研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。阿吽の呼吸で癌を倒す! -灯台下暗し:最強の薬は腫瘍の中に隠されていた-
阿吽の呼吸で癌を倒す!
-灯台下暗し:最強の薬は腫瘍の中に隠されていた-
ポイント
- 腫瘍組織から強力な抗腫瘍作用のある複数の細菌(A-gyo、UN-gyo、AUNと命名)の単離に成功
- なかでもAUN(A-gyoとUN-gyoからなる複合細菌)は、様々な癌腫に対して高い抗腫瘍活性を示すだけでなく、近赤外光を照射すると、標的とする腫瘍内で強い蛍光を発現
| 北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 物質化学フロンティア研究領域の都 英次郎准教授の研究グループは、マウス体内の腫瘍組織から強力な抗腫瘍作用のある複数の細菌の単離に成功した。 |
近年、低酸素状態の腫瘍内部で選択的に集積・生育・増殖が可能な細菌を利用した癌標的治療に注目が集まっている。しかし、従来の癌細菌療法は、基本的には抗癌剤の運搬という、いわゆる従来型のドラッグデリバリーシステムの概念を出ない。また、薬効も十分であるとはいえない。さらに、従来の癌細菌療法は、抗癌活性を発現するためには、遺伝子工学を用いた微生物の操作・改変が必須である。なお、米国や欧州ではヒトへの臨床試験が行われ第3相試験に進んでいる例もあるが、使用される細菌は、多くの場合、遺伝子組換えによって弱毒化したサルモネラ菌やリステリア菌であり、体内で再び強毒化するリスクを常に伴っている。
一方、腫瘍組織内に細菌が存在していることは古くから知られており、近年の研究では、腫瘍の種類ごとに独自の細菌叢が保有されていることが分かっている。また、このような腫瘍内細菌叢が抗癌剤の補助あるいは阻害の要因になっていることも明らかになっている。しかし、腫瘍内から直接細菌を取り出し、細菌そのものを癌の治療薬として活用する研究は皆無であった。
本研究では、マウス生体内の大腸癌由来腫瘍組織から主に3種類の細菌の単離・同定に成功し、これらの細菌にA-gyo(阿形;Proteus mirabilis*1)、UN-gyo(吽形;Rhodopseudomonas palustris*2)、そしてAUN(阿吽;A-gyoとUN-gyoから成る複合細菌)とそれぞれ命名した(図1)。これらの細菌を、大腸癌を皮下移植した担癌モデルマウスの尾静脈に投与したところ、低酸素状態の腫瘍環境内で高選択的に集積・生育・増殖が可能で、かつ高い抗腫瘍効果を示すことを発見した。とりわけ、AUNは、単回投与にも関わらず、A-gyoとUN-gyoの協奏作用により細胞障害性の免疫細胞を効果的に賦活化し、大腸癌、肉腫(サルコーマ)、転移性肺癌、薬物耐性乳腺癌といった様々な癌種に対して強力な抗腫瘍活性を示すことが明らかとなった(図2A)。また、AUNは、生体透過性の高い近赤外光*3によって標的とする腫瘍内で近赤外蛍光を発現することが分かった(図2B)。さらに、マウスを用いた生体適合性試験(血液学的検査、組織学的検査、細菌コロニーアッセイなど)を行った結果、いずれの検査からもAUNそのものが生体に与える影響は極めて少ないことが分かった。
これらの成果は、今回発見した細菌を用いた癌の診断・治療法の基礎に成り得るだけでなく、細菌学や腫瘍微生物学などの研究領域への新しい概念の創出として貢献することを期待させるものである。
本成果は、学際的オープンアクセスジャーナル「Advanced Science」誌(Wiley社発行)のオンライン版に2023年5月8日に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
図1. AUN(A-gyoとUN-gyoから成る複合細菌)がまさに
"阿吽の呼吸"によって癌細胞を倒している様子(イメージ)

図2. (A) AUNによる抗腫瘍効果(腫瘍は完全消失)
(B) AUNの標的腫瘍内における蛍光特性
【論文情報】
| 掲載誌 | Advanced Science(Wiley社発行) |
| 論文題目 | Discovery of Intratumoral Oncolytic Bacteria Toward Targeted Anticancer Theranostics |
| 著者 | Yamato Goto, Seigo Iwata, Mikako Miyahara, Eijiro Miyako* |
| 掲載日 | 2023年5月8日 |
| DOI | 10.1002/advs.202301679 |
【用語解説】
酸素の存在下および不在下の両方の環境で生存可能な腸内細菌科に属するグラム陰性桿菌(通性嫌気性菌)。運動性、鞭毛を有する数マイクロメートルの棒状の形態を有する。寒天培地上では、Swarming(群化)により独特の波状のコロニー(白色)を形成する特性がある。
酸素の有無に関わらず生存可能な通性嫌気性の紅色非硫黄細菌に属し、運動性のある数マイクロメートルの棒状のグラム陰性桿菌。また、バクテリオクロロフィルから成る光捕集タンパク質を介した光合成を行う。
800~2500 nmの波長の光。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
令和5年5月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/05/08-1.html協調ロボットの未来:広範囲触覚・近接センシングの簡易な実現に成功
協調ロボットの未来:広範囲触覚・近接センシングの簡易な実現に成功
ポイント
- 周囲の環境や人に対する安全な動作を実現するための近接覚と、利用者に対して安心感を提供する触覚、2つの感覚を備えたセンシングロボットアームの開発に成功した。
- 広範囲なセンシング機能を備えていながら、複雑な配線がなく、シンプルかつ耐久性の高い設計を実現した。
- センシング装置におけるデジタルツインを構築することによって、データ駆動型のセンシング機能を備えることができ、Sim2Real[用語説明]の効果を高めることにも成功した。
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)人間情報学研究領域のホ アン ヴァン(Ho Anh Van)准教授は、視覚による触覚・近接検知装置を備えたロボットアームの開発に成功した。これにより、ロボットと人間とのインターフェースに関して、人工知能(AI)を活かした人間とCyber-Physical System (CPS) [用語説明]環境における、新たな価値を創出する研究につながることが期待される。 |
【研究の背景と目的】
これまでの産業用ロボットの考え方では、人間とロボットは作業領域が明確に分離されており、ロボットは人間の安全半径内に立ち入ることが許されなかった。これは、第一義的には人間を危険から守るためだが、一方で、産業用ロボットの安全性に関する技術・研究の発展を阻害していた側面がある。安全性の確保は、最低限のセンシング技術と簡易なフェイルセーフ機能で十分とされ、研究開発のリソースは、より製品の競争力を高めるためのロボットの高速化・高精度化に注ぎ込まれてきた。しかしながら、近年の我が国における労働力不足や長引くコロナ禍による新しい生活様式の中で、これまで人間の手で行ってきた作業をロボットで代替しようとする動きが急速に高まってきている。さらに、全ての人が健康的な生活を送ることができる社会を目指すSDGsの大きな流れが加わり、現在ロボット技術に人間との調和、つまりロボットが人間と共存し、さらに人間とコラボレーションすることが強く求められている。
例えば、ロボットが人間をサポートする技術として、アームで人間を支える介護ロボットでは、介護サービスの提供を受ける人間が安心感を得られる触覚センシングの活用が検討されている。触覚は、人間同士の触れ合いにおいては愛情や信頼、思いやりを伝える重要な感覚である。しかし、ロボットの触覚技術は長年研究されてきているが、視覚技術の研究と比較すると未だ応用例は極めて少ない。また、同時に周囲の人間や環境に対する安全性を確保するためには、ロボットが周辺状況を高い精度で検知する必要があるが、特に外付けのカメラを利用する場合に、アームや利用者によって遮蔽される領域が多く、アームの近接領域の検出が困難となっている。
このような問題点に鑑み、今回、利用者が安心感を得られる接触と、安全な動作を実現する近接の両方の感覚を兼ね備えたロボットアームの技術を提案した。本研究において実現される近触覚・接覚のセンシング技術では、人間を含む周囲の環境を認識し、自立的な判断行動が可能となるロボットアームを開発することで、衝突回避等の安全性だけではなく、接触が許容される状況の判断および接触を通じた安心感の提供といった機能を有する、人工知能(AI)を搭載した協働ロボットの実現を目指す(図1)。

図1:本研究の位置付け
【研究の内容】
本研究では、低コストかつシンプルな構造を有する柔軟な触覚装置と、人間との接触を即時に検知することで、人間の行動を推定しながら人間と調和するロボットを実現した。このロボットは、人間の皮膚を模した柔軟なスキン上の複数の接触点へ加えられた力を、ロボットアームの両端に設置されたカメラが、スキンの変形の状態をリアルタイムで測定する技術によって実現した。さらに、透明なシリコンゴムと薄い柔軟な高分子分散液晶(PDLC)フィルムを組み合わせることで、柔軟なスキンの透明性をアクティブに切り替えることが可能となった(図2)。利用するPDLCフィルムは、外部から小さな電圧を印加することにより、透明/不透明を切り替えることができる。この透明/不透明の切り替えでは、近接覚と触覚の二つのモードを備え、またそのモードをシームレスに切り替えることができる。

図2:設計概念
(図2)
(右)近接覚モード(PDLCが透明):スキン内部の2台のカメラは、スキン近傍の外部オブジェクトを検知できる。
(左)触覚モード(PDLCが不透明):これまでの研究成果と同様、2台のカメラが接触または相互作用下でのスキンの歪みを検知し、触覚または力のセンシングが可能となる。
本研究で使用したロボットアームは、柔軟なスキンの内側に格子状のマーカーを備え、スキン内部に2台の小型カメラを配置している。スキンの透明性の能動的な切替えにより、近接覚と広範囲の触覚をセンシングする独創性の高い手法である。圧力センサを用いずカメラによるマーカーの変位から外力を算出することから、配線の複雑さやオクルージョン (光学遮蔽)などをほぼ完全に無くすことに成功しており、高いセンシング精度と耐久性を実現した。さらに、各モジュールの内圧を変えることでスキンの柔らかさを調整し、スキンに触れた人間に対する触感についても、制御可能である。さらに、深層学習を通じて多様な近接・接触動作・状況を予め学習させることで、人間と調和し、人間との複雑な近接・接触を実現する潜在的に高い適応性を持つと期待される。
図3:各動作モード
<参考動画>
動作ビデオ1:https://youtu.be/NN2u8YBLITY
動作ビデオ2:https://youtu.be/m8QzvDx_vpc
今日、ロボットは、いわゆる物理的な人間とロボットの相互作用(pHRI;physical Human-Robot Interaction)シナリオのように、安全半径の外で動作しつつ、人間と同じワークスペースを共有し(共存)、さらには人間と相互作用(コラボレーション)する必要がある。pHRIでは、ロボットは衝突の可能性を回避するだけでなく、避けられない物理的接触と意図的な物理的接触の両方を安全かつ信頼できる方法で対応することが期待されている。これを達成するために、深度カメラと力/トルクセンサーの組み合わせが提案されているが 、これは、外部カメラを使用するために、先述した視覚の遮蔽の問題を有している。近年、マルチモーダル知覚(触覚、近接など)を備えた大規模センサースキンが開発されたが、センサーネットワークのデータ取得と処理が複雑であるため、微調整が困難であり、衝突等の突発的な事故への応答が遅くなる可能性がある。
本研究は、ロボットの周りの多様な近接や接触動作・状況などをたった2台のカメラで検知することが可能なシンプルな構造をしており、信頼性を持つpHRIの実装方法となり得る。また、Sim2Realのプロセスで、実物の特性を再現できるデジタルツインにおいて、必要なデータ収集や学習などをシミュレーション環境で実施し、学習の結果を、実物に反映させることができ、今後の研究・開発の時間を大幅に縮小することも期待される。
本研究成果は、2023年2月28日にIEEE(米国電気電子学会)が発行する学術雑誌「IEEE Transactions on Robotics」のオンライン版に掲載された。また、2023年4月3日から7日までシンガポールで開催の、国際会議IEEE-RAS International Conference on Soft Robotics (RoboSoft 2023)で発表された。
なお、本研究は、国立研究開発法人科学技術振興機構(JST)・戦略的創造研究推進事業さきがけ「IoTが拓く未来」研究領域(JPMJPR2038)の支援を受け行った。
【今後の展開】
本研究によって、今後の展開が期待される製品・サービスとして、次の二つが挙げられる。一つ目は、利用者がより多くの事を自分自身でできるように支援し、さらに利用者に加え、周りの状況も考慮したロボットアームを備えた車椅子への活用である。二つ目に、サービスの提供を受ける利用者に安心感や大事にされているという感覚、思いやりなどを伝えることができる介護ロボットである。将来的に、これらの製品が介護保険等の給付対象として認可されることで普及促進へと繋がることが期待される。
【論文情報等】
| (1) | |
| 題目 | Simulation, Learning, and Application of Vision-Based Tactile Sensing at Large Scale |
| 雑誌名 | IEEE Transactions on Robotics |
| 著者 | Quan Khanh Luu, Nhan Huu Nguyen, and Van Anh Ho |
| 掲載日 | 2023年2月28日 |
| DOI | 10.1109/TRO.2023.3245983 |
| (2) | |
| 題目 | Soft Robotic Link with Controllable Transparency for Vision-based Tactile and Proximity Sensing |
| 国際会議名 | the 6th IEEE-RAS International Conference on Soft Robotics (RoboSoft 2023) |
| 著者 | Quan Luu, Dinh Nguyen, Nhan Huu Nguyen, anh Van Anh Ho |
| 発表日 | 2023年4月6日 |
【用語解説】
コンピュータ内のシミュレーション等で学習したモデルを現実世界に用いるという強化学習の手法。
実世界(フィジカル)におけるデータを収集し、サイバー世界でデジタル技術などを用いて分析・知識化を行い、それをフィジカル側にフィードバックすることで、産業の活性化や社会問題の解決を図っていく仕組み。
令和5年4月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/04/12-1.html触媒インフォマティクスにおけるデータ問題とは(コメンタリー)

国立大学法人北陸先端科学技術大学院大学
国立大学法人北海道大学
触媒インフォマティクスにおけるデータ問題とは(コメンタリー)
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科物質化学フロンティア研究領域の谷池俊明教授は、北海道大学(総長・寳金清博、北海道札幌市)大学院理学研究院化学部門の髙橋啓介教授と共同で、触媒インフォマティクスの実践における最大の課題であるネガティブデータの欠損についてのコメンタリー(Commentary)論文を発表した。 |
物質、材料研究開発におけるデータ駆動型アプローチ、いわゆるマテリアルズインフォマティクスは、創世の時を終え、近年、研究開発の現場において爆発的に普及しつつある。その最大の課題として、原資となる高品質かつ大規模な実験データの入手が極めて難しいことがあげられる。谷池教授、髙橋教授らの研究グループは、これまで、ハイスループット実験[*1用語解説]を基盤として触媒インフォマティクスを開拓し、当該分野におけるデータの質と規模の問題に正面から取組んできた。
本論文では、触媒を中心とする既存の材料データにまつわる種々の問題、特に、低性能な触媒や合成の失敗など、功利的な視点ではネガティブと捉えられるデータの著しい欠落に関して、その原因や影響、将来的な対策等をまとめた。本論文により、当該分野や関連分野を含む研究者にデータ駆動型アプローチにおけるこれらのデータ問題への理解を深めてもらい、データ、特にネガティブデータの公開に対するマインドセットの修正につながることを期待したい。
本成果は、2023年2月27日(米国東部標準時間)にSpringer Nature発行「Nature Catalysis」のオンライン版に掲載された。
なお、本研究は、科学技術振興機構(JST)戦略的創造研究推進事業CREST研究領域「多様な天然炭素資源の活用に資する革新的触媒と創出技術」(研究総括:上田渉)における「実験・計算・データ科学の統合によるメタン変換触媒の探索・発見と反応機構の解明・制御」(研究代表:髙橋啓介)の支援を受けて行われた。
【論文情報】
| 掲載誌 | Nature Catalysis (Springer Nature) |
| 論文題目 | The value of negative results in data-driven catalysis research |
| 著者 | Toshiaki Taniike, Keisuke Takahashi |
| 掲載日 | 2023年2月27日(米国東部標準時間)にオンライン版に掲載 |
| DOI | 10.1038/s41929-023-00920-9 |
【用語解説】
*1 ハイスループット実験
実験の回転速度をスループットと呼ぶ。ハイスループット実験とは高度な並列化や自動化によってスループットを劇的に改善した手法を指す。
令和5年3月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/03/08-1.html超高強度シェルを有する高度安定化マイクロサイズシリコンの新規負極活物質の開発とリチウムイオン2次電池への応用
超高強度シェルを有する高度安定化マイクロサイズシリコンの
新規負極活物質の開発合成とリチウムイオン2二次電池への応用
ポイント
- 低コストながら、ナノサイズシリコンと比較して充放電に伴う体積膨張・収縮制御がより難しいマイクロサイズシリコンを用いた負極活物質に関して、シリコンオキシカーバイドの超高強度シェルを付与することにより課題の解決に成功した。
- 内部のマイクロサイズシリコンに一定の体積変化の余地を与えるために中間層としてカーボン層をスペーサーとして導入した。また、外殻層の電導性を確保するためにシリコンオキシカーバイド層にアセチレンブラック粒子を導入した。
- 本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であり、優れたレート特性を有することも明らかとなった。
- 高容量放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 松見 紀佳教授(物質化学フロンティア研究領域)、バダム ラージャシェーカル講師(物質化学フロンティア研究領域)、東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程2年)らのグループは、リチウムイオン2次電池*1の安定な高容量充放電を低コストで可能にする新規負極活物質(Si/C/ABG)の開発に成功した。 |
【研究内容と背景】
リチウムイオン2次電池の負極材開発において、高容量の発現の観点から関心を集めているシリコンは充放電に伴う体積膨張・収縮制御の困難さに対応するためナノサイズシリコン粒子が広く用いられてきたが、汎用性やコスト性の観点からマイクロサイズシリコンを用いた高容量2次電池の実現が切望されている。体積膨張・収縮制御においては、マイクロサイズシリコンの適用によりさらなる困難が伴うが、新たなアプローチによる課題の克服への要求が高まっている。
本研究においては、ナノサイズシリコン粒子に代わってマイクロサイズシリコン粒子を適用しつつ、充放電に伴う大きな体積膨張・収縮を抑制するために特殊な材料設計を行った。本負極活物質の外殻には、超高強度を有することが知られるシリコンオキシカーバイド層をコーティングした。また、シリコンオキシカーバイドの不十分な電導性を補う目的でシリコンオキシカーバイド層にアセチレンブラック粒子を共存させた。また、内部のマイクロサイズシリコンに一定の体積変化の余地を与えるためにスペーサーとしてあらかじめマイクロサイズシリコン表面にカーボン層のコーティングを行い、中間層とした。
合成手順としては、マイクロサイズシリコン(~1μm)表面にpH8.5においてポリドーパミン形成させ、乾燥後焼成し、カーボンコーティングを行った。その後、アミノプロピルトリエトキシシラン(APTES; シリコンオキシカーバイドの前駆体)にアセチレンブラックを混合した懸濁液で処理し、乾燥後焼成した(図1)。得られた材料をTEM、HAADF-STEM、EDSマッピング、XPS等の各測定によりキャラクタライズした(図2)。マイクロサイズシリコン上のカーボン層及び外殻層のシリコンオキシカーバイド(ブラックグラス)層が観測され、外殻層にはアセチレンブラック粒子が埋め込まれている様子が見受けられた。XPS測定からは、シリコンオキシガーバイド(ブラックグラス)層にはSi、SiC4、SiC3O、SiC2O2、SiCO3、SiO4が混在している様子が観測された。
このようなシリコンオキシカーバイドは、7.1 GPaの弾性率、13 MPaの曲げ強さ、11 MPaの圧縮強度を有することがShellemanら*2により報告されており、本負極活物質においても外殻部分に著しい力学的強度をもたらすと期待できる。
合成した負極活物質(Si/C/ABG)の評価に先立って、マイクロサイズシリコンとシリコンオキシカーバイド層との間にカーボン中間層を有さない材料に関しても合成し、これを負極活物質としたアノード型ハーフセル*3を構築して評価した。この系においては、マイクロサイズシリコンの体積変化が大幅に抑制された結果、セルの充放電能は大幅に減少した。一方、中間カーボン層を有するマイクロサイズシリコン/カーボン/シリコンオキシカーバイド型の負極活物質(Si/C/ABG)を70 wt%(アセチレンブラック15 wt%; CMC 7.5 wt%; PAA 7.5 wt%)用いた系では、750 mA/gの充放電速度において775サイクル後に1017 mAhg-1の放電容量を維持し、優れたレート特性を有することが明らかとなった (図3)。また、正極をNCA(ニッケル酸リチウム)とした場合のフルセルも良好に動作した(詳細は原著論文参照)。
さらに、充放電サイクル(65サイクル)後の負極のSEM像(断面像)より、充放電後にもクラック形成や活物質層の崩壊、層の剥離などは認められず、本負極活物質が極めて高い安定性を示していることも明らかとなった(図3)。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に7月18日に掲載された。
なお、本研究は、科学技術振興機構(JST) 未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
マイクロサイズシリコンの外殻層に超高強度シリコンオキシカーバイドを導入した特異的な負極活物質デザインにより、次世代型リチウムイオン2次電池へのマイクロサイズシリコン活用に道が拓かれると期待される。
さらに活物質の面積あたりの担持量を向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | Journal of Materials Chemistry A (英国王立化学会) |
| 題目 | Black glasses grafted micron silicon: a resilient anode material for high-performance lithium-ion batteries |
| 著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年7月18日 |
| DOI | 10.1039/D2TA03068C |

図1.マイクロシリコンへのシリコンオキシカーバイド層導入の手順

図2.(a-c) Si/C/ABGのTEM像
(d-h) Si/C/ABGのHAADF-STEM 像及び EDS マッピング

図3.充放電後のSEM像
(a,b) マイクロシリコン 負極(断面像)、(c) Si/C/ABG 負極top view、 (d) Si/C/ABG 負極(断面像)、 (e)シリコンオキシカーバイドをコートしたマイクロシリコン(Si/C/ABG)を負極としたハーフセルの充放電サイクル特性
【用語説明】
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和4年7月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/07/28-1.htmlリチウムイオン2次電池用シリコン負極を大幅に安定化する自己修復型ポリマーコンポジットバインダーを開発
リチウムイオン2次電池用シリコン負極を大幅に安定化する
自己修復型ポリマーコンポジットバインダーを開発
ポイント
- リチウムイオン2次電池の高容量化のため、シリコン負極が注目されているが、シリコン粒子の大きな体積変化等の問題によって安定した充放電が困難となっている。
- リチウムイオン2次電池用シリコン負極を安定化する目的で、BIAN(ビスイミノアセナフテン)構造を有する共役系高分子とポリアクリル酸との水素結合ネットワークから成るコンポジットバインダーを開発した。
- アノード型ハーフセルを構築し充放電特性を評価したところ、600サイクル後に2100 mAhg-1を維持し、極めて高い安定性を示した。
- 充放電後における界面抵抗が極めて低いことや、充放電後の負極の構造的耐久性も高く、劣化は極めて軽微であることが分かった。
- 高容量放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 物質化学フロンティア研究領域の松見 紀佳教授、バダム ラージャシェーカル講師、アグマン グプタ研究員らのグループは、リチウムイオン2次電池*1用シリコン系負極を大幅に安定化するポリマーコンポジットバインダーの開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、EV車の更なる普及を見据えたエネルギー密度の向上を目的として、従来型負極であるグラファイトの理論放電容量を大幅に上回るシリコンの活用に関心が高まっており、カーボンニュートラルの見地からも高容量蓄電池の早期実用化が望まれている。また、シリコンは地殻に豊富に含まれる元素でありコスト面の利点が明白で、元素戦略の観点からも活用が期待される。
一方、シリコン負極においては、充放電時における大幅なシリコン粒子の体積変化が問題となっており、シリコン粒子の大幅な体積膨張による破断などの問題がある。また、充放電によってシリコン上に形成された界面被膜の破壊、集電体からの剥離、シリコン上に生成するクラック上の新たなシリコン面からの電解液の分解による厚いSEI被膜形成などの諸問題による大幅な内部抵抗の上昇によって、電池性能の劣化にも至っている。
【研究の内容】
本研究においては、負極の環境で還元され伝導性を発現するn型共役系高分子バインダー(ビスイミノアセナフテン骨格を有する共役系高分子、P-BIAN)と、この高分子(ポリマー)と水素結合性ネットワークを形成するポリアクリル酸(PAA)を組み合わせることにより、内部抵抗の低減と自己修復機能との相乗的な効果によりシリコン系負極を大幅に安定化できるコンポジットバインダーを開発した(図1)。両ポリマー間の水素結合形成はXPS測定(N1s)から確認された。
また、本コンポジットバインダーを用いてアノード型ハーフセル*2[アノード:Si/C/(P-BIAN/PAA)/AB =25/30/25/20 by wt%]を構築し、充放電特性を評価したところ、600サイクル後に2100 mAhg-1を維持し、極めて高い安定性を示した(図2)。さらに、サイクリックボルタンメトリー*3からは、可逆的で明瞭なリチウム脱挿入挙動や、電解液の分解抑制が示された。
次に、動的インピーダンス測定(DEIS)を行ったところ、本系における充放電後のSEI抵抗は、比較対象のポリアクリル酸バインダー系の場合の約1/6程度となった。
充放電試験後に電池セルを分解し負極を分析したところ、XPSにおいて負極内部の諸元素の環境に由来するピークが明瞭に観測されたことから、表面に形成したSEIは非常に薄いことが分かった。加えて、SEM観測においては400サイクル後においてもクラック形成は極めて軽微であり、比較対象(ポリアクリル酸)と対照的であったことから、本系においては充放電後の界面抵抗が極めて低いことが明らかとなった。また、充放電後の負極のSEMによる分析結果においても構造的耐久性が高く、有意な劣化が見られないことが分かった。
本成果は、ACS Applied Energy Materials (米国化学会)のオンライン版に4月29日に掲載された。なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する。(国内特許出願済み)
今後は、企業との共同研究を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | ACS Applied Energy Materials |
| 題目 | Heavy-Duty Performance from Silicon Anodes Using Poly(BIAN)/Poly(acrylic acid)-Based Self-Healing Composite Binder in Lithium-Ion Secondary Batteries |
| 著者 | Agman Gupta, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年4月29日 |
| DOI | 10.1021/acsaem.2c00278 |

|
図1.(a) 高分子化BIAN(P-BIAN)及びポリアクリル酸(PAA)の構造式
(b) P-BIAN/PAAコンポジットバインダーの設計戦略 (c)P-BIAN/PAAのコンポジット生成に伴う強靭さ及び自己修復能による力学的特性の向上のイメージ図 |

|
図2.(a) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルのサイクリックボルタモグラム
(b) P-BIAN/PAA系バインダーとPAAバインダーを有するSi系負極を用いたアノード型ハーフセルとの500 mAg-1における充放電サイクル特性の比較 (c) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルの充放電曲線(500 mAg-1) (d) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルと比較系(PAAバインダー系)との容量維持率の推移の比較 |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*3 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年5月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/05/12-1.htmlリチウムイオン2次電池に高容量化と耐久性を容易にもたらす新型負極活物質(β-シリコンカーバイド系複合材料)の開発
リチウムイオン2次電池に高容量化と耐久性を容易にもたらす
新型負極活物質(β-シリコンカーバイド系複合材料)の開発
ポイント
- リチウムイオン2次電池の高容量化のためシリコン系負極が注目されているが、シリコン粒子の大きな体積膨張・収縮等の問題によって、安定した充放電が困難となっている。
- リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている閃亜鉛鉱型構造を有するβ-シリコンカーバイド/窒素ドープカーボン複合材料の簡易合成法を開発し、リチウムイオン2次電池用負極活物質として検証した。
- 合成した活物質を用いたアノード型ハーフセルでは1195mAhg-1の放電容量を300サイクルまで示し、本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても、高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
- 高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)、先端科学技術研究科 物質化学領域の松見 紀佳教授、バダム ラージャシェーカル講師、並びに東嶺 孝一技術専門員、Ravi Nandan研究員、高森 紀行大学院生(博士後期課程)のグループは、リチウムイオン2次電池*1の安定な高容量充放電を可能にする新規負極活物質の開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、近年、従来型負極であるグラファイトよりも大幅に大きな理論容量を示すシリコン系負極が多大な関心を集めている。一方で、シリコン粒子は充放電時の体積膨張・収縮が極めて大きく、充放電の際の粒子の破断や界面被膜の破壊、集電体からの剥離などの多様な問題により、一般に高容量を安定に発現することが非常に困難となっている。このような状況を改善するために、特殊なバインダー材料の開発などのアプローチが本研究グループも含め国内外において検討されてきた。
【研究の内容】
本研究においては、シリコン粒子に代わり、極めて安定な充放電サイクルを汎用のバインダー材料使用時においても示すシリコンカーバイド系活物質を開発した。ダイヤモンド型構造を有するシリコンにおいては、リチウム脱挿入に伴う大幅な体積膨張・収縮は避けがたいものであるが、閃亜鉛鉱型構造の無機化合物においては、リチウム脱挿入時における体積膨張が大幅に抑制されることが知られている。その挙動にヒントを得つつ、閃亜鉛鉱型構造を有するβ-シリコンカーバイドと窒素ドープカーボン*2との複合材料を合成し、新規リチウムイオン2次電池用負極活物質として検証した。
合成法としては、(3-アミノプロポキシ)トリエトキシシランに水溶液中でアスコルビン酸ナトリウムを加え、シリコンナノ粒子分散水溶液を作製した。その後pH8.5においてドーパミンを、引き続いてメラミンを加えてから遠心分離、乾燥し、600oCもしくは1050oCの二通りの条件で焼成した(図1)。
得られた材料について、HRTEM、HAADF-STEM、XPS、XRD、Raman分光法等により構造を確認した(図2)。HRTEMからは、炭素系マトリックスにβ-シリコンカーバイドの結晶が埋め込まれている様子が観測された。HAADF-STEM HRTEMからは、β-シリコンカーバイドの(111)面に相当する0.25 nmの面間距離が観測され、マトリックス内に指紋状に分布する様子が観測された(図2(c))。
次に、合成した活物質を用いて負極を構築し、アノード型ハーフセル*3(Li/電解液/β-SiC)を作製し各種電気化学的評価を行った。サイクリックボルタモグラム*4においては、シャープなリチウムインターカレーションのピークに加えて、シリコン負極の場合と形状は異なるものの0.58 Vのブロードなリチウム脱インターカレーションのピークを共に示した。
また、充放電挙動においては、1050oCの焼成処理により合成した活物質(MAD1050)を用いた系では1195 mAhg-1の放電容量を300サイクルまで示した(図3(b))。本負極活物質を用いることにより、汎用のバインダー材料を用いた系であっても高放電容量と長期サイクル耐久性を同時に発現させることが容易に可能であると示された。
本成果は、Journal of Materials Chemistry A(英国王立化学会)のオンライン版に2月16日(英国時間)に掲載された。
なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する(国内特許出願済み)。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | Journal of Materials Chemistry A |
| 題目 | Zinc blende inspired rational design of β-SiC based resilient anode material for lithium-ion batteries |
| 著者 | Ravi Nandan, Noriyuki Takamori, Koichi Higashimine, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年2月16日(英国時間) |
| DOI | 10.1039/D1TA08516F |


|
図2.(a,b)合成した活物質(MAD1050)のTEM像
(a)β-SiC粒子のHRTEM像、(c)β-SiC粒子のHAADF-STEM像 (d,e)赤色ボックス部位のFT/IFT、(f)面間距離プロファイル (g,h)黄色ボックス部位のFT/IFT、(i,j)緑色ボックス部位のFT/IFT |

|
図3.合成した各負極活物質を用いたアノード型ハーフセルの充放電特性(a/b/d)
及び比較データ(c;シリコン負極) |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*3 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/02/18-1.htmlダイヤモンド量子イメージングプローブの新規作製法を開発 -ナノ量子イメージングに道-
ダイヤモンド量子イメージングプローブの新規作製法を開発
-ナノ量子イメージングに道-
ポイント
- レーザー加工と集束イオンビーム加工を用いた走査ダイヤモンド量子イメージングプローブの作製法の開発に成功
- 高性能化へ向けた加工自由度の高いナノ量子センシング・イメージングプローブ作製法として期待
| 北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 応用物理学領域の貝沼 雄太大学院生(博士後期課程)、安 東秀准教授らは、京都大学、産業技術総合研究所と共同で、レーザー加工と集束イオンビーム加工注1)によりダイヤモンド中の窒素-空孔複合体中心(NV中心(図1[右]))注2)と呼ばれる極小な量子センサーをプローブ先端に含有するナノ量子イメージングプローブ(図1[左])の新規作製法の開発に成功しました。 |
【背景と経緯】
近年、新しいデバイスやセンサーの創出による環境・エネルギー問題の解決、安心安全な社会の実現、これらによる人類社会の持続的繁栄への貢献が求められています。この中で量子計測・センシング技術は、量子力学を原理とした従来とは異なる革新的な技術を提供する分野であり、将来の社会基盤を支えるしくみを一新すると期待されています(量子技術イノベーション)。その中でも、ダイヤモンド中の欠陥構造であるNV中心を用いた量子計測技術は、室温・大気中で動作可能なこと、センサーサイズがナノスケールであることより注目を集めており、特に、NV中心を走査プローブとして用いた際にはナノスケールの量子イメージングの実現が期待されています。
従来、走査NV中心プローブの作製にはフォトリソグラフィーと電子線リソグラフィーを用いたリソグラフィー法が用いられていましたが、この方法ではプロセスが複雑であること、再加工ができないという課題がありました。今回の研究では、レーザー加工と集束イオンビーム加工(FIB)による加工自由度の高い走査NV中心プローブの作製法を開発し、さらに磁気イメージングの動作を実証しました。
【研究の内容】
図2に示すように、まず、表面下約40ナノメートルにNV中心を有するダイヤモンド結晶の板を、レーザー加工によりロッド状の小片に加工した上で、水晶振動子型の原子間力顕微鏡の先端に取り付けました。続いて、FIB加工においてドーナツ型の加工形状を用いることで、当該小片の中心位置に存在するNV中心の加工ダメージを回避して走査ダイヤモンドNV中心プローブを作製しました。このNV中心プローブを走査しながら磁気テープ上に記録された磁気構造からの漏洩磁場を光学的磁気共鳴検出法(ODMR)注3)により計測し、磁気構造のイメージングに成功しました(図3)。
本研究成果は、2021年12月28日(米国東部標準時間)に米国物理学協会の学術誌「Journal of Applied Physics」のオンライン版に掲載されました。
【今後の展開】
本研究では、レーザー加工とFIB加工による加工自由度の高い走査NV中心プローブの作製法の開発に成功しました。今後、プローブの形状や表面状態を最適化することで、より高性能な走査ダイヤモンドNV中心プローブを作製し量子イメージング分野に貢献することが期待されます。

図1 ダイヤモンド中の窒素(N)-空孔(V)複合体中心(NV中心)[右]と、
走査ダイヤモンドNV中心プローブ[左]

図2 レーザー加工とFIB加工による走査ダイヤモンドNV中心プローブの作製

図3 走査ダイヤモンドNV中心プローブによる磁気テープの磁気構造イメージング
【論文情報】
| 掲載誌 | Journal of Applied Physics |
| 論文題目 | Scanning diamond NV center magnetometor probe fabricated by laser cutting and focused ion beam milling |
| 著者 | Yuta Kainuma, Kunitaka Hayashi, Chiyaka Tachioka, Mayumi Ito, Toshiharu Makino, Norikazu Mizuochi, and Toshu An |
| 掲載日 | 2021年12月28日(米国東部標準時間) |
| DOI | 10.1063/5.0072973 |
【研究助成費】
本研究の一部は、次の事業の支援を受けて実施されました。
・科学技術振興機構(JST)戦略的創造研究推進事業CREST (JPMJCR1875)、
次世代研究者挑戦的研究プログラム(未来創造イノベーション研究者支援プログラム)(JPMJSP2102)
・澁谷学術文化スポーツ振興財団
・日本学術振興会(JSPS)科研費 基盤研究(C) (21K04878)
・文部科学省 光・量子飛躍フラッグシッププログラム(Q-LEAP, JPMXS0118067395)
【用語解説】
注1)集束イオンビーム加工(Focused Ion Beam, FIB)
イオンビームにより材料をナノスケールで加工する加工法。本研究では、ガリウム(Ga)イオンを用いてダイヤモンド片をプローブ形状に加工した。
注2)NV中心
ダイヤモンド中の窒素(N)不純物と空孔(V)が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定的にスピン量子状態が存在する。
注3)光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
令和4年1月5日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/01/05-1.html量子センサーによる熱磁気流の観測に成功 -量子センシングとスピンカロリトロニクスの融合に道-
量子センサーによる熱磁気流の観測に成功
-量子センシングとスピンカロリトロニクスの融合に道-
ポイント
- 熱により励起された磁気の流れ(熱マグノン流)をダイヤモンド中のNV中心と呼ばれる極小な量子センサーを用いて計測することに成功
- 量子センシング分野とスピンカロリトロニクス分野を融合する新手法として期待
| 北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科 応用物理学領域のドゥイ プラナント元博士後期課程学生(2019年6月修了、安研究室)、安 東秀准教授らは、京都大学、物質・材料研究機構と共同で、熱により励起された磁気の流れ(熱マグノン流注1))をダイヤモンド中の窒素-空孔複合体中心(NV中心(図1))注2)と呼ばれる極小な量子センサー注3)を用いて計測することに成功しました。 |
【背景と経緯】
近年、持続可能な社会の実現(SDGs)に向けた環境・エネルギー・情報通信などの問題への取り組みが活発化する中で、計測分野においては、量子力学を原理とした新しい計測技術に基づき従来の性能を凌駕する量子センシング分野の発展が期待されています。その中でも、ナノサイズの量子センサーとしてダイヤモンド中の欠陥構造であるNV中心が注目されています。
一方で、デバイス分野においては、これまで情報を入出力する方法として電流が用いられてきましたが、デバイスの微細化とともに多くのエネルギーが熱として浪費され発熱によりデバイスの動作が不安定となる問題がありました。これを解決する分野として、電流を用いずに電子の自由度であるスピン注4)を用いるスピントロニクス分野注5)が期待され、その中でもスピンと熱の相互作用を積極的に利用することで問題を解決しようとするスピンカロリトロニクス注6)が注目されています。
従来、量子センシング分野とスピンカロリトロニクス分野は独立に発展してきましたが、今回、これらを融合した分野の発展に繋がる新手法を実証しました。今回の研究では、熱により励起された磁気の流れ(熱マグノン流)をNV中心に存在する量子スピン状態により計測が可能であることを実証しました。
【研究の内容】
図2に示すように、まず、磁性ガーネット試料(Y3Fe5O12: YIG) 注7)中に温度勾配を印加して熱の流れを創り、これにより熱励起された磁気の流れ(熱マグノン流)を生成します。続いて、試料端でマイクロ波によりコヒーレント(エネルギーと位相の揃った)なスピン波注8)を生成して試料中に伝搬させます。この状況で試料中央にはダイヤモンドNV中心を含有したダイヤモンド片がYIGに近接され、このダイヤモンドNV中心を用いてスピン波を計測しました(図3(左))。今回、スピン波の強度を、光学的磁気共鳴検出法注9)を用いたNV中心のラビ振動注10)により計測し、熱マグノン流による変調信号を観測することに成功しました(図3(右))。
本研究成果は、2021年12月23日(米国東部標準時間)に米国物理学会の学術誌「Physical Review Applied」のオンライン版に掲載されました。
【今後の展開】
本研究では、スピン波を介して熱マグノン流を量子センサーであるNV中心を用いて計測することに成功しました。このことは、量子センシングとスピンカロリトロニクス分野を融合する新手法となることを示唆します。特に、NV中心はナノスケールの分解能で量子計測が可能であり、将来的には熱マグノン流に関する現象をナノスケールで計測すること、さらには熱マグノン流とNV中心の量子状態との相互作用に関する新しい研究展開を可能にし、スピンカロリトロニクスと量子センシングの融合研究に貢献することが期待されます(図4)。

図1 ダイヤモンド中の窒素(N)-空孔(V)
複合体中心(NV中心)スピン状態

図2 スピン波を介したNV中心による熱マグノン流計測の概念図

図3 (左)実験配置図、(右)NV中心のラビ振動計測による熱スピン流による変調信号の観測

図4 量子センシングとスピンカロリトロニクスの融合
【論文情報】
| 掲載誌 | Physical Review Applied |
| 論文題目 | Probing Thermal Magnon Current Mediated by Coherent Magnon via Nitrogen-Vacancy Centers in Diamond |
| 著者 | Dwi Prananto, Yuta Kainuma, Kunitaka Hayashi, Norikazu Mizuochi, Ken-ichi Uchida, Toshu An* |
| 掲載日 | 2021年12月23日(米国東部標準時間) |
| DOI | 10.1103/PhysRevApplied.16.064058 |
【研究助成費】
本研究の一部は、次の事業の一環として実施されました。
・ 日本学術振興会(JSPS)科研費
新学術領域研究「ハイブリッド量子科学」公募研究(18H04289)、基盤研究(B) (18H01868) 、
若手研究(19K15444)、新学術領域研究(15H05868)
・ 科学技術振興機構(JST)戦略的創造研究推進事業CREST(JPMJCR1875, JPMJCR1711)
・ 文部科学省 光・量子飛躍フラッグシッププログラム(Q-LEAP, JPMXS0118067395)
【用語説明】
注1)熱マグノン流
磁性体中の磁気の流れ(マグノン、またはスピン波とも呼ばれる)が熱により励起されたもの
注2)NV中心
ダイヤモンド中の窒素(N)不純物と空孔(V)が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定的にスピン量子状態が存在する。
注3)量子センサー
量子力学を原理とした量子状態を利用して超高感度測定を行うセンサー
注4)スピン
電子が有する自転のような性質。電子スピンは磁石の磁場の発生源でもあり、スピンの状態には上向きと下向きという2つの状態がある。
注5)スピントロニクス
電子の持つ電荷とスピンの2つの性質を利用して新しい物理現象や応用研究をする分野
注6)スピンカロリトロニクス
スピントロニクスの分野の中でもスピンと熱の相互作用の利用を目指す分野
注7)磁性ガーネット
希土類元素をイットリウム(Y)としたイットリウム鉄ガーネット(Y3Fe5O12)結晶。スピン波の拡散長が数ミリメートル以上と長いことで知られている。
注8)スピン波
スピンの集団運動であり、個々のスピンの磁気共鳴によるコマ運動(歳差運動)が磁気の波となって伝わっていく現象
注9)光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
注10)ラビ振動
ここではNV中心の2つのスピン状態間のエネルギーに相当するマイクロ波磁場を印加することにより状態が2準位の間を振動する現象。本研究ではスピン波(マグノン)が生成するマイクロ波磁場によりラビ振動を励起した。
令和3年12月27日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/12/27-1.html最先端ナノ材料グラフェンを用いた電界センサ素子で、雷雲が生み出す電界の検出に成功 -襲雷予測に向けた「広域雷雲監視ネットワーク」実現に期待-
![]() |
北陸先端科学技術大学院大学 音羽電機工業株式会社 東京工業大学 |
最先端ナノ材料グラフェンを用いた電界センサ素子で、雷雲が生み出す電界の検出に成功
- 襲雷予測に向けた「広域雷雲監視ネットワーク」実現に期待 -
北陸先端科学技術大学院大学 先端科学技術研究科/環境・エネルギー領域のアフサル カリクンナン研究員、マノハラン ムルガナタン講師、水田 博教授の研究チームは、音羽電機工業株式会社、東京工業大学と共同で、グラフェン(炭素原子シート)を用いた超小型電界センサ素子を開発し、雷雲が生み出す大気電界(最小検出電界~67V/m)を、センサにグラフェンを使用して検出することに世界で初めて成功しました。
本研究成果に関し、11月26日に、北陸先端科学技術大学院大学において記者発表を行いました。
<記者発表出席者>
・北陸先端科学技術大学院大学 先端科学技術研究科/環境・エネルギー領域
水田 博 教授
マノハラン ムルガナタン 講師
アフサル カリクンナン 研究員
・音羽電機工業株式会社 技術本部
圓山 武志 取締役 本部長
工藤 剛史 部長
・東京工業大学 地球インクルーシブセンシング研究機構
堀 敦 URA(リサーチ・アドミニストレーター)
<ポイント>
- 超小型グラフェン電界センサで、雷雲が生み出す大気電界の検出に世界で初めて成功。
- 雷雲内の電荷の分布を反映した大気電界のプラス・マイナス極性判定にも成功。
複雑な雷現象のメカニズム解明と襲雷予測の精度向上に期待。 - 既存技術に比べて大幅な小型化と低消費電力化を実現。
<研究背景と内容>
雷の事故による世界の死者数は年間6千~2万4千人と推定され、日本では毎年数名が亡くなっています。また、雷サージ(雷による異常電圧・電流)は情報システムや生産ラインなどに甚大な影響を与えます。こうした被害を軽減するには、早期に襲雷/避難情報を提供する予測システムを開発し、人々に行動変容を促す必要があります。高精度な襲雷予測には広域かつ高密度な雷雲監視ネットワーク作りが重要ですが、そのためには電界センサの小型化と省電力化が大きな課題となっています。
これに対して研究チームは、ナノ炭素材料のグラフェン(炭素原子が蜂の巣状の六角形結晶格子構造に配列した単原子シート)膜を検出用チャネルとした微細センサ素子を開発しました(図1参照)。このグラフェン電界センサを用いて、雷雲が生み出す大気電界の時間変化を電気的に検出することに世界で初めて成功しました。最小検出電界は約67V/mで、これは晴天時の地表付近における大気電界レベルです。さらにこの電界センサでは、大気電界の極性の判別も可能です(図2参照)。これにより、雷雲内部の電荷分布の推定が容易になり、複雑な雷現象のメカニズム解明に大きく寄与するものと予想されます。
このグラフェンセンサをモジュール化して、屋外で雷雨時に動作試験を行ったところ(図3参照)、20km以上離れた地点での落雷を電界ピーク信号として検出することに成功しました。信号検出のタイミングは、既存のフィールドミル型電界検出装置(重量~1kg, 要外部電源)と精度よく一致しています。今回の電界センサは、従来のフィールドミル装置と比べて、電界検出部の寸法で約2万分の1の小型化(ミルの直径:170mm ⇒ グラフェンチャネル寸法:10mm)と、低消費電力化(太陽電池駆動)を実現しています。さらに、測定された電界の時間発展データを特異スペクトル変換法で解析することで、5km圏内の落雷を32分前に予測できることも見出しています。これらの新技術を統合すれば、既存技術では困難だった多数のセンサ素子を広域に配置した落雷検出ネットワークの構築が容易となり、高精度な襲雷予測の実現に向けた大きな前進が期待できます。
本成果は、第82回応用物理学会秋季学術講演会で発表されました。
・題名:Enhancing Electric Field Sensitivity in Graphene Devices by hBN Encapsulation(11a-N306-9)
・題名:雷予測精度向上のための特異スペクトル変換法を用いた電界波形解析(9p-Z22-10)
本成果は、科学技術振興機構(JST)による以下の研究助成によって得られました。
・事業名:センター・オブ・イノベーション(COI)プログラム
研究課題名:「『サイレントボイスとの共感』地球インクルーシブセンシング研究拠点」
研究代表者:サテライト拠点代表 水田 博(北陸先端科学技術大学院大学 教授)
研究開発期間:平成29年度~令和3年度
・事業名:研究成果最適展開支援プログラム(A-STEP)トライアウト JPMJTM20DS
研究課題名:「襲雷予測システムのためのグラフェン超高感度電界センサの開発」
研究代表者:マノハラン ムルガナタン(北陸先端科学技術大学院大学 講師)
研究開発期間:令和2年度~令和3年度
図1 グラフェン雷センサイメージ図
図2 (a)開発したセンサの構造, (b)電界検出感度特性, (c)電界極性判定
図3 (a)フィールドテストの様子, (b)グラフェン電界センサの検出信号と既存のフィールドミル電界計の検出信号の比較,
(c)検出地点から10km以内での雷発生状況
令和3年11月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/11/26-1.html触媒ビッグデータから「触媒世界地図」を描写 ~ブラックボックス化していた触媒設計を紐解く~
![]() |
| 国立大学法人 北海道大学 国立大学法人 北陸先端科学技術大学院大学 国立研究開発法人 科学技術振興機構 |
触媒ビッグデータから「触媒世界地図」を描写
~ブラックボックス化していた触媒設計を紐解く~
ポイント
- 触媒の組成・実験条件の知識ネットワーク「触媒世界地図」を触媒ビッグデータから描写。
- 触媒世界地図を用いた触媒設計が可能となり、新たな活性触媒を発見。
- 大規模な科学データからの材料・触媒設計の技術基盤になることを期待。
【概要】
| 北海道大学 大学院理学研究院の髙橋 啓介准教授、髙橋 ローレン学術研究員らの研究グループは、北陸先端科学技術大学院大学 先端科学技術研究科 物質化学領域の谷池 俊明教授らと共同で、触媒ビッグデータから触媒の知識を表現した「触媒世界地図*1」を描写しました。 これまで研究グループは、多数の触媒データを高速で自動取得可能なハイスループット実験装置によりメタン酸化カップリング反応*2における触媒ビッグデータ(6万件)の構築に成功してきましたが、この規模の触媒データからどのように知識を抽出し触媒設計に結びつけるかが触媒インフォマティクス*3において大きな課題でした。 そこでメタン酸化カップリング反応におけるハイスループット実験装置により得られた触媒ビッグデータに対して、オントロジー*4(知識の関係性をネットワークとして記述)の概念を活用することにより、触媒ビックデータから元素組成・実験条件・C2収率等の関係性を描写し、触媒の世界地図を作成することに成功しました。この触媒の世界地図により各要件の関係性が明白となり、そこで得られた情報から触媒設計が実現しました。 結果、触媒の世界地図からKVEu-BaO(20%C2収率)、LiTiW-BaO(19%C2収率)、EuMgZr-BaO(19%C2収率)、MoKW-BaO(19%C2収率)等の未報告の活性触媒を設計し、実験実証することに成功しました。 本手法は触媒ビッグデータや材料ビッグデータにも適用できるため、大規模な科学データからの材料・触媒設計の技術基盤になることが期待されます。 本研究成果は、2021年9月22日(水)にChemical Science誌にてオンライン公開されました。 |
元素と収率の関係、元素と実験条件の関係等が表現された触媒世界地図
【背景】
触媒は化学反応の反応速度を速める材料であり、自動車の排気ガスの浄化からエネルギーの変換まで幅広い分野で実用化されています。これまでの触媒開発は、研究者の熟練の経験や勘で試行錯誤して開発していました。その中で、マテリアルズインフォマティクス・触媒インフォマティクスの登場により材料・触媒科学は大きな転換期を迎えています。
マテリアルズインフォマティクス・触媒インフォマティクスでは、第4の科学であるデータ科学を用い、材料・触媒データのパターンから材料・触媒設計を行います。いわば、これまでの研究者の経験や勘をデータ科学で再現することを目的としています。しかし、材料・触媒ビッグデータから知識・設計をどのように抽出するかが大きな障壁となっています。特に機械学習等のデータ科学手法では機械がどう学習したのかを説明することができず、理論的解釈による設計が難しいという問題があります。
そのため、理論に基づいた触媒設計を行う必要がありました。
【研究手法】
メタン酸化カップリング反応を対象とし、独自開発したハイスループット実験装置で得られたメタン酸化カップリング反応の触媒ビッグデータに対して、オントロジーの概念を元にデータ内の知識と関係性をネットワークとして表現しました。
【研究成果】
触媒ビックデータから触媒の世界地図を作成することに成功しました。この触媒の世界地図により元素組成・実験条件・C2収率等の関係性が明白となり、そこで得られた情報から触媒設計を行うことに成功しました。結果、触媒の世界地図からKVEu-BaO(20%C2収率)、LiTiW-BaO(19%C2収率)、EuMgZr-BaO(19%C2収率)、MoKW-BaO(19%C2収率)等の未報告の活性触媒を設計・実験実証することに成功しました。
【今後への期待】
触媒ビッグデータからどのように触媒科学の知識を取り出すかが大きな課題でしたが、オントロジーという概念を元に知識のネットワークを設計することにより、触媒ビッグデータから知識の抽出・触媒設計が可能になることを初めて提案しました。この方法は今後の触媒ビッグデータや材料ビッグデータにも適用することができるため、大規模な科学データからの知識・材料設計の技術基盤になることが期待されます。
【謝辞】
本研究は、科学技術振興機構(JST)戦略的創造研究推進事業CREST研究領域「多様な天然炭素資源の活用に資する革新的触媒と創出技術」(研究総括:上田 渉)における「実験・計算・データ科学の統合によるメタン変換触媒の探索・発見と反応機構の解明・制御」(研究代表者:髙橋 啓介)の支援を受けて行われました。
【論文情報】
| 論文名 | Constructing Catalyst Knowledge Networks from Catalysts Big Data in Oxidative Coupling for Methane for Designing Catalysts(メタン酸化カップリング反応ビッグデータから触媒の知識ネットワークの構築と触媒設計) |
| 著者名 | 髙橋 ローレン1 , Thanh Nhat Nguyen2, 中野渡 淳2、藤原 綾2、谷池 俊明2、髙橋 啓介1 (1北海道大学大学院理学研究院、2北陸先端科学技術大学院大学) |
| 雑誌名 | Chemical Science(英国王立化学会が発行する化学ジャーナル) |
| DOI | 10.1039/D1SC04390K |
| 公表日 | 2021年9月22日(水)(オンライン公開) |
【用語解説】
*1 触媒世界地図...触媒ビックデータから元素組成・実験条件・C2収率等の関係性をネットワークとして描写したもの。
*2 メタン酸化カップリング反応...普遍的に存在するメタンはそのままでは化学的な有用性が低く、これを触媒によって別の有用化合物へ変換することが望ましい。メタンの酸化的カップリングとは、メタンと酸素分子の反応を通してエタンやエチレンを直接合成する高難度反応である。
*3 触媒インフォマティクス...データ科学手法を用いて触媒設計・触媒解析を行う学問。
*4 オントロジー...物事をどの様に概念化したかを記述する学問。
令和3年9月24日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/24-1.html高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功 ~高度な機器不要でPCR品質の検査を15~30分で可能に~
|
| 国立大学法人 北陸先端科学技術大学院大学 BioSeeds株式会社 |
高感度新型コロナウイルスの迅速簡便な検査法RICCAの開発に成功
~高度な機器不要でPCR品質の検査を15~30分で可能に~
ポイント
- 41℃でのワンポット等温RNAおよびDNA増幅反応(器具不要)
- 迅速かつ高感度(RT-PCRと同じように検出)
- シンプルで瞬時の検出(ラテラルフローストリップ)
- 非常に費用対効果が高い(テストあたりの推定コスト500円未満)
【概要】
| 北陸先端科学技術大学院大学(JAIST)とJAIST発のベンチャー企業であるBioSeeds(バイオシーズ)株式会社(石川県能美市)、および複数の研究機関からなる研究者チームは、唾液から直接、極めて微量のSARS-CoV-2を検出できる高度な等温核酸増幅法(RICCAテスト)を開発しました。この方法は、シンプルなワンポット(一つの容器だけを用いる)方式のRNAウイルスの等温核酸増幅検出法で、高度な機器や、特別な実験室・検査室を必要としません。そのため、検査室にサンプルを送る必要が無く、総測定時間15~30分で、その場で即時に検出結果を得られます。これまでに、唾液中の低コピー数のSARS-CoV-2の直接検出に成功しております。研究者チームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。 |
【背景・研究成果】
COVID-19の感染を食い止めるための最も効果的な方法は、症状のあるなしにかかわらず、感染の疑いのある人を特定して隔離することです。SARS-CoV-2のアルファからデルタまでの4種の懸念される変異株(VOC:variant of concern)およびイータからミューまでの5種の注目すべき変異株(VOI:variant of interest)が数カ月のうちに世界中に広まったように、新しい感染性ウイルス株が急速に出現しているため、COVID-19の迅速かつ高感度で信頼性の高い検査法の利用は、病気、さらにはパンデミックの制御に不可欠です。現在、世界的に流行しているCOVID-19では、主にRT-PCRによる検査が行われています。しかし、この検査室を必要とする方法は、サンプルの前処理が必要であることや、高価な装置(蛍光光度計付きサーマルサイクラー)が必要なことから、現場での検査は難しく、また短時間での大量検査にも課題があります。PCRに類似した分子検査を行う方法として、LAMP (Loop-mediated Isothermal Amplification) やSDA (Strand Displacement Amplification) などの様々な等温核酸増幅法が現在使用されています。しかし、これらの方法は、PCRと比較して特異性や感度が低いことが報告されています。また、これらの方法の多くは、実験室でのウイルスRNAの分離、溶解、精製、増幅など、面倒な前処理を必要とします。
この問題を解決するために、JAISTのマニッシュ ビヤニ特任教授率いるチームは、ウイルスRNAの標的配列を、特別な装置を必要とせず、現場で正確に検出できる高感度かつ超高速な方法を開発し、この検出法をRICCA(RNA Isothermal Co-assisted and Coupled Amplification)と名付けました。
現在、RICCAを使用して、既にSARS-CoV-2のアルファ株とデルタ株の2つの変異株を検出しており、他の変異株にも適応可能と考えられます。RICCAアッセイに必要なものは、ヒートブロック(恒温槽)と、25種類の試薬を含む混合液があらかじめ入ったチューブだけであり、RNA特異的増幅とDNA特異的増幅を同時に行うことができます。RICCAのコストは現在のRT-PCR法等と比較しても安価であり、より広範囲な用途に適用可能と考えられます。したがって、RICCAにより、COVID-19分子診断の「ラボフリー、ラボクオリティー」のメガテストプラットフォーム(医療検査室レベルの集団検診に向けた基本的な方法)も実現できる可能性があります。また、将来的には、このプラットフォームを使って他の感染性ウイルスを検査することも可能です。
RICCAは、COVID-19の検査に必要な設備を簡単に調達できない発展途上国では特に有用です。ビヤニ特任教授のチームは、その場検査や、検査設備を簡単に調達できない地域等での検査手段として、実用化を目指しています。また、RICCAのロボット化およびモバイルプラットフォームの設計を行っています(卓上プロトタイプはBioSeeds株式会社で開発中)。このプラットフォームが実現すれば、サンプル輸送の負担を軽減し、COVID-19診断を消費者が直接実施することも可能となり、遠隔地や資源の乏しい環境で大規模な集団検査を行うことが可能となります。
この最新の研究成果の一部は、国際的な科学誌(Scientific Reports)において、京都大学(保川清教授)、大阪母子医療センター(柳原格部長)、関西学院大学(藤原伸介教授)、東北大学(児玉栄一教授)、JAIST(ビヤニ特任教授、高木昌宏教授、高村禅教授)の研究者チームと共同で行った研究成果として紹介されています。

図:SARS-CoV-2ウイルスを、直接その場で検査する新規な方法(RICCA)(A)とそれによる熱不活化SARS-CoV-2ウイルスの検出結果(A')。 閉鎖的なサンプル保持容器(B)とそれを用いた、10%ヒト唾液中での熱不活性化SARS-CoV-2ウイルスの検出例 (B')。
【謝辞】
本研究成果の一部は、AMED(日本医療研究開発機構)新興・再興感染症に対する革新的医薬品等開発推進研究事業 JP20fk0108143、AMEDウイルス等感染症対策技術開発事業 JP20he0622020、JST(科学技術振興機構) 研究成果展開事業研究成果最適展開支援プログラム A-STEP 産学共同 (育成型)JPMJTR20UU の支援を受けたものです。
【参考文献】
| 論文名 | Development of robust isothermal RNA amplification assay for lab-free testing of RNA viruses |
| 雑誌名 | Scientific Reports |
| 著者名 | Radhika Biyani, Kirti Sharma, Kenji Kojima, Madhu Biyani, Vishnu Sharma, Tarun Kumawat, Kevin Maafu Juma, Itaru Yanagihara, Shinsuke Fujiwara, Eiichi Kodama, Yuzuru Takamura, Masahiro Takagi, Kiyoshi Yasukawa and Manish Biyani |
| 掲載日 | 2021年8月6日 |
| DOI | https://doi.org/10.1038/s41598-021-95411-x |
令和3年9月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/09/08-1.html触媒遺伝子「触媒シークエンシング」を発見 ~触媒インフォマティクスを駆使した新しい触媒開発に成功~
![]() |
| 国立大学法人 北海道大学 国立大学法人 北陸先端科学技術大学院大学 国立研究開発法人 科学技術振興機構 |
触媒遺伝子「触媒シークエンシング」を発見
~触媒インフォマティクスを駆使した新しい触媒開発に成功~
ポイント
- 触媒遺伝子「触媒シークエンシング」を触媒ビッグデータから発見。
- 触媒組成を従来の周期表の元素記号ではなく、ゲノム配列のように記号で表現。
- 触媒遺伝子を用いた触媒設計を提案し、実験実証に成功。
【概要】
| 北海道大学大学院理学研究院の髙橋 啓介准教授、髙橋 ローレン学術研究員、藤間 淳特任准教授、宮里 一旗特任助教らの研究グループは、北陸先端科学技術大学院大学先端科学技術研究科物質化学領域の谷池 俊明教授らと共同で、触媒遺伝子「触媒シークエンシング」を触媒ビッグデータから発見しました。 これまで触媒組成は周期表の元素記号で表現されてきましたが、反応場での真の触媒の状態は複雑なため、触媒組成を記述する真の触媒記述子*1の決定が困難を極めています。そのため機械学習などを用いる触媒インフォマティクス*2において、触媒物性を記述する上で情報的制約がありました。 そこで本研究では、独自に開発したハイスループット実験装置で得られたメタン酸化カップリング反応の触媒ビッグデータに対して、触媒インフォマティクス・信号処理*3・パターン認識*4・自然言語処理*5を駆使し、新たな触媒の記述方法である「触媒の遺伝子」を定義し提案しました。この「触媒の遺伝子」を用いることで、触媒組成の情報を、生物の塩基配列のように記号で表現することが可能となります。この触媒特有の配列を「触媒シークエンシング」と名付けました。この「触媒シークエンシング」を用いると、従来の元素記号での表記では全く異なる触媒組成であっても、同じ機能を持つ触媒は同じ「触媒の遺伝子」として表現することが可能となります。触媒組成は周期表の元素記号で表現されるのが一般的でしたが、本研究により提案された「触媒遺伝子」により、今後触媒は「触媒シークエンシング」で記述することが可能となります。 この「触媒遺伝子」の有効性を確認するため、同じ「触媒遺伝子」を持つ触媒群の元素を再編成することにより、同じ触媒遺伝子を持つ触媒の設計を行い、実験実証にも成功しました。結果、高いC2収率を達成する新規触媒が発見でき、「触媒遺伝子」が触媒設計に大変有用であることが証明されました。また発見された触媒が既知の触媒と似た遺伝子を持っているのか、もしくは全く新種の触媒遺伝子なのかなど、バイオインフォマティクスで見られる遺伝子解析のような、全く新しい視点での触媒情報の解析が可能となり、より発展的かつ実用的な適用が期待できます。 本研究成果は、米国東部時間2021年7月30日(金)午前6時公開のThe Journal of Physical Chemistry Letters誌にてオンライン版が掲載されました。 |
【背景】
マテリアルズインフォマティクス・触媒インフォマティクスの登場により材料・触媒科学は大きな転換期を迎えています。マテリアルズインフォマティクス・触媒インフォマティクスでは、第4の科学であるデータ科学を用い、材料・触媒データのパターンから材料・触媒設計を行います。そのような中、触媒組成は周期表の元素記号で表現されてきましたが、反応場での真の触媒の状態は複雑なため、触媒組成を記述する真の触媒記述子の決定が困難を極めています。そのため機械学習などの触媒インフォマティクスにおいて、触媒組成の記述方法が大きな障壁となっています。周期表の元素記号に頼らず、触媒の特徴を反映した触媒組成の記述方法を決定する必要があります。
【研究手法】
独自開発したハイスループット実験装置で得られたメタン酸化カップリング反応の触媒ビッグデータを用い、触媒インフォマティクス・信号処理・パターン認識・自然言語処理を駆使し、触媒ビッグデータに隠されているパターンから「触媒の遺伝子」を提案しました。
【研究成果】
発見された「触媒の遺伝子」は生物の塩基配列のように記号で表現することができます。この触媒特有の配列を「触媒シークエンシング」と名付けました(図1)。この「触媒シークエンシング」を用いると、従来の元素記号での表記では全く異なる触媒組成であっても、同じ機能を持つ触媒は同じ「触媒の遺伝子」として表現することが可能となります。「触媒遺伝子」を持つ触媒群の元素を再編成することにより、同じ触媒遺伝子を持つ触媒の設計を行い、実験実証にも成功しました。
【今後への期待】
今回提案した「触媒遺伝子」は、様々な触媒データに適用することにより、発見された触媒が既知の触媒と似た遺伝子を持っているのか、もしくは全く新種の触媒遺伝子なのかなど、バイオインフォマティクスで見られる遺伝子解析のような、全く新しい視点での触媒情報の解析が可能となります。したがって、触媒インフォマティクスにおける触媒データの取り扱い手法の基盤技術として、より発展的かつ実用的な適用が期待できます。
【謝辞】
なお、本研究は、科学技術振興機構(JST)戦略的創造研究推進事業CREST研究領域「多様な天然炭素資源の活用に資する革新的触媒と創出技術」(研究総括:上田 渉)における「実験・計算・データ科学の統合によるメタン変換触媒の探索・発見と反応機構の解明・制御」(研究代表者:髙橋 啓介)の支援を受けて行われました。
【参考図】

図1 発見された触媒遺伝子-触媒シークエンシング
【論文情報】
| 論文名 | Catalysis Gene Expression Profiling: Sequencing and Designing Catalysts(触媒遺伝子発現プロファイリング:触媒シークエンシングと設計) |
| 著者名 | 髙橋 啓介1 、藤間 淳1、宮里 一旗1、中野渡 淳2、藤原 綾2、Thanh Nhat Nguyen2、谷池 俊明2、 髙橋 ローレン1(1北海道大学大学院理学研究院、2北陸先端科学技術大学院大学) |
| 雑誌名 | The Journal of Physical Chemistry Letters(物理化学の専門誌) |
| DOI | 10.1021/acs.jpclett.1c02111 |
| 公表日 | 日本時間2021年7月30日(金)午後8時(米国東部時間2021年7月30日(金)午前6時)(オンライン公開) |
【用語解説】
*1 触媒記述子...触媒の特徴を数値化して表現したもの。
*2 触媒インフォマティクス...データ科学手法を用いて触媒設計・触媒解析を行う学問。
*3 信号処理...信号を数理処理によって解析・処理する技術。
*4 パターン認識...データの中から規則性を取り出す技術。
*5 自然言語処理...言語や記号をコンピューターで処理する技術。
令和3年8月2日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/08/02-1.htmlナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発 ―電子顕微鏡とデータ科学による究極の精密測定―
![]() |
| 国立大学法人 北陸先端科学技術大学院大学 国立大学法人 九州大学 |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発
―電子顕微鏡とデータ科学による究極の精密測定―
ポイント
- 電子顕微鏡とデータ科学を組み合わせることで、局所ひずみを高精度に測定
- 0.2%というわずかな局所ひずみをも検出できる精密さを達成
- 棒状ナノ粒子には表面形状の曲率変化に起因する約0.5%の局所膨張ひずみが生じることを発見
| 北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の麻生 浩平助教、大島 義文教授と、九州大学・大学院工学研究院のJens Maebe大学院生 (修士課程、当時)、Xuan Quy Tran研究員、山本 知一助教、松村 晶教授は、原子分解能電子顕微鏡法とデータ科学的手法であるガウス過程回帰を組み合わせることによって、ナノメートルサイズの粒子の中のわずか0.2%という局所ひずみを測定できる解析手法の開発に成功しました。開発した手法によって金のナノ粒子を解析したところ、棒状の粒子の内部では、先端付近で長さ方向に0.5%膨張したひずみを見出しました。この膨張ひずみは、粒子の先端部分で表面の形状(曲率)が変化しているために生じたこともわかりました。ナノ粒子の形状に由来して内部に局所ひずみが生じるという新たな発見と、ひずみを精密に捉える新規な手法は、ナノ物質内での原子配列と機能の理解に役立つと期待されます。 本研究成果は、2021年7月7日(米国東部標準時間)に科学雑誌「ACS Nano」誌のオンライン版で公開されました。 本研究は、日本学術振興会(JSPS)科研費基盤研究(B) (25289221、18H01830)と科学技術振興機構(JST)戦略的創造研究推進事業 ACCEL「元素間融合を基軸とする物質開発と応用展開」(研究代表者:北川 宏、研究分担者:松村 晶、プログラムマネージャー:岡部 晃博、研究開発期間:2015年8月~2021年3月、(JPMJAC1501))の支援を受けて行われました。 |
【研究背景と内容】
わずかな原子間距離の局所変化 (局所ひずみ) によって、磁性や触媒特性などといった様々な材料物性が左右されます。そのため、材料の局所ひずみを精密に測定する手法が求められてきました。ここ20年間で走査透過電子顕微鏡(STEM)の空間分解能が大きく向上して、原子状態の観察と解析が可能になりました。ナノメートルサイズの金の粒子をSTEMで観察したのが図1aです。ナノ粒子の内部に原子位置に対応した明るい点が整列して現れて見えます。原子は一見すると結晶構造を作って規則正しく周期的に配列しています。
しかし、図1aのSTEM像から原子の位置を特定して詳しく解析すると、場所によって原子は周期配列からわずかにずれて変位していることがわかりました。それをマップにしたのが図1bです。紙面左方向に大きく変位する原子が暗い青、紙面右方向に大きく変位する原子が明るい黄色でそれぞれ表されています。マップを遠目から見てみると、左から右手に向かって滑らかに、青色から黄色へと変化しているように見えます。しかし局所的には波のような細かい変化が全体を覆っています。この細かな変化は、像から原子位置を正しく特定できなかったために含まれる揺らぎノイズで、変位の変化率に相当するひずみを求めるうえで大きな障害になります。このノイズ成分を低減するには、長い時間 (カメラの露光時間に相当) をかけて計測して像質を改善するのがこれまでの一般的方法でしたが、計測時間が長くなるとその間の装置の機械的・電気的な状態のわずかな乱れの影響で像がゆがんでしまうという問題がありました。
そこで研究グループは、様々な分野で活用されているデータ科学手法のガウス過程回帰に着目しました。ガウス過程回帰では、データの真の姿は滑らかに変化すると仮定して、観測データにはこの真の姿に細かな揺らぎノイズが付加されていると考え、この順序をさかのぼることでデータの真の姿を予測します。ガウス過程回帰を図1bのマップに適用したところ、滑らかに変化する主要な成分だけを取り出すことに成功しました (図1c)。得られた変位の棒の長さ方向の変化率を求めて、局所的なひずみの分布をマップしたのが図1dです。開発した手法の精度を確かめるために、元データから直に、およびガウス過程回帰を適用して求めた場合のひずみ値の分布を比較したのが図1eです。元データでは標準偏差で1.1%の広がりがあるのに対して、ガウス過程回帰を用いることでその広がりが0.2 %に狭くなっており、ノイズ成分の除去によって有意に観測されるひずみ量の下限が大きく改善しました。
図1dに戻って見ると、棒の胴体部分と先端の半球部分の境目付近が明るい黄色になっており、この部分では棒の長さ方向に約0.5%膨張した局所ひずみが生じています。ナノ粒子では、表面積を小さくしようとして表面から内部に向かって力が作用するために、収縮ひずみが生じていると考えられていました。しかし、円筒状の胴体部と半球状の先端部からなる棒状の粒子では、2つの部分の表面曲率が異なることから内部にかかる力の向きと大きさに違いが生まれて、局所的に膨張するひずみ場が生ずることがわかりました。このように、原子位置の精密な解析が可能になって、ナノ粒子の局所形状によって内部のひずみの状態が変化することが発見できました。この新たな発見と、本成果で生み出された精密な解析手法は、ナノ構造材料の原子配置とそれによって引き起こされる機能に関する理解を深めることにつながると期待されます。

(b) 元データから得た原子変位マップ。紙面左方向への大きい変位が暗い青、紙面右方向への大きい変位が明るい黄色で表示される。細かく変化するノイズ成分が目立っている。
(c) ガウス過程回帰によって予測された真の変位。ノイズ成分の除去に成功している。
(d) 紙面横方向の変位の変化率(局所ひずみ)マップ。明るい黄色になっている両端部分では膨張ひずみが生じている。
(e) 元データとガウス過程回帰後のひずみ分布。ガウス過程回帰を用いることで、分布の広がりが1.1%から0.2%にまで狭まっており、微小な局所ひずみの検出が可能になった。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(B)(25289221、18H01830)
・科学技術振興機構(JST)戦略的創造研究推進事業ACCEL (JPMJAC1501)
【論文情報】
| 雑誌名 | ACS Nano |
| 題名 | Subpercent Local Strains Due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis |
| 著者名 | Kohei Aso*, Jens Maebe, Xuan Quy Tran, Tomokazu Yamamoto, Yoshifumi Oshima,Syo Matsumura |
| 掲載日 | 2021年7月7日(米国東部標準時間)にオンラインで掲載 |
| DOI | 10.1021/acsnano.1c03413 |
令和3年7月13日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/07/13-1.html学生のGUPTAさんとPATNAIKさんが第70回高分子学会年次大会において優秀ポスター賞を受賞
学生のGUPTA, Agmanさん(博士後期課程3年、物質化学領域、松見研究室)とPATNAIK, Kottisa Sumalaさん(博士前期課程1年、物質化学領域、松見研究室)が第70回高分子学会年次大会において優秀ポスター賞を受賞しました。
高分子学会は、高分子科学と技術及びこれらに関連する諸分野の情報を交換・吸収する、さまざまな場を提供しています。会員はこれらの場を通じ、学術的向上や研究の新展開のみならず会員相互の人間的な触れ合いや国際的な交流を深めています。
優秀ポスター賞は、高分子学会年次大会において、優れたポスター発表を行った発表者に授与されるもので、もって発表を奨励し、高分子科学ならびに同会の発展に資することを目的としています。
第70回高分子学会年次大会は、5月26日~28日にかけてオンラインで開催されました。
■受賞年月日
令和3年5月28日
【GUPTA, Agmanさん】
■発表題目
リチウムイオン二次電池のシリコン系アノードを安定化する架橋型BIAN系共役系高分子
Crosslinked BIAN Polymer Matrices to Stabilize Silicon Anode in Lithium Ion Secondary Batteries
■研究者、著者
〇Agman Gupta, Rajashekar Badam, and Noriyoshi Matsumi
■受賞対象となった研究の内容
従来型のグラファイトの約10倍の理論放電容量を有しているシリコンは次世代リチウムイオン二次電池用の負極として多大な注目を集めており、活発な研究が展開されている。一方、充放電におけるシリコン粒子の大幅な体積膨張・収縮により粒子の破壊や表面被膜の破壊、集電体からの剥離が問題となり、実用に適した系の創出には至っていない。本研究ではBIAN型共役系高分子を1,6-ジブロモヘキサンとの四級化反応により架橋した高分子材料を負極バインダーとして検討した。その結果、1000サイクル以上にわたって約2500 mAhg-1(Si)の放電容量を維持し、卓越した特性を発現した。
■受賞にあたって一言
I am full of gratitude towards my Prof. Noriyoshi Matsumi for providing me with his immense support, encouragement, and guidance throughout my studies. Also, I am thankful to Senior lecturer Dr. Rajashekar Badam for his motivation and worthy insights that always encouraged me to work hard. I would like to thank MEXT and JST-Mirai (Grant Number: JP18077239) for providing financial support. I am thankful to all JAIST staff (teaching and non-teaching) for providing a healthy scientific environment with good facilities so that students like me can comfortably conduct quality research work. I am deeply motivated from within to pursue my passion for science and contribute to society by using my scientific endeavors for public benefit. In this regard, I have been studying and conducting research that is aimed towards developing Li-ion batteries with high energy density for future applications in portable electronic devices, electric vehicles (EVs), hybrid electric vehicles (HEVs), etc.


【PATNAIK, Kottisa Sumalaさん】
■発表題目
高速充放電能と長期耐久性を併せ持つバイオベース型リチウムイオン二次電池負極活物質
Bio-derived Lithium-ion Battery Anode Material for Fast Charging and Long-cycle Life
■研究者、著者
〇Kottisa Sumala Patnaik, Yueying Peng, Rajashekar Badam, Tatsuo Kaneko, and Noriyoshi Matsumi
■受賞対象となった研究の内容
今日、リチウムイオン二次電池研究において急速充放電技術の開発は最も重要な側面の一つとなっています。ガソリンスタンドでの数分の停車で給油可能なガソリン車と比較して、EV車の充電に要する長い充電時間は消費者心理に多大に影響し、技術の広範な普及への足かせとなっています。本研究では耐熱性のバイオベースポリマーであるポリベンズイミダゾールを焼成することにより得られた高濃度窒素ドープハードカーボンをリチウムイオン二次電池の負極活物質として用いることにより9分間での充電と1000サイクル以上のサイクル耐久性を同時に実現できることが見出されました。見出された知見を活かしつつさらなる系の発展が期待されます。
■受賞にあたって一言
At the outset, I want to express my heartfelt gratitude to Prof. Noriyoshi Matsumi for his invaluable guidance in my research work. I thank Prof. Tatsuo Kaneko for opportunity of collaboration under SIP project. I also want to thank Senior lecturer Dr. Rajashekar Badam for incessantly providing me with his suggestions at every step of my research work. I believe research has been very interesting for me especially because of extremely supportive lab mates. I am very grateful to every member of Matsumi Lab for helping me in many small and big ways to carry out my research work smoothly. Lithium ion batteries have brought a lot of convenience and comfort into our everyday life. Any research in this field adds a significant impact at large. I believe lithium-ion batteries have the potential to impact human life at even greater scale than they currently do. Fast charging batteries with long cycle life is one of the fields in maximum demand owing to their applicability in electric vehicles. The prospect of using a vehicle not powered by fossil fuel but delivering equivalent capability to a fossil fuel powered vehicle inspired me to carry out my research in this field of 'Fast Charging Lithium-ion Batteries". I intend to dedicate my future research endeavors in this field.


令和3年7月6日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2021/07/06-1.html物質化学領域の松村研究室の論文が国際学術誌の表紙に採択
物質化学領域の松村 和明教授、ラジャン ロビン助教らの論文が英国王立化学会(RSC)刊行のMaterials Advances誌の表紙(Back cover)に採択されました。
本研究は科研費および科学技術振興機構(JST)「研究成果最適展開支援プログラム(A-STEP)」の支援により行われました。
■掲載誌
Materials Advances, 2021, 2, 1139-1176 掲載日2021年1月15日
■著者
Robin Rajan*, Sana Ahmed, Neha Sharma, Nishant Kumar, Alisha Debas, and Kazuaki Matsumura*
■論文タイトル
Review of the current state of protein aggregation inhibition from a materials chemistry perspective:special focus on polymeric materials
■論文概要
タンパク質の凝集抑制効果を持つ物質について、特に高分子化合物を中心にその合成方法や機能、応用などをまとめた総説論文です。神経変性疾患の治療や予防、バイオ医薬品の生産プロセスの効率化などに期待出来る最新の研究成果をまとめています。
表紙詳細:https://pubs.rsc.org/en/content/articlelanding/2021/ma/d1ma90025k#!divAbstract
論文詳細:https://pubs.rsc.org/en/content/articlelanding/2021/ma/d0ma00760a#!divAbstract

令和3年3月3日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2021/03/03-1.htmlリチウムイオン2次電池の長期的耐久性の課題解決に資する超高耐久性バインダーを開発
リチウムイオン2次電池の長期的耐久性の課題解決に資する
超高耐久性バインダーを開発
ポイント
- リチウムイオン2次電池の長期的耐久性の課題の解決に資する超高耐久性負極バインダーの開発に成功した。
- 1700回の充放電サイクルを経ても95%の容量維持率を示した。
- 本バインダー材料を用いた系ではPVDF系で顕著であった電解液の電気分解が抑制された。
- 充放電サイクル後に、本バインダー材料を用いた電池系ではPVDF系と比較して大幅に低い(45%減少)内部抵抗が観測された。
- 各種電気化学測定により、負極内部のリチウムイオンの拡散性に優れていることが分かった。本バインダー系ではイオンの拡散係数がPVDF系を15%上回った。
- ヤング率、引張強度のいずれにおいても本バインダーはPVDFと比較して大幅に優れた力学的強靭さを示した。
- 電極―電解質界面抵抗を低減できる高耐久性バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が期待される。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野稔、石川県能美市)の先端科学技術研究科 物質化学領域の松見 紀佳教授、環境・エネルギー領域の金子 達雄教授、バダム ラージャシェーカル講師、アグマン グプタ博士後期課程学生、アニルッダ ナグ元博士研究員は、リチウムイオン2次電池*1の耐久性を大幅に向上させる負極バインダー材料(図1)の開発に成功した。 リチウムイオン2次電池は、一般ユーザーが広く認識しているように充放電能力が経年劣化することが知られている。この問題は、EV用途を始めとする高付加価値製品においては更に深刻な課題となる。リチウムイオン2次電池の劣化要因は極めて多岐にわたるが、様々な電極内における副反応によるバインダーを含む電極複合材料の変性、電極/集電体の接着力の劣化が主要因の一つと考えられている。 本バインダー材料は、アセナフテキノンと1,4-フェニレンジアミンとを酸触媒の存在下で重縮合することにより合成した(図2)。 開発したリチウムイオン2次電池用バインダーは、長く検討されてきたポリフッ化ビニリデン(PVDF)と比較すると、LUMO*2,3が低い電子構造的特徴を有し(図3)、その結果として電解液の過剰な分解による厚い被膜形成を効果的に抑制した。 サイクリックボルタンメトリー*4後に見積もられたイオン拡散係数はPVDF系と比較して15%高い値となった。また、リチウム脱挿入ピークの電位差(オーバーポテンシャル)は本バインダー材料系においてPVDF系と比較して100mV減少し、より容易なリチウムイオンの拡散を支持する結果となった。充放電後の電池セルの界面抵抗*5も本バインダーにおいて大幅に低い値を示した(62Ω;PVDF系では110Ω)(図4)。 その結果として本バインダー高分子系では1735回の充放電サイクルを経ても95%の容量維持率を示し、非常に優れた耐久性が明らかとなった(図5)。 長期充放電後の負極のXPS測定より、バインダー材料由来の窒素原子に由来するピークが明瞭に観測されたことから、電極表面に形成されている被膜は極めて薄いことが示唆された。また、バインダー構造の一部が顕著にリチウムドープされていることも明らかとなった。長期充放電後の負極のSEM像では、PVDF系では500サイクル後に大きなクラックの形成と共に集電体から剥離した様子も観測されたが、本バインダー系では1735サイクル後にも僅かなクラックの形成が観測されるにとどまった。 なお、本研究はJST未来社会創造事業の支援を受けて実施された。 |
本成果は「ACS Applied Energy Materials」(米国化学会)オンライン版に2月17日に掲載された。
| 題目 | Bis-imino-acenaphthenequinone-Paraphenylene-Type Condensation Copolymer Binder for Ultralong Cyclable Lithium-ion Rechargeable Batteries |
| 著者 | Agman Gupta, Rajashekar Badam, Aniruddha Nag, Tatsuo Kaneko and Noriyoshi Matsumi |
| DOI | 10.1021/acsaem.0c02742 |
【今後の展開】
セル構成や充放電条件を最適化し、最も優れた特性を有する蓄電デバイスの創出に結びつける。
更に異なる材料組成から成る高容量負極材料への適用を進めつつある。
電極―電解質界面抵抗を大幅に低減できる機能性高分子バインダーとして、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用が見込まれる。





【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 LUMO:
電子が占有していない分子軌道の中でエネルギー準位が最も低い軌道を最低空軌道(LUMO; Lowest Unoccupied Molecular Orbital)と呼ぶ。
*3 HOMO:
電子が占有している分子軌道の中でエネルギー準位が最も高い軌道を最高被占軌道(HOMO; Highest Occupied Molecular Orbital)と呼ぶ。
*4 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
*5 電極―電解質界面抵抗:
エネルギーデバイスにおいては一般的に個々の電極の特性や個々の電解質の特性に加えて電極―電解質界面の電荷移動抵抗がデバイスのパフォーマンスにとって重要である。交流インピーダンス測定を行うことによって個々の材料自身の特性、電極―電解質界面の特性等を分離した成分としてそれぞれ観測し、解析することが可能である。
令和3年3月1日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/03/01-1.html




