研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。学生のXIONGさんがEM-NANO 2025においてStudent Awardを受賞
学生のXIONG, Weiさん(博士後期課程3年、ナノマテリアル・デバイス研究領域、大島研究室)が、The 10th International Symposium on Organic and Inorganic Electronic Materials and Related Nanotechnologies(EM-NANO 2025)において、Student Awardを受賞しました。
EM-NANO 2025は、有機・無機エレクトロニクス材料とナノテクノロジーに関する国際シンポジウムで、令和7年6月11日~14日にかけて、福井県福井市のAOSSA(福井県県民ホール)にて開催されました。
同シンポジウムでは、全体講演(Plenary lectures)や招待講演、特別セッションのほか、開催10回目を記念する式典も行われ、エレクトロニクス分野における最新の研究成果について活発な議論が行われました。
※参考:EM-NANO 2025
■受賞年月日
令和7年6月14日
■研究題目、論文タイトル等
Interlayer fracture of multilayer MoS2 evaluated by in situ transmission electron microscopy
■研究者、著者
Wei XIONG, Lilin XIE, Yoshifumi OSHIMA
■受賞対象となった研究の内容
引張変形中の多層MoS₂ナノシートの破断プロセスをin situ透過型電子顕微鏡(TEM)を用いて観察し、新たな層間破断メカニズムを明らかにしました。亀裂は異なる層のジグザグ状の縁に沿って伝播し、層間相互作用と摩擦の弱さにより段差構造を形成していました。この結果は、MoS₂の層間結合に関する従来の計算シミュレーションなどに一石を投じており、ナノエレクトロニクスやフレキシブルデバイス応用における二次元材料の機械的特性と信頼性に関する新たな知見を提供するものです。
■受賞にあたって一言
It is my great honor to receive the "Student Award" at EM-NANO 2025. The recognition from the EM-NANO 2025 committee for my research and presentation has greatly encouraged me to continue exploring the intrinsic properties of 2D materials. I feel fortunate to have successfully built a stable platform for atomic-resolution in situ tensile experiments. However, this achievement would not have been possible without the invaluable support and guidance of my supervisor, Prof. Yoshifumi Oshima, to whom I would like to express my deepest gratitude. I would also like to thank Dr. Lilin Xie, whose research provided both confidence and convenience during my work. In addition, I sincerely appreciate the help and support from Senior Lecturer Kohei Aso and all the laboratory members, both in my research and daily life.
令和7年7月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/07/17-1.html電子顕微鏡とデータ科学の融合による新奇ナノ物性の探索


電子顕微鏡とデータ科学の融合による
新奇ナノ物性の探索
ナノ物性顕微探索研究室
Laboratory on Microscopic Nano-characterization
教授:大島 義文(OSHIMA Yoshifumi)
E-mail:
[研究分野]
電子顕微鏡、表面界面物性、ナノ物質
[キーワード]
オペランド観察、新計測技術、データ科学
研究を始めるのに必要な知識・能力
研究は、新しい何かを発見することです。そのなかでいちばん重要なのは「あきらめない」という強い気持ちです。能力としては、数学と物理の基礎知識を持っていることが望ましいです。
この研究で身につく能力
[基礎]:実験・学習・議論をとおして、固体物理学に対する深い理解が身につきます。
[技術]:電子顕微鏡、真空装置、3D-CADソフトの使い方を学びます。
また、Pythonプログラミングによるデータ解析を学びます。いずれも基礎から始めることができます。
[その他]:定期ミーティングでの発表をとおして、自分の研究を他者に分かりやすく伝えるスキルを学びます。
【就職先企業・職種】 電気・材料メーカー、材料分析会社、大学の技術職員など
研究内容

図1 (a) 実験の模式図。試料を保持するための装置 (試料ホルダー) は研究室で独自に開発しました。白金原子鎖の (b) コンダクタンス、(c) 剛性が測定できました。(d) 電子顕微鏡像。白金は暗く見えています。AとBにおいて、左右の白金を橋渡ししているのが単原子鎖です。

図2 (a) 金ナノロッドの電子顕微鏡像。奥行き方向にならぶ金原子の列が明るい点として見えています。(b) 従来手法で測定した原子変位と (c) データ科学で処理した原子変位。原子が正常な位置から左にずれるほど暗い青色、右にずれるほど明るい黄色で示されます。
本研究室では、ナノ材料がしめす新しい現象を探索しています。そのために、次のような研究に励んでいます。
☑ 電子顕微鏡によるナノ~原子スケールでの材料観察
☑ 材料の力や電気化学特性を測定できる新しい装置の開発
☑ データ科学の応用によって電子顕微鏡像から重要な情報を抽出
具体的な研究例を以下に示します。
よく伸びる白金原子の鎖状物質
電子顕微鏡のなかで材料を動かしながら、材料の電気伝導度、剛性、原子のならびを同時に測定できる特殊な試料ホルダーを自作しました1。このホルダーを用いて、幅が原子1個、長さが原子2~5個の白金鎖状物質の特性を調べました (図1)2。生活のなかで目にするふつうの白金は、原子が3次元的に結合しており、わずか数%しか伸びません。しかし、鎖状物質はもとの状態から+24%まで伸びました。1次元の単原子鎖にすることで、白金の結合特性が大きく変わることを発見しました。
データ科学による原子配列の解析
原子の正常な位置からのずれ(原子変位)を測定しました3。 従来の方法では、変位量が小刻みに変化して見えます (図2b)。これは原子変位の情報ではなく、解析のじゃまをするノイズ成分です。そこで、データ科学手法のガウス過程回帰を用いることで、原子変位の情報を抽出することに成功しました (図2c)。測定可能な最小の原子変位は0.7pm(ピコメートル、1兆分の1メートル)ときわめて小さく、材料のなかで生じる2.4pmの原子変位を検出することに成功しました。
主な研究業績
- J. Zhang, et al., Nanotechnology 31 (2020) 205706
- J. Zhang, et al., Nano letters 21 (2021) 3922
- K. Aso, et al., ACS Nano 15 (2021) 12077
使用装置
☑ 超高真空透過型電子顕微鏡
☑ 高度な物性測定をおこなうための電子顕微鏡ホルダー
☑ 3D-CADやデータ解析がおこなえるワークステーションPC
研究室の指導方針
研究室ミーティングを毎週おこなっています。担当の学生が、研究の進捗状況や、興味をもった論文について紹介し、みんなでディスカッションします。担当の頻度はおよそ3週間に1回です。固体物理を学ぶための読書会もあります。学生のあいだでの学びあい・教えあいや、ディスカッションを推奨しています。コミュニケーション能力を高めるために、国内外の学会で発表することも推奨しています。博士学生は、自らの研究に集中して科学雑誌に論文を投稿できるよう、最大限サポートします。
[研究室HP] URL:https://www.jaist-oshima-labo.com/
学生のXUさんがEM-NANO 2025においてStudent Awardを受賞
学生のXU, Yuanzheさん(博士後期課程3年、ナノマテリアル・デバイス研究領域、大島研究室)が、The 10th International Symposium on Organic and Inorganic Electronic Materials and Related Nanotechnologies(EM-NANO 2025)において、Student Awardを受賞しました。
EM-NANO 2025は、有機・無機エレクトロニクス材料とナノテクノロジーに関する国際シンポジウムで、令和7年6月11日~14日にかけて、福井県福井市のAOSSA(福井県県民ホール)にて開催されました。
同シンポジウムでは、全体講演(Plenary lectures)や招待講演、特別セッションのほか、開催10回目を記念する式典も行われ、エレクトロニクス分野における最新の研究成果について活発な議論が行われました。
※参考:EM-NANO 2025
■受賞年月日
令和7年6月14日
■研究題目、論文タイトル等
Microscopic study of Kanazawa gold leaves
■研究者、著者
Yuanzhe Xu, Satoshi Ichikawa (大阪大学) , Kohei Aso, Hideyuki Murata, Yoshifumi Oshima
■受賞対象となった研究の内容
超薄膜(約100~200 nm)である金沢金箔の組織変化を調査しました。常温で処理されたにもかかわらず、焼鈍や熱間圧延を行わなくても、面心立方(FCC)金属において強い{001}テクスチャが形成されることは、長年の謎でした。今回、EBSDとTEMを用いて、No. 4金箔において[101]方向に沿って幅約100nmのスリップバンドが形成され、{011}-<011>スリップシステムと一致することを発見しました。この滑り系はFCC金属では稀な現象であり、超薄膜による活性化が原因と考えられます。この現象と交差滑り活動が、ハンマー加工中の{001}組織の形成を促進しています。
■受賞にあたって一言
It is a great honor to receive the "Student Award" at EM-NANO2025. I am truly encouraged by this recognition from the committee, which strengthens my determination to further explore the unique deformation mechanisms of Kanazawa gold leaf. As this research is closely tied to the cultural and scientific heritage of Kanazawa and the Hokuriku region, receiving this award at a local conference is especially meaningful to me. This achievement would not have been possible without the invaluable support and guidance of my supervisor, Prof. Yoshifumi Oshima, and the generous assistance of Specially Appointed Professor Satoshi Ichikawa from the Research Center for Ultra-High Voltage Electron Microscopy, Osaka University. I would also like to thank Senior Lecturer Kohei Aso and all the laboratory members for their generous support in both research and daily life.
令和7年7月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/07/17-2.htmlナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発 ― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―

ナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発
― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―
【ポイント】
- 高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発
- 欠陥を多く含むメタチタン酸ナノ粒子の三次元結晶構造の決定に成功
- 多様な結晶構造をとり得る金属オキシ水酸化物ナノ粒子の構造解明に役立つと期待
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市) ナノマテリアル・デバイス研究領域の麻生浩平講師、大島義文教授、宮田全展講師 (研究当時)、同大学ナノマテリアルテクノロジーセンターの東嶺孝一技術専門員、日本製鉄株式会社 技術開発本部の神尾浩史主幹研究員らの研究グループは、高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発しました。これにより、従来のX線回折法(XRD)*1などでは困難だった、欠陥を多く含むメタチタン酸ナノ粒子の結晶構造を決定することに成功しました。メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました。酸素と金属で構成される金属酸化物や、さらに水素が加わった金属オキシ水酸化物は、多様な結晶構造をとり、それに応じて多彩な物性を発現することが知られています。格子相関解析は、このような材料の構造解明に弾みをつける新たな手法であり、多彩な物性の理解に貢献すると期待されます。 本研究成果は、2025年4月28日 (英国標準時間)に科学雑誌「Communications Chemistry」誌のオンライン版で公開されました。 |
【研究の背景及び概要】
酸素と金属で構成される金属酸化物ナノ粒子や、水素が加わった金属オキシ水酸化物ナノ粒子は、現代社会に欠かせない触媒、エネルギー変換、吸着材として注目されています。これらのナノ粒子は、組成が同じでも異なる構造をとり、異なる物性を示します。つまり、物性を真に理解する上で、合成されたナノ粒子の形状や構造の解明は欠かせません。典型的な構造解析として、X線回折法やラマン分光法*2があります。しかし、サイズが数ナノメートル (nm, 十億分の一メートル) 程度のナノ粒子の場合、ピークが明瞭でないため解析が困難です。また、今回の研究対象とした、金属オキシ水酸化物のひとつであるメタチタン酸は、欠陥を多く含むため構造解析がより困難となっていました。一方、透過電子顕微鏡 (TEM)*3や走査TEM (STEM)*4は、原子配列を可視化できますが、得られる情報は投影した二次元像です。
そこで、三次元の結晶構造を明らかにするため、多数のメタチタン酸ナノ粒子のTEM像を異なる様々な方位から取得しました。様々な方位から多数の像を得るのは、生物分野で利用される単粒子解析と類似していますが、本研究では異なる解析手法を採用しています。単粒子解析では、対象物の形状が均一であると仮定し、多数の像を観察方位ごとに分類して足し合わせることで、像の質を高めます。しかし、メタチタン酸ナノ粒子の場合、形状が均一ではないため、従来の方法をそのまま応用することはできませんでした。そこで、今回開発した手法では、像の足し合わせではなく、周期性や格子定数に敏感な結晶格子の間隔や異なる格子間の角度に着目しました。本手法は、間隔や角度の相関を統計的に解析することで、結晶構造の特徴を抽出しようとした点に新規性があります。
メタチタン酸ナノ粒子は、TEM試料用の支持膜上にランダムな方位を向いて分散するので、様々な方位からの粒子の原子分解能TEM像が得られます (図1a)。得られたTEM像から、画像処理によって個々のナノ粒子を検出し (図1b)、そのナノ粒子にガウス関数のマスクをかけて高速フーリエ変換 (FFT) パターンを得ました(図1c)。FFTパターンで観察されるスポットは、ナノ粒子の結晶格子の周期を反映します。異なるスポットの配置から、格子の間隔や角度の相関 (格子相関) が分かります。この処理を、500枚のTEM像で撮影された1300個のナノ粒子に対して行うことで、メタチタン酸ナノ粒子がもつ特徴的な格子相関を統計的に得ることが出来ました (図1d)。異なる観察方位に対する格子相関を組み合わせて解析することで、構造に関する三次元情報が得られます。
解析の結果、メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました(図1e)。この構造は、密度汎関数理論による計算*5でも安定であることが確認されました(図1f)。また、原子の個数や原子番号をより直接的に反映する環状暗視野STEM像*6(図1g)とも整合しており、提案する構造は妥当であると判断しました。
本研究で開発した格子相関解析は、従来と比べて1/20から1/500程度の低い電子線照射量で、三次元的な結晶構造の解明を可能とします。今後は、電子線に敏感なため解析が困難だった、金属オキシ水酸化物ナノ粒子や有機物を含むナノ材料への展開が期待されます。新規材料探索は理論計算による研究が多いなかで、本手法は解析の自動化が可能であり、実験による新たなアプローチを提示できると考えています。これにより、より適切な材料設計や高性能デバイスの開発に弾みがつくと期待されます。
図1 (a) HRTEM像。暗いコントラストで示されるメタチタン酸ナノ粒子が見られる。(b) 画像処理によって粒子領域を検出した図。粒子ごとに色分けして塗りつぶしている。(c) b中の中央下、白い丸とバツでマークされた粒子のFFT図形。(d)格子相関マップの一例。ここでは(004)面と(110)面、(002)面と(110)面の組み合わせがスポットとして現れている。(e)解析から提案された結晶模型。(f)結晶模型について計算した環状暗視野STEM像。(g)メタチタン酸ナノ粒子の環状暗視野STEM像。 |
【論文情報】
雑誌名 | Communications Chemistry |
論文名 | Three-dimensional atomic-scale characterization of titanium oxyhydroxide nanoparticles by data-driven lattice correlation analysis |
著者 | Kohei Aso, Koichi Higashimine, Masanobu Miyata,Hiroshi Kamio,and Yoshifumi Oshima |
掲載日 | 2025年4月28日 |
DOI | doi.org/10.1038/s42004-025-01513-2 |
【用語説明】
物質の平均的な結晶構造を調べる代表的な技術。X線を試料に照射してプロファイルを取得し、回折ピークの配置を解析することで試料の平均的な結晶構造が得られる。
物質にレーザー光を照射し、散乱された光の波長変化(ラマン散乱)を解析することで、物質の化学結合や結晶構造を得る手法。
電子線を試料に透過させ、得られた投影像から結晶構造を観察する手法。電子線を使うことを除いて、原理的には一般的な光学顕微鏡と同様。
0.1 nm程度に絞った電子線を試料上で走査し、試料各点からの信号によって結像する手法。
原子や分子の電子状態を理論に基づき計算する手法。ここでは、結晶構造のサイズ(格子定数)や原子位置をわずかに変化させながら計算を繰り返し、構造の安定性を評価した。
STEMのうち、前方散乱された電子をマッピングした像。原子番号や厚みの違いをより直接的に反映した像が得られる。
令和7年4月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/04/30-1.html二次元格子をひねって重ねると一次元超格子が出現 ――二次元原子層物質が一次元物性研究の新しいプラットフォームに――

![]() ![]() ![]() ![]() |
東京大学 北陸先端科学技術大学院大学 大阪大学 科学技術振興機構(JST) |
二次元格子をひねって重ねると一次元超格子が出現
―― 二次元原子層物質が一次元物性研究の新しいプラットフォームに ――
【ポイント】
- シート状の原子層二枚を、特定の角度に向きをずらして重ねると、一方向に縞模様を持つ一次元モアレ超格子構造が形成できることを発見しました。
- 従来のモアレ超格子は原子層の構造と類似の二次元の周期性を持ちますが、本研究では、一次元の周期性しか持たない新しいコンセプトのモアレ超格子を提案・実証しました。
- モアレ超格子による原子層の性質の人工制御物性変調や、一次元性ならではの異方性の高い新奇物性研究の新しいプラットフォームになることが期待されます。また、素子応用に向けた研究の発展にも寄与することが期待されます。
二次元原子層WTe2のツイスト積層による一次元モアレ超格子の形成
東京大学 生産技術研究所の張 奕勁 助教と町田 友樹 教授らの研究グループは、北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域の大島 義文 教授および高村 由起子 教授の研究グループ、大阪大学大学院 理学研究科の越野 幹人 教授の研究グループと共同で、原子層物質(注1)の人工ツイスト二層構造(注2)において一次元の周期性を持つモアレ超格子(注3)が実現できることを明らかにしました。 本研究では、二テルル化タングステン(WTe2)の原子層二枚を使用し、それぞれの結晶方位に角度差(ツイスト角)を付けた状態で人工的に重ね合わせた構造(ツイスト二層構造)を作製し、透過型電子線顕微鏡(TEM)を用いて原子の配列パターンを直接観察しました。一般的にツイスト二層構造で出現するモアレ超格子内の原子配列パターンは二次元の周期性を持って変化しますが、本研究では特定のツイスト角において配列パターンの変化が一次元的になる、すなわち周期性が一方向のみになることを世界で初めて示しました(図1)。また、本モアレ超格子が従来のモアレ超格子とは異なる原理で形成されていることを理論的に突き止めました。一次元性による母物質の物性変調に伴う新奇物性探索の新しい舞台になることが期待されます。 |
図1:透過型電子線顕微鏡を用いたツイスト二層WTe2の原子像観察。
(a)WTe2原子層の模式図。a軸方向とb軸方向で周期性が異なる。(b,c)WTe2原子層二枚をツイスト角62度(b)および58度(c)でツイスト積層させた構造。単独の原子層が持つ周期性と異なる一次元的な周期性が出現する。(d) 試料構造および実験の模式図。h-BNは試料の保護層。(e,f)ツイスト角62度(e)および58度(f)で作成したツイスト二層WTe2試料の原子像。白いスケールバーは10 nm(ナノメートル)。(g,h)62度(g)および58度(f)ツイスト試料の電子回折像。緑と茶色の点がそれぞれの原子層の構造の周期性を示す回折スポット。赤枠(e)と青枠(f)で示された回折スポットのペアがモアレ超格子の周期性を表す。どちらの場合も回折スポットのペアが平行に並んでいることから、モアレ超格子が一方向のみに周期性を持っていることがわかる。青いスケールバーは2 nm-1(ナノメートルインバース)。 |
【発表者コメント:張 奕勁助教の「もしかする未来」】
本研究は偶然の発見から始まりました。パワーポイントの上で結晶構造を二つ重ね、片方をぐるぐる回転させていたところ一瞬縞模様が見えたのがきっかけです。モアレ超格子の原子配列を実際に観察し、また、理論的にその起源と一次元性を示すことができました。カーボンナノチューブなどの一次元物質は低次元特有の現象を示しますが、その特性を残したまま大面積化することは困難でした。今回、ナノチューブよりも面積の大きい原子層物質を用いて一次元構造が作製できたので、今後は一次元性を反映した物性の探索を進めていきたいと思います。
【発表内容】
原子層物質の人工ツイスト積層構造技術は、現在の原子層物質を用いた基礎物性研究の中心的な技術の一つです。異なる原子層物質を積層する場合だけでなく、同一の原子層物質を積層する場合であっても、それぞれの結晶方位をずらして積層(ツイスト積層)すると、元の物質の持つ周期性よりも大きな周期性を持つモアレ超格子が出現します。モアレ超格子が出現することで、元の原子層物質の物性を大きく変調し、新奇物性を誘起することが可能になります。例えば、単層グラフェンをツイスト角1.05度でツイスト積層すると、低温で超伝導転移を誘起できることが知られています。一般的に、モアレ超格子の大きさはツイスト角の増加とともに小さくなるため、これまでの研究は低ツイスト角領域(0度付近)を中心に行われてきました。
この度、本研究チームは、原子層物質二テルル化タングステン(WTe2)を用いた研究から、高ツイスト角でもモアレ超格子が出現し、さらに、特定の角度(62度と58度付近の二点)では一次元的なモアレ構造が出現することを発見しました。WTe2の特徴は、結晶構造が異方的、すなわち、結晶方位によって周期の大きさが異なることです(図1a)。代表的な原子層物質であるグラフェンや二セレン化タングステン(WSe2)は等方的(物理的な性質が方向によって異ならないこと)な結晶構造を持っており、高ツイスト角ではモアレ超格子は出現しません。本研究では、透過型電子顕微鏡(TEM)を用いてツイスト二層WTe2の原子配列パターンを直接観察することで高ツイスト角領域における一次元モアレ超格子を実験的に示しました(図1c,d)。また、構造の周期性を示す電子回折パターン(注4)において、モアレ超格子の周期を示す回折スポットのペアが全て平行になるという特徴を観測しました(図1e,f)。
モアレ超格子の周期性は元の原子層の持つ周期性から説明できますが、従来のモデルでは高ツイスト角領域におけるモアレ超格子を説明できません。本研究では従来のモデルを拡張することで、高ツイスト角領域においてモアレ超格子が出現し、さらに、62度と58度付近でモアレ超格子が一次元になる、すなわち、周期性が一方向のみになることを理論的に示すことに成功しました(図2)。加えて、電子回折パターンのシミュレーションから、実験的に観測された回折スポットペアの特徴(図1e,f参照)が一次元性を示す証拠になっていることを理論的に示すことにも成功しました(図3)。また、一次元モアレ超格子の出現はWTe2に特異な現象ではなく、異方的な結晶構造を持つすべての原子層物質で起こりうる普遍的な現象であることも明らかになりました。
一次元的なモアレ超格子を形成することで、従来の二次元的なモアレ超格子で誘起された物性変調とは異なる変調効果が期待されます。従来、カーボンナノチューブなど一次元物質の持つ物性の研究や素子応用には、無数のチューブを配向させた膜の形成という技術的な障壁がありましたが、人工ツイスト積層構造の一次元モアレ超格子ではマイクロメートルスケールで一次元構造が広がるため、基礎研究のみならず素子応用に向けた研究の発展にも寄与することが期待されます。
図2:近似三角格子モデルを用いた一次元モアレ超格子の再現。
(a)WTe2原子層の結晶構造。格子ベクトルa1、a2で囲われた長方形がユニットセル(周期一つ分の構造)。W原子とTe原子を区別せず原子位置に多少の動きを許容すると、格子ベクトルl1、l2で定義された三角格子(灰色点線)で近似できる。近似された格子は正三角形ではなく二等辺三角形になっている。(b)近似三角格子をツイスト積層した場合のモアレ超格子。一次元構造が再現されている。 |
図3:人工ツイスト二層WTe2の電子回折パターンのシミュレーション。
従来の低ツイスト角の場合と本研究における高ツイスト角の場合の比較。ベクトルb1、b2はそれぞれ格子ベクトルa1、a2(図2a参照)の周期を示す逆格子ベクトル。黒点と赤点がそれぞれの原子層に由来する原子回折スポット。黒矢印で示された解析スポットのペアがモアレ超格子の周期性(大きさおよび方向)を決定する。低ツイスト角の場合モアレ超格子の周期は様々な方向を向くため、二次元の超格子となる。一方62度と58度付近ではすべて平行になり一方向にしか周期性が存在しないため、一次元の超格子となる。 |
【発表者・研究者等情報】
張 奕勁 助教
町田 友樹 教授
大島 義文 教授
高村 由起子 教授
越野 幹人 教授
【論文情報】
雑誌名 | ACS Nano |
題名 | Intrinsic One-Dimensional Moiré Superlattice in Large-Angle Twisted Bilayer WTe2 |
著者名 | Xiaohan Yang, Yijin Zhang*, Limi Chen, Kohei Aso, Wataru Yamamori, Rai Moriya, Kenji Watanabe, Takashi Taniguchi, Takao Sasagawa, Naoto Nakatsuji, Mikito Koshino, Yukiko Yamada-Takamura, Yoshifumi Oshima & Tomoki Machida* |
DOI | 10.1021/acsnano.4c17317 |
URL | https://doi.org/10.1021/acsnano.4c17317 |
【研究助成】
本研究は、科学技術振興機構(JST) 戦略的創造研究推進事業 さきがけ「トポロジカル材料科学と革新的機能創出(研究総括:村上 修一)」研究領域における「極性二次元物質とそのヘテロ構造におけるバルク光起電力効果(JPMJPR20L5)」、さきがけ「新原理デバイス創成のためのナノマテリアル(研究総括:岩佐 義宏)」研究領域における「顕微分光による二次元物質デバイスの物性開拓(JPMJPR24H8)」、同 戦略的創造研究推進事業 CREST「原子・分子の自在配列・配向技術と分子システム機能(研究総括:君塚 信夫)」研究領域における「原子層のファンデルワールス自在配列とツイスト角度制御による物性の創発(JPMJCR20B4)」、日本学術振興会 科学研究費助成事業 学術変革領域(A)「2.5次元物質科学:社会変革に向けた物質科学のパラダイムシフト」(課題番号:JP21H05232, JP21H05233, JP21H05234, JP21H05235, JP21H05236)、および文部科学省 マテリアル先端リサーチインフラ事業(課題番号:JPMXP1223JI0033)の支援により実施されました。
【用語解説】
原子層物質とは、原子1個または数個分の厚みしかない層状の物質。原子間力で層間が弱く結合しており、二次元物質とも呼ばれる。層状構造を持つ単結晶から、スコッチテープなどの粘着性のテープを貼り付けて剥がすことで得られる(テープに付着している)、数ナノメートル以下まで薄くした二次元シート状の薄膜として作製する。代表例としてグラフェン、二硫化モリブデンなどが挙げられる。
原子層を二つ用意し、それぞれの結晶方位の間に相対的な角度差をつけて人工的に重ねた構造。
複数の原子層物質を重ねた際に出現する新たな周期構造。元の原子層物質の構造が持つ周期とは異なる周期性を持つ。
物質に電子線を照射した際に観察される干渉パターン。物質の構造の持つ対称性や周期性を反映したパターンが出現する。
令和7年3月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/28-1.html学生の中嶋さんが日本顕微鏡学会第67回シンポジウムにおいて学生優秀ポスター賞を受賞
学生の中嶋まいさん(博士前期課程2年、ナノマテリアル・デバイス研究領域、大島研究室)が公益社団法人日本顕微鏡学会第67回シンポジウムにおいて学生優秀ポスター賞を受賞しました。
日本顕微鏡学会は顕微鏡学に関わる研究発表、知識の交換並びに社会との連絡連携の場となり、顕微鏡学の進歩発展を図り、もって社会および産業界に寄与することを目的として、電子顕微鏡(学)に関する理論、基礎的な研究を行うとともに、産業界、医学界、生物界における実際問題への応用研究も盛んに行っています。
同学会第67回シンポジウムは、『GXに貢献する顕微科学の未来』をメインテーマとして、令和6年11月2日~3日にかけて、北海道大学にて開催されました。
学生優秀ポスター賞は、顕微鏡技術(装置・手法)部門、医学・生物科学部門、材料・物質科学部門の各部門ごとに選考が行われ、優れたポスター発表を行った学生に授与されるものです。
※参考:日本顕微鏡学会第67回シンポジウム
■受賞年月日
令和6年11月2日
■研究題目、論文タイトル等
GaSeナノリボンの電子照射によるスイッチング動作の検証
■研究者、著者
中嶋まい、Limi Chen、麻生浩平、高村(山田)由起子、大島義文
■受賞対象となった研究の内容
GaSe(セレン化ガリウム)は光や電子に対して高い光伝導効果が知られている二次元材料であり、超小型スイッチングデバイスへの応用が期待されている。しかし、二次元材料の電子に対する応答を測定することは難しく、電子照射効果の影響は解明されていなかった。
本研究では、二次元材料の転写方法の改善と、独自に開発したその場電子顕微鏡観察法を行い、原子構造の観察をしながら電子照射下の電気伝導測定を行った。この結果、初めて電子照射量に対する電流の増加量(=応答率)を導くことができ、電子照射応答のメカニズムの解明に貢献した。
■受賞にあたって一言
この度は学生優秀ポスター賞を賜り、大変光栄に存じます。本研究の遂行にあたり、丁寧なご指導をしてくださった大島義文教授、高村(山田)由起子教授、および研究室の皆様に深くお礼申し上げます。今後も、二次元材料の物性研究を進めて参ります。
令和7年1月16日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/01/16-1.html非対称な二次元シートを利用したナノサイズの巻物構造の実現 〜高性能な触媒や発電デバイスへの応用に期待〜

![]() |
東京都公立大学法人 国立大学法人筑波大学 国立大学法人東北大学 国立大学法人東海国立大学機構 国立大学法人金沢大学 国立大学法人 |
![]() |
東京都公立大学法人 国立大学法人筑波大学 国立大学法人東北大学 国立大学法人東海国立大学機構 国立大学法人金沢大学 国立大学法人 |
非対称な二次元シートを利用したナノサイズの巻物構造の実現
~高性能な触媒や発電デバイスへの応用に期待~
【概要】
東京都立大学、産業技術総合研究所、筑波大学、東北大学、名古屋大学、金沢大学、北陸先端科学技術大学院大学らの研究チーム(構成員及びその所属は以下「研究チーム構成員」のとおり)は、次世代の半導体材料として注目されている遷移金属ダイカルコゲナイド(TMD)(注1)の単層シートを利用し、最小内径5 nm程度のナノサイズの巻物(スクロール)状構造の作製に成功しました。TMDは遷移金属原子がカルコゲン原子に挟まれた3原子厚のシート状物質であり、その機能や応用が近年注目を集めています。一般に、TMDは平坦な構造が安定であり、円筒などの曲がった構造は不安定な状態となります。本研究では、上部と下部のカルコゲン原子の種類を変えたヤヌス構造と呼ばれるTMDを作製し、この非対称な構造がスクロール化を促進することを見出しました。理論計算との比較より、最小内径が5 nm程度まで安定な構造となることを確認しました。また、スクロール構造に由来して軸に平行な偏光を持つ光を照射したときに発光や光散乱の強度が増大すること、表面の電気的な特性がセレン側と硫黄側で異なること、及びスクロール構造が水素発生特性を有するなどの基礎的性質を明らかにしました。
今回得られた研究成果は、平坦な二次元シート材料を円筒状の巻物構造に変形する新たな手法を提案するものであり、ナノ構造と物性の相関関係の解明、そしてTMDの触媒特性や光電変換特性などの機能の高性能化に向けた基盤技術となることが期待されます。
本研究成果は、2024年1月17日(米国東部時間)付けでアメリカ化学会が発行する英文誌『ACS Nano』にて発表されました。
【研究チーム構成員】
【ポイント】
- 遷移金属ダイカルコゲナイド(TMD)のシートを安定した構造で巻物(スクロール)にする新たな手法を開発。
- TMDの上部と下部の組成を変えた「ヤヌス構造」が、スクロール化を促進することを発見。
- TMDの曲率や結晶の対称性などの制御を通じた触媒や光電変換機能の高性能化が期待。
【研究の背景】
近年、ナノチューブと呼ばれるナノサイズの円筒状物質は、その特徴的な構造に由来する物性、そして触媒や太陽電池等の光電変換デバイス等への応用について世界中で盛んに研究が行われています。一般に、ナノチューブは、厚みが1原子から数原子程度の極薄の二次元的なシート構造を円筒状に丸めた構造を持つナノ物質であり、代表的な物質として、炭素の単原子層であるグラフェンを丸めたカーボンナノチューブが知られています。また、遷移金属原子がカルコゲン原子に挟まれた構造を持つ遷移金属ダイカルコゲナイド(TMD)についても、二次元シートやナノチューブ構造が存在します。最近では、TMDのナノチューブが同軸状に重なった多層TMDナノチューブにおいて、その巻き方に起因する超伝導や光起電力効果を示すことが報告されました。一方、このような多層TMDナノチューブは、様々な直径や巻き方などを持つナノチューブが同軸状に重なっているため、その結晶構造の同定は困難となります。その電気的・光学的性質と構造の相関を明らかにするには、ナノチューブの巻き方を制御することが重要な課題となっていました。
このような課題の解決に向け、これまで主に二つのアプローチが報告されてきました。一つは、多層TMDナノチューブとは別に、構造の同定が容易な単層TMDナノチューブに着目したものです。特に、カーボンナノチューブ等をテンプレートに用いた同軸成長により、単層TMDナノチューブを成長させることができます。本研究チームの中西勇介助教、宮田耕充准教授らは、これまで絶縁体のBNナノチューブの外壁をテンプレートに用いたMoS2(二硫化モリブデン)の単層ナノチューブ(https://www.tmu.ac.jp/news/topics/35021.html)や、様々な組成のTMDナノチューブ(https://www.tmu.ac.jp/news/topics/36072.html)の合成に成功してきました。しかし、同軸成長法では、得られるTMDナノチューブの長さが多くの場合は100 nm以下と短く、物性や応用研究には更なる合成法の改善が必要となっています。もう一つのアプローチとして、単結晶性の単層のTMDシートを巻き取り、各層の結晶方位が揃ったスクロール構造にする手法も知られていました。一般にマイクロメートルサイズの長尺な構造が得られますが、TMDシートを曲げた場合、遷移金属原子を挟むカルコゲン原子の距離が伸び縮みするため、構造的には不安定となります。そのため、得られるスクロール構造も内径が大きくなり、また円筒構造ではなく平坦な構造になりやすいなどの課題がありました。
【研究の詳細】
本研究では、長尺かつ微小な内径を持つスクロール構造の作製に向け、上部と下部のカルコゲン原子の種類を変えたヤヌス構造と呼ばれるTMDに着目しました。このヤヌスTMDでは、上下のカルコゲン原子と遷移金属原子の距離が変わることで、曲がった構造が安定化することが期待できます。このようなヤヌスTMDを作製するために、研究チームは、最初に化学気相成長法(CVD法)(注2)を利用し、二セレン化モリブデン(MoSe2)および二セレン化タングステン(WSe2)の単結晶性の単層シートをシリコン基板上に合成しました。この単層シートに対し、水素雰囲気でのプラズマ処理により、単層TMDの上部のセレン原子を硫黄原子に置換し、単層ヤヌスTMDを作製できます。次に、有機溶媒をこの単層ヤヌスTMDに滴下することで、シートの端が基板から剥がれ、マイクロメートル長のスクロール構造を形成しました(図1)。
図1 単層ヤヌスMoSSeを利用したナノスクロールの作製手法。(a)単層MoSe2の構造モデル。(b)熱CVDシステムの概略図。(c)単層ヤヌスMoSSeの構造モデル。(d)水素プラズマによる硫化プロセスの概略図。(e)ヤヌスナノスクロールの構造モデル。(f)有機溶媒の滴下によるナノスクロールの作製方法の概略図。 ※原論文「Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides」の図を引用・改変したものを使用しています。 |
この試料を電子顕微鏡で詳細に観察し、実際にスクロール構造を形成したこと(図2)、全ての層が同一の方位を持つこと、そして最小内径で5 nm程度まで細くなることなどを確認しました。観察された内径に関しては、ヤヌスTMDのナノチューブでは最小で直径が5 nm程度までは、フラットなシート構造よりも安定化するという理論計算とも一致します。また、このスクロール構造に由来し、軸に平行な偏光を持つ光を照射したときに発光や光散乱の強度が増大すること、表面の電気的な特性がセレン原子側と硫黄原子側で異なること、およびスクロール構造が水素発生特性を有することも明らかにしました。
図2 ナノスクロールの電子顕微鏡写真。
※原論文「Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides」の図を引用・改変したものを使用しています。 |
【研究の意義と波及効果】
今回得られた研究成果は、平坦な二次元シート材料を円筒状のスクロール構造に変形する新たな手法を提案するものです。特に、非対称なヤヌス構造の利用は、様々な二次元シート材料のスクロール化に適用することができます。また、単結晶のTMDを原料に利用することで、スクロール内部の層の結晶方位を光学顕微鏡による観察で容易に同定すること、そして様々な巻き方を持つスクロールの作製が可能になりました。今後、本研究成果より、様々な組成や構造を持つスクロールの実現、電気伝導や光学応答と巻き方の関係の解明、触媒やデバイス応用など、幅広い分野での研究の展開が期待されます。
【用語解説】
タングステンやモリブデンなどの遷移金属原子と、硫黄やセレンなどのカルコゲン原子で構成される層状物質。遷移金属とカルコゲンが1:2の比率で含まれ、組成はMX2と表される。単層は図1aのように遷移金属とカルコゲン原子が共有結合で結ばれ、3原子厚のシート構造を持つ。近年、TMDが持つ優れた半導体特性により大きな注目を集めている。
原料となる材料を気化させて基板上に供給することにより、薄膜や細線を成長させる合成技術。
【発表論文】
タイトル | Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides |
著者名 | Masahiko Kaneda, Wenjin Zhang, Zheng Liu, Yanlin Gao, Mina Maruyama, Yusuke Nakanishi, Hiroshi Nakajo, Soma Aoki, Kota Honda, Tomoya Ogawa, Kazuki Hashimoto, Takahiko Endo, Kohei Aso, Tongmin Chen, Yoshifumi Oshima, Yukiko Yamada-Takamura, Yasufumi Takahashi, Susumu Okada, Toshiaki Kato*, and Yasumitsu Miyata* *Corresponding author |
雑誌名 | ACS Nano |
DOI | https://doi.org/10.1021/acsnano.3c05681 |
本研究の一部は、日本学術振興会 科学研究費助成事業「JP21H05232, JP21H05233, JP21H05234, JP21H05236, JP21H05237, JP22H00283, JP22H00280, JP22H04957, JP21K14484, JP20K22323, JP20H00316, JP20H02080, JP20K05253, JP20H05664, JP21K14498, JP21K04826, JP21H02037, JP22H05459, JP22KJ2561, JP22H05445, JP23K13635, JP22H05441, JP23H00097, JP23K17756, JP23H01087」、文部科学省マテリアル先端リサーチインフラ事業「JPMXP1222JI0015」、創発的研究支援事業FOREST「JPMJFR213X and JPMJFR223H」、戦略的創造研究推進事業さきがけ「JPMJPR23H5」、矢崎科学技術振興記念財団、三菱財団、村田学術振興財団および東北大学電気通信研究所共同プロジェクト研究の支援を受けて行われました。
令和6年1月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/01/18-1.htmlMoS2ナノリボンのエッジが示す特異な力学特性の観測に成功

MoS2ナノリボンのエッジが示す特異な力学特性の観測に成功
ポイント
- 雷、加速度、ガス、臭気などの環境電磁界を計測するセンサーの開発に必要な要素技術として、機械共振器がある。
- ナノスケールの超薄型機械共振器として期待されている、単層2硫化モリブデン(MoS2)・ナノリボンのヤング率測定に成功した。
- リボン幅が3nm以下になると、ヤング率がリボン幅に反比例して増加する特異な性質を発見した。
- リボンのエッジ部分における原子配列の座屈がエッジの強度を高める要因であることを、計算科学手法を用いて解明した。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域の大島義文教授は、サスティナブルイノベーション研究領域の前園涼教授、本郷研太准教授、鄭州大学物理学院の刘春萌講師、張家奇講師らと、独自に開発した顕微メカニクス計測法を用いて、リボン状になった単層2硫化モリブデン(MoS2)膜の力学性質を調べ、リボンのエッジ部分の強度が、リボンの内部より高いことを明らかにした。 単層MoS2ナノリボンは、ナノスケールの超薄型機械共振器への応用が期待されているが、その力学性質の解明が課題となっている。ナノリボンの力学性質について、そのエッジ部分の影響が予想されており、第一原理計算による予測値は報告されているが、明確な結論が得られていない。本研究では、世界唯一の手法である「顕微メカニクス計測法」を用いて、単層MoS2ナノリボンの原子配列を観察しながら、そのばね定数を測定することに成功した。解析の結果、エッジがアームチェア構造である単層MoS2ナノリボンのリボン幅が3nm以下になると、ヤング率が増加することを発見した。リボン幅の減少とともにエッジ構造の物性への寄与が大きくなるため、この結果は、エッジ強度が内部に比べて高いことを示す。 このエッジ構造を第一原理計算で調べたところ、エッジにおいてモリブデン(Mo)原子が座屈しており、硫黄(S)原子へ電荷が移動していることが示唆された。このことから、両原子間に働くクーロン引力の増加が、エッジ強度を高めることに寄与したと説明できる。 |
【研究の背景】
シリコンをベースとした半導体デバイスを凌駕する新奇ナノデバイスの開発、あるいは、加速度、ガス、雷などの環境電磁場を測定するセンサーの開発が精力的に行われている。このような開発に必要な要素技術として、機械共振器[*1]がある。従来、高い剛性を持ち、かつ、高品位な結晶が得られることから水晶が機械共振器として用いられてきたが、近年、ナノスケールの超薄型機械共振器が求められており、その有力候補として単層2硫化モリブデン(MoS2)のナノリボン(ナノメートルサイズの幅に切り出した帯状物質)が挙げられている。しかし、単層MoS2ナノリボンの力学性質は、明らかになっていない。その理由として、物質の力学特性を理解するためには、力学的応答を測定すると同時に材料の結晶構造や形状を観察する必要があるが、そのような観察手法が確立されていないことが挙げられる。
従来手法では、原子配列を直接観察できる透過型電子顕微鏡(TEM)にシリコン製カンチレバーを組み込んだ装置を用いて、カンチレバーの曲がりから測定対象材料に加えた力を求め、それによって生じた変位をTEM像で得ることで、ヤング率(変形しやすさ)を推量している。しかし、この測定法は、個体差があるカンチレバーのばね定数を正確に知る必要があり、かつ、サブオングストローム(1オングストローム(1メートルの100億分の1)より短い長さのスケール)の精度で変位を求める必要があるため、定量性が十分でないと指摘されている。
【研究の内容】
大島教授らの研究グループは、2021年、TEMホルダーに細長い水晶振動子(長辺振動水晶振動子(LER)[*2])を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする「顕微メカニクス計測法」[*3]を世界で初めて開発した。この手法では、水晶振動子の共振周波数が、物質との接触による相互作用を感じることで変化する性質を利用する。共振周波数の変化量は物質の等価バネ定数に対応しており、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)と微小なため、TEMの原子像がぼやけることはない。この手法は、上述した従来手法の問題点を克服するものであり、結果として高精度測定を実現した。
本研究では、この顕微メカニクス計測法を用いて、単層MoS2ナノリボンの力学性質を測定した。特に、アームチェア構造のエッジを持つMoS2ナノリボンに着眼し、そのヤング率の幅依存性について調べた。
具体的には、単層MoS2ナノリボンは、MoS2多層膜の端にタングステン(W)チップを接触させ、最外層のMoS2層を剥離することで作製した(図1)。図2に示す2枚は、それぞれ、同じ単層MoS2ナノリボンを断面から観察したTEM像(2-1)と平面から観察したTEM像(2-2)であり、単層MoS2ナノリボンが、MoS2多層膜とWチップ間に担持した状態にあることが確認できる(図3のイラストを参照)。また、エッジ構造は、平面から観察したTEM像のフーリエパターンから判定でき、アームチェア構造であることが分かった。この平面から観察したTEM像から、ナノリボンの幅と長さを測定し、それに対応する等価ばね定数をLERの周波数変化量から求めることで、このナノリボンのヤング率を得た。図3右側のグラフは、異なるリボン幅に対するヤング率をプロットした結果である。
同グラフから、リボン幅が3 nm以上では、ヤング率は166 GPa前後でほぼ一定であり、一方、リボン幅が2.4 nmから1.1 nmに減少すると、ヤング率は179 GPaから215 GPaに増加することがわかった。リボン幅の減少とともに物性へのエッジ構造の寄与が大きくなることを考慮すると、この結果は、エッジ強度が内部に比べて高いことを示す。
さらに、このアームチェア構造を第一原理計算で調べ、アームチェア・エッジにおいてモリブデン(Mo)原子が座屈し、硫黄(S)原子へ電荷が移動しているという結果を得た。このことから、両原子間に働くクーロン引力が増加することによりエッジ強度が高くなったと説明できた。
本研究成果は、2023年9月11日に科学雑誌「Advanced Science」誌のオンライン版で公開された。
【今後の展望】
現在、雷、加速度、ガス、臭気などの環境電磁界を計測するセンサーの開発が精力的に行われている。このようなセンサーの開発に必要な要素技術の一つが機械振動子である。本研究の成果は、ナノスケールの超薄型機械的共振器の設計を可能にする。近い将来、これを用いたナノセンサーがスマートフォンや腕時計などに組み込まれ、個人がスマートフォンで環境をモニタリングしたり、匂いや味などの情報を数値としてとらえ、自由に伝えることができる可能性がある。
図1.MoS2多層膜の端にタングステン(W)チップを接触し、最外層の単層MoS2膜を剥離する過程を示したイラスト
図2.同じ単層MoS2ナノリボンを断面から観察したTEM像(2-1)と平面から観察したTEM像(2-2)
図3.(左)単層MoS2ナノリボンが、MoS2多層膜とWチップ間に担持した状態を示すイラスト、
(右)アームチェアエッジの単層MoS2ナノリボンに対するヤング率のリボン幅依存性を示すグラフ |
【論文情報】
掲載誌 | Advanced Science(Wiley社発行) |
論文題目 | Stiffer Bonding of Armchair Edge in Single‐Layer Molybdenum Disulfide Nanoribbons |
著者 | Chunmeng Liu, Kenta Hongo, Ryo Maezono, Jiaqi Zhang*, Yoshifumi Oshima* |
掲載日 | 2023年9月11日 |
DOI | 10.1002/advs.202303477 |
【用語説明】
[*1] 機械共振器
材料には、ヤング率、その形状(縦、横、長さ)、質量によって決まる固有振動があり、これを共振周波数と呼ぶ。この共振周波数は、他の材料と接触したり、あるいは、ガス吸着などによる質量変化に応じてシフトする。そのため、この変化から、接触した材料の等価ばね定数や吸着したガスの質量を評価できる。このような評価法を周波数変調法という。本研究でも、周波数変調法によって、単層MoS2ナノリボンのばね定数を算出している。
[*2] 長辺振動水晶振動子(LER)
長辺振動水晶振動子(LER)は、細長い振動子(長さ約3 mm、幅約0.1 mm)を長辺方向に伸縮振動させることで、周波数変調法の原理で金属ナノ接点などの等価バネ定数(変位に対する力の傾き)を検出できる。特徴は、高い剛性(1×105 N/m )と高い共振周波数(1×106 Hz )である。特に、前者は、化学結合の剛性(等価バネ定数)測定に適しているだけでなく、小さい振幅による検出を可能とすることから、金属ナノ接点を壊すことなく弾性的な性質を得ることができ、さらには、原子分解能TEM 像も同時に得られる点で大きな利点をもつ。
[*3] 【参考】「世界初! 個々の原子間の結合強度の測定に成功―強くて伸びる白金原子の鎖状物質―」(2021年4月30日 JAISTからプレスリリース)
https://www.jaist.ac.jp/whatsnew/press/2021/04/30-1.html
令和5年9月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/09/19-1.html学生のXIONGさんが、国際シンポジウムEM-NANO2023においてStudent Awardを受賞

学生のXIONG, Weiさん(博士後期課程2年、ナノマテリアル・デバイス研究領域、大島研究室)が第9回有機・無機エレクトロニクス材料とナノテクノロジーに関する国際シンポジウム(EM-NANO2023)において、Student Awardを受賞しました。
EM-NANO2023は令和5年6月5日~8日にかけて金沢市で開催されました。先端的な材料やそれを用いたデバイスに関する研究に関する講演が約300件あり、そのうち、学生発表が約140件ありました。この中で優れた発表を行った学生10名に対し学生優秀賞が授与されました。
*参考:The 9th International Symposium on Organic and Inorganic Electronic Materials and Related Nanotechnologies (EM-NANO2023)
■受賞年月日
令和5年6月7日
■研究題目、論文タイトル等
引張り変形のその場透過電子顕微鏡法によるMoS2ナノシートのリップル構造評価
■研究者、著者
XIONG, Wei
■受賞対象となった研究の内容
2次元材料の構造的な新しさの一つに、2次元材料の伸縮による原子レベルの波紋構造の形成がある。しかし、このような構造に関する実験的な報告はほとんどない。
本研究では、2つの電極間に吊り下げたMoS2ナノシートを伸張できるin-situ透過型電子顕微鏡(TEM)ホルダーを開発し、MoS2ナノシートの原子レベルの波紋構造を観察することに成功した。得られたTEM像を解析したところ、波紋構造はアームチェア方向に沿って形成されていることがわかった。幾何学的位相解析(GPA)法を用いてTEM像を解析することで、波紋構造の周期と振幅を推定することができた。0.26%、0.51%、0.77%、1.02%の引張ひずみでリップル構造の周期と振幅を推定した。その結果、MoS2ナノシートは引っ張りに対して非線形な力学応答を示すことがわかった。
■受賞にあたって一言
It's my honor to receive the "Student Award" in EM-NANO2023. Participating in this academic conference has benefited me a lot. I have listened to many excellent presentations and read many creative posters at this conference. The experiences and conversations during this trip made me think more deeply about my research. I will also put the inspiration and ideas I got at this conference into practice in my future experiments. For this honor, I would like to express my sincere gratitude to my supervisor, Prof. Yoshifumi Oshima, his profound knowledge gave me strong support in my study and research, his peaceful personality made me feel no pressure to get alone with him in life. I also want to thank Dr. Lilin Xie, a graduate of our lab, his research work has given me great convenience and confidence, and it has a great weight in this award I have received. Also, I'd like to thank assistant professor Kohei Aso and the laboratory members for their help in my life, study and research.
令和5年6月15日
【12/14(水)開催】ナノマテリアル・デバイス研究領域、国際シンポジウム 2022 JAIST International Symposium of Nanomaterials and Devices Research Area "Quantum Devices and Metrologies"
開催日 | 令和4年12月14日(水) |
実施方法 | 現地開催、ネット配信(ハイブリッド方式) |
会 場 | 北陸先端科学技術大学院大学 知識科学系中講義室(石川県能美市旭台1-1) |
講演者 | キーノート講演者 阿部 英介 氏(理化学研究所、量子コンピュータ研究センター) 福間 剛士 氏(金沢大学、ナノ生命科学研究所、所長、教授) 本学講演者 大島 義文 教授 (ナノマテリアル・デバイス研究領域) 高村由起子 教授 (ナノマテリアル・デバイス研究領域) 安 東秀 准教授 (ナノマテリアル・デバイス研究領域) |
言 語 | 英語 |
申込み | 以下の申込フォームより、参加ご希望の方は12/5(月)までにお申し込みください。 https://forms.gle/tyk9v775xJdFLFzh8 |
ナノ物質の強度を決める表面1層の柔らかさ ―電子顕微鏡観察下での金属ナノ接点のヤング率測定―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 金沢大学 |
ナノ物質の強度を決める表面1層の柔らかさ
―電子顕微鏡観察下での金属ナノ接点のヤング率測定―
ポイント
- 金ナノ接点の物質強度(ヤング率)は接点が細くなると減少した。
- 独自開発の顕微メカニクス計測法でこの計測実験に成功。
- 最表面層のヤング率のみがバルク値の約1/4に減少。
- ナノ電気機械システム(NEMS)の開発に指針を与える成果である。
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域の大島義文教授、富取正彦教授、張家奇研究員、及び金沢大学 理工研究域 数物科学系の新井豊子教授は、[111]方位を軸とした金ナノ接点を引っ張る過程を透過型電子顕微鏡で観察しながら、等価ばね定数と電気伝導の同時に測定する手法(顕微メカニクス計測法)によって、金ナノ接点のヤング率がサイズに依存することを明らかにした。 金[111]ナノ接点は砂時計のようなくびれ形状を持つ。そのくびれは、0.24nm引っ張るたびに、より小さな断面積をもつ(111)原子層1層が挿入されることで段階的に細くなっていく。この観察事実を基に、挿入前後の等価ばね定数値の差分から、挿入された(111)原子層の等価ばね定数を求め、さらにこの(111)原子層の形状とサイズを考慮してヤング率を算出した。サイズが2 nm以下になると、ヤング率は約80 GPaから30 GPaへと徐々に減少した。この結果から、最外層のヤング率が約22 GPaと、バルク値(90GPa)の約1/4であることを見出した。このような材料表面での機械的強度の差は、ナノ電気機械システム(NEMS)の材料設計において考慮すべき重要な特性である。 本研究成果は、2022年4月5日(米国東部標準時間)に科学雑誌「Physical Review Letters」誌のオンライン版で公開された。なお、本研究は、日本学術振興会(JSPS)科研費、18H01825、18H03879、笹川科学研究助成、丸文財団交流研究助成を受けて行われた。 |
金属配線のサイズが数nmから原子スケールレベル(金属ナノワイヤ)になると、量子効果や表面効果によって物性が変化することが知られている。金属ナノワイヤの電気伝導は、量子効果によって電子は特定の決められた状態しか取れなくなるためその状態数に応じた値になること、つまり、コンダクタンス量子数(2e2/h (=12.9 kΩ-1);e: 素電荷量、h: プランク定数)の整数倍になることが明らかになっている。近年、センサーへの応用が期待されナノ機械電気システムの開発が進められており、金属ナノワイヤを含むナノ材料のヤング率などといった機械的性質の理解が課題となっている。この解決に、例えば、透過型電子顕微鏡(TEM)にシリコン製カンチレバーを組み込んだ装置を用いて、カンチレバーの曲がりから金属ナノワイヤに加えた力を求め、それによって生じた変位をTEM像で得ることで、ヤング率が推量されている。しかし、この測定法は、個体差があるカンチレバーのばね定数を正確に知る必要があり、かつ、サブオングストロームの精度で変位を求める必要があるため、定量性が十分でないと指摘されている。
本研究チームは、原子配列を直接観察できる透過型電子顕微鏡(TEM)のホルダーに細長い水晶振動子(長辺振動水晶振動子(LER)[*1])を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする顕微メカニクス計測法を世界で初めて開発した(図1上段)。この手法では、水晶振動子の共振周波数が、物質との接触で相互作用を感じることによって変化することを利用する。共振周波数の変化量は物質の等価バネ定数に対応するので、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)で、TEMによる原子像がぼやけることはない。この手法は、上述した従来の手法の問題点を克服しており、高精度測定を実現している。
本研究では、[111]方位を軸とした金ナノ接点(金[111]ナノ接点)をLER先端と固定電極間に作製し(図1上段参照)、この金[111]ナノ接点を一定速度で引っ張りながら構造を観察し、同時に、その電気伝導、および、ばね定数を測定した(図1下段)。金[111]ナノ接点は砂時計のようなくびれをもつ形状であり、0.24nm引っ張る度により狭い断面をもつ(111)原子層1層がくびれに挿入されることで段階的に細くなることを観察した。これは、図1下段のグラフで電気伝導がほぼ0.24nm周期で階段状に変化することに対応していた。この事実から、挿入された(111)原子層の等価ばね定数を挿入前後の等価ばね定数の差分から算出することができ、さらに、この(111)原子層の形状やサイズを考慮することでヤング率を見積もった。なお、28回の引っ張り過程を測定して可能な限り多数のヤング率を見積もることで統計的にサイズ依存性を求めた(図2)。その結果、ヤング率は、サイズが2 nm以下になると、サイズが小さくなるとともに約80 GPaから30 GPaへと徐々に減少した。この結果から、最外層のヤング率が約22 GPaと、バルク値(90GPa)の約1/4であることを見出した。このような材料表面の強度は、ナノ電気機械システム(NEMS)の材料設計でも考慮すべき重要な特性である点で大きな成果である。
図1
(上段)金ナノコンタクトの等価ばね定数を計測する顕微メカニクス計測法。透過型電子顕微鏡(TEM)を用いて金ナノ接点の構造観察をしながら、長辺振動水晶振動子(LER)を用いて等価ばね定数を計測できる。
(下段)(左)金ナノ接点の引っ張り過程における変位に対する電気伝導及び等価ばね定数の変化を示すグラフ。(右)変位Aと変位Bで得た金ナノ接点のTEM像と最もくびれた断面の構造モデルを示す。黄色が内部にある原子、青が最表面原子である。
図2
金[111]ナノ接点の引っ張り過程を28回測定して、統計的に求めた金[111]ナノ接点ヤング率のサイズ依存性である。横軸は、断面積である。赤丸が実験値であり、誤差は、同じ断面の金(111)原子層に対して得られたヤング率のばらつきを示す。青丸は、第一原理計算によって得た結果である。
【論文情報】
掲載誌 | Physical Review Letters |
論文題目 | Surface Effect on Young's Modulus of Sub-Two-Nanometer Gold [111] Nanocontacts |
著者 | Jiaqi Zhang, Masahiko Tomitori, Toyoko Arai, and Yoshifumi Oshima |
掲載日 | 2022年4月5日(米国東部標準時間) |
DOI | 10.1103/PhysRevLett.128.146101 |
【用語説明】
[*1] 長辺振動水晶振動子(LER)
長辺振動水晶振動子(LER、図1参照)は、細長い振動子(長さ約3 mm、幅約0.1 mm)を長辺方向に伸縮振動させることで、周波数変調法の原理で金属ナノ接点などの等価バネ定数(変位に対する力の傾き)を検出できる。特徴は、高い剛性(1×105 N/m)と高い共振周波数(1×106 Hz)である。特に、前者は、化学結合の剛性(等価バネ定数)測定に適しているだけでなく、小さい振幅による検出を可能とすることから、金属ナノ接点を壊すことなく弾性的な性質を得ることができ、さらには、原子分解能TEM像も同時に得られる点で大きな利点をもつ。
令和4年4月11日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/04/11-1.html研究員のZHANGさんが国際会議ISSS-9においてYoung Researchers' Awardを受賞

研究員のZHANG, Jiaqiさん(応用物理学領域、大島研究室)が国際会議The 9th International Symposium on Surface Science(ISSS-9)においてYoung Researchers' Awardを受賞しました。
ISSSは、日本表面真空学会が主催で3年ごとに開催しています。同会議には国内外の表面科学・ナノサイエンス分野の研究者約500名が参加し、ハインリッヒ・ローラー賞(ハインリッヒ・ローラー博士‐1986年に走査型トンネル顕微鏡の設計でノーベル賞を受賞)の受賞式が行われることでも国際的に知られています。
今回、ISSS-9は、令和3年11月28日から12月1日にかけてオンラインにて開催されました。
■受賞年月日
令和3年12月1日
■研究題目、論文タイトル等
Mechanical properties of Pt atomic chains measured by TEM coupled with a quartz resonator
■研究者、著者
〇Jiaqi Zhang1, Masahiko Tomitori1, Toyoko Arai2, Kenta Hongo1, Ryo Maezono1 and Yoshifumi Oshima1
1) 本学
2) 金沢大学
■受賞対象となった研究の内容
Monatomic chains have shown unique physical and chemical properties, which draws a different picture from their bulk counterparts. It has been reported that the electrical or magnetic properties can be tuned by controlling the length of the atomic chains, which indicate that the mechanical properties is very important for their applications. However, the mechanical properties of atomic chains have not been clarified experimentally. To solve this problem, we developed an in-situ TEM holder equipped with a quartz resonator as force sensor to measure the mechanical properties of atomic chains when observing their atomic configurations.
A quartz length-extension resonator (LER) was used to measure the stiffness of platinum (Pt) monatomic chains from its frequency shift. Because the stiffness of the atomic chain suspended between the edge of LER and the fixed counter base can be measure precisely with very small oscillation amplitude (about 30 pm). The atomic resolution TEM images and videos were captured simultaneously with measuring the conductance and stiffness by our developed TEM holder.
The stiffness of atomic chains with 2-5 atoms were obtained. By subtracting the stiffness of the electrodes supporting the monatomic chain from the measured stiffness, we found that the stiffness of a Pt monatomic chain varied with the number of the constitute atoms in the chain. We investigated the stiffness of about 150 Pt monatomic chains for reproducibility and confirmed that the middle bond stiffness (25N/m) in the chain was slightly higher than that of the bond connect to the suspending tip (23N/m). In addition, the maximum elastic strain of individual bond in the chain was as large as 24%. These values were obviously different from the bulk counterpart. Such peculiar values could be briefly explained by the concept of "string tension".
■受賞にあたって一言
I'm incredibly honored with Young Researchers' Award in ISSS-9. First, I would express my appreciation to the organizer of this symposium for providing us the opportunity to share and discuss our researches. Importantly, I would describe my gratitude to Prof. Oshima, Prof. Tomitori, Prof. Arai, for their precious support. And I am also grateful to Oshima-LAB members for their kind encouragement. This award is an essential motivation for me to further research and contribute to nanoscience community.
令和4年1月12日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2022/01/12-2.htmlナノテクノロジープラットフォーム公開講座「材料の構造解析のためのTEMの基礎と実習」参加者募集
本学ナノマテリアルテクノロジーセンター主催で「材料の構造解析のためのTEMの基礎と実習」と題して公開講座を開催いたします。
ただいま受講者を募集しております。皆様のご参加をお待ちしております。
日 時 | 令和4年3月3日(木)10:00~17:00 |
場 所 | 北陸先端科学技術大学院大学 ナノマテリアルテクノロジーセンター 2F会議室(下記フロアマップのC1-26) キャンパスマップ フロアマップ |
講 師 | 大島 義文:マテリアルサイエンス系・教授(応用物理学領域) 麻生 浩平:マテリアルサイエンス系・助教(応用物理学領域) 東嶺 孝一:ナノマテリアルテクノロジーセンター・技術専門員 |
内 容 | ナノマテリアルテクノロジーセンターが中心となってすすめている文部科学省ナノテクノロジープラットフォーム事業の企画として毎年1回公開講座を実施しています。令和3年度は透過型電子顕微鏡(TEM)をトピックスとして選び、透過型電子顕微鏡の原理、正しい観察手法や正しいデータ解析方法などをわかりやすく解説します。 |
定 員 | 5名程度(先着順) |
参加対象者 | 企業・他大学・高専等の研究者・技術者 |
受講料 | 6,200 円(税込) |
申込方法 | 受講希望の方は、 ①氏名(ふりがな) ②勤務先・職名 ③受講の目的 ④本講座に期待すること ⑤書類送付先 ⑥電話番号 ⑦メールアドレス を明記の上、E-mail (宛先 nano-net@ml.jaist.ac.jp)またはFAX(ポスター2ページ目参照)でお申し込みください。 |
申込締切 | 令和4年2月17日(木)【定員に達し次第締切】 |
問合せ・ 申込み先 |
北陸先端科学技術大学院大学 ナノマテリアルテクノロジーセンター 文部科学省ナノテクノロジープラットフォーム事務局 橋本 〒923-1292 石川県能美市旭台1-1 TEL:0761-51-1449 FAX:0761-51-1455 E-mail:nano-net@ml.jaist.ac.jp |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発 ―電子顕微鏡とデータ科学による究極の精密測定―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 九州大学 |
ナノ粒子中のサブパーセントの局所ひずみを捉える解析手法を開発
―電子顕微鏡とデータ科学による究極の精密測定―
ポイント
- 電子顕微鏡とデータ科学を組み合わせることで、局所ひずみを高精度に測定
- 0.2%というわずかな局所ひずみをも検出できる精密さを達成
- 棒状ナノ粒子には表面形状の曲率変化に起因する約0.5%の局所膨張ひずみが生じることを発見
北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の麻生 浩平助教、大島 義文教授と、九州大学・大学院工学研究院のJens Maebe大学院生 (修士課程、当時)、Xuan Quy Tran研究員、山本 知一助教、松村 晶教授は、原子分解能電子顕微鏡法とデータ科学的手法であるガウス過程回帰を組み合わせることによって、ナノメートルサイズの粒子の中のわずか0.2%という局所ひずみを測定できる解析手法の開発に成功しました。開発した手法によって金のナノ粒子を解析したところ、棒状の粒子の内部では、先端付近で長さ方向に0.5%膨張したひずみを見出しました。この膨張ひずみは、粒子の先端部分で表面の形状(曲率)が変化しているために生じたこともわかりました。ナノ粒子の形状に由来して内部に局所ひずみが生じるという新たな発見と、ひずみを精密に捉える新規な手法は、ナノ物質内での原子配列と機能の理解に役立つと期待されます。 本研究成果は、2021年7月7日(米国東部標準時間)に科学雑誌「ACS Nano」誌のオンライン版で公開されました。 本研究は、日本学術振興会(JSPS)科研費基盤研究(B) (25289221、18H01830)と科学技術振興機構(JST)戦略的創造研究推進事業 ACCEL「元素間融合を基軸とする物質開発と応用展開」(研究代表者:北川 宏、研究分担者:松村 晶、プログラムマネージャー:岡部 晃博、研究開発期間:2015年8月~2021年3月、(JPMJAC1501))の支援を受けて行われました。 |
【研究背景と内容】
わずかな原子間距離の局所変化 (局所ひずみ) によって、磁性や触媒特性などといった様々な材料物性が左右されます。そのため、材料の局所ひずみを精密に測定する手法が求められてきました。ここ20年間で走査透過電子顕微鏡(STEM)の空間分解能が大きく向上して、原子状態の観察と解析が可能になりました。ナノメートルサイズの金の粒子をSTEMで観察したのが図1aです。ナノ粒子の内部に原子位置に対応した明るい点が整列して現れて見えます。原子は一見すると結晶構造を作って規則正しく周期的に配列しています。
しかし、図1aのSTEM像から原子の位置を特定して詳しく解析すると、場所によって原子は周期配列からわずかにずれて変位していることがわかりました。それをマップにしたのが図1bです。紙面左方向に大きく変位する原子が暗い青、紙面右方向に大きく変位する原子が明るい黄色でそれぞれ表されています。マップを遠目から見てみると、左から右手に向かって滑らかに、青色から黄色へと変化しているように見えます。しかし局所的には波のような細かい変化が全体を覆っています。この細かな変化は、像から原子位置を正しく特定できなかったために含まれる揺らぎノイズで、変位の変化率に相当するひずみを求めるうえで大きな障害になります。このノイズ成分を低減するには、長い時間 (カメラの露光時間に相当) をかけて計測して像質を改善するのがこれまでの一般的方法でしたが、計測時間が長くなるとその間の装置の機械的・電気的な状態のわずかな乱れの影響で像がゆがんでしまうという問題がありました。
そこで研究グループは、様々な分野で活用されているデータ科学手法のガウス過程回帰に着目しました。ガウス過程回帰では、データの真の姿は滑らかに変化すると仮定して、観測データにはこの真の姿に細かな揺らぎノイズが付加されていると考え、この順序をさかのぼることでデータの真の姿を予測します。ガウス過程回帰を図1bのマップに適用したところ、滑らかに変化する主要な成分だけを取り出すことに成功しました (図1c)。得られた変位の棒の長さ方向の変化率を求めて、局所的なひずみの分布をマップしたのが図1dです。開発した手法の精度を確かめるために、元データから直に、およびガウス過程回帰を適用して求めた場合のひずみ値の分布を比較したのが図1eです。元データでは標準偏差で1.1%の広がりがあるのに対して、ガウス過程回帰を用いることでその広がりが0.2 %に狭くなっており、ノイズ成分の除去によって有意に観測されるひずみ量の下限が大きく改善しました。
図1dに戻って見ると、棒の胴体部分と先端の半球部分の境目付近が明るい黄色になっており、この部分では棒の長さ方向に約0.5%膨張した局所ひずみが生じています。ナノ粒子では、表面積を小さくしようとして表面から内部に向かって力が作用するために、収縮ひずみが生じていると考えられていました。しかし、円筒状の胴体部と半球状の先端部からなる棒状の粒子では、2つの部分の表面曲率が異なることから内部にかかる力の向きと大きさに違いが生まれて、局所的に膨張するひずみ場が生ずることがわかりました。このように、原子位置の精密な解析が可能になって、ナノ粒子の局所形状によって内部のひずみの状態が変化することが発見できました。この新たな発見と、本成果で生み出された精密な解析手法は、ナノ構造材料の原子配置とそれによって引き起こされる機能に関する理解を深めることにつながると期待されます。
(b) 元データから得た原子変位マップ。紙面左方向への大きい変位が暗い青、紙面右方向への大きい変位が明るい黄色で表示される。細かく変化するノイズ成分が目立っている。
(c) ガウス過程回帰によって予測された真の変位。ノイズ成分の除去に成功している。
(d) 紙面横方向の変位の変化率(局所ひずみ)マップ。明るい黄色になっている両端部分では膨張ひずみが生じている。
(e) 元データとガウス過程回帰後のひずみ分布。ガウス過程回帰を用いることで、分布の広がりが1.1%から0.2%にまで狭まっており、微小な局所ひずみの検出が可能になった。
【研究資金】
・日本学術振興会(JSPS)科研費 基盤研究(B)(25289221、18H01830)
・科学技術振興機構(JST)戦略的創造研究推進事業ACCEL (JPMJAC1501)
【論文情報】
雑誌名 | ACS Nano |
題名 | Subpercent Local Strains Due to the Shapes of Gold Nanorods Revealed by Data-Driven Analysis |
著者名 | Kohei Aso*, Jens Maebe, Xuan Quy Tran, Tomokazu Yamamoto, Yoshifumi Oshima,Syo Matsumura |
掲載日 | 2021年7月7日(米国東部標準時間)にオンラインで掲載 |
DOI | 10.1021/acsnano.1c03413 |
令和3年7月13日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/07/13-1.html世界初!個々の原子間の結合強度の測定に成功 ―強くて伸びる白金原子の鎖状物質―

![]() ![]() |
国立大学法人 北陸先端科学技術大学院大学 国立大学法人 金沢大学 |
世界初! 個々の原子間の結合強度の測定に成功
―強くて伸びる白金原子の鎖状物質―
ポイント
- 個々の原子の並びを見ながら、その結合強度を測る手法(顕微メカニクス計測法)の開発
- 白金原子が一列に並んだ鎖状物質を作製し、その結合強度を測定
- 結合強度が高く、よく伸びる白金原子の鎖状物質
- 原子スケールで制御された機能性物質探索への期待
北陸先端科学技術大学院大学・先端科学技術研究科 応用物理学領域の大島 義文教授、富取 正彦教授、張家奇 大学院生(博士後期課程)、石塚慧介 大学院生(博士後期課程)、環境・エネルギー領域の前園 涼教授、本郷 研太准教授、及び金沢大学・理工研究域 数物科学系の新井 豊子教授は、International School for Advanced Studies (SISSA)のErio Tosatti教授との共同研究で、物質を構成する個々の原子の並びを観察しながら、その結合強度を計測できる顕微メカニクス計測法を開発した。この手法を使って、白金原子が一列に並んだ鎖状物質が強い結合強度を持つとともに、白金の塊(バルク)と比較してかなり大きく引き伸ばしても破断しないという特異な性質を持つことを発見した。実験結果を第一原理計算で解析したところ、この鎖状物質は、エネルギーが最小になる安定構造を取っているわけではなく、その形成に必要な張力が極小な構造であることを突きとめた。この鎖状物質がもつこの特有な性質の解明は、今後ますます期待される原子スケールで制御された機能性物質の創製に指針を与える大きな成果である。 本研究成果は、2021年4月29日(米国東部標準時間)に科学雑誌「Nano Letters」誌のオンライン版で公開された。なお、本研究は、日本学術振興会(JSPS)科研費, 18H01825, 18H03879、笹川科学研究助成, 2020-2006、ERC ULTRADISS Contract No. 834402, the Italian Ministry of University and Research through PRIN UTFROM N. 20178PZCB5の助成を受けて行われた。 |
原子が鎖状に並んだ1次元物質の力学的性質は、同じ組成や構造を持つバルク物質と大きく異なることが理論計算によって予想されていた。しかし、1次元物質の性質はわずかな原子の変位にも敏感に変化するため測定例が少なく、解明が進んでいない。原子配列構造とその力学的性質の相関を明らかにできれば、1次元物質などの性質を決めるメカニズムの解明に繋がる。このメカニズムこそが、1次元物質を活用した新しい原理で動作する電子デバイスやセンサー開発の指針となる。
最近、私たちは、原子配列を直接観察できる透過型電子顕微鏡(TEM)のホルダーに細長い水晶振動子を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする顕微メカニクス計測法を世界で初めて開発した(図1)。この手法では、水晶振動子の共振周波数が、物質との接触で相互作用を感じることによって変化することを利用する。共振周波数の変化量は物質の等価バネ定数に対応するので、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)で、TEMによる原子像がぼやけることはない。この手法は、従来の手法(小さなSi製テコを利用してその変位から力を計測する手法、TEM-AFM法[*1])では困難だった結合強度の高精度測定を実現している。
本研究では、このTEMホルダー内部で白金原子鎖を150個作製してその特性を詳細に調べ、白金原子鎖における原子結合強度が25 N/mであることを突きとめた。この値は、白金のバルク結晶の原子結合強度20 N/mよりも25%高い。また、原子間結合の長さ(0.25 nm)は最大0.06 nmも延びることが分かった。これは原子結合の最大弾性ひずみが24%になることを示しており、バルク結晶の値(5%以下)と比較して著しく高い(図2)。さらに、第一原理計算の結果を合わせて考察することで、このような特異な原子結合の性質は、白金原子鎖がエネルギー的に最安定な構造ではなく、形成に必要な張力が極小となる構造を取ることによって生まれることがわかった。
本研究は、1次元物質がもつ特異な原子結合に関わる性質を明らかにし、理論計算と組み合わせることによって形成メカニズムを突きとめた点に大きな成果がある。今後ますます期待される原子スケールで制御された機能性物質の創製に指針を与える大きな成果である。
図1.個々の原子の並びを観察しながら、原子間の結合強度を計測する顕微メカニクス計測法。透過型電子顕微鏡(TEM)を用いてナノ物質の構造観察をしながら、長辺振動水晶振動子(LER)を用いて物質の結合強度を計測できる。この測定によって、赤矢印で示す部位の白金原子鎖の原子間結合強度が25 N/mであることがわかった。
図2. 左上は透過型電子顕微鏡(TEM)像、左下はそのシミュレーション像である。原子4個からなる原子鎖が得られている。その観察時に測定された電気伝導(コンダクタンス量子単位G0でプロット)とばね定数の時間変化を、それぞれ右上と右下に示す。赤い矢印で示す領域は形成した原子鎖を破断することなく引っ張ることができた時間帯である。毎秒0.08 nmの速度で引っ張っており、白金原子鎖は破断なく約0.1 nm伸びた。
【論文情報】
雑誌名 | Nano Letters |
題名 | Peculiar Atomic Bond Nature in Platinum Monatomic Chains |
著者名 | Jiaqi Zhang, Keisuke Ishizuka, Masahiko Tomitori, Toyoko Arai, Kenta Hongo, Ryo Maezono, Erio Tosatti, Yoshifumi Oshima* |
掲載日 | 2021年4月29日(米国東部標準時間)にオンライン版に掲載 |
DOI | 10.1021/acs.nanolett.1c00564 |
【用語解説】
[*1] TEM-AFM法(透過型電子顕微鏡と原子間力顕微鏡を組み合わせた測定法)
従来の測定法の一つ。ナノ物質に接触したSiカンチレバーを引っ張ると、Siカンチレバーがたわむ(変位する)。このたわみ(変位)から、ナノ物質に負荷されている力を求める。一方、この負荷された力によって変形したナノ物質を透過型電子顕微鏡によって計測することで、このナノ物質の機械的強度を得る。ただし、10 nm以下のサイズをもつナノ物質は1Åしか変形しない(原子間距離は2-3Åである)。このような変形を高い精度で測定することは難しく、ナノ物質の強度測定にばらつきが出てしまうという課題があった。
令和3年4月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/04/30-1.html学生のCHIEWさんが10th International Conference on Materials for Advanced Technologies (ICMAT)において最優秀ポスター賞を受賞
学生のCHIEW, Yi Lingさん (博士後期課程2年、応用物理学領域、大島研究室)が, シンガポールで開催された国際会議 10th International Conference on Materials for Advanced Technologies (ICMAT)(参加者約3,000人)において最優秀ポスター賞を受賞しました。
本成果は小矢野研究室(環境・エネルギー領域)との共同研究によるものです。
■受賞年月日
令和元年6月28日
■論文タイトル
Unravelling Planar Distribution of Intercalated Fe Atoms in TiS2 Layered Structure Using Transmission Electron Diffraction
■著者
Y. CHIEW, S. ABE, M. MIYATA, M. KOYANO, Y. OSHIMA
■論文概要
The discovery of new functions by intercalating guest atoms into host layered materials have attracted attention due to the wide possibilities of applications achievable. These intercalated 2-dimensional materials are known to form complex superlattices, which are difficult to analyze. For example, the material in this study, FexTiS2, has been reported to form 2a×2a or √3a×√3a superlattices for x = 1/4 or 1/3, respectively (a is the lattice constant of the TiS2 layer) where the Fe atoms occupy octahedral sites. However, in our study, a new, larger superlattice is proposed for FexTiS2 (grown with nominal content x = 0.33), based on the transmission electron diffraction (TED) pattern. TED is a powerful method that can be used to clarify two-dimensional atomic structures such as the Si (111) 7×7 reconstruction. Using the Patterson map constructed from TED pattern, the superlattice is observed to have P3 symmetry with unit lengths of √43 a× √43 a, rotated at an angle of 7.5888°. Further analysis of the TED pattern and its Patterson map also allowed the determination of the planar distribution of Fe atoms. Nine Fe atoms are found to be present in the unit cell and the Fe atoms occupy not only octahedral sites, as reported previously, but in tetrahedral sites as well.
■受賞にあたっての一言
It is a great honor to receive this award from the conference. I am extremely grateful to Prof. Yoshifumi Oshima, Prof. Mikio Koyano and Assistant Prof. Masanobu Miyata for the constant guidance. I would also like to thank the staff of Nanotechnology Platform in JAIST for their support with my sample preparation and characterization. And last by not least, I would like to thank all my lab members and friends for always being there for me.
令和元年7月3日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/07/03-1.html