研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。文部科学省マテリアル先端リサーチインフラ(ARIM)第2回公開講座
日 時 | 令和6年3月11日(月)10:00~17:00 |
場 所 | JAISTナノマテリアルテクノロジーセンター 2F会議室・電子顕微鏡棟 |
受講料 | 6,200 円(税込) |
定 員 | 5名ほど【先着順 定員に達し次第、締め切らせていただきます。】 |
申 込 | ①~⑦を明記の上、マテリアル先端リサーチインフラ事務局 arim@ml.jaist.ac.jp までお申し込み下さい。 ①氏名(ふりがな) ②勤務先・職名 ③受講の目的 ④本講座に期待すること ⑤書類送付先 ⑥電話番号 ⑦メールアドレス |
テーマ | 超高分解能質量分析計によるMALDIイメージングの世界 |
講 師 | 山口 拓実 バイオ機能医工学研究領域・准教授 宮里 朗夫 ナノマテリアルテクノロジーセンター・技術専門職員 闞 凱 ナノマテリアルテクノロジーセンター・主任技術職員 |
概 要 | 近年、質量分析法を応用して物質の局在を可視化するMALDIイメージング技術が注目されています。MALDIイメージング法は、ターゲット物質が存在する場所を視覚的に捉えることができるため、生体組織における薬物動態から材料中に含まれる劣化物質等の探索に威力を発揮しています。 本講座では、最先端の超高分解能質量分析装置であるフーリエ変換イオンサイクロトロン共鳴質量分析計(scimaX)を使用し、生体組織や材料のMALDIイメージングをどのように行うか、サンプル調製から測定・解析までの実習を予定しています。 |
学生の大橋さんが第14回半導体材料・デバイスフォーラムにおいて最優秀口頭発表賞を受賞

学生の大橋亮太さん(博士前期課程2年、サスティナブルイノベーション研究領域、大平研究室)が第14回半導体材料・デバイスフォーラムにおいて最優秀口頭発表賞を受賞しました。
第14回半導体材料・デバイスフォーラムは、熊本高等専門学校が主催し、令和5年12月9日、九州工業大学にてハイブリッド開催されました。同フォーラムは半導体材料・関連デバイス研究分野に重点を置き、研究発表や討論を通じて、高専学生と大学(院)生との学生間交流を図り、高専学生の教育・研究力向上への貢献を目指しています。
最優秀口頭発表賞は、同フォーラムにおいて、半導体デバイスの発展に貢献しうる最も優秀な口頭発表をした筆頭著者に贈られるものです。
※参考:第14回半導体材料・デバイスフォーラム
■受賞年月日
令和5年12月9日
■研究題目
ベイズ最適化を適⽤したCat-CVD i-a-Si およびn-a-Siの堆積条件探索
■研究者、著者
大橋亮太、Huynh Thi Cam Tu、東嶺孝一、沓掛健太朗、大平圭介
■受賞対象となった研究の内容
現在、太陽電池市場の大部分を占めているSi系太陽電池において、特に高効率なSiヘテロ接合(SHJ)太陽電池に着目し、高効率化を目指し研究を行っている。SHJ太陽電池の作製にあたり、我々は触媒化学気相堆積(Cat-CVD)法を用いて結晶Siウエハ上に非晶質Si(a-Si)を堆積している。しかし、堆積時のパラメータが多いため、高性能なSHJ太陽電池の作製条件の探索に膨大な時間がかかる。そこで、ベイズ最適化を用いて効率よく高い性能を示す条件探索を行っている。
本講演では、ベイズ最適化を用いて真性非晶質Si(i-a-Si)層とn型非晶質Si(n-a-Si)層の堆積条件探索について発表した。i-a-Si層及びn-a-Si層の探索を、それぞれ20回、21回とかなり少ない回数で完了することができ、高いパッシベーション性能と十分な導電性を兼ね備えるa-Si膜の堆積条件を確立した。
■受賞にあたって一言
この度、第14回半導体材料・デバイスフォーラムにおいて、最優秀口頭発表賞を賜り、大変光栄に思います。高専生が多い会議でしたので、自分の研究の面白さやJAISTの良さが少しでも伝わっていれば嬉しいです。本研究の推進にあたり、ご指導、ご協力いただいた大平圭介教授、HUYNH, Tu Thi Cam特任助教をはじめとした大平研究室メンバーの皆様に、この場を借りて厚く御礼申し上げます。また、ベイズ最適化のご指導をいただいた沓掛健太朗研究員(理化学研究所)、透過型電子顕微鏡にて試料の観察をご担当いただいた技術専門員の東嶺孝一様にも、心より感謝申し上げます。
令和6年1月22日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2024/01/22-1.htmlナノマテリアル・デバイス研究領域・物質化学フロンティア研究領域セミナー
日 時 | 令和5年10月19日(木)15:30~17:00 |
場 所 | 知識科学講義棟2階 中講義室 |
講演題目 | 電子顕微鏡動画撮影で切り拓く映像分子科学の世界 |
講演者 | 物質・材料研究機構 マテリアル基盤研究センター 主幹研究員 原野 幸治 氏 |
言 語 | 日本語 |
お問合せ先 | 北陸先端科学技術大学院大学 共通事務管理課共通事務第三係 (E-mail:ms-secr@ml.jaist.ac.jp) |
学生のPUNYASLOKAさんとPATNAIKさんがCEAT2023においてBest Presenter Awardを受賞
学生のPUNYASLOKA, Saibrataさん(博士後期課程2年、物質化学フロンティア研究領域、松見研究室)とPATNAIK, Kottisa Sumalaさん(博士後期課程1年、物質化学フロンティア研究領域、松見研究室)がThe clean energy and technology conference(CEAT)2023において、Best Presenter Awardを受賞しました。
CEAT2023は、クリーンで再生可能なエネルギーの研究、開発、応用、提唱に関わる問題に焦点を当てた国際会議です。マレーシアのマラヤ大学が主催し、本学やマレーシア国立大(UKM)等との共催で、令和5年6月7日から6月8日にかけて、現地とオンラインでのハイブリッド形式にて開催されました。
同会議は、クリーンエネルギーと技術、電動モビリティの分野において、アカデミア及び産業界との国際的な意見交換のプラットフォームを提供することを目的として開催され、マレーシア国内及び国際運営委員会の審議により、口頭発表の中から優れた発表を行った学生に対し、Best Presenter Award(優秀講演賞)が授与されました。
CEAT2023は、International Symposium on Electric Mobility (ISEM)と併催で行われました。
※参考:CEAT2023ホームページ
■受賞年月日
令和5年6月8日
【PUNYASLOKA, Saibrataさん】
■研究題目
Study of Storage and Rate Capability of Lithium-Ion Secondary Batteries Using Bithiophene Containing Imine-Based Conjugated Polymer as Anodic Active Material
■研究者、著者
Saibrata Punyasloka, Noriyoshi Matsumi
■受賞対象となった研究の内容
ドナーアクセプター構造を有する共役系高分子をリチウムイオン二次電池用負極活物質として用いることにより、急速充放電能において好ましい特性が発現することが見出された。また、充電メカニズムにおけるキャパシティヴな寄与及びインターカレーションによる寄与に関しても電気化学的に分析しつつ、本系における挙動の詳細な知見を明らかにした。
■受賞にあたって一言
I would like to thank the 6th Clean Energy and Technology Committee for considering me for the award. I also would like to take this opportunity to extend my sincere and heartfelt gratitude to Prof. Noriyoshi Matsumi for his constant guidance. Further, I would also like to thank all the members of the Matsumi Lab, friends, and family for their continual support. I see this award as a motivation and encouragement which will push me forward in my research career and help me achieve greater heights.
Thank you.


■研究題目
Preparation of Anodic Active Materials Suitable for High-Rate Charge-Discharge by Pyrolysis of Poly(benzimidazole/amide) Copolymers
■研究者、著者
Kottisa Sumala Patnaik, Bharat Srimitra Mantripragada, Rajashekar Badam, Koichi Higashimine, Xianzhu Zhong, Tatsuo Kaneko and Noriyoshi Matsumi
■受賞対象となった研究の内容
ポリ(ベンズイミダゾール/アミド)共重合体を前駆体とした焼成により得た窒素ドープカーボンにおいては、層間距離がポリベンズイミダゾール由来の窒素ドープカーボンと比較してさらに拡張し、リチウムイオン二次電池の負極活物質として、イオン拡散能や急速充放電能においてさらに優れた特性が観測された。また、本材料を用いて構築したフルセルも良好に作動した。
■受賞にあたって一言
I would like to take this opportunity to thank the 6th Clean Energy and Technology Conference (CEAT) jury members for bestowing me with this award. I would like to take this opportunity to thank Matsumi Sensei for his invaluable guidance and support all the time. I would also like to thank all our colleagues in Matsumi lab, family members, friends, and loved ones who helped me receive this award. This award motivates me to do more hard work and inspires me to perform better in the future. I hope my research work can benefit society at large in the future.
令和5年8月7日
ナノマテリアル・デバイス研究領域セミナー
日 時 | 令和5年8月3日(木)14:00~17:00 |
場 所 | マテリアルサイエンス研究棟4棟8階 中セミナー室 |
講演題目 |
(1)「触媒およびその応用に向けたナノ構造材料の微細構造と新奇特性」
Microstructures and novel properties of the nano-structure materials for catalysts and other applications (2)「透過型電子顕微鏡によるVO2の金属-絶縁体転移の制御」
Manipulating metal-insulator transition of VO2 in transmission electron microscopy |
講演者 | 鄭州大学 物理・マイクロエレクトロニクス学院 (1) 教授 郭 海中 (Guo, Haizhong)氏 (2) 教授 程 少博 (Cheng, Shaobo)氏 |
言 語 | 英語 |
お問合せ先 | 北陸先端科学技術大学院大学 共通事務管理課共通事務第三係 (E-mail:ms-secr@ml.jaist.ac.jp) |
学生のHASANさんの論文が、Altmetricによるスコアで上位5%に入る最も議論された論文の1つとして認定

学生のHASAN, Md. Mahmudulさん(博士後期課程3年、物質化学領域、長尾研究室)による、John Wiley & Sons社刊行のChemistrySelect誌に掲載された論文 "Christmas-Tree-Shaped Palladium Nanostructures Decorated on Glassy Carbon Electrode for Ascorbic Acid Oxidation in Alkaline Condition" が、Altmetricによるスコアで上位5%に入る最も議論された論文の1つとして雑誌編集部から認定されました。
■認定年月日
令和3年7月13日
■論文タイトル
Christmas‐Tree‐Shaped Palladium Nanostructures Decorated on Glassy Carbon Electrode for Ascorbic Acid Oxidation in Alkaline Condition
■研究者、著者
Md. Mahmudul Hasan, Yuki Nagao
■対象となった研究の内容
Christmas-tree-shaped Pd nanostructures were synthesized using a simple one-step electrodeposition method with no additives on a glassy carbon electrode (GCE) surface. Growth of the hierarchical nanostructures was optimized through the applied potential, deposition time, and precursor concentration. Comprehensive characterization techniques such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), and cyclic voltammetry (CV) were used to characterize structural features of the Christmas-tree-shaped Pd nanostructures. Our Christmas-tree-shaped Pd nanostructures showed excellent catalytic activity for ascorbic acid (AA) electro-oxidation in the alkaline condition. The modified electrode exhibited current density of 4.5 mA cm-2: much higher than that of unmodified GCE (0.6 mA cm-2). This simple electrodeposition technique with well-defined hierarchical Pd nanostructures is expected to offer new perspectives using Pd-based nanostructured surfaces in different research areas.
■認定にあたって一言
We are pleased to receive the award for one of the most-discussed articles in "ChemistrySelect". First and foremost, I want to thank Associate Professor Yuki Nagao for his valuable comments, guidelines, and advice. I am also grateful for the support of Nagao LAB members. Our study will hopefully aid in the development of hierarchical metal catalysts for electrocatalysis and energy conversion applications.


令和3年8月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/08/20-1.html応用物理学領域の麻生助教が中部電気利用基礎研究振興財団の研究助成に採択
応用物理学領域の麻生 浩平助教が公益財団法人 中部電気利用基礎研究振興財団の研究助成に採択されました。
中部電気利用基礎研究振興財団は電気の利用及びこれに関連する基礎的な技術に関する試験研究等に対する助成を行うことにより、電気の効果的な利用の拡大を図り、我が国経済の健全な発展と国民生活の向上に寄与することを目的としています。
■採択期間
令和3年4月1日~令和5年3月31日
■研究課題
リチウムイオン電池の充放電にともなうイオン伝導過程の電子顕微鏡解析
■研究概要
リチウムイオン電池は、充放電に伴って電池内部でリチウムイオンが移動していきます。しかし、物質中でイオンがどのように移動していくのかは未だによく分かっていません。そこで本研究では、ナノメートル程度の空間スケール、かつ従来よりも短い時間スケールでリチウムイオンのダイナミクスを可視化することを目指します。開発した手法を用いて、リチウムイオンの移動の仕方と、原子の並びの乱れといった結晶状態との関係解明に挑戦します。リチウムイオン電池にはどのような結晶状態が適しているのか、これまでにない実験的な知見を与えられると期待しています。
■採択にあたって一言
中部電気利用基礎研究振興財団および選考委員の皆様に心から感謝いたします。本研究を進めるにあたり数々のご協力を頂きました研究室の方々、ナノマテリアルテクノロジーセンターの皆様、および共同研究者の皆様方に感謝申し上げます。
令和3年3月26日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/03/26-1.htmlリチウムイオン2次電池の長期的耐久性の課題解決に資する超高耐久性バインダーを開発

リチウムイオン2次電池の長期的耐久性の課題解決に資する
超高耐久性バインダーを開発
ポイント
- リチウムイオン2次電池の長期的耐久性の課題の解決に資する超高耐久性負極バインダーの開発に成功した。
- 1700回の充放電サイクルを経ても95%の容量維持率を示した。
- 本バインダー材料を用いた系ではPVDF系で顕著であった電解液の電気分解が抑制された。
- 充放電サイクル後に、本バインダー材料を用いた電池系ではPVDF系と比較して大幅に低い(45%減少)内部抵抗が観測された。
- 各種電気化学測定により、負極内部のリチウムイオンの拡散性に優れていることが分かった。本バインダー系ではイオンの拡散係数がPVDF系を15%上回った。
- ヤング率、引張強度のいずれにおいても本バインダーはPVDFと比較して大幅に優れた力学的強靭さを示した。
- 電極―電解質界面抵抗を低減できる高耐久性バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が期待される。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の先端科学技術研究科 物質化学領域の松見 紀佳教授、環境・エネルギー領域の金子 達雄教授、バダム ラージャシェーカル講師、アグマン グプタ博士後期課程学生、アニルッダ ナグ元博士研究員は、リチウムイオン2次電池*1の耐久性を大幅に向上させる負極バインダー材料(図1)の開発に成功した。 リチウムイオン2次電池は、一般ユーザーが広く認識しているように充放電能力が経年劣化することが知られている。この問題は、EV用途を始めとする高付加価値製品においては更に深刻な課題となる。リチウムイオン2次電池の劣化要因は極めて多岐にわたるが、様々な電極内における副反応によるバインダーを含む電極複合材料の変性、電極/集電体の接着力の劣化が主要因の一つと考えられている。 本バインダー材料は、アセナフテキノンと1,4-フェニレンジアミンとを酸触媒の存在下で重縮合することにより合成した(図2)。 開発したリチウムイオン2次電池用バインダーは、長く検討されてきたポリフッ化ビニリデン(PVDF)と比較すると、LUMO*2,3が低い電子構造的特徴を有し(図3)、その結果として電解液の過剰な分解による厚い被膜形成を効果的に抑制した。 サイクリックボルタンメトリー*4後に見積もられたイオン拡散係数はPVDF系と比較して15%高い値となった。また、リチウム脱挿入ピークの電位差(オーバーポテンシャル)は本バインダー材料系においてPVDF系と比較して100mV減少し、より容易なリチウムイオンの拡散を支持する結果となった。充放電後の電池セルの界面抵抗*5も本バインダーにおいて大幅に低い値を示した(62Ω;PVDF系では110Ω)(図4)。 その結果として本バインダー高分子系では1735回の充放電サイクルを経ても95%の容量維持率を示し、非常に優れた耐久性が明らかとなった(図5)。 長期充放電後の負極のXPS測定より、バインダー材料由来の窒素原子に由来するピークが明瞭に観測されたことから、電極表面に形成されている被膜は極めて薄いことが示唆された。また、バインダー構造の一部が顕著にリチウムドープされていることも明らかとなった。長期充放電後の負極のSEM像では、PVDF系では500サイクル後に大きなクラックの形成と共に集電体から剥離した様子も観測されたが、本バインダー系では1735サイクル後にも僅かなクラックの形成が観測されるにとどまった。 なお、本研究はJST未来社会創造事業の支援を受けて実施された。 |
本成果は「ACS Applied Energy Materials」(米国化学会)オンライン版に2月17日に掲載された。
題目 | Bis-imino-acenaphthenequinone-Paraphenylene-Type Condensation Copolymer Binder for Ultralong Cyclable Lithium-ion Rechargeable Batteries |
著者 | Agman Gupta, Rajashekar Badam, Aniruddha Nag, Tatsuo Kaneko and Noriyoshi Matsumi |
DOI | 10.1021/acsaem.0c02742 |
【今後の展開】
セル構成や充放電条件を最適化し、最も優れた特性を有する蓄電デバイスの創出に結びつける。
更に異なる材料組成から成る高容量負極材料への適用を進めつつある。
電極―電解質界面抵抗を大幅に低減できる機能性高分子バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が見込まれる。
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 LUMO:
電子が占有していない分子軌道の中でエネルギー準位が最も低い軌道を最低空軌道(LUMO; Lowest Unoccupied Molecular Orbital)と呼ぶ。
*3 HOMO:
電子が占有している分子軌道の中でエネルギー準位が最も高い軌道を最高被占軌道(HOMO; Highest Occupied Molecular Orbital)と呼ぶ。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
*5 電極―電解質界面抵抗:
エネルギーデバイスにおいては一般的に個々の電極の特性や個々の電解質の特性に加えて電極―電解質界面の電荷移動抵抗がデバイスのパフォーマンスにとって重要である。交流インピーダンス測定を行うことによって個々の材料自身の特性、電極―電解質界面の特性等を分離した成分としてそれぞれ観測し、解析することが可能である。
令和3年3月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/03/01-1.htmlシリコン負極表面を高度に安定化するポリ(ボロシロキサン)型人工SEIの開発に成功

シリコン負極表面を高度に安定化する
ポリ(ボロシロキサン)型人工SEIの開発に成功
ポイント
- リチウムイオン2次電池のシリコン負極表面の劣化を抑制する人工SEIの開発に成功した。
- 350回の充放電サイクル時点で、ポリ(ボロシロキサン)をコーティングしたシリコン負極型セルは、PVDFコーティング系と比較して約2倍の放電容量を示した。
- 本人工SEIの好ましい特性の一つは自己修復能にあることがSEM測定から明らかになった。
- 充放電サイクル後に、本人工SEIを用いた電池系ではPVDF系と比較して大幅に低い内部抵抗が観測された。
- LiNMCを正極としたフルセルにおいても、ポリ(ボロシロキサン)コーティング系電池セルはPVDF系と比較して大幅に優れた性能を発現した。
- 低いLUMOによりポリ(ボロシロキサン)のコーティング層は初期サイクルで一部還元され、同時にリチウムイオンを含有した好ましいSEIを形成する。
- ヘキサンなどの低極性溶媒にも可溶であり、多様な系におけるコンポジット化、成膜に対応性を有している。
北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の先端科学技術研究科 物質化学領域の松見 紀佳教授、博士後期課程学生(当時)のサイゴウラン パトナイク、テジキラン ピンディジャヤクマールらは、リチウムイオン2次電池*1 におけるシリコン負極の耐久性を大幅に向上させる人工SEI材料の開発に成功した(図1)。 リチウムイオン2次電池負極としては多年にわたりグラファイトなどが主要な材料として採用されてきたが、次世代用負極として理論容量が極めて高いシリコンの活用が活発に研究されている。しかし、一般的な問題点としては、充放電に伴うシリコンの大幅な体積膨張・収縮によりシリコン粒子や表面被膜の破壊が起こり、さらに新たなシリコン表面から電解液の分解が起き、厚みを有する被膜が形成して電池の内部抵抗を低減させ放電容量の大幅な低下につながっていた。本研究では、自己修復型高分子ポリ(ボロシロキサン)をコーティングすることにより、シリコン表面が大幅に安定化することを見出した。 コーティングを行っていないシリコン負極、PVDFコーティングしたシリコン負極、ポリ(ボロシロキサン)コーティングしたシリコン負極をそれぞれ用いたコインセルのサイクリックボルタンメトリー測定*2 を比較すると、ポリ(ボロシロキサン)コーティングを行った系においてリチウム脱挿入ピークの可逆性が大幅に改善された。これは、ポリ(ボロシロキサン)の低いLUMOレベル*3 により初期の電気化学サイクルにおいてコーティング膜が一部還元されることにより、リチウムイオンを含有した好ましいSEIを形成した結果と考えられる。ポリ(ボロシロキサン)コーティングを行ったシリコン表面に傷をつけた後、45℃におけるモルフォロジーの経過をSEM観察したところ、30分以内に傷が修復される様子が確認された(図2)。 このようなポリ(ボロシロキサン)の自己修復能力の結果、アノード型ハーフセルの充放電試験においてポリ(ボロシロキサン)コーティング系はPVDFコーティング系と比較して350サイクル時点で約2倍程度の放電容量を示した(図3)。また、充放電サイクル後のインピーダンス測定より、好ましい界面挙動*4 によるポリ(ボロシロキサン)コーティング系の内部抵抗の低下が示された。 また、LiNMCを正極としたフルセルについても検討したところ、ポリ(ボロシロキサン)コーティング系はPVDFコーティング系と比較して大幅に優れた性能を示した。例えば、30サイクル終了時点でのポリ(ボロシロキサン)コーティング系の放電容量はPVDFコーティング系の約3倍に達した。 本研究は、科学技術振興機構(JST)未来社会創造事業の支援を受けて行われた。 |
本成果は、「ACS Applied Energy Materials」(米国化学会)オンライン版に1月19日に掲載された。
題目 | Defined Poly(borosiloxane) as an Artificial Solid Electrolyte Interphase Layer for Thin-Film Silicon Anodes |
著者 | Sai Gourang Patnaik, Tejkiran Pindi Jayakumar, Noriyoshi Matsumi |
DOI | 10.1021/acsaem.0c02749 |
【今後の展開】
自己修復能以外の他のメカニズムによりシリコンを安定化する他系との組み合わせにより相乗効果が大いに期待される。
更なる改良に向けた分子レベルでの構造改変により高性能化を図る。
電極―電解質界面抵抗を大幅に低減できる各種電極用高分子コーティング剤として、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が見込まれる。
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
*3 LUMO:
電子が占有していない分子軌道の中でエネルギー準位が最も低い軌道を最低空軌道(LUMO; Lowest Unoccupied Molecular Orbital)と呼ぶ。
*4 電極―電解質界面抵抗:
エネルギーデバイスにおいては一般的に個々の電極の特性や個々の電解質の特性に加えて電極―電解質界面の電荷移動抵抗がデバイスのパフォーマンスにとって重要である。交流インピーダンス測定を行うことによって個々の材料自身の特性、電極―電解質界面の特性等を分離した成分としてそれぞれ観測し、解析することが可能である。
令和3年1月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/01/26-1.html多糖膜が超らせん構造によって湿度変化に瞬間応答 -ナノスケールから再組織化-

多糖膜が超らせん構造によって湿度変化に瞬間応答
-ナノスケールから再組織化-
PRポイント
- ナノメートルスケールから階層的に再組織化されたマイクロファイバー
- 湿度変化に瞬間応答して曲がる天然高分子のフィルム
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)の先端科学技術研究科、環境・エネルギー領域の、博士後期課程大学院生ブッドプッド クリサラ、桶葭 興資准教授、岡島麻衣子研究員、金子 達雄教授らは、シアノバクテリア由来の多糖サクランを用いて、水中で自ら形成するマイクロファイバーが乾燥時に2次元蛇行構造、3次元らせん構造など高秩序化することを見出した。さらにこの構造を利用して、水蒸気をミリ秒レベルで瞬間感知して屈曲運動を示すフィルムの作製に成功した。天然由来の代表物質でもある多糖をナノメートルスケールから再組織化材料としたこととしても意義深い。光合成産物の多糖を先端材料化する試みは、持続可能な社会の構築に重要である。
多糖は分子認識や水分保持など、乾燥環境下で重要な役割を果たす。しかし、天然から抽出された多糖が潜在的に持つ自己組織化を活用することはこれまで困難であった。特に、セルロースナノファイバーなど分子構造を制御した透明素材などはできても、外界変化への応答材料には利用されてこなかった。一方で、我々の研究グループはこれまでに、シアノバクテリア由来の多糖サクランに関する研究を進め、超高分子量の物性やレアメタル回収能など様々な特性を持つ多糖であることを明らかにしてきた。本研究では、1)分子・ナノメートルスケールからマイクロファイバー形成の階層化、2)界面移動による秩序立った変形、3)その多糖膜の水蒸気駆動の運動について報告した。 ![]() 用いた多糖サクランのユニークな特徴として、直径約1 µm、長さ 800 µm以上と他には類を見ない大きなマイクロファイバーを水中で自己集合的に形成する。今回、これが乾燥界面の移動によって蛇行構造やらせん構造に変形することを解明した。乾燥した多糖フィルムの内部では、このねじれた構造がバネ様運動を引き起こす。このメカニズムを利用して、水滴が接近した際、瞬時に屈曲する運動素子の開発に成功した(図)。 本成果は、科学雑誌「Small」誌に6/9(米国時間)オンライン版で公開された。なお、本研究は文部科学省科研費はじめ、旭硝子財団、積水化学工業、澁谷工業の支援のもと行われた。 |
<背景と経緯>
天然高分子など生体組織が水と共生して高効率なエネルギー変換を達成している事実に鑑みれば、持続可能な社会への移行に向けて学ぶべき構造と機能である。例えば、ソフトでウエットな高分子ハイドロゲルは人工軟骨や細胞足場など医用材料をはじめ、生体機能の超越が有望視されている。同時に、刺激応答性高分子を用いたケモメカニカルゲルや湿度応答する合成高分子フィルムなど、しなやかに運動するアクチュエータの研究も注目されてきた。これに対し、天然物質の多糖を再組織化させて先端材料とする研究は発展途上にある。
我々はこれまでに、シアノバクテリア由来の多糖サクランに関する研究を進め、超高分子量、レアメタル回収能など様々な特性を持つ天然高分子であることを明らかにしてきた。さらに直近の研究では、サクラン繊維が水中から乾燥される際に、空気と水の界面にならび一軸配向膜を形成することも見出している。
<今回の成果>
1.多糖サクランのマイクロファイバーの微細構造(図1)
用いた多糖サクランは、直径約1 µm、長さ 800 µm以上と他には類を見ない大きなマイクロファイバーを水中で自己集合的に形成する。このマイクロファイバーを電子顕微鏡で観察すると、直径約50 nmのナノファイバーが束となり、ねじれた構造をとっていることが分かった。これは、人工的に形を作ったわけではなく、多糖が潜在的に持つ自己集合によるものである。他の多糖やDNAやタンパク質の自己集合体と比較しても、驚異的に大きなサイズである。
2.乾燥界面の移動によってファイバーがしなやかに蛇行・らせんを描いて変形(図2)
今回、これが乾燥界面の移動によって蛇行構造やらせん構造に変形することを解明した。界面移動がゆっくりの場合、マイクロファイバーが一軸配向構造、もしくは蛇行構造を形成する。一方、界面移動が早い場合、3次元的な超らせん構造を形成する。1本のマイクロファイバーが蛇行構造をとった後に超らせん構造をとることから、界面がマイクロファイバーの変形に強く寄与していると考えられる。
3.多糖膜の水滴接近に伴う瞬間応答(図3)
乾燥した多糖膜の内部では、このねじれた構造がバネ様運動を引き起こす。このメカニズムを利用して、水滴が接近した際、瞬時に屈曲する運動素子の開発に成功した。時空間解析から、水滴が接近/離隔した際、曲った状態とフラットな状態を可逆的にミリ秒レベルで屈曲運動を示すことが分かる。このような瞬間応答は、湿度変化を膜中のねじれた構造が瞬時に水和/脱水和を大きな変化に増幅したためと考えられる。
<今後の展開>
天然多糖を再組織化することで、水蒸気駆動型の運動素子をはじめ、光、熱など外界からのエネルギーを変換するマテリアルの構築が期待される。多糖ファイバーに機能性分子を導入しておくことで、湿度だけでなく、光や温度の外部環境変化に応答するソフトアクチュエーターである。本研究の成果は、天然由来の代表物質でもある多糖をナノメートルスケールから再組織化材料としたこととしても意義深い。光合成産物の多糖を先端材料化する試みは、持続可能な社会に非常に重要である。
![]() マイクロファイバーはナノファイバーが束になってねじれた状態。 |
A![]() |
B![]() |
C ![]() A. 蛇行構造をとったマイクロファイバー。B. 界面移動による高次構造化。C. 1本のマイクロファイバーが蛇行構造やらせん構造をとった様子の顕微鏡画像。 |
A ![]() |
B ![]() |
図3. 多糖膜の水滴接近に伴う瞬間応答 A. 多糖フィルムに水滴を接近させた際に示す屈曲運動と時空間解析。水滴が接近した際、ミリ秒レベルで屈曲運動を示す。 B. 屈曲変形の概念図。乾燥した多糖フィルムの内部にあるファイバーのねじれた構造がバネ様運動を引き起こし、高速な屈曲変形を示す。 |
【用語説明】(Wikipedia より)
※1自己組織化:
物質や個体が、系全体を俯瞰する能力を持たないのにも関わらず、個々の自律的な振る舞いの結果として、秩序を持つ大きな構造を作り出す現象のことである。自発的秩序形成とも言う。
※2シアノバクテリア:
ラン藻細菌のこと。光合成によって酸素と多糖を生み出す。
※3多糖:
グリコシド結合によって単糖分子が多数重合した物質の総称である。デンプンなどのように構成単位となる単糖とは異なる性質を示すようになる。広義としては、単糖に対し、複数個(2分子以上)の単糖が結合した糖も含むこともある。
※4サクラン:
硫酸化多糖の一つで、シアノバクテリア日本固有種のスイゼンジノリ (学名:Aphanothece sacrum) から抽出され、重量平均分子量は2.0 x 107g/mol とみつもられている。
※5界面:
ある均一な液体や固体の相が他の均一な相と接している境界のことである。
【論文情報】
掲載誌 | Small (WILEY) |
Vapor-sensitive materials from polysaccharide fibers with self-assembling twisted microstructures | |
著者 | Kulisara Budpud, Kosuke Okeyoshi, Maiko K. Okajima, Tatsuo Kaneko DOI: 10.1002/smll.202001993 |
掲載日 | 2020年6月9日(米国時間)にオンライン掲載 |
令和2年6月11日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/06/11-1.html学生の米澤さんの論文がWiley社刊行Surface and Interface Analysis誌でTOP DOWNLOADED PAPER(2018-2019)の1つに選出

学生の米澤 隆宏さん(2020年3月博士後期課程修了、応用物理学領域、高村研究室)による、国際学術誌Surface and Interface Analysisに掲載された論文 "Atomistic study of GaSe/Ge(111) interface formed through van der Waals epitaxy" が、2018年1月~2019年12月の間に同誌に掲載された論文の中で、オンライン掲載後12ヶ月のダウンロード数において上位10%を記録したため、掲載直後に最も多く読まれた、immediate impactのある論文の1つとして認められました。
■選出された論文のタイトル
Atomistic study of GaSe/Ge(111) interface formed through van der Waals epitaxy
■著者
Takahiro Yonezawa, Tatsuya Murakami, Koichi Higashimine, Antoine Fleurence, Yoshifumi Oshima, and Yukiko Yamada-Takamura
■対象となった研究の内容
光デバイスや電子デバイス、スピントロニクスデバイス等への応用が期待される半導体層状物質のGaSeは従来、Se原子が三角柱型に配置された単位層構造のみを有すると考えられてきました。それに対して本研究では、分子線エピタキシー法によるGe基板上へのGaSe薄膜成長時に、従来報告例のない反三角柱型のSe原子配置をもつ単位層が基板との界面に局所形成されることを断面走査透過電子顕微鏡観察により明らかにしました。
■選出にあたっての一言
本研究の遂行にあたり熱心にご指導くださった応用物理学領域の高村由起子先生、大島義文先生、アントワーヌ・フロランス先生に心より感謝いたします。また、多くの技術的なご指導をしてくださったナノマテリアルテクノロジーセンターの村上達也様、東嶺孝一様にも深く感謝いたします。今後、この新たなGaSe相の生成機構や通常のGaSe相との構造の違いに起因した特異物性が解明されることにより、本成果がGaSe薄膜の、ひいては層状物質薄膜全体の成長技術の進展と応用可能性の拡大につながることを期待します。
令和2年5月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/05/25-1.htmlナノテクノロジープラットフォーム公開講座「集束イオンビーム(FIB)技術の基礎と微細加工実習」【定員に達したため、受付を終了いたしました。】

本学ナノマテリアルテクノロジーセンター主催で集束イオンビーム(FIB)の技術の基礎を学び、微細加工実習を行うことのできる公開講座を開催いたします。
ただいま受講者を募集しております。皆様のご参加をお待ちしております。
日 時 | 令和2年2月21日(金)10:00~17:00 |
場 所 | 北陸先端科学技術大学院大学 ナノマテリアルテクノロジーセンター JAISTイノベーションプラザ |
テーマ | 集束イオンビーム(FIB)技術の基礎と微細加工実習 |
講 師 | 赤堀 誠志:ナノマテリアルテクノロジーセンター 准教授 (応用物理学領域) 東嶺 孝一:ナノマテリアルテクノロジーセンター センター長補佐・技術専門員 宇野 宗則:ナノマテリアルテクノロジーセンター 技術専門職員 伊藤 真弓:産学官連携推進センター 技術支援部門 研究員 |
内 容 | Gaに代表される液体金属イオン源を用いた集束イオンビーム(FIB)技術は,透過型電子顕微鏡用試料の作製や半導体製造用フォトマスクの修正など、様々な微細加工に広く利用されており、近年はさらなる微細化に向けて、電界電離ガスイオン源(GFIS)を用いたFIB技術も進展しています。本講座では、FIB技術の概要を掴めるよう、FIB技術の基礎を解説するとともに、実際にGa-FIB装置やGFIS-FIB装置を操作し、微細加工実習を行います。 |
定 員 | 5名程度(先着順) |
参加対象者 | 企業・他大学・高専等の研究者・技術者 |
受講料 | 6,200 円(税込) |
申込方法 | 受講希望の方は、 ①氏名(ふりがな) ②勤務先等・職名 ③受講の目的 ④本講座に期待すること ⑤書類送付先 ⑥電話番号 ⑦メールアドレス を明記の上、E-mail (宛先 nano-net@jaist.ac.jp)またはFAX(ポスター2ページ目参照)でお申し込みください。 |
申込締切 | |
問合わせ先 ・申込み先 |
北陸先端科学技術大学院大学 ナノマテリアルテクノロジーセンター事務局 〒923-1292 石川県能美市旭台1-1 TEL:0761-51-1449 FAX:0761-51-1455 E-mail:nano-net@jaist.ac.jp |
イムノクロマト診断薬の高感度化、迅速診断化に有効な金属ナノ粒子-ラテックスナノコンポジット微粒子を創製

イムノクロマト診断薬の高感度化、迅速診断化に有効な
金属ナノ粒子-ラテックスナノコンポジット微粒子を創製
ポイント
- 金および白金ナノ粒子をラテックス粒子にそれぞれ約200個、25,000個担持させた金属ナノ粒子-ラテックスナノコンポジット微粒子の合成に成功
- 合成した金属ナノ粒子-ラテックスナノコンポジット微粒子を用いたイムノクロマトは、金コロイドとの比較において最大64倍の感度向上を示した。
- 金属ナノ粒子-ラテックスナノコンポジット微粒子は、ビオチン-アビジン結合を利用することにより、様々な抗体、バイオマーカーを粒子表面にコーティング可能であることを示唆した。
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、物質化学領域の前之園 信也 教授らは、新日鉄住金化学株式会社総合研究所(新日鉄住金化学株式会社と新日鉄住金マテリアルズ株式会社は経営統合し、2018年10月1日より日鉄ケミカル&マテリアル株式会社となります)と連携し、医療診断薬(イムノクロマト)の高感度化・迅速診断化に有効な金属ナノ粒子-ラテックスナノコンポジット微粒子を創製しました。 イムノクロマト注)は、特別な設備が不要なハンディータイプのデバイスであり短時間に目視判定ができるため、 その簡便性・迅速性をメリットとして先進国から発展途上国まで世界の様々な医療現場において重要な検査手法として利用されています。しかしながら、イムノクロマトの感度は十分とは言えず、現状では検体中の抗原やバイオマーカーが比較的豊富に存在する検査項目に限定されています。また、検査項目の中には、発症初期の抗原濃度が低い場合、判定が不十分なものもあるため、検出感度の向上は非常に重要な課題となっています。このイムノクロマトの感度向上には、標識粒子の発色性が大きく影響します。すなわち、標識粒子の発色性を強くすることにより、イムノクロマトの感度を向上することが可能となります。 この様な背景の中、我々は従来標識粒子として利用されている金や白金ナノ粒子をラテックス粒子に数百~数万個担持させることにより粒子1個当たりの発色性が極めて強い金属ナノ粒子-ラテックスナノコンポジット微粒子を合成しました。さらに粒子サイズや金属ナノ粒子の担持量を最適化することでイムノクロマトの感度と検出時間を飛躍的に向上することに成功しました。本成果は、アメリカ化学会が発行するACS Applied Materials and Interfaces 誌に2018年9月5日に掲載されました。 本研究の一部は文部科学省ナノテクノロジープラットフォーム事業(分子・物質合成)の支援により北陸先端科学技術大学院大学で実施されました。 |
<今後の展開>
本研究で合成した金属ナノ粒子-ラテックスナノコンポジット微粒子の実用化を推進していきます。また、磁性粒子の担持など新しい機能化も検討していきます。一方、この粒子は、イムノクロマトでの利用のみに留まらず多種多様な応用の可能性を持っています。今後、様々な分野での適用検討を行うことで、この粒子の新しいアプリケーションの創製に繋がることを期待しています。
図1 金ナノコンポジット微粒子(左)と白金ナノコンポジット微粒子(右)のSEM写真
図2 金ナノコンポジット(Au-P2VP:青)と白金ナノコンポジット(Pt-P2VP:赤)の吸収スペクトル。 比較として、担体であるラテックス(P2VP:灰)および金コロイド(AuNP:緑)の吸収スペクトルもプロット。 挿入した写真は、Au-P2VPおよびPt-P2VPの水分散液。尚、Au-P2VP、Pt-P2VP、P2VP(1×109)は同じ粒子数で測定し、AuNPは100倍の粒子数(1×1011)で測定した。
図3 (A)インフルエンザA型で評価した結果。(上)Au-P2VP、(中)Pt-P2VP、および(下)Pt-P2VPを用いたイムノクロマト(640 HAU/mlの抗原を1.0×102〜1.024×105倍に希釈)。左の列はイムノクロマトのカラー写真を示し、右の列はコントラストを強調した黒と白のネガ画像を示す。 NC、C lineおよびT lineは、それぞれネガティブコントロール、コントロールラインおよびテストラインを示す。(B)抗原希釈倍率と吸収スペクトル強度の相関を示したグラフ。
<論文>
掲 載 誌 | ACS Applied Materials and Interfaces |
論文題目 | Metal (Au, Pt) Nanoparticle-Latex Nanocomposites as Probes for Immunochromatographic Test Strips with Enhanced Sensitivity |
著 者 | Yasufumi Matsumura,† Yasushi Enomoto,† Mari Takahashi,‡ Shinya Maenosono‡ †新日鉄住金化学株式会社 総合研究所 ‡北陸先端科学技術大学院大学 マテリアルサイエンス系 物質化学領域 |
DOI | 10.1021/acsami.8b11745 |
掲 載 日 | 2018年9月5日にオンライン掲載(Just Accepted Manuscript) |
<用語説明>
注)イムノクロマト
抗原抗体反応を利用した迅速検査方法。イムノクロマトは目視で結果を判定することができるため、簡便な方法として、主に細菌やウイルスなどの病原体の検出に用いられています。日本国内では、妊娠検査薬やインフルエンザ検査薬として多く利用されています。
平成30年9月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2018/09/21-1.html金属を含まない極めて高い電気化学的耐久性を示す有機高分子系酸素還元反応触媒(カソード電極材料)の開発に成功

金属を含まない極めて高い電気化学的耐久性を示す有機高分子系
酸素還元反応触媒(カソード電極材料)の開発に成功
ポイント
- 1000回の電気化学サイクルを経ても高い電気化学的安定性を示す非金属型有機高分子系酸素還元反応触媒(カソード電極材料)の開発に成功した。同様の条件で失活する市販品とは対照的な特性である。
- 得られた材料は明確な構造を有しており、酸素還元反応の機構の解明にも寄与するアプローチである。
- 水溶液系のみならず、非水系(Li塩溶存下)においても優れた酸素還元反応触媒活性を示し、燃料電池のみならず、リチウム―空気電池をはじめとする金属―空気電池への適用にとっても有用と考えられる。
北陸先端科学技術大学院大学(JAIST)(学長・浅野哲夫、石川県能美市)の先端科学技術研究科物質化学領域の松見 紀佳教授、サイゴウラン パトナイク大学院生、ラーマン ヴェーダラージャン(元JAIST助教、現インド国立燃料電池研究所)らの研究グループはビスアセナフテンキノンジイミン(BIAN)骨格を有する新規π-共役系高分子(BP)(図1)を開発し、金属を含まない本材料が優れた酸素還元反応特性及び高い電気化学的耐久性を示すことを見出した。 今日、酸素還元反応は燃料電池及びリチウム―空気電池*1のデバイス作動における律速段階として知られており、その効率がデバイスの性能を左右することが広く認識されている。 成果は米国化学会のACS Applied Energy Materials オンライン版に3/15に掲載された。 |
<今後の展開>
本研究では、金属を含まない新たなカテゴリーの明確な構造を有する高分子系酸素還元反応触媒を戦略的に創出することに成功した。本アプローチでは今後合成手法のバリエーションによる更なる構造制御や異なる特性を有した活性点の随意なデザインが可能と考えられる。高温でのアニーリング処理が必要な材料と比較して厳しい条件を必要としない利点があり、これまでに報告されている非金属系酸素還元触媒として知られる最善の材料と同等の特性を示していることから、更なる発展が期待できる。
燃料電池及びリチウム―空気電池用カソード電極材料としての展開が期待される。
図1 BIAN構造を有するπ-共役系高分子(BP)の構造
図2 窒素雰囲気下及び酸素雰囲気下におけるGO/BPのサイクリックボルタモグラム
(At 50 mV/sec in 0.1M KOH (RE: Hg/HgO, CE:Pt wire, WE: Catalyst coated GCE)
図3 1000回の電気化学サイクルを経たBIAN系高分子の電気化学的安定性の検討
図4 1000回の電気化学サイクルを経たVulcan-XC(市販品;白金/炭素系触媒)の電気化学的安定性の検討
図5 DFT計算によるBIAN系高分子の最適化構造と電荷分布
<用語解説>
※1)リチウム―空気電池
リチウム―空気電池は金属リチウムを負極活物質、酸素を正極活物質とした充放電可能な電池である。リチウムイオン2次電池と比較すると、理論的に貯蔵可能なエネルギー容量は10倍程度と極めて高い。正極の活物質として空気中の酸素を利用すれば正極は容量を制限しないことから、次世代電池として多大な期待を集めている。
※2)サイクリックボルタンメトリー(サイクリックボルタモグラム)
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
平成30年3月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2018/03/19-1.html銅スズ硫化物系ナノ粒子から環境に優しいナノ構造熱電材料を創製

銅スズ硫化物系ナノ粒子から環境に優しいナノ構造熱電材料を創製
ポイント
- 銅スズ硫化物系ナノ粒子を化学合成し、それを焼結することで環境に優しいナノ構造熱電材料の創製に成功
- ナノ粒子の粒成長を抑制しながら焼結することで微細構造と組成を制御し、構造及び組成と物性との関係を解明
- 創製したナノ構造熱電材料は、構造や組成制御がされていない通常の銅スズ硫化物結晶に比べて約10倍の熱電変換性能を示し、サステイナブルな熱電材料の実用化へ向けた大きな一歩
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、物質化学領域の前之園 信也教授らは、(株)日本触媒、産業技術総合研究所と共同で、銅スズ硫化物系ナノ粒子を化学合成し、それらをビルディングブロック(構成要素)として環境に優しい銅スズ硫化物系ナノ構造熱電材料を創製しました。このように、化学的アプローチによって熱電材料のナノ構造を精密に制御し、熱伝導率と電気伝導率を独立に調節することで熱電変換効率を向上させる方法は他の熱電材料にも適用できるため、高い熱電変換効率を有したサステイナブルな熱電材料の実現への有効な手段の一つとして期待されます。 実用化された代表的な熱電材料であるテルル化ビスマスをはじめ多くの熱電材料には、テルル、セレン、鉛といった毒性が高いあるいは資源的に希少な元素が用いられています。民生用途は安全性の担保が必須条件であり、毒性の高い材料系を用いた場合には実用化に向けての大きな障害となりかねません。そのような観点から、我々は、サステイナブルな熱電材料として金属硫化物材料に注目してきました。金属硫化物材料は比較的安価で安全、資源的にも豊富です。金属硫化物熱電材料は、これまで知られている熱電材料の主要元素であるテルルやセレンと同じ第16族元素である硫黄を用いており、熱電材料としての潜在性も高いと考えられます。 一方、熱電変換効率を表す指標である無次元性能指数 ZT を向上させる一つの方法論として"ナノ欠陥構造制御"があります。ナノ欠陥構造制御を行うためのアプローチの一つに、化学合成したナノ粒子をビルディングブロックとして用いてマルチスケール欠陥構造を有する熱電材料を創製しようという試みが近年注目を集めています。バルク結晶をボールミリング法等によって粉砕しナノ粉末を得て、それらを焼結することでナノメートルサイズの結晶粒界を有する熱電材料が作製されてはいるものの、このようなトップダウン式の手法では原子・ナノスケールの精密な構造制御は困難でした。一方、不純物元素や格子欠陥が導入された均一かつ単分散なナノ粒子を、形状や粒径を制御しながら精密に化学合成し、それらをパルス通電加圧焼結法などによって焼結することで、マルチスケール欠陥構造を有する熱電材料をボトムアップ式に創製できます。 |
<今後の展開>
本研究は、マルチスケール欠陥構造を有する高性能銅硫化物系熱電材料の創製に向けての大きな第一歩となります。今後はCu2SnS3系だけでなく、テトラヘドライト(Cu12Sb4S13)系など様々な銅硫化物系ナノ粒子を化学合成し、それらナノ粒子を複数種類配合して焼結することで、パワーファクターの向上と格子熱伝導率の低減を同時に達成し、更なるZTの向上を図ります。最終的には、エネルギーハーベスティングに資することができるサステイナブル熱電材料の実用化を目指します。
図1 (a,b) CTS 及び (c-f) ZnドープCTS ナノ粒子の透過型電子顕微鏡像:(a)閃亜鉛鉱型CTSナノ粒子、(b) ウルツ鉱型CTSナノ粒子、(c) Cu2Sn0.95Zn0.05S3ナノ粒子、(d) Cu2Sn0.9Zn0.1S3ナノ粒子、(e) Cu2Sn0.85Zn0.15S3ナノ粒子、(f) Cu2Sn0.8Zn0.2S3ナノ粒子。
図2 (a) 電気伝導率、(b) ゼーベック係数、(c) 熱伝導率、(d) 格子熱伝導率、(e) パワーファクター、(f) ZT。 ▲、●、●、●、●及び●は、それぞれ、図1a-fのナノ粒子をパルス通電加圧焼結することによって作製したペレットのデータを表す。○はナノ構造を持たないCTSバルク結晶の値である(Y. Shen et al., Sci. Rep. 2016, 6, 32501)。(b)の挿入図は、●と○の格子熱伝導率データを温度の逆数(T -1)に対してプロットした図である。ナノ構造制御されたCTSでは格子熱伝導率がT -1に依存していないことから、フォノンが効率的に散乱されていることを示している。
<論文>
掲 載 誌 | Applied Physics Letters |
論文題目 | "Sustainable thermoelectric materials fabricated by using Cu2Sn1-xZnxS3 nanoparticles as building blocks" |
著 者 | Wei Zhou,1 Chiko Shijimaya,1 Mari Takahashi,1 Masanobu Miyata,1 Derrick Mott,1 Mikio Koyano,1 Michihiro Ohta,2 Takeo Akatsuka,3 Hironobu Ono3 and Shinya Maenosono1* 1 北陸先端科学技術大学院大学 2 産業技術総合研究所 3 株式会社日本触媒 |
DOI | 10.1063/1.5009594 |
掲 載 日 | 2017年12月29日にオンライン掲載 |
平成30年1月4日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2018/01/04-1.html物質化学領域の松村准教授らの研究成果がWiley社発刊の国際学術誌 Macromolecular Rapid Communications(IF:4.265)のfront coverに採択
物質化学領域の松村和明准教授らの研究成果がWiley社発刊の国際学術誌 Macromolecular Rapid Communications (IF:4.265)のfront coverに採択されました。
■掲載誌
Macromolecular Rapid Communications (Wiley-VCH) 2017. 38, 1700478
■著者
Robin Rajan (博士研究員), Kazuaki Matsumura*
■論文タイトル
Tunable Dual-Thermoresponsive Core-Shell Nanogels Exhibiting UCST and LCST Behavior
■論文概要
コアがPolyN-isopropylacrylamide、シェルがPolysulfobetaineで構成されたコアシェル型ナノゲルを創出し、低温と高温で相転移を起こす二段階温度応答性を示すことを示しました。本学のSTEM-EDXを用いることでコアシェル型の構造が明らかとなり、その構造を変化させることにより温度応答性を制御することにも成功しました。
このような材料は、温度を変化させることで多段階の薬物放出を制御出来る材料として期待でき、高分子化学およびバイオマテリアルの分野で注目されています。
詳細:http://onlinelibrary.wiley.com/doi/10.1002/marc.201700478/full
平成29年11月22日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2017/11/22-1.html