研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。学生の廣瀬さんが令和2年度北陸地区高分子若手研究会においてポスター発表優秀賞を受賞
学生の廣瀬 智香さん(博士前期課程2年、物質化学領域、松村研究室)が令和2年度北陸地区高分子若手研究会においてポスター発表優秀賞を受賞しました。
高分子学会北陸支部では、高分子科学を基軸として研究を展開する若手の交流と、更なる研究の活性化を目的として、毎年若手研究会を開催しています。高分子科学と他の研究分野を融合することによる新規材料の研究・開発に従事し、活躍している研究者の講演および、学生を中心としたポスター発表や交流会が行われます。
ポスター発表優秀賞は、北陸地区若手研究会のポスター発表・動画において優秀な研究発表を行った学生に授与されます。
■受賞年月日
令和2年11月6日
■論文タイトル
温度応答性高分子と液体金属による複合体を用いた光機能性インジェクタブル DDS
■論文概要
液体金属と温度応答性高分子との複合化により、光刺激によって薬物を放出可能な新たなDDS材料を提案した。本研究は物質化学領域都准教授との共同研究です。
■受賞にあたって一言
この度は、令和2年度 高分子学会北陸研究発表会の若手会におきまして、このような賞を頂けたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導いただいている松村和明教授、Rajan Robin助教、都英次郎准教授にこの場を借りて心より御礼を申し上げます。さらに、多くのご助言をいただきました研究室のメンバーに深く感謝いたします。
令和2年12月3日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/12/3-1.htmlNEDO「官民による若手研究者発掘支援事業」に2件の研究開発テーマが採択
新エネルギー・産業技術総合開発機構(NEDO)の「官民による若手研究者発掘支援事業」に本学から以下の2件の研究開発テーマが採択されました。
「官民による若手研究者発掘支援事業」は、実用化に向けた目的指向型の創造的な基礎又は応用研究を行う大学等に所属する若手研究者を発掘し、若手研究者と企業との共同研究等の形成を促進するプロジェクトです。次世代のイノベーションを担う人材を育成するとともに、我が国における新産業の創出に貢献することを目的として実施します。
本事業のうち「共同研究フェーズ」は、研究者が企業と共同研究等の実施に係る合意書を締結し、企業から大学等に対して共同研究等費用が支払われることを条件として、実用化に向けた研究を助成するもので、事業期間は最大5年です。
また、「マッチングサポートフェーズ」は、企業との共同研究等の実施を希望する研究者が実施する、産業界が期待する研究を助成するもので、事業期間は最大2年です。
*詳しくは、NEDOホームページをご覧ください。
「官民による若手研究者発掘支援事業 共同研究フェーズ」
- 研究開発テーマ名:イオン注入を用いた裏面電極型Siヘテロ接合太陽電池の製造技術開発
「官民による若手研究者発掘支援事業 マッチングサポートフェーズ」
- 研究開発テーマ名:全自動花粉交配マシンの創出
令和2年12月2日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/12/02-1.html学生のGUPTAさんがJAIST World Conference 2020においてBest Presentation Awardを受賞
学生のGUPTA, Agmanさん(博士後期課程3年、物質化学領域、松見研究室)がJAIST World Conference 2020においてBest Presentation Awardを受賞しました。
JAIST World Conference 2020は、本学のエクセレントコア「サスティナブルマテリアル国際研究拠点」による国際シンポジウムです。シンポジウムでは、国内外からの招待講演者や本学教員による持続可能な低炭素社会の実現に向けたポリマー材料等に関する最先端の研究発表等が行われました。
■受賞年月日
令和2年11月10日
■発表題目
Lithium Ion Secondary Batteries with Silicon Based Anode Highly Stabilized with Self-healing Polymer Binder Matrices
シリコン系負極を自己修復型高分子マインダーマトリクスで高度に安定化したリチウムイオン二次電池
■発表者
Agman Gupta、Rajashekar Badam、Noriyoshi Matsumi
■受賞対象となった研究の内容
今日、リチウムイオン二次電池開発においては理論容量が極めて高いシリコン負極の活用が期待されている。一方、充放電過程におけるシリコンの大きな膨張・収縮により安定的な充放電挙動の発現が課題となっている。本研究ではn型共役系高分子をポリ(アクリル酸)と組み合わせた水素結合性ネットワークを有する自己修復型バインダーマトリクスを用いることにより約2000 mAhg-1(Si)以上の放電容量を300サイクル以上にわたって維持できる系を見出すに至った。
■受賞にあたって一言
I would like to express my gratitude towards my research supervisor Prof. Noriyoshi Matsumi who has always supported, encouraged, and guided me ably throughout my studies. Also, I would like to thank Dr. Rajashekar Badam for motivating me to do good work. I am thankful to MEXT and JST-Mirai (Grant number: JP18077239) for providing financial support. I am thankful to all JAIST staff (teaching and non-teaching) for providing a wonderful research environment with world-class facilities to conduct good research work. I am motivated to work on the development of next-generation energy storage devices with higher energy density and affordable prices. Research is my passion as it provides me an opportunity to be of service to society and contribute to making life more comfortable.

令和2年11月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/11/20-1.html科学技術振興機構(JST)「研究成果最適展開支援プログラム(A-STEP)」に3件が採択
科学技術振興機構(JST)の「研究成果最適展開支援プログラム(A-STEP)産学共同(育成型)」及び「研究成果最適展開支援プログラム(A-STEP)トライアウト」に本学から以下の3件の研究課題が採択されました。
A-STEPは、大学・公的研究機関等で生まれた科学技術に関する研究成果を国民経済上重要な技術として実用化することで、研究成果の社会還元を目指す技術移転支援プログラムで、大学等が創出する社会実装志向の多様な技術シーズの掘り起こしや、先端的基礎研究成果を持つ研究者の企業探索段階からの支援を、適切なハンズオン支援の下で研究開発を推進することで、中核技術の構築や実用化開発等の推進を通じた企業への技術移転を行います。
また、大学等の研究成果の技術移転に伴う技術リスクを顕在化し、それを解消することで企業による製品化に向けた開発が可能となる段階まで支援することを目的とし、研究開発の状況に応じて、リスクの解消に適した複数のメニューを設けています。
*詳しくは、JSTホームページをご覧ください。
「研究成果最適展開支援プログラム(A-STEP)産学共同(育成型)」
- 研究課題名:高感度FETと等温増幅法によるウイルス・病原菌センサー開発
- 研究課題名:分離回収可能なタンパク質凝集抑制ナノ構造体
- 研究概要:機能性タンパク質の凝集抑制高分子ナノ構造体を創生し、バイオ医薬品の製造効率の向上を目指すとともに、長期保存、安定化剤としての応用展開を目指す。バイオ医薬品は、製造工程において凝集などによる効率低下や長期保存性が問題となっている。我々は双性イオン高分子がタンパク凝集抑制などの安定化作用を示すことを報告してきている。本申請ではこの化合物の分子設計の最適化を行い、磁性ナノ粒子やナノゲルの様なナノ構造体とする事で、分離回収可能な保護デバイスを創出する。この高分子は、凝集してしまったタンパク質をリフォールディングする事も可能であり、応用面のみならず学術面からの重要性も高い。
- 採択にあたって一言:世界の医薬品の主流が低分子医薬品からバイオ医薬品へシフトしている中で、抗体医薬などの安定性の問題を解決するための凝集抑制高分子の開発を行っています。今回採択された研究課題では、添加した状態でタンパク質医薬品を安定化させ、必要な時には完全に分離回収できる安全かつ高性能な凝集抑制構造体を開発します。この成果により、これまで不安定で産業化できなかった効果の高いバイオ医薬品の開発やその長期保存技術に貢献したいと考えています。
「研究成果最適展開支援プログラム(A-STEP)トライアウト」
- 研究課題名:襲雷予測システムのためのグラフェン超高感度電界センサの開発
- 研究概要:雷の事故による世界の死者は年間2万4千人にのぼり、我が国の電気設備における雷被害額は年間2千億円にのぼっている。雷雲の接近により、地表では電界が発生し、変化する。従って、正と負の電界センシングが雷の予測に極めて重要である。既存の超小型電界センサは、極性判定ができないため、これまで、雷に伴う事故について、落雷後の分析はあるが、落雷前の検知は出来ていなかった。グラフェン電界センサは負の電界を検出することができ、超高感度化と正・負が実現できれば、襲雷を予測することができる。
- 採択にあたって一言:襲雷を予測するためには、ピンポイント性、リアルタイム性が要求されます。今回、グラフェン電界センサの超高感度化の研究を進め、音羽電機工業株式会社と共同で、学校、消防、自治体などに襲雷予測システムを設置し、地域社会の持続的な発展に貢献していきたいと思います。
令和2年11月20日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/11/20-1.html創立30周年記念 JAIST World Conference 2020を開催
11月9日(月)・10日(火)の2日間、本学創立30周年を記念して、JAIST World Conference 2020として「International Symposium for Innovative Sustainable Materials」及び「The 7th International Symposium for Green-Innovation Polymers (GRIP2020)」が合同で開催されました。
両シンポジウムは、本学のエクセレントコア「サスティナブルマテリアル国際研究拠点」による国際シンポジウムで、国内外からの招待講演者や本学教員による持続可能な低炭素社会の実現に向けたポリマー材料等に関する最先端の研究発表のほか、本学学生及び、金沢大学と本学との連携事業であるGSC(Global Science Campus)の下で指導を受けた県内の高校生によるポスターセッションが行われました。
本シンポジウムには、2日間でオンラインを含め76人が参加し、活発な議論の場となりました。
![]() |
![]() |
![]() |
![]() |
| シンポジウムの様子 | |
令和2年11月16日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/11/16-1.html学生の瀧本さんがマテリアルライフ学会第24回春季研究発表会において研究奨励賞を受賞
学生の瀧本 健さん(博士後期課程1年(発表時は本学博士前期課程2年)、物質化学領域・谷池研究室)がマテリアルライフ学会第24回春季研究発表会において研究奨励賞を受賞しました。
マテリアルライフ学会は、有機、無機、金属からなる素材およびそれらを加工して得られる各種材料と構成物・製品並びにバイオマテリアル、古文化財などの耐久性、寿命予測と制御についての科学および技術の進歩をはかり、学術、文化と産業の発展に資することを目的とした学会です。
研究奨励賞は、その中でも耐久性、寿命予測と制御についての科学および技術の進歩に資することを目的に、優れた発表を行った発表者に授与されるものです。
■受賞年月日
令和2年2月21日
■研究タイトル
マイクロプレート法と遺伝的アルゴリズムを用いたポリスチレンの光安定化
■発表者名
瀧本 健
■研究概要
高分子材料の長寿命化において、配合した安定化剤を材料に添加する手段が有効ですが、配合の最適化は光劣化試験のスループットと配合の組合せ爆発によって困難とされてきました。そこで本研究では、新規プロトコル(マイクロプレート法)を考案することで莫大なサンプル量の実験を並列・自動化し、遺伝的アルゴリズムと併用して配合探索を行うことでスループットの大幅な改善に成功しました。また、安定化剤の組み合わせ効果を解析することで相乗効果が高い組合せを含むことが配合性能において最も重要であることを明らかにしました。
■受賞にあたって一言
このような名誉ある賞をいただくことができ、大変嬉しく思います。本研究において熱心なご指導をいただきました谷池教授をはじめ、多くのご助言をいただきました研究室の皆様にこの場をお借りして心より御礼を申し上げます。
令和2年10月28日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/10/28-1.html研究員のSINGHさんが第69回高分子討論会において優秀ポスター賞を受賞
研究員のSINGH, Apekshaさん(物質化学領域・松見研究室)が第69回高分子討論会において優秀ポスター賞を受賞しました。(ポスター発表時は本学博士前期課程2年、令和2年9月博士前期課程修了。)
高分子討論会は、高分子科学に携わる研究者・技術者が研究成果の発表を行い、発表内容に関し、参加者と充実した討論およびコミュニケーションができる場を提供することを方針とし、開催されます。今回はWEBEXを用いてオンラインで開催されました。
■受賞年月日
令和2年9月18日
■発表題目
全固体ナトリウムイオン二次電池用難燃性電解質の設計と高速充放電特性
(Design of Non-flammable Electrolyte for All-solid-state Sodium-ion Batteries and Its High-rate Performance)
■研究者、著者
Apeksha Singh,Rajashekar Badam,Noriyoshi Matsumi
■受賞対象となった研究の内容
今日、電気自動車用途をはじめとする次世代電池の創出に向けて、リチウム資源の近い将来の枯渇が予想されるなか、元素戦略的な観点からナトリウムイオン二次電池の開発の重要性が認識されている。リチウムイオン二次電池同様、その開発においては高い放電容量のみならず、高速充放電能の実現に関心が高まっている。本研究においては有機ホウ素系電解質を用いた全固体ナトリウムイオン二次電池を構築し、その特性を評価した。有機ホウ素系電解質に由来する好ましい界面被膜の特性により、高速充放電能と高い充放電サイクル耐久性が観測され、当該分野の発展にとって興味深い知見となった。
■受賞にあたって一言
Firstly, I would like to thank my supervisor Prof. Noriyoshi Matsumi, who has given me valuable suggestions, and heartfelt encouragement throughout my research project. I would like to acknowledge the important role of Dr. Rajashekar Badam, who apart from his constant motivation, has provided me with the working knowledge and practical experience of electrochemical energy storage systems. I'm thankful to MEXT and Elements Strategy Initiative for Catalysts & Batteries (ESICB) for financial support. About my research, I believe, to attain a balance between sustainable energy generation and energy consumption, efficient fast-charging batteries are imperative. We now live in a world where energy storage has become equally important due to the intermittent nature of sustainable energy sources, and thou shall continue to work on this meaningful research.
令和2年10月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/10/20-1.html史上最高耐熱のプラスチックを植物原料から開発
東京大学大学院農学生命科学研究科大西康夫教授、北陸先端科学技術大学院大学先端科学技術研究科金子達雄教授、神戸大学大学院工学研究科荻野千秋教授、筑波大学生命環境系高谷直樹教授らの研究チームは、史上最高耐熱のプラスチックを植物原料から開発し、10月12日に、東京大学においてオンラインによる記者会見を行いました。
記者会見には本学環境・エネルギー領域の金子 達雄教授が出席しました。
また、本成果は、「Advanced Sustainable Systems」オンライン版にて10月14日に掲載されました。
<記者会見出席者>
本学発表者:金子 達雄(北陸先端科学技術大学院大学 先端科学技術研究科 環境・エネルギー領域 教授)
研究チーム代表者:大西 康夫(東京大学大学院農学生命科学研究科 応用生命工学専攻
東京大学微生物科学イノベーション連携研究機構 教授)
<ポイント>
- 紙パルプを原料にして超高耐熱性プラスチックであるポリベンズイミダゾールを生産する新規プロセスを開発しました。
- 新しいポリマーデザインにより、プラスチック史上、最高の耐熱性を達成しました。
- 開発した超高耐熱性バイオプラスチックは、強度や軽量性にも優れており、さまざまな用途で利用が見込めるため、脱石油化・低炭素化社会の構築に貢献できると期待されます。
<研究の概要>
循環型社会の構築にはバイオマス由来のプラスチックの利用が望まれますが、従来のバイオマス由来プラスチックは耐熱性が低いため、その用途が限られていました。この度、本学環境・エネルギー領域の金子達雄教授が所属する研究チーム(代表:大西康夫教授(東京大学大学院農学生命科学研究科))は、超高耐熱性プラスチックをバイオマスから作ることに成功しました(図1)。当該チームは高耐熱性のポリベンズイミダゾール(PBI)(注1)に着目し、その原料となる芳香族化合物を効率よく生産する遺伝子組換え微生物を創成しました。また、代表的な非可食バイオマスである紙パルプを効率的に酵素糖化し、高濃度のグルコースを含む糖化液を生産するシステムを開発しました。一方、化成品を用いた検討により、PBIフィルムの作製法を開発するとともに、PBI原料とアラミド繊維(注2)原料を共重合することで耐熱性が大きく向上することを見出し、史上最高耐熱のプラスチックフィルムの作製に成功しました。また、紙パルプ糖化液を使って発酵生産した芳香族化合物から同等の性質を有するPBIフィルムを作製できることを示しました(10%重量減少温度743℃、表1)。開発した超高耐熱性バイオPBIは、強度や軽量性にも優れており、さまざまな用途で利用が見込めるため、脱石油化・低炭素化社会への貢献が期待されます。
<研究の内容>
近年、国連が採択したSDGs(Sustainable Development Goals:持続可能な開発目標)がますます注目を集めています。脱石油化、低炭素化のためには、バイオマス由来のプラスチックの普及が重要ですが、これまでに開発されてきたバイオマス由来のプラスチック(ポリアミド11、ポリヒドロキシアルカン酸、ポリ乳酸など)はいずれも脂肪族ポリマーであり、耐熱性が低いため、その用途が限られていました。芳香族系ポリマーは耐熱性が高いことで知られていますが、その原料はすべて石油由来の芳香族化合物です。天然に存在する芳香族ポリマーであるリグニン(注3)の利用も検討されていますが、リグニンは複雑な分子構造をしているため、リグニンを使って耐熱性の高いプラスチックを作るには、多くの困難があります。そのため、芳香族系ポリマーの原料となる芳香族化合物を再生可能資源から入手するというアプローチが重要であり、これには微生物を用いた発酵生産が有力です。しかしながら、実際に発酵生産させた芳香族化合物を用いて芳香族ポリマーを合成したのは、今回の研究チームのメンバーが以前に行った数例が知られているだけです(文献1、2)。また、これらの研究では、試薬として購入したグルコースを炭素源として微生物を増殖させていましたが、微生物による有用物質生産では、食料と競合する材料ではなく、非可食バイオマス(稲わら、とうもろこしの芯、サトウキビの絞りかす、紙パルプなど)の利用が求められています。
このような背景のもと、研究チームは、科学技術振興機構 (JST) 戦略的創造研究推進事業(CREST)「二酸化炭素資源化を目指した植物の物質生産力強化と生産物活用のための基盤技術の創出」において、「高性能イミダゾール系バイオプラスチックの一貫生産プロセスの開発(平成25年度から平成30年度)」に取り組み、超高耐熱性プラスチックをバイオマスから作ることに成功しました(図1)。
当該研究チームでは、代表的な非可食バイオマスである紙パルプを効率的に酵素糖化し高濃度のグルコースを含む糖化液(最高で90 g/L)を生産するシステムを開発しました(神戸大)。また、高耐熱性のポリベンズイミダゾール(PBI)に着目し、その原料となる芳香族化合物(3-アミノ-4-ヒドロキシ安息香酸:AHBA)を生産する遺伝子組換えコリネ菌を用いて、紙パルプ糖化液からAHBAを発酵生産し(3.3 g/L)、高純度に精製しました(神戸大、東大)。一方、共重合用の化合物として着目した4-アミノ安息香酸(ABA:アラミド繊維原料)を生産する遺伝子組換え大腸菌を構築し、同じく紙パルプ糖化液からABAを発酵生産し(1.6 g/L)、高純度に精製しました(筑波大)。一方、化成品を用いた検討により、まず、PBIの直接の原料となる3,4-ジアミノ安息香酸(DABA)をAHBAから簡便に合成する方法、DABAからPBIフィルムを作製する方法を開発しました(北陸先端大)。また、DABAとABAを共重合することで耐熱性が大きく向上することを見出し、これまでに存在するプラスチックの中で最高耐熱を達成しました(DABA:ABA=85:15のコポリマーの10%重量減少温度は740℃超、表1)(北陸先端大)。最終的に、紙パルプ糖化液を使って発酵生産した芳香族化合物から同等の性質を有するPBIフィルムを作製できることを示し、紙パルプから超高耐熱性PBIフィルムの一貫生産プロセスのプロトタイプを構築することに成功しました。
開発した超高耐熱性バイオPBIは、強度や軽量性にも優れており、さまざまな用途で利用が見込めます。まず、耐熱性が非常に高く、さまざまな軽量金属(アルミニウム、マグネシウム、亜鉛、錫など)の融点で分解が起こらないため、これらの軽量金属と溶融複合化することができ、軽量化社会で重要となる自動車ボディ、建築部材などの社会インフラ、軽量・高耐熱性が求められる駆動部位周辺具材(電線エナメル、高耐熱絶縁紙、マニホールド、オイルパン)への応用も考えられます。超難燃性の求められる航空・宇宙機器の部品などへの活用も想定されます。これらの輸送機器はグラム単位での軽量化が要求されており、バイオPBIによりエネルギー削減、脱石油化・低炭素化社会への貢献が期待されます。また、PBIをLiイオン化し、Liイオン電池の固体電解質として利用できることを既に明らかにしており、より高耐熱の固体電解質開発も可能と考えられ(文献3)、次世代電気自動車開発に貢献できると考えています。
なお、本研究チームメンバーは内閣府戦略的イノベーション創造プログラム(SIP)「スマートバイオ産業・農業基盤技術」に採択され、現在も引き続きバイオPBIの社会実装に向けた研究開発に取り組んでいます。
- Tomoya Fujita, Hieu Duc Nguyen, Takashi Ito, Shengmin Zhou, Lisa Osada, Seiji Tateyama, Tatsuo Kaneko, Naoki Takaya. Microbial monomers custom-synthesized to build true bio-derived aromatic polymers. Appl. Microbiol. Biotechnol. 97(20):8887-8894. (2013) doi: 10.1007/s00253-013-5078-4.
- Yukie Kawasaki, Nag Aniruddha, Hajime Minakawa, Shunsuke Masuo, Tatsuo Kaneko, Naoki Takaya. Novel polycondensed biopolyamide generated from biomass-derived 4-aminohydrocinnamic acid. Appl. Microbiol. Biotechnol. 102(2):631-639. (2018) doi: 10.1007/s00253-017-8617-6.
- Aniruddha Nag, Mohammad Asif Ali, Ankit Singh, Raman Vedarajan, Noriyoshi Matsumi, Tatsuo Kaneko. N-Boronated Polybenzimidazole for Composite Electrolyte Design of Highly Ion Conductive Pseudo Solid State Ion Gel Electrolytes with High Li Transference Number. J. Mater. Chem. A. 7(9): 4459-4468. (2019) doi: 10.1039/c8ta10476j.
<論文情報>
| 掲載雑誌名 | 「Advanced Sustainable Systems」(オンライン版:10月14日公開) |
| Ultrahigh Thermoresistant Lightweight Bioplastics Developed from Fermentation Products of Cellulosic Feedstock | |
| 著者 | Aniruddha Nag, Mohammad Asif Ali, Hideo Kawaguchi, Shun Saito, Yukie Kawasaki, Shoko Miyazaki, Hirotoshi Kawamoto, Deddy Triyono Nugroho Adi, Kumiko Yoshihara, Shunsuke Masuo, Yohei Katsuyama, Akihiko Kondo, Chiaki Ogino, Naoki Takaya, Tatsuo Kaneko*, Yasuo Ohnishi* |
| DOI番号 | 10.1002/adsu.202000193 |
<用語解説>
(注1)ポリベンズイミダゾール
高耐熱性ポリマーであるポリベンズアゾール類の一種であり、繰り返し単位中に「ベンズイミダゾール」を含んでいる高分子の総称。
(注2)アラミド繊維
芳香族ポリアミド系樹脂の総称。耐熱性や強度に優れた合成繊維であり、様々な用途で利用されている。
(注3)リグニン
セルロース、ヘミセルロースとともに木材を構成する主要成分であり、芳香環を有する不定形な高分子化合物。
表1 新規開発バイオPBIおよびアラミド含有バイオPBIの熱分解温度の比較表
| プラスチック | 10% 熱分解温度 |
力学強度 | 弾性率 |
| (℃) | (MPa) | (GPa) | |
| Bio-PBIフィルム (100/0) |
716 | 68 | 3.3 |
| Bio-Ami-PBI (85/15)フィルム |
743 | 66 | 3.2 |
| 代表的PBO (これまで最高耐熱) |
715 | 5800 | 180 |
| 代表的アラミド | 585 | 3000 | 112 |
| 代表的ポリイミド | 580 | 231 | 2.5 |
| 既存PBI | 570 | 100 | 5 |
| ナイロン6 | 415 | 75 | 2.4 |
*Bio-Ami-PBIは、史上最高の熱分解温度で力学物性も十分に高い(ナイロンと同等)
図1 紙パルプから超高耐熱性プラスチックフィルムの一貫生産プロセス
令和2年10月14日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/10/14-1.html北陸先端大を運営会場として国際学会「SSDM2020」をオンライン開催
9月27日(日)~9月30日(水)にかけて、2020 International Conference on Solid State Devices and Materials (SSDM2020)が北陸先端大を運営会場としてオンライン開催されました。
SSDMは、日本の半導体産業にも多大な貢献のある同分野におけるアジア地域最大の国際学会です。固体素子・材料の科学と技術を幅広くカバーしており、日本で開催されている国際会議の中で最も伝統のあるものの一つでもあります。
SSDM2020は、当初、北陸地区では初めてとなる富山県での開催を予定していましたが、新型コロナウィルスの影響により、オンラインでの実施に変更となりました。
今回、事前登録者だけでも700名を超える参加者が集まり、情報通信技術(ITC)分野や、太陽光発電・バッテリーなどのエネルギーイノベーション・ライフイノベーションの応用分野などのさまざまな分野から研究者や技術者が参加し、開催期間中340件を超える研究発表が行われました。
オンライン開催であったSSDM2020は、指揮・統括を行う拠点であるバックオフィスを、共催機関である北陸先端大に設置し、実行委員長である水田教授(環境・エネルギー領域)、赤堀准教授(応用物理学領域)らを中心に、北陸先端大及び金沢大学の教員、学生が一丸となり、最大で10セッションがパラレルで進行する、大規模な国際学会の運営にあたりました。
バックオフィスで実際に運営にあたった近隣大学の学生らは、通常の学会運営とは異なるトラブルに見舞われることもありましたが、他大学の教員や留学生から研究発表とは違った刺激を受け、積極的に運営に取組んでいるようでした。
また、富山大学、富山県立大学や川崎市の株式会社東芝にもサテライトオフィスを設置し、学会運営やトラブル等への対応を行いました。
次回のSSDM2021は、2021年9月6日から9日の日程で、札幌コンベンションセンター(北海道札幌市)で開催予定です。


バックオフィスで運営にあたる教員や学生の様子
令和2年10月2日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/10/02-2.html物質化学領域の松村研究室の論文が国際学術誌の表紙に採択
物質化学領域の松村研究室の論文が英国王立化学会(RSC)刊行のJournal of Materials Chemistry B誌の 表紙(inside front cover)に採択されました。
本研究成果はタイ王国チュラロンコン大学との協同教育プログラムによるものです。
■掲載誌
J. Mater. Chem. B, 2020, 8, 7904-7913 掲載日2020年8月13日
■著者
Wichchulada Chimpibul(松村研修了生), Tadashi Nakaji-Hirabayashi, Xida Yuan(松村研博士後期課程2年)and Kazuaki Matsumura*
■論文タイトル
Controlling the degradation of cellulose scaffolds with Malaprade oxidation for tissue engineering
■論文概要
再生医療では、幹細胞を体外で培養し機能化を行った後に再度移植し疾患を治療する際に細胞培養用の足場材料を使用します。一般的には動物性のコラーゲンや合成高分子などが利用されていますが、安全性や機能性に改善の余地があると言われています。
本研究では、自然界に豊富にあるセルロースを酸化することで生体内分解性を付与することに成功し、安全かつ高機能な細胞培養足場材料として再生医療分野での利用を提案しています。
表紙詳細:https://pubs.rsc.org/en/content/articlelanding/2020/tb/d0tb90155e#!divAbstract
論文詳細:https://pubs.rsc.org/en/content/articlelanding/2020/tb/d0tb01015d#!divAbstract

令和2年9月18日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/09/18-1.html世界初 キヌアからブラッダー細胞形成遺伝子を発見

世界初 キヌアからブラッダー細胞形成遺伝子を発見
石川県立大学 森 正之准教授、今村 智弘特任講師、古賀 博則客員教授、高木 宏樹准教授、北陸先端科学技術大学院大学先端科学技術研究科、生命機能工学領域の大木 進野教授らは、(公財)岩手生物工学研究センターなどの機関と共同で、塩生植物キヌア(Chenopodium quinoa)からブラッター細胞の形成に関わる遺伝子を発見しました。 本研究成果は、「Communications Biology」で公開されました。
<ポイント>
- キヌアからブラッダー細胞形成に関わる新規WD40タンパク質をコードするREBC遺伝子を発見
- REBC遺伝子は、ブラッダー細胞形成のみならず葉緑体形成にも関与していることを発見
- ブラッダー細胞の茎頂保護機能を発見
<発表論文>
| 論文タイトル | A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa |
| 論文著者 | Tomohiro Imamura, Yasuo Yasui, Hironori Koga, Hiroki Takagi, Akira Abe, Kanako Nishizawa, Nobuyuki Mizuno, Shinya Ohki, Hiroharu Mizukoshi, and Masashi Mori |
| 雑誌 | Communications Biology (DOI: 10.1038/s42003-020-01249-w) |
<研究の背景>
国連大学の報告によると、世界の灌漑地の約1/5が塩害にさらされています。その被害は、年間およそ273億USドルの経済損失を引き起していることが報告されており、今後さらに広がることが予想されています。一方、世界の人口は、2050年までに97億人に達することが予想されております。そのため、この人口の爆発的な増加に耐えうる食糧生産は、早急に解決すべき大きな課題となっております。しかし、主要穀物である小麦やイネなどは、塩に弱いで植物であり、これらの主要穀物に対する塩害は、食糧生産において大きな問題となります。キヌアは、非常に高い耐乾燥性と耐塩性を併せ持ち、他の植物では生育困難な厳しい環境で生育できる塩生擬似穀物です。さらに、キヌアの種子は、必須アミノ酸・ミネラル・植物繊維を豊富に含み高い栄養価を持つことから、国際連合食糧農業機関(FAO)では、世界の食糧問題解決の切り札になり得るスーパーフードとして注目されています。
キヌアを含めたアカザ属植物は、植物体の表面に球状の表皮細胞(ブラッダー細胞)を形成します(図1)。ブラッダー細胞は、通常細胞の1000倍以上の大きさがあり、細胞内に高濃度の塩を蓄積することが知られています。このブラッダー細胞の性質は、キヌアの高い塩耐性の一因と考えられています。独自の形態と機能を持つブラッダー細胞ですが、その形成メカニズムは全く分かっていませんでした。
本研究では、塩生植物のキヌアに形成されるブラッダー細胞の形成機構を明らかにするために、ブラッダー細胞の形成に関わる遺伝子の単離を試みました。その結果、EMS処理の変異原処理により、ブラッダー細胞が著しく減少したrebc変異体を獲得し、次世代シークエンサーを用いた解析により、ブラッダー細胞形成に関わるrebc変異体の原因遺伝子(REBC)の単離に成功しました。その単離したREBC遺伝子は、ブラッダー細胞を形成しない植物には存在しないことが明らかとなりました。このことから、ブラッダー細胞の形成機構は、同じ植物の表皮細胞であるトライコームの形成機構とは異なることが示唆されました。さらに、rebc変異体はブラッダー細胞の形成のみならず葉緑体の形成にも影響を及ぼしていることが明らかとなりました。また、rebc変異体を用いた環境ストレス実験により、ブラッダー細胞は、塩を蓄積するだけでなく、その細胞を密集させることにより茎頂などの組織を環境ストレスから保護していることが明らかとなりました。
<研究の内容>
1.ブラッダー細胞が減少した変異体の作出
ブラッター細胞の形成に関わる遺伝子を単離するために、約8000粒のキヌア種子ついて、EMSを用いた変異原処理を実施しました。その結果、大部分のブラッダー細胞が欠失した変異体を得ることができました(図2)。この変異体を reduced epidermal bladder cells (REBC)変異体と命名しました。rebc変異体の分離比を確認しましたところ、野生型とrebc変異の割合が3:1に分離しました。興味深いことに、キヌアは異質4倍体の植物にもかかわらず、rebcの形質は、一遺伝子支配の劣勢形質であることがわかりました。
2.環境ストレス試験
キヌアは、ブラッダー細胞に塩を高濃度に蓄積することにより、高塩環境においても正常に生育できることが知られています。そこで、大部分のブラッダーが欠失したrebc変異体について、塩ストレス実験を実施しました。その結果、rebc変異体は、野生型に比べて高濃度の塩条件において生育が阻害されていることがわかりました。さらに、別の環境ストレスとして、茎頂に風を当て続けたところ、野生型では問題なく生育したのですが、rebc変異体では風によって茎頂にダメージを受けていることが明らかとなりました(図3)。これらの実験からブラッダー細胞は、塩を蓄積する機能のほかに、茎頂などの特定の組織に密集して存在することにより、風などの環境ストレスから組織を保護していることが新たに明らかとなりました。
3.rebc変異体の原因遺伝子の特定
rebc変異体の原因遺伝子を明らかにするために、次世代シークエンサーを用いたin silico subtraction 法を利用して変異箇所の特定を試みました。その結果、rebc変異体は、新規なWD40ドメインタンパク質遺伝子の変異が原因であることを明らかにし、その遺伝子をREDUCED EPIDERMAL BLADDER CELLS (REBC)遺伝子と名付けました(図4)。他植物の表皮細胞であるトライコームでは、その形成に関与する遺伝子が同定されており、その中でWD40ドメインタンパク質としてTTG1遺伝子が重要な役割をしています。REBCとTTG1を比較したところ、これらのタンパク質は、別の機能を持つタンパク質であることが示唆されました(図5)。またトライコームを形成する植物体には、REBC遺伝子のオルソログが存在しませんでした。これらの結果より、ブラッダー細胞の形成は、トライコームとは異なる機構の存在が示唆されました。
4.rebc変異体における葉緑体形成
rebc変異体について、網羅的な発現解析を実施したところ、発現が変動した遺伝子の多くが葉緑体局在タンパク質をコードする遺伝子でありました。さらに、クロロフィル含量を測定したところ、rebc変異体のクロロフィル含量が有意に低下していることが明らかとなりました。そこで、rebc変異体の葉緑体の形態について、電子顕微鏡を用いて観察しました。その結果、rebc変異体の葉緑体は、内部構造の約1/3が欠失していることが明らかとなりました(図6)。さらに、ブラッダー細胞の葉緑体を観察した結果、rebc変異体のブラッダー細胞の中の葉緑体は、野生型に比べクロロフィルの自家蛍光の強度が低下し、さらにブラッダー細胞あたりの葉緑体数が減少していることが明らかとなりました。以上の結果より、rebc変異体は、ブラッダー細胞の形成のみならず、葉緑体の形成にも影響を及ぼしていることが明らかになりました。
<今後の展望>
本研究成果によって、キヌアのブラッダー細胞形成に関する分子メカニズムの一端を明らかにすることができました。今後、ブラッダー細胞の形成に関する分子メカニズムの全容が明らかになることが期待できます。さらに、ブラッダー細胞形成の知見を利用することによって、キヌアの塩耐性機構を組み入れた新たなコンセプトの環境ストレス耐性作物を作出することが期待できます。

図1 キヌアのブラッダー細胞 (a)キヌア植物体、(b)キヌアの葉(裏側)、(c)キヌアの葉(拡大)、
(d-f) キヌアブラッダー細胞 BC:ブラッダー細胞、SC: 柄細胞

図2 rebc変異体について (a-c)キヌア芽生え (d-f)キヌア芽生え(茎頂付近)
(a, d)野生型、(b, e)rebc1変異体、(c, f)rebc2変異体

図3 風ストレス処理による影響 (a)野生型、(b)rebc1変異体、(c)rebc2変異体
・rebc変異体は風ストレスによって、茎頂が枯死している。

図4 REBC遺伝子の単離 (a) REBC遺伝子の概略図 赤矢印はrebc変異体の変異箇所
(b)rebc1×rebc2交配後代(F1)の解析
・rebc1×rebc2交配個体も、rebc変異の形質を示したことから、REBCが原因遺伝子であることが明らかとなった。

図5 (a) REBCとTTG1との比較(系統樹解析)、(b) アラビドプシスttg1変異体を用いた相補実験
上段:ベクターコントロール、中段:REBC過剰発現体、下段:AtTTG1過剰発現体
・REBCタンパク質は、TTG1タンパク質とは別のグループに属し、TTG1の機能を相補することができない。

図6 rebc変異体の葉緑体について (a-c) 走査型電子顕微鏡像 (b-f)透過型電子顕微鏡像
(a, d)野生型、(b, e)rebc1変異体、(c, f)rebc2変異体
・rebc変異体では、葉緑体の膜構造1/3が欠失している。
<用語説明>
- キヌア
ヒユ科アカザ亜科アカザ属の植物。南米アンデス原産の穀物で必須アミノ酸・ミネラル・植物繊維を豊富に含み高い栄養価を持ち、さらに、環境適応能力が高く、非常に高い耐乾燥性と耐塩性を合わせ持ち、国際連合食糧農業機関(FAO)は、世界の食糧問題解決の切り札になり得る作物として注目している。近年、我々のグループとその他のグループによってキヌアゲノムが解読され、キヌアが持つ環境ストレス耐性および高栄養価についての遺伝子研究が進められている。 - 擬似穀物
米や麦などのイネ科(禾穀類)や、大豆や小豆などのマメ科(菽穀類)ではないが、見た目がイネ科の穀物に類似した食べられる種子を形成する植物(ソバ、キヌア、アマランサスなど)を指す。 - in silico subtraction法
次世代シークエンサーのシークエンスデータを用いて、サンプル間の塩基配列の違い(多型、変異箇所)を特定する方法。異質倍数体の植物(キヌアは異質4倍体)でも検出が可能。本研究では、親から分離した後代について、野生型形質を示す個体群と、rebc変異形質を示す個体群を、それぞれまとめてゲノムを抽出し、次世代シークエンサーによって、それぞれの形質を示す個体群のシークエンスリードを獲得。その後、二形質間のシークエンスリードを比較することにより、形質を支配する遺伝子を特定した。
令和2年9月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/09/17-1.htmlNEDO「ムーンショット型研究開発事業」研究開発プロジェクトに採択
![]() |
国立大学法人北陸先端科学技術大学院大学 |
|
このたび、北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)ら8機関による提案研究が、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の「ムーンショット型研究開発事業※」におけるムーンショット目標4「2050年までに、地球環境再生に向けた持続可能な資源循環を実現」の達成を目指す研究開発プロジェクトに採択されました。
1)ON型光スイッチ:陸域の生活圏では材料として安定ですが、投棄後に海洋流出するまでの過程で生じる表面損傷などにより太陽光がプラスチック内部に届き生分解が始まる(ON)スイッチです。 2)OFF型光スイッチ:蛍光灯や太陽光暴露のある状態では生分解が抑制(OFF)され、海中・海底・コンポストなどの暗所の環境で生分解が始まるという「光スイッチ」です。 3)また、これらを具有させたON/OFF型という理想的システムも同時に提案します。 さらには、海洋生物が誤飲したり周りまわって人間の食料中に混ざり込んでも消化管内で物理的障害や化学的毒性を生じない「食せるプラスチック」の開発も目指します。 2030年にはこれらの海洋実環境における分解性を証明し衣料品やビニール袋などの試作品を作製します。さらに、上記のシステムは広範囲のプラスチックに適用できるため、2050年までにはさらに多くのプラスチックへと展開し様々な種類や形態の光スイッチ型分解性プラスチック製品へと展開します。本プロジェクトは、二酸化炭素の固定化、炭素循環および窒素循環などの概念を取り入れた統合的な地球環境保全・再生に資するものです。加えて、本プロジェクトは、成熟期に差し掛かってきた我が国の石油化学産業をバイオ化学産業に業態転換せしめ、新たな成長に向けたパラダイムチェンジ型イノベーションの一端を担う可能性を有します。 |
<参 考>
1 ムーンショット型研究開発制度
本制度の詳細については、以下を参照
https://www8.cao.go.jp/cstp/moonshot/index.html
2 ムーンショット目標
2020年1月CSTIにおいてムーンショット目標1~6が決定。2020年7月には健康・医療戦略推進本部においてムーンショット目標7が決定
目標1:2050年までに、人が身体、脳、空間、時間の制約から解放された社会を実現
目標2:2050年までに、超早期に疾患の予測・予防をすることができる社会を実現
目標3:2050年までに、AIとロボットの共進化により、自ら学習・行動し人と共生するロボットを実現
目標4:2050年までに、地球環境再生に向けた持続可能な資源循環を実現
目標5:2050年までに、未利用の生物機能等のフル活用により、地球規模でムリ・ムダのない持続的な
食料供給産業を創出
目標6:2050年までに、経済・産業・安全保障を飛躍的に発展させる誤り耐性型汎用量子コンピュータを実現
目標7:2040年までに、主要な疾患を予防・克服し100歳まで健康不安なく人生を楽しむための
サステイナブルな医療・介護システムを実現
3 NEDOムーンショット型研究開発事業の採択結果
https://www.nedo.go.jp/news/press/AA5_101346.html
令和2年9月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/09/7-1.html研究員の王さんが中国国家留学基金管理委員会(CSC)「2019年優秀自費留学奨学金賞」を受賞
研究員の王衆望さん(令和2年3月本学博士後期課程修了、環境・エネルギー領域、水田研究室)が中国国家留学基金管理委員会(CSC)による「2019年優秀自費留学奨学金賞」を受賞しました。
優秀自費留学奨学金賞は、中国国家留学基金管理委員会(CSC)が2003年から中国自費留学生を対象として設置した賞で、毎年全世界にいる中国留学生から優れた研究業績を上げた博士留学生500名を選び、表彰するものです。日本ではわずか20名ほどが表彰されます。また、受賞者の指導教員にもCSCからの感謝状が授与され、今回、指導教員である水田 博教授もCSCからの感謝状を受理しました。
王さんは平成27年4月に環境・エネルギー領域の水田・マノハラン研究室に入り、令和2年3月までに本学の博士前期課程、博士後期課程を修了し、博士学位を取得しました。今回の受賞は、王さんの努力と本学の教育力、研究力が大きく認められたものと考えられます。

水田 博教授(右)と王衆望さん(左)
令和2年8月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/08/25-1.htmlナノテクノロジーと遺伝子工学のマリアージュ -ガン幹細胞制御技術に向けて-
ナノテクノロジーと遺伝子工学のマリアージュ
-ガン幹細胞制御技術に向けて-
ポイント
- ナノテクノロジーと遺伝子工学を利用し、細胞やマウス体内のガン幹細胞性を制御することに成功
|
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科物質化学領域の都 英次郎准教授の研究グループは、ウシの角に似た炭素分子「カーボンナノホーン」(CNH)*1と遺伝子工学を使ってマウス体内のガン幹細胞性を制御する技術の開発に成功した。
再発と転移を繰り返す治療抵抗性のガン幹細胞を体内から排除可能な治療法が望まれている。本研究では、生体透過性の高い近赤外レーザー光*2でCNHが容易に発熱する性質(光発熱特性)*3と52℃以上の温度になるとカルシウムイオンを細胞内に取り込むTransient Receptor Potential Vanilloid 2(TRPV2)*4というタンパク質に着目した。遺伝子工学的手法によりTRPV2を導入したガン細胞にCNHの光発熱特性を作用させたところ、細胞内に過剰のカルシウムイオンが流入し、標的とするガン細胞が選択的かつ効果的に死滅することが明らかとなった(図1)。また、マウスを用いた実験で本手法がガン幹細胞性の制御に有用であることも分かった。本手法を利用すれば体外からレーザー光を照射し、その熱で患部を狙い撃ちできるほか、治療の難しいガン幹細胞の予防・治療法にも道が開けると期待している。 本成果は、2020年8月17日に英国科学誌「Nature Communications」のオンライン版に掲載された。なお、本研究成果は日本学術振興会科研費[基盤研究A、基盤研究B、国際共同研究加速基金(国際共同研究強化)]の支援のもと、国立研究開発法人産業技術総合研究所と行われた共同研究によるものである。 |

図1. 機能性CNHとTRPV2によるガン細胞殺傷メカニズム
【論文情報】
| 掲載誌 | Nature Communications |
| 論文題目 | Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes |
| 著者 | Yue Yu, Xi Yang, Sheethal Reghu, Sunil C. Kaul, Renu Wadhwa, Eijiro Miyako* |
| 掲載日 | 2020年8月17日にオンライン版に掲載 |
| DOI | 10.1038/s41467-020-17768-3 |
【用語説明】
*1 カーボンナノホーン(CNH)
直径は2~5 nm、長さ40~50 nmで不規則な形状を持つ。数千本が寄り集まって直径100 nm程度の球形集合体を形成している。とりわけ、薬品の輸送用担体として期待されており、バイオメディカル分野で注目を集めている。
*2 近赤外レーザー光
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
*3 光発熱特性
数多くあるナノカーボン材料の特性の一つであり、レーザー光やカメラのフラッシュにより容易に発熱する特性のこと。
*4 Transient Receptor Potential Vanilloid 2(TRPV2)
細胞膜に存在するタンパク質の一種。52℃以上の温度によって活性化し、細胞内へカルシウムイオンを流入する。
令和2年8月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/08/17_2.html物質化学領域の松村研究室の論文がBiomacromolecules誌の表紙に採択
物質化学領域の松村研究室の論文がアメリカ化学会(ACS)刊行のBiomacromolecules誌の表紙に採択されました。
なお、本研究成果は日本学術振興会科研費(基盤研究A、B)、キヤノン財団産業基盤の創生、大学連携バイオバックアッププロジェクトによる支援を受け行われたものであり、また澁谷工業株式会社、農業食品産業技術総合研究機構、鹿児島大学との共同研究によるものです。
■掲載誌
Biomacromolecules, Vol. 21, No. 8 , 2020 掲載日2020年8月10日
■著者
Kazuaki Matsumura*, Sho Hatakeyama(松村研修了生), Toshiaki Naka, Hiroshi Ueda, Robin Rajan(松村研助教), Daisuke Tanaka, Suong-Hyu Hyon
■論文タイトル
Molecular Design of Polyampholytes for Vitrification-Induced Preservation of Three-Dimensional Cell Constructs without Using Liquid Nitrogen
■論文概要
本研究では、疎水性を付与することで両性電解質高分子による水の低温でのガラス状態安定化効果を向上させることに成功し、その効果を用いて三次元細胞塊であるスフェロイドを、液体窒素を用いずに冷凍庫にてガラス化保存することに成功しました。この手法により、再生組織のビルディングブロックとして注目されている幹細胞スフェロイドを安定的に簡便に長期間保存することが可能となり、組織再生のオートメーション化の第一歩として重要な技術となります。
表紙詳細:https://pubs.acs.org/toc/bomaf6/21/8
論文詳細:https://pubs.acs.org/doi/10.1021/acs.biomac.0c00293

令和2年8月11日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/08/11-1.html環境・エネルギー領域の大平教授の研究課題がNEDO「太陽光発電主力電源化推進技術開発」に採択
環境・エネルギー領域の大平 圭介教授の研究課題が、新エネルギー・産業技術総合開発機構(NEDO)の「太陽光発電主力電源化推進技術開発」の研究開発項目(I)太陽光発電の新市場創造技術開発/(ⅱ)壁面設置太陽光発電システム技術開発に採択されました。
太陽光発電の主力電源化に向けて、需要地に近接しているが従来の技術では太陽光発電の導入が進んでいなかった場所を利用可能にするための太陽光発電システム開発や、長期安定的な事業運営確保として現在顕在化している課題解決のための技術開発が求められています。
NEDOではこれらの開発を推進するため、「太陽光発電主力電源化推進技術開発」において(i)フィルム型超軽量太陽電池の開発、(ii)壁面設置太陽光発電システム技術開発、(iii)移動体用太陽電池の研究開発での公募を実施し、今回、33テーマを採択しました。
*詳しくは、NEDOホームページをご覧ください。
https://www.nedo.go.jp/koubo/FF3_100292.html
■研究課題名
多機能・高品質薄膜の利用による壁面太陽電池モジュールの長寿命化
■研究期間
2020年7月~2023年3月(継続の可能性あり)
■研究概要
建造物の壁面に設置するタンデム型太陽電池モジュールの発電性能および意匠性に関し、建造物と同等の寿命を達成するための要素技術開発を行う。本学で長年研究を行っている、触媒化学気相堆積(Cat-CVD)法で形成する窒化Si膜は、100℃程度の低温製膜でも高い膜密度が得られ、膜自体の長期安定性と、高いガスバリア性能を発揮する。この窒化Si膜をタンデムセル上に形成し、タンデムセルの色調安定化と水蒸気浸入による発電性能低下の抑止を達成するための基盤技術確立を目指す。また、再委託先である岐阜大学では、酸化Si膜を塗布法によりモジュールのカバーガラス上に形成し、防汚性能、反射低減性能等を付与する検討を行う。
■採択にあたって一言
建造物の壁面に設置する太陽電池モジュールの開発は、いわゆるネット・ゼロ・エネルギー・ビル(ZEB)を実現するために、大変重要な研究です。今回、同時に採択された新潟大学、青山学院大学、再委託先である岐阜大学とも連携の上、本学の技術の強みを生かしつつ研究開発を進め、太陽光発電の普及拡大に貢献していきたいと思います。
令和2年7月31日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/07/31-1.html




