文情報】
掲載誌 | Communications Materials(Springer Nature) |
論文題目 | Molecular mechanisms of cell cryopreservation with polyampholytes studied by solid-state NMR |
著者 | Kazuaki Matsumura, Fumiaki Hayashi, Toshio Nagashima, Robin Rajan,Suong-Hyu Hyon |
掲載日 | 2021年2月9日10時(英国時間)にオンライン版に掲載 |
DOI | 10.1038/s43246-021-00118-1 |
令和3年2月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/02/post_588.html学生の森田さんが2020年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞
学生の森田 裕貴さん(博士前期課程2年、環境・エネルギー領域、金子研究室)が2020年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞しました。
日本化学会北陸地区講演会と研究発表会は、幅広い分野における化学を基軸として研究を展開する研究者らの学術交流として、毎年、秋に、金沢大学、福井大学、富山大学、本学のいずれかの大学にて開催されています。この学会は著名な研究者による特別講演のほか、ポスター発表があり、例年200~300名の研究者が参加しています。
このうち、ポスター発表では、特に優れた発表を行った学生に対しポスター賞が授与されます。
本年は、コロナ禍の影響でオンライン開催でしたが、ディスプレイ越しでも活発な研究ディスカッションが行われました。
■受賞年月日
令和2年11月26日
■発表題目
側鎖にクラウンエーテルを有するバイオベースポリイミドの合成
■発表者名
森田裕貴、高田健司、金子達雄
■研究概要
これまでに報告された微生物産生物質、4-アミノ桂皮酸を原料としたバイオベースポリイミドは非常に高い熱力学物性を示したが、側鎖への化学修飾による機能化が困難であった。本研究ではモノマーである4-アミノ桂皮酸光二量体への化学修飾を検討し、一例として側鎖にクラウンエーテルを導入したバイオベースポリイミドの合成および物性評価、機能化を行った。その結果、バイオベースポリイミド側鎖への化学修飾の反応条件を見出した。本研究の達成により、新規機能性材料としてのバイオベースポリイミドの応用範囲を拡大することが可能となった。
■受賞にあたって一言
この度は、2020年度北陸地区講演会と研究発表会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、厳格かつ熱心にご指導を頂きました金子達雄教授、高田健司特任助教にこの場をお借りして心より御礼を申し上げます。さらに、多くのご助言をいただきました研究室のメンバーおよびスタッフの方々に深く感謝いたします。
令和2年12月14日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/12/14-1.html学生の瀧本さんがマテリアルライフ学会第24回春季研究発表会において研究奨励賞を受賞
学生の瀧本 健さん(博士後期課程1年(発表時は本学博士前期課程2年)、物質化学領域・谷池研究室)がマテリアルライフ学会第24回春季研究発表会において研究奨励賞を受賞しました。
マテリアルライフ学会は、有機、無機、金属からなる素材およびそれらを加工して得られる各種材料と構成物・製品並びにバイオマテリアル、古文化財などの耐久性、寿命予測と制御についての科学および技術の進歩をはかり、学術、文化と産業の発展に資することを目的とした学会です。
研究奨励賞は、その中でも耐久性、寿命予測と制御についての科学および技術の進歩に資することを目的に、優れた発表を行った発表者に授与されるものです。
■受賞年月日
令和2年2月21日
■研究タイトル
マイクロプレート法と遺伝的アルゴリズムを用いたポリスチレンの光安定化
■発表者名
瀧本 健
■研究概要
高分子材料の長寿命化において、配合した安定化剤を材料に添加する手段が有効ですが、配合の最適化は光劣化試験のスループットと配合の組合せ爆発によって困難とされてきました。そこで本研究では、新規プロトコル(マイクロプレート法)を考案することで莫大なサンプル量の実験を並列・自動化し、遺伝的アルゴリズムと併用して配合探索を行うことでスループットの大幅な改善に成功しました。また、安定化剤の組み合わせ効果を解析することで相乗効果が高い組合せを含むことが配合性能において最も重要であることを明らかにしました。
■受賞にあたって一言
このような名誉ある賞をいただくことができ、大変嬉しく思います。本研究において熱心なご指導をいただきました谷池教授をはじめ、多くのご助言をいただきました研究室の皆様にこの場をお借りして心より御礼を申し上げます。
令和2年10月28日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/10/28-1.html北陸先端大を運営会場として国際学会「SSDM2020」をオンライン開催
9月27日(日)~9月30日(水)にかけて、2020 International Conference on Solid State Devices and Materials (SSDM2020)が北陸先端大を運営会場としてオンライン開催されました。
SSDMは、日本の半導体産業にも多大な貢献のある同分野におけるアジア地域最大の国際学会です。固体素子・材料の科学と技術を幅広くカバーしており、日本で開催されている国際会議の中で最も伝統のあるものの一つでもあります。
SSDM2020は、当初、北陸地区では初めてとなる富山県での開催を予定していましたが、新型コロナウィルスの影響により、オンラインでの実施に変更となりました。
今回、事前登録者だけでも700名を超える参加者が集まり、情報通信技術(ITC)分野や、太陽光発電・バッテリーなどのエネルギーイノベーション・ライフイノベーションの応用分野などのさまざまな分野から研究者や技術者が参加し、開催期間中340件を超える研究発表が行われました。
オンライン開催であったSSDM2020は、指揮・統括を行う拠点であるバックオフィスを、共催機関である北陸先端大に設置し、実行委員長である水田教授(環境・エネルギー領域)、赤堀准教授(応用物理学領域)らを中心に、北陸先端大及び金沢大学の教員、学生が一丸となり、最大で10セッションがパラレルで進行する、大規模な国際学会の運営にあたりました。
バックオフィスで実際に運営にあたった近隣大学の学生らは、通常の学会運営とは異なるトラブルに見舞われることもありましたが、他大学の教員や留学生から研究発表とは違った刺激を受け、積極的に運営に取組んでいるようでした。
また、富山大学、富山県立大学や川崎市の株式会社東芝にもサテライトオフィスを設置し、学会運営やトラブル等への対応を行いました。
次回のSSDM2021は、2021年9月6日から9日の日程で、札幌コンベンションセンター(北海道札幌市)で開催予定です。
バックオフィスで運営にあたる教員や学生の様子
令和2年10月2日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/10/02-2.html世界初 キヌアからブラッダー細胞形成遺伝子を発見

世界初 キヌアからブラッダー細胞形成遺伝子を発見
石川県立大学 森 正之准教授、今村 智弘特任講師、古賀 博則客員教授、高木 宏樹准教授、北陸先端科学技術大学院大学先端科学技術研究科、生命機能工学領域の大木 進野教授らは、(公財)岩手生物工学研究センターなどの機関と共同で、塩生植物キヌア(Chenopodium quinoa)からブラッター細胞の形成に関わる遺伝子を発見しました。 本研究成果は、「Communications Biology」で公開されました。
<ポイント>
- キヌアからブラッダー細胞形成に関わる新規WD40タンパク質をコードするREBC遺伝子を発見
- REBC遺伝子は、ブラッダー細胞形成のみならず葉緑体形成にも関与していることを発見
- ブラッダー細胞の茎頂保護機能を発見
<発表論文>
論文タイトル | A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa |
論文著者 | Tomohiro Imamura, Yasuo Yasui, Hironori Koga, Hiroki Takagi, Akira Abe, Kanako Nishizawa, Nobuyuki Mizuno, Shinya Ohki, Hiroharu Mizukoshi, and Masashi Mori |
雑誌 | Communications Biology (DOI: 10.1038/s42003-020-01249-w) |
<研究の背景>
国連大学の報告によると、世界の灌漑地の約1/5が塩害にさらされています。その被害は、年間およそ273億USドルの経済損失を引き起していることが報告されており、今後さらに広がることが予想されています。一方、世界の人口は、2050年までに97億人に達することが予想されております。そのため、この人口の爆発的な増加に耐えうる食糧生産は、早急に解決すべき大きな課題となっております。しかし、主要穀物である小麦やイネなどは、塩に弱いで植物であり、これらの主要穀物に対する塩害は、食糧生産において大きな問題となります。キヌアは、非常に高い耐乾燥性と耐塩性を併せ持ち、他の植物では生育困難な厳しい環境で生育できる塩生擬似穀物です。さらに、キヌアの種子は、必須アミノ酸・ミネラル・植物繊維を豊富に含み高い栄養価を持つことから、国際連合食糧農業機関(FAO)では、世界の食糧問題解決の切り札になり得るスーパーフードとして注目されています。
キヌアを含めたアカザ属植物は、植物体の表面に球状の表皮細胞(ブラッダー細胞)を形成します(図1)。ブラッダー細胞は、通常細胞の1000倍以上の大きさがあり、細胞内に高濃度の塩を蓄積することが知られています。このブラッダー細胞の性質は、キヌアの高い塩耐性の一因と考えられています。独自の形態と機能を持つブラッダー細胞ですが、その形成メカニズムは全く分かっていませんでした。
本研究では、塩生植物のキヌアに形成されるブラッダー細胞の形成機構を明らかにするために、ブラッダー細胞の形成に関わる遺伝子の単離を試みました。その結果、EMS処理の変異原処理により、ブラッダー細胞が著しく減少したrebc変異体を獲得し、次世代シークエンサーを用いた解析により、ブラッダー細胞形成に関わるrebc変異体の原因遺伝子(REBC)の単離に成功しました。その単離したREBC遺伝子は、ブラッダー細胞を形成しない植物には存在しないことが明らかとなりました。このことから、ブラッダー細胞の形成機構は、同じ植物の表皮細胞であるトライコームの形成機構とは異なることが示唆されました。さらに、rebc変異体はブラッダー細胞の形成のみならず葉緑体の形成にも影響を及ぼしていることが明らかとなりました。また、rebc変異体を用いた環境ストレス実験により、ブラッダー細胞は、塩を蓄積するだけでなく、その細胞を密集させることにより茎頂などの組織を環境ストレスから保護していることが明らかとなりました。
<研究の内容>
1.ブラッダー細胞が減少した変異体の作出
ブラッター細胞の形成に関わる遺伝子を単離するために、約8000粒のキヌア種子ついて、EMSを用いた変異原処理を実施しました。その結果、大部分のブラッダー細胞が欠失した変異体を得ることができました(図2)。この変異体を reduced epidermal bladder cells (REBC)変異体と命名しました。rebc変異体の分離比を確認しましたところ、野生型とrebc変異の割合が3:1に分離しました。興味深いことに、キヌアは異質4倍体の植物にもかかわらず、rebcの形質は、一遺伝子支配の劣勢形質であることがわかりました。
2.環境ストレス試験
キヌアは、ブラッダー細胞に塩を高濃度に蓄積することにより、高塩環境においても正常に生育できることが知られています。そこで、大部分のブラッダーが欠失したrebc変異体について、塩ストレス実験を実施しました。その結果、rebc変異体は、野生型に比べて高濃度の塩条件において生育が阻害されていることがわかりました。さらに、別の環境ストレスとして、茎頂に風を当て続けたところ、野生型では問題なく生育したのですが、rebc変異体では風によって茎頂にダメージを受けていることが明らかとなりました(図3)。これらの実験からブラッダー細胞は、塩を蓄積する機能のほかに、茎頂などの特定の組織に密集して存在することにより、風などの環境ストレスから組織を保護していることが新たに明らかとなりました。
3.rebc変異体の原因遺伝子の特定
rebc変異体の原因遺伝子を明らかにするために、次世代シークエンサーを用いたin silico subtraction 法を利用して変異箇所の特定を試みました。その結果、rebc変異体は、新規なWD40ドメインタンパク質遺伝子の変異が原因であることを明らかにし、その遺伝子をREDUCED EPIDERMAL BLADDER CELLS (REBC)遺伝子と名付けました(図4)。他植物の表皮細胞であるトライコームでは、その形成に関与する遺伝子が同定されており、その中でWD40ドメインタンパク質としてTTG1遺伝子が重要な役割をしています。REBCとTTG1を比較したところ、これらのタンパク質は、別の機能を持つタンパク質であることが示唆されました(図5)。またトライコームを形成する植物体には、REBC遺伝子のオルソログが存在しませんでした。これらの結果より、ブラッダー細胞の形成は、トライコームとは異なる機構の存在が示唆されました。
4.rebc変異体における葉緑体形成
rebc変異体について、網羅的な発現解析を実施したところ、発現が変動した遺伝子の多くが葉緑体局在タンパク質をコードする遺伝子でありました。さらに、クロロフィル含量を測定したところ、rebc変異体のクロロフィル含量が有意に低下していることが明らかとなりました。そこで、rebc変異体の葉緑体の形態について、電子顕微鏡を用いて観察しました。その結果、rebc変異体の葉緑体は、内部構造の約1/3が欠失していることが明らかとなりました(図6)。さらに、ブラッダー細胞の葉緑体を観察した結果、rebc変異体のブラッダー細胞の中の葉緑体は、野生型に比べクロロフィルの自家蛍光の強度が低下し、さらにブラッダー細胞あたりの葉緑体数が減少していることが明らかとなりました。以上の結果より、rebc変異体は、ブラッダー細胞の形成のみならず、葉緑体の形成にも影響を及ぼしていることが明らかになりました。
<今後の展望>
本研究成果によって、キヌアのブラッダー細胞形成に関する分子メカニズムの一端を明らかにすることができました。今後、ブラッダー細胞の形成に関する分子メカニズムの全容が明らかになることが期待できます。さらに、ブラッダー細胞形成の知見を利用することによって、キヌアの塩耐性機構を組み入れた新たなコンセプトの環境ストレス耐性作物を作出することが期待できます。
図1 キヌアのブラッダー細胞 (a)キヌア植物体、(b)キヌアの葉(裏側)、(c)キヌアの葉(拡大)、
(d-f) キヌアブラッダー細胞 BC:ブラッダー細胞、SC: 柄細胞
図2 rebc変異体について (a-c)キヌア芽生え (d-f)キヌア芽生え(茎頂付近)
(a, d)野生型、(b, e)rebc1変異体、(c, f)rebc2変異体
図3 風ストレス処理による影響 (a)野生型、(b)rebc1変異体、(c)rebc2変異体
・rebc変異体は風ストレスによって、茎頂が枯死している。
図4 REBC遺伝子の単離 (a) REBC遺伝子の概略図 赤矢印はrebc変異体の変異箇所
(b)rebc1×rebc2交配後代(F1)の解析
・rebc1×rebc2交配個体も、rebc変異の形質を示したことから、REBCが原因遺伝子であることが明らかとなった。
図5 (a) REBCとTTG1との比較(系統樹解析)、(b) アラビドプシスttg1変異体を用いた相補実験
上段:ベクターコントロール、中段:REBC過剰発現体、下段:AtTTG1過剰発現体
・REBCタンパク質は、TTG1タンパク質とは別のグループに属し、TTG1の機能を相補することができない。
図6 rebc変異体の葉緑体について (a-c) 走査型電子顕微鏡像 (b-f)透過型電子顕微鏡像
(a, d)野生型、(b, e)rebc1変異体、(c, f)rebc2変異体
・rebc変異体では、葉緑体の膜構造1/3が欠失している。
<用語説明>
- キヌア
ヒユ科アカザ亜科アカザ属の植物。南米アンデス原産の穀物で必須アミノ酸・ミネラル・植物繊維を豊富に含み高い栄養価を持ち、さらに、環境適応能力が高く、非常に高い耐乾燥性と耐塩性を合わせ持ち、国際連合食糧農業機関(FAO)は、世界の食糧問題解決の切り札になり得る作物として注目している。近年、我々のグループとその他のグループによってキヌアゲノムが解読され、キヌアが持つ環境ストレス耐性および高栄養価についての遺伝子研究が進められている。 - 擬似穀物
米や麦などのイネ科(禾穀類)や、大豆や小豆などのマメ科(菽穀類)ではないが、見た目がイネ科の穀物に類似した食べられる種子を形成する植物(ソバ、キヌア、アマランサスなど)を指す。 - in silico subtraction法
次世代シークエンサーのシークエンスデータを用いて、サンプル間の塩基配列の違い(多型、変異箇所)を特定する方法。異質倍数体の植物(キヌアは異質4倍体)でも検出が可能。本研究では、親から分離した後代について、野生型形質を示す個体群と、rebc変異形質を示す個体群を、それぞれまとめてゲノムを抽出し、次世代シークエンサーによって、それぞれの形質を示す個体群のシークエンスリードを獲得。その後、二形質間のシークエンスリードを比較することにより、形質を支配する遺伝子を特定した。
令和2年9月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/09/17-1.htmlイノベーション・ジャパン2020~大学見本市Onlineに本学が出展
9月28日(月)~11月30日(月)の期間、国内最大規模の産学マッチングイベントである「イノベーション・ジャパン2020~大学見本市Online」がオンライン開催されます。
本学からは大学等シーズ展示に以下の3件を出展します。
一般公開期間 | 2020年9月28日(月) ~11月30日(月) |
公式サイト | https://ij2020online.jst.go.jp/ ※閲覧無料・参加登録あり |
大学等 シーズ展示 |
生命機能工学領域 藤本 健造 教授 「高速遺伝子解析に向けた光化学的DNA/RNA操作法の開発」 【番 号】176 【出展分野】ライフサイエンス |
知能ロボティクス領域 HO ANH VAN 准教授 「周辺環境との接触を許容するドローン用変形可能なプロペラ」 【番 号】340 【出展分野】装置・デバイス |
|
環境・エネルギー領域 大平 圭介 教授 「シリコン系次世代薄膜形成技術および瞬間熱処理技術」 【番 号】381 【出展分野】低炭素・エネルギー |
詳細はこちらをご覧ください。
・イノベーション・ジャパン2020公式サイト
・イノベーション・ジャパン2020出展者一覧
環境・エネルギー領域の金子研究室学生のKulisara Budpudさんらの論文がSmall誌 (WILEY) の表紙に採択
環境・エネルギー領域の金子研究室博士後期課程学生ブッドプッド クリサラさん、桶葭 興資准教授、岡島 麻衣子研究員、金子 達雄教授らの「多糖膜が超らせん構造によって湿度変化に瞬間応答-ナノスケールから再組織化-」に係る論文がSmall誌 (WILEY) の表紙に採択されました。
■掲載誌
Small, volume 16, issue 29 (2020) 掲載日:2020年7月23日
■著者
Kulisara Budpud, Kosuke Okeyoshi*, Maiko K Okajima, Tatsuo Kaneko*
■論文タイトル
Vapor‐Sensitive Materials from Polysaccharide Fibers with Self‐Assembling Twisted Microstructures
■論文概要
本研究では、シアノバクテリア由来の多糖サクランを用いて、水中で自ら形成するマイクロファイバーが乾燥時に2次元蛇行構造、3次元らせん構造など高秩序化することを見出すとともに、さらにこの構造を利用して、水蒸気をミリ秒レベルで瞬間感知して屈曲運動を示すフィルムの作製に成功しました。天然由来の代表物質でもある多糖をナノメートルスケールから再組織化材料としたこととしても意義深く、光合成産物の多糖を先端材料化する試みは、持続可能な社会の構築のための重要なステップとなります。
論文詳細:
https://doi.org/10.1002/smll.202001993
https://doi.org/10.1002/smll.202070159
プレスリリース本文:
https://www.jaist.ac.jp/whatsnew/press/2020/06/11-1.html
令和2年7月29日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/07/29_5.html物質化学領域の都准教授らの論文がAdvanced Intelligent Systems 誌の表紙に採択
物質化学領域の都 英次郎准教授、谷池 俊明准教授、西村 俊准教授らの「昆虫機能を模倣したミリメータースケールのロボット(ミリボット)」に係る論文が、Advanced Intelligent Systems誌の表紙に採択されました。なお、本研究成果は日本学術振興会科研費[基盤研究A、国際共同研究加速基金(国際共同研究強化)]の支援のもと行われたものです。
■掲載誌
Advanced Intelligent Systems
■著者
Sheethal Reghu, Hui You, Kalaivani Seenivasan, Shun Nishimura, Toshiaki Taniike, Eijiro Miyako*
■論文タイトル
Design and control of bioinspired millibots
■論文概要
本研究は、マグネタイト、ゼオライト イミダゾリウム フレームワーク-8(ZIF-8)、ポリテトラフルオロエチレン(PTFE)から成る機能性ナノコンポジットを開発し、光や磁場といった外部刺激によって機能制御可能なミリメータースケールのロボット(ミリボット)を作製しました。本ミリボットは、昆虫の様々な動きや機能からインスピレーションを得ており、例えば、アメンボのように水面上をスイスイと動くなど、多彩な性能を発揮します。
論文詳細:https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202000059
令和2年7月22日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/07/22-1.html