研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。JAIST社会人セミナー平成30年度第2回「co-café @JAIST」アンビエントエレクトロニクス ~少し未来(さき)を予測するためのセンサー~
下記のとおり、平成30年度第2回「co-café@JAIST」を開催しますので、ご案内します。
産学官連携推進センターでは、地方創生/地域活性化の推進を目的に、昨年度から社会人人材育成事業としてJAIST社会人セミナーを実施しています。
JAIST社会人セミナーでは、①co-café@JAIST(異業種・異分野の産学連携交流イベント)、②地域人材育成セミナー、③社会人向けデザインスクールという3つの事業を行っています。
今回の「co-café@JAIST」は、本学の最先端技術の紹介や、本学の若手教員と地域企業とのニーズ・シーズの出会い場とすることを目的とした産学官連携の交流イベントです。
多くの方のご参加をお待ちしております。
| 日 時 | 平成30年5月9日(水)18:30 ~ |
| 会 場 | 北陸先端科学技術大学院大学 産学官連携本部 産学官連携推進センター 金沢駅前オフィス(金沢市本町2-15-1 ポルテ金沢9階) |
| 開催内容 | ・18:30~ ミニセミナー テーマ:アンビエントエレクトロニクス ~少し未来(さき)を予測するためのセンサー~ 講 師:北陸先端科学技術大学院大学 応用物理学領域 酒井 平祐 助教 ゲスト:株式会社山岸製作所 代表取締役社長 山岸 晋作 氏 ・19:00~ 交流会 |
| 参加申込 | 下記PDFの参加申込フォームに必要事項をご記入の上、FAXまたはE-mailでお申込みください。 (定員:40名、参加無料 ※交流会のみ有料/参加費1,000円) |
| お問合わせ |
北陸先端科学技術大学院大学 産学官連携本部 産学官連携推進センター 担当:松本 【TEL】0761-51-1432 【Fax】0761-51-1427 【E-mail】co-cafe@jaist.ac.jp |
ミリメートルの長距離スピン情報の変換に成功 -量子情報素子やスピンセンサーの技術開発に道-
ミリメートルの長距離スピン情報の変換に成功
-量子情報素子やスピンセンサーの技術開発に道-
ポイント
- 磁気の波(スピン波)を用いて数ミリメートル離れたスピン状態へ情報を変換する基本原理を実証
- 量子情報素子やスピンセンサーの新手法として期待
北陸先端科学技術大学院大学(学長・浅野哲夫、石川県能美市)、先端科学技術研究科応用物理学領域の菊池大介研究員、安東秀准教授らは、京都大学、東京工業大学、東北大学、理化学研究所、ニューヨーク市立大学と共同で、スピン波注1)とダイヤモンド中の窒素-空孔複合体中心(NV中心(図1))注2)を組み合わせた長距離(約3.6ミリメートル)スピン信号変換に成功しました。
<背景と経緯>
近年、持続可能な社会の実現に向けた環境・エネルギー・情報通信などの問題への取組が活発化する中で、電子デバイスの省電力化やナノセンシング技術の高性能化が求められています。これまでデバイスに情報を入出力する方法として電流が用いられてきましたが、情報処理に時間がかかること、多くのエネルギーが熱として浪費され発熱によりデバイスの動作が不安定となることなど問題がありました。これらを解決する方法として、電流を用いずに電子の自由度であるスピン注3)を用いるスピントロニクス素子注4)や量子情報素子(発熱を抑えるとともに情報処理時間を飛躍的に高速化できる)の実現が期待されています。従来、これらの素子では相互作用を大きくするためにスピンとスピンの距離をナノメートル程に設計する必要がありました(図2)。今回の研究では、スピンの波(スピン波)とダイヤモンド結晶中のNV中心に存在するスピン状態とを組み合わせた手法によりミリメートルの長距離でもスピン情報を伝送できることを実証しました。
<研究の内容>
今回の研究では、図3の模式図に示した実験により、スピン波とNV中心スピンを用いた長距離スピン信号変換に成功しました。先ず、直径4ミリメートルの絶縁体である磁性ガーネット (Y3Fe5O12: YIG) 注5)多結晶円板にマイクロ波と磁場を印加して、磁気の波(スピン波)を試料左端に励起します(図3(a))。この際に、表面スピン波注6)と呼ばれる、試料表面に局在し一方向にのみ伝搬するスピン波を励起します。その後、試料左端から右端へ3.6ミリメートル伝搬した表面スピン波は、試料右端上に配置されたダイヤモンド中に用意された複数のNV中心スピンを励起します。励起されたNV中心は光学的に磁気共鳴信号(ODMR)注7)やラビ振動注8)を計測することにより検出します(図3(b), (c))。今回、スピン波の共鳴周波数とNV中心の共鳴周波数が一致する条件でODMR信号が増強され、ラビ振動の周波数が高くなることを発見しました。
<今後の展開>
本研究では、スピン波とNV中心を組み合わせることで離れたスピン状態間の信号の伝送・変換が可能なことを実証しました。今後、2つのスピン状態をスピン波で接続することで、これまで困難だった長距離(ミリメートル以上でも可能)離れた2つのスピン状態間の信号の変換を可能にし(図4)、新しい量子情報素子やナノスピンセンサーを実現する技術開発に貢献することが期待されます。
![]() |
![]() |
| 図1 ダイヤモンド中の窒素(C)-空孔(V)複合体中心(NV中心)スピン状態 | 図2 従来のスピン変換の概念図 ナノメートル程の距離の2つのスピン状態、スピンAとスピンB間で信号を変換する。 |
![]() |
|
| 図3 スピン波とNV中心を用いた長距離スピン信号変換の原理。(a)多結晶ガーネット(YIG)磁性体試料の左端で励起された表面スピン波は右方向へ数ミリメートル伝搬した後、試料右端上のダイヤモンド中のNV中心スピンを励起する(スピン変換)。励起されたNV中心は光学的磁気共鳴検出法(ODMR)により磁気共鳴(b)やラビ振動(c)として検出される。 | |
![]() |
|
| 図4 今後の展開。長距離離れた2つのスピン状態、スピンAとスピンBをスピン波で接続する。 | |
<論文情報>
掲載誌:Applied Physics Express
論文題目:Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves
著者:Daisuke Kikuchi, Dwi Prananto, Kunitaka Hayashi, Abdelghani Laraoui, Norikazu Mizuochi, Mutsuko Hatano, Eiji Saitoh, Yousoo Kim, Carlos A. Meriles, Toshu An
Vol.10, No.10, Article ID:103004
掲載日:10月2日(英国時間)公開 DOI: 10.7567/APEX.10.103004
<研究助成費>
本研究の一部は、キャノン財団研究助成プログラム、村田学術振興財団研究助成、科学研究費補助金・新学術領域研究「ナノスピン変換」公募研究、研究活動スタート支援の一環として実施されました。
<用語解説>
注1) スピン波
スピンの集団運動であり、個々のスピンの磁気共鳴によるコマ運動(歳差運動)が波となって伝わっていく現象である。
注2) NV中心
ダイヤモンド中の窒素不純物と空孔が対になった構造(窒素-空孔複合体中心)であり、室温、大気中で安定にスピン状態が存在する。
注3) スピン
電子が有する自転のような性質。電子スピンは磁石の磁場の発生源でもあり、スピンの状態には上向きと下向きという2つの状態がある。
注4) スピントロニクス
電子の持つ電荷とスピンの2つの性質を利用した新しい物理現象や応用研究をする分野
注5) 磁性ガーネット
本研究では希土類元素をイットリウム(Y)としたイットリウム鉄ガーネット(Y3Fe5O12)多結晶を用いた。スピン波の拡散長が数ミリメートル以上と長いことで知られている。
注6) 表面スピン波
スピン波の一種であり、試料の表面に局在し一方向にのみ伝搬する性質を持つ。また、表面スピン波の持つ非相反性より、試料の上面と下面では逆向きに伝搬する。
注7) 光学的磁気共鳴検出法(Optically Detected Magnetic Resonance, ODMR)
磁気共鳴現象を光学的に検出する手法。本研究では532ナノメートルのレーザー光入射により励起・生成されたマイクロ波印加による蛍光強度の変化を計測しNV中心スピンの磁気共鳴を検出する。
注8) ラビ振動
NV中心の2つのスピン状態間のエネルギーに相当するマイクロ波磁場を印加することにより状態が2準位の間を振動する現象。本研究ではマイクロ波磁場の代わりにスピン波によるマイクロ波磁場を生成してラビ振動を励起した。
平成29年10月3日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/10/03-1.html原子層材料グラフェンを用いたナノセンサー素子で二酸化炭素分子一個の検出に成功
原子層材料グラフェンを用いたナノセンサー素子で二酸化炭素分子一個の検出に成功
- 超高感度・超小型パーソナル環境センシング応用に期待 -
| ポイント | |||
|
|||
|
|||
|
|||
| <開発の背景と経緯> | |||
|
原子層材料であるグラフェンは、その優れた電気的特性に加え、シリコンと比べて1桁以上高いヤング率(材料の弾性係数)と、引っ張り応力に対して約20%の格子変形にも耐える機械的特性も有していることから、ナノ電子機械システム(NEMS)への応用が期待されています。さらに表面対体積比率が極めて高いことから、高感度センサーの材料としても大きな期待が寄せられています。水田らのグループは、グラフェンNEMS複合機能素子の研究にいち早く着手し、科学研究費助成事業・基盤研究(S)において、超高感度・環境センサーとパワーマネジメント素子を融合したオートノマス・複合機能センサーの開発に取り組んできました。近年、シックハウス症候群に代表される個人の生活空間レベルでの空気汚染に起因する健康障害が深刻な問題となっていますが、建材やインテリア素材、家具などから発生する化学分子ガスは一般に濃度がppbレベルと非常に希薄で、既存のガスセンサー技術で検出することは極めて困難です。今回の単一CO2分子検出成功は、グループが世界に先駆けて構築してきたグラフェンNEMS素子に関するリーディング技術と、吸着分子とグラフェン間に生じる相互作用を原子レベルで明らかにするシミュレーション技術を融合させて初めて実現できた成果です。 |
|||
| <今回の成果> | |||
|
グラフェンNEMS作製技術を用いて、半導体基板上に2層グラフェン膜の両持ち梁を作製した後、下部の金電極に電圧を印加することで、グラフェン梁を電極上に引き寄せて付着させ、グラフェン斜め梁を形成しました(図1参照)。非常に希薄なCO2ガスを導入し、グラフェン斜め梁の電気抵抗を時間的にモニターしましたが、この状態では分子吸着に伴う信号は検出されません(図2(b)内の黒点データ)。しかし、半導体基板に電圧を加えて電界を発生させると、グラフェン梁の電気抵抗に、CO2分子一個一個がグラフェン梁表面に吸着・離脱したことを示す量子化された変化(一定の値で抵抗が増減すること)が観測されました(図2(b)内の青点とピンク点データ)。これは、基板から印加した電界によってCO2分子内にわずかな分極が生じ、それと基板からの電界の相互作用によってCO2分子がグラフェン梁表面に引き寄せられるからです(図3参照)。 |
|||
| <今後の展開> | |||
|
今回の実験では、分子内の分極がゼロで電気的な検出が困難と考えられていたCO2分子を用いましたが、今後はシックハウス症候群の原因となっているホルムアルデヒドやベンゼンなど揮発性有機化合物ガスを用いた検証実験を進めていきます(図4参照)。また、グラフェン梁の幅をシングルナノメートル(10ナノメートル未満)に超微細化することで検出感度を更に向上させるとともに、基板から印加する電界の強度とグラフェンNEMS構造のデザインを最適化することで検出速度の向上を図ります。さらに、本プロジェクト内で並行して開発を進めているグラフェンNEMSスイッチを、本センサー回路のパワーゲーティング素子として集積化することで、センサーシステムの待機時消費電力をシャットアウトし、バッテリーの寿命を飛躍的に延ばすことを試みます。 |
|||
| <用語説明> | |||
|
|||
| <参考図> |
図1 (a)作製した2層グラフェンNEMSセンサーの構造、(b)斜めグラフェン梁の模式図、(c)実際に作製した素子の原子間力顕微鏡写真 |
![]() 図2 (a)吸着したCO2分子によるグラフェン梁電気抵抗変化を説明する模式図、(b)実際に観測された電気抵抗変化の時間依存性(黒点:基板電圧オフの場合、青点:基板に正電圧印加の場合、ピンク点:基板に負電圧印加の場合)、(c)電気抵抗変化の統計分布。'抵抗変化の量子化'を示している。 |
![]() 図3 斜め2層グラフェン梁の表面に物理吸着するCO2分子の様子を分子動力学でシミュレーションしている途中経過(左)。2層グラフェン表面付近での静電ポテンシャル分布。ポテンシャルの高い領域(黒い部分)に吸着CO2分子がトラップされる様子を示している(右上)。基板電界をオフにした場合、CO2分子が離れて行く軌跡を示している(右下)。 |
![]() 図4 シックハウス症候群、シックカー症候群などの原因となる揮発性有機化合物ガス分子の一例。表中の数字は、WHOから示されている8時間での限界濃度値で一桁のppbレベルでの検出精度が要求されることを示している。 |
![]() 図5 本研究成果に対するイメージ図 |
平成28年4月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2016/04/18-1.htmlナノとバイオを融合して医療と環境の問題を解決する
ナノとバイオを融合して
医療と環境の問題を解決する
バイオナノ医工学デバイス 研究室
Bio-Nano Medical Device Laboratory
教授:高村 禅(TAKAMURA Yuzuru)
E-mail:
[研究分野]
BioMEMS、微小流体デバイス、分析化学、バイオセンサ
[キーワード]
血液分析チップ、一細胞解析、質量分析チップ、マイクロ元素分析、微細加工プロセス、バイオチップ、マイクロプラズマ
研究を始めるのに必要な知識・能力
私たちが扱う対象は分野融合的要素が強く、従って本研究室では様々なバックグラウンドの学生を受け入れております。生物、化学だけでなく、物理、機械、電子、制御、材料など、個人のバックグラウンドに応じたテーマを設定し、研究を進めます。
この研究で身につく能力
何かを解析するチップの研究が多いので、分析科学の要素は押し並べて身につきます。微量なサンプルを扱うので、微量な生体サンプルのハンドリング技術、生体分子と無機材料の界面の調整技術、微量な蛍光や光信号の観察・計測技術等が身につきます。また、チップを作成するには、フォトリソグラフィー等、マイクロマシンの技術が身につきます。新しい材料を使う場合は、成膜やエッチングの為のプロセス開発を行うこともあります。チップの開発では、流体の動きや熱の伝達をシミュレーションし設計することもあります。修了生は、計測機器メーカへの就職が多いですが、半導体製造機器メーカや、薬品会社へ就職する方もいらっしゃいます。
【就職先企業・職種】 計測機器メーカ、電気、機械、半導体製造機器メーカ、半導体メーカ、薬品関連
研究内容
半導体プロセスを応用して、ウエハ上に小さな流路や反応容器、分析器等を作りこみ、一つのチップの上で、血液検査等に必要な一通りの化学実験を完遂させようという微小流体デバイス、μTAS(micro total analysis systems)やLab on a chipと呼ばれる研究分野が急速に発展しています。これは、病気の診断、創薬、生命現象の解析に応用でき、大きな市場と新しい学術分野を開拓するものとして期待されております。また、いろいろな形状の微小流路内を、流体や大きな分子が流れるときの挙動は、ブラウン運動や界面の影響が支配的で、流体力学でも分子動力学でも扱えない新しい現象を含んでいます。当研究室は、このような新しい現象をベースに、ナノとバイオを融合した次世代のバイオチップ創製を目指した研究を行っています。
主なテーマを次に示します。

図1.作成したバイオチップの例

図2.汎用微小流体チップ案
1)高集積化バイオ化学チップの開発
高機能バイオチップの実現には、チップ内での流体の駆動機構と、高感度な検出器の開発が重要になります。本研究室では、溶液プロセスによるPZTアクチュエータアレイや電気浸透流ポンプをはじめ様々なチップ内での液体駆動機構と、ナノ材料を駆使した新しい検出器の開発を進めています(図1)。これらを用いて、組織中の一細胞を分子レベルで解析可能なチップや、高度な処理をプログラム次第で様々にこなす汎用微小流体チップの開発を目指しています(図2)。
2)高感度バイオセンシング技術の開発
一滴の血液には、体内の様々な状態を反映した多くの情報が含まれております。これらを頻繁に解析することで、重篤な病気の超早期発見や、日々の健康管理、あるいは老化や病気が起きにくい体質になるために食事や運動をガイドする等、様々なことが可能になると考えられております。このためには、非常に微量なバイオマーカを簡易に測定する技術が必要です。私どもは、自己血糖測定器と同じ手間とコストでpg/mLオーダの測定ができるチップや、質量分析チップの開発を行っております。
3)液体電極プラズマを用いたマイクロ元素分析器の開発
中央を細くした微小な流路に液体のサンプルを導入し、高電圧を印加するとプラズマが発生します。このプラズマからの発光を分光することにより、サンプル中の元素の種類と量を簡単・高感度に測定することができます。この原理を用いて、食物、井戸水、土壌工場廃水・廃棄物に含まれている有害な金属(Hg、Cd、Pbなど)などを、オンサイトで測定できるマイクロ元素分析器の開発を行っています。
主な研究業績
- Pulse-heating ionization for protein on-chip mass spectrometry,Kiyotaka Sugiyama, Hiroki Harako, Yoshiaki Ukita, Tatsuya Shimoda, Yuzuru Takamura, Analytical Chemistry, 86, 15, 7593-7597, 05 August 2014.
- Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing, Amara Apilux, Yoshiaki Ukita, Miyuki Chikae, Orawom Chilapakul and Yuzuru Takamura, Lab Chip,13(1), 126-135, January 2013.
- High sensitive elemental analysis for Cd and Pb by liquid electrode plasma atomic emission spectrometry with quartz glass chip and sample flow, Atsushi Kitano, Akiko Iiduka, Tamotsu Yamamoto, Yoshiaki Ukita, Eiichi Tamiya, Yuzuru Takamura, Analytical Chemistry 83(24), 9424-9430, 04 November 2011.
使用装置
クリーンルーム半導体製造装置一式
電気化学測定装置
表面プラズモン共鳴測定装置
イムノクロマトグラフ製造装置
全反射蛍光一分子観察装置
研究室の指導方針
iPS細胞など最近の新しい医療技術の多くは、新しい工学的技術の進歩が発端になっていることをご存知でしょうか。その多くに、高度に発展したナノテクノロジーとバイオテクノロジーの融合技術が使われています。この分野は、まさに今アクティブで、また人類への多くの貢献が期待されている分野でもあるのです。私どもの研究室には、様々なバックグランドと目的を持った学生さんが来ます。私どもは一人ひとりの目的に合わせたゴールを設定し、そこに向かって必要なものを自ら獲得できる様に、サポートとガイドを行うことを主な指導方針としています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/takamura/index.html
ナノ粒子工学:機能材料の創製から応用まで
ナノ粒子工学:機能材料の創製から応用まで
ナノ粒子工学研究室 Laboratory on Nanoparticle Engineering
教授:前之園 信也(MAENOSONO Shinya)
E-mail:
[研究分野]
ナノ材料化学、ナノ材料物性、コロイド化学
[キーワード]
半導体ナノ粒子、磁性体ナノ粒子、金属ナノ粒子、バイオ医療、エネルギー変換、センシング
研究を始めるのに必要な知識・能力
基礎学力、コミュニケーション能力、知的好奇心、柔軟な思考
この研究で身につく能力
修士課程では、(1) ナノ材料の化学合成技術、(2) 各種分析機器(透過型電子顕微鏡、X 線回折装置、X 線光電子分光、組成分析装置など)の操作スキル、(3) 基礎学問の知識(無機材料化学、結晶学、コロイド化学、固体物性など)、(4) ナノ材料に関する先端専門知識を身につけて頂きます。博士課程では、1-4に加え、英語によるプレゼンテーション能力、英語論文執筆能力、研究課題設定能力、共同研究遂行能力など、研究者に必要なあらゆる能力を身につけて頂きます。
【就職先企業・職種】 製造業(化学、精密機器、電気機器、ガラス・土石製品、繊維製品、その他製品など)
研究内容
物質をナノメートルサイズまで細かくしていくと、種々の物性がサイズに依存する新奇な材料となります。このような新奇材料を一般に「ナノ材料」と呼びますが、我々はその中でも特に「ナノ粒子」に興味を持ち、ナノ粒子に関する基礎から応用に亘る研究を行っています。半導体、磁性体、金属などのナノ粒子を化学合成し、その表面をさまざまな配位子によって機能化し、さらにそれらナノ粒子の高次構造を制御することによって、バイオ・医療分野あるいは環境・エネルギー分野で新たな応用を開拓することを目指しています。

1.磁性体ナノ粒子の合成とバイオ医療分野への応用
超常磁性体のナノ粒子を独自の方法によって合成し、その表面を自在に修飾することによって、バイオ医療分野での様々な応用の道を開拓しています。具体的には、細胞やタンパクの磁気分離、MRI 造影剤、ドラッグデリバリーシステムなどのナノ磁気医療に応用するための技術開発を行っています。
2.半導体ナノ粒子の合成とエネルギー変換素子への応用
狭ギャップ化合物半導体から広ギャップ酸化物半導体のナノ粒子まで、幅広い種類の半導体ナノ粒子を化学合成し、それらを用いて低炭素社会の実現を志向したナノ構造エネルギー変換素子の創製に関する研究を行っています。特に、ナノ構造熱電素子や光機能素子などに興味を持っています。
3.金属ナノ粒子を用いたバイオセンシング技術の開発
近年、金ナノ粒子を用いた様々なバイオセンサが開発され、簡便かつ迅速に DNA 配列検出やタンパク質機能解析などが可能となってきています。我々は、ナノ粒子プローブを用いたバイオセンシング技術の更なる高度化を目指し、異種金属元素からなるヘテロ構造ナノ粒子や合金ナノ粒子のプローブの開発を進めています。
主な研究業績
- T. S. Le, M. Takahashi, N. Isozumi, A. Miyazato, Y. Hiratsuka, K. Matsumura, T. Taguchi, and S. Maenosono, “Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles”, ACS Nano 16 (2022) 885
- J. Hao, B. Liu, S. Maenosono, and J. Yang, “One-Pot Synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) Core-Shell Nanoparticles as Highly Efficient Catalysts for the Reduction of 4-Nitrophenol”, Sci. Rep. 12 (2022) 7615
- T. S. Le, S. He, M. Takahashi, Y. Enomoto, Y. Matsumura, and S. Maenosono, “Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes”, Langmuir 37 (2021) 6566
使用装置
透過型電子顕微鏡 (TEM) 超伝導量子干渉磁束計 (SQUID)
過型電子顕微鏡 (STEM) 動的光散乱測定装置 (DLS)
X 線回折装置 (XRD) 共焦点レーザー顕微鏡 (CLSM)
X 線光電子分光装置 (XPS) 核磁気共鳴装置 (NMR)
研究室の指導方針
就職希望者には、基礎・専門知識はもちろん、コミュニケーション能力、英会話力、論理的思考力および柔軟な対応力を涵養し、不確実性の時代を生き抜くことができる人材となってもらうための指導を行います。企業経験を活かした実践的就職指導も行っています。
博士後期課程への進学希望者については、先端的かつ国際的な研究環境を提供することによって、将来的に大学教員や企業研究者として活躍できるグローバル研究人材を育成します。
[Website] URL:https://www.jaist.ac.jp/~shinya/
細胞・組織の機能を制御する高分子材料を創成し、医療に役立てる
細胞・組織の機能を制御する高分子材料
を創成し、医療に役立てる
生体制御高分子研究室 Laboratory on Biofunctional Polymers
教授:松村 和明(MATSUMURA Kazuaki)
E-mail:
[研究分野]
材料化学、高分子化学、生体材料
[キーワード]
高分子化学、バイオマテリアル、再生医療、凍結保存、ハイドロゲル
研究を始めるのに必要な知識・能力
化学をベースとして、生体に応用できる材料を目指すので、化学の基礎知識は持っていた方が望ましいです。その上で、生物学や医学に対しても必要な事を習得する姿勢を期待します。異分野からの参加は歓迎しますが、化学、高分子化学の勉強を興味を持って続けられる向上心は必要です。
この研究で身につく能力
生体材料の研究は化学・生物・医学また物理学を含んだ学際的領域の研究です。生体の持つ高度に制御された機能を学び、それを代替する材料の創成を目標として研究を続けていくことで、化学のみならず、生物学や医学、物理学などの幅広い学問分野に触れ、多角的な物の見方を獲得することが出来ます。
また、生体材料の研究は目的がはっきりしているニーズ指向型の研究のため、課題解決能力を育む事が可能です。特に博士後期課程の学生に関しては、問題発見能力も同時に身につけるように研究を進めていきます。
【就職先企業・職種】 製造業・化学メーカーなど
研究内容
機能性高分子バイオマテリアル
人工臓器やドラッグデリバリーシステム(DDS)には高分子化合物のようなソフトマテリアルが多く使用され、研究されています。バルクな材料だけでなく、コロイドやミセル、溶液なども一種のバイオマテリアルとして様々な場面での研究が展開されています。
高分子材料はそのバルク界面で、もしくは溶液状態で細胞や組織と相互作用し、機能を制御することが可能であることがわかってきました。また、様々な場面でその機能を利用したバイオマテリアルの研究開発が行われています。
凍結保護高分子
細胞を凍結保存することができる高分子を見出し、その機序を調べると共に応用を目指しています。この不思議な現象は、電荷密度の高い高分子化合物、特に両性電解質高分子に見られる特徴であることがわかってきました。細胞などの様な水を含む高次構造体をそのまま凍結すると細胞内の水の結晶化により致命的なダメージが加わり、死滅します。このような高分子化合物で細胞を凍結時のダメージから保護できるということは、これまでの常識では考えにくいことでした。従って、この現象の機序を解明することで、凍結保護だけでなく、生体組織や高次構造体の保護作用などへとつながる可能性を秘めています。我々はこの高分子をゲルにすることで、細胞保護性のハイドロゲルを作成しました。また、ナノ粒子化することでドラッグデリバリーシステムへの応用も試みています。

再生医療応用可能な高分子
再生医療や組織工学に応用可能な、生体内分解性セルロースの開発も行っています。この技術により、細胞をその中で増殖させ、生体内で細胞治療が可能な足場材料の開発が期待されます。
生体と調和する高分子バイオマテリアル
生体機能の再生を目的とした診断・治療の支援を行うために、材料工学の手法を用いた、基礎的ならびに応用的研究も目指しています。具体的には、ハイドロゲルを用いた人工関節や人工血管用材料の設計など、高分子材料の観点から生物と化学の融合を目指し、さらには生体を凌駕するような機能を探求しています。

主な研究業績
- Rajan R, Furuta T, Zhao D, Matsumura K. Molecular mechanism of protein aggregation inhibition with sulfobetaine polymers and their hydrophobic derivatives. Cell Rep. Phys. Chem. 5, 102012 (2024)
- Kumar K, Nakaji-Hirabayashi T, Kato M, Matsumura K, Rajan R. Design of Highly Selective Zn-Coordinated Polyampholyte for Cancer Treatment and Inhibition of Tumor Metastasis. Biomacromolecules 25, 1481-1490 (2024)
- Hirose T, Rajan R, Miyako E, Matsumura K. Liquid metal–polymer nano-microconjugations as an injectable and photo-activatable drug carrier. Mol. Syst. Des. Eng. 9, 781-789 (2024)
使用装置
NMR
FITR
動的粘弾性装置
細胞培養用装置
共焦点レーザー顕微鏡
研究室の指導方針
本研究室では、高分子化学の基礎から応用までを理解し、生体材料としての応用を目指しています。そのためには、化学の知識だけでなく、生物や医学、さらには機械工学などの幅広い学問領域に通じている必要があります。また、生体材料がカバーする範囲は、人工臓器、再生医療、ドラッグデリバリー、バイオセンサなど多種多様であり、それらの研究開発に必要な知識を興味を持って獲得し、多角的な視点で課題の解決を遂行できる力のある学生を育成することを目標としています。
年に数度の学会発表を通じてプレゼンテーション能力を身につけ、週一度の研究室ゼミで基礎力・ディスカッション能力を養います。
[研究室HP] URL:https://matsu-lab.info/
令和7年度 第2回 超越バイオメディカルDX研究拠点 ネオ・エクセレントコアセミナー(科研費「新規細胞内氷晶形成測定法の開発と次世代三次元組織凍結保存」共催セミナー)
下記のとおりセミナーを開催しますので、ご案内します。
| 日時 | 令和7年10月24日(金) 13:30~16:55 |
| 場所 | JAISTイノベーションプラザ 2F シェアードオープンイノベーションルーム |
| 概要 | 本セミナーでは、凍結保存の新展開を切り拓く先端センシング技術を紹介します。高分子凍結保護剤の開発から、高磁場DNP-MAS-NMRやダイヤモンド量子センサー、スーパーコンピュータを活用した計算科学、さらにX線・中性子散乱による微細構造解析、液化窒素式機器の開発まで、量子・高磁場・放射光・計算科学の最前線研究を結集し、凍結保存の未来を展望します。 |
| プログラム | 13:30 開始 開会あいさつ 13:35 「高分子凍結保護剤の開発と凍結状態センシングへの挑戦」 松村 和明 教授 (北陸先端科学技術大学院大学) 14:05 「高磁場DNP-MAS-NMR法の装置と方法論の開発」 松木 陽 准教授 (大阪大学) 14:35 「ダイヤモンド量子センサーのバイオ応用概観」 安 東秀 准教授 (北陸先端科学技術大学院大学) 15:05-15:20 コーヒーブレーク 15:20 「JAISTスパコンを活用したデータ駆動型材料研究」 本郷 研太 准教授 (北陸先端科学技術大学院大学) 15:50 「X線/中性子散乱による凍結保存における細胞微細構造センシング」 中田 克 氏 (株式会社東レリサーチセンター) 16:20 「液化窒素式凍結保存機器の開発」 吉村 滋弘 氏 (太陽日酸株式会社) 16:50 終了 閉会あいさつ |
| 使用言語 | 日本語 |
| 参加申込 | ・参加費無料 ・要予約(定員30名) 下記の担当へ前日までにメールにてお申し込みください。 【本件担当・予約申込先】 北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点 拠点長 松村 和明 (mkazuaki |
特殊なダイヤモンドの針を開発し超高速で変化する電場の局所計測に成功
![]() ![]() ![]() |
| 国立大学法人筑波大学 国立大学法人 慶應義塾大学 |
特殊なダイヤモンドの針を開発し
超高速で変化する電場の局所計測に成功
NV中心と呼ばれる格子欠陥を導入したダイヤモンドを原子スケールの空間分解能を持つ原子間力顕微鏡(AFM)の探針(プローブ)に用い、二次元層状物質の表面近傍の電場をフェムト秒(1000兆分の1秒)・ナノメートル(10億分の1メートル)の時空間分解能で計測することに成功しました。
| ダイヤモンドの結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがあります。これをNitrogen-Vacancy(NV)中心と言います。そして、NV中心を導入したダイヤモンドに電界を加えると、その屈折率が変化するようになります。これは電気光学(EO)効果と呼ばれる現象で、ダイヤモンド単体では実現していませんでした。 本研究チームはこれまでに、NV中心を導入した高純度ダイヤモンドに1000兆分の1秒という極めて短時間だけパルス光を放出するフェムト秒レーザーを照射し、ダイヤモンドのEO効果を計測することで、ダイヤモンドの格子振動ダイナミックスを動的に高感度に検出することに成功しています。このことは、ダイヤモンドが超高速応答するEO結晶として利用可能で、電場を検出する探針(ダイヤモンドNVプローブ)となり得ることを示しています。 そこで本研究では、NV中心を導入したダイヤモンドの超高速EO効果と、原子スケールの空間分解能を有する原子間力顕微鏡(AFM)技術とを融合し、フェムト秒(fs=1000兆分の1秒)の時間分解能とナノメートル(nm=10億分の1メートル)の空間分解能で局所的な電場のダイナミックスを測定できる、時空間極限電場センシング技術を開発しました。そして、このセンシング技術を用いることで、二次元の原子層が層状に重なった二次元層状物質であるセレン化タングステン(WSe2)試料の表面近くの電場を500 nm以下かつ100 fs以下の時空間分解能でセンシングできました。 ダイヤモンドNVプローブはスピンや温度の変化にも感度があるため、本研究成果は、電場の検出に加え、磁場や温度を検出するためのセンシング技術としても展開されることが期待されます。 |
【研究代表者】
筑波大学数理物質系
長谷 宗明 教授
北陸先端科学技術大学院大学ナノマテリアル・デバイス研究領域
安 東秀 准教授
慶應義塾大学理工学部
ポール フォンス 講師(研究当時、同大学同学部電気情報工学科教授)
【研究の背景】
ダイヤモンド中の不純物には窒素やホウ素などさまざまな種類があります。その中でも、点欠陥に電子や正孔が捕捉され、発光を伴う種類のものはダイヤモンドを着色させるため、「色中心:カラーセンター」と呼ばれます。色中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、温度や電場を読み取る量子センサー注1)として用いられています。
量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心注2)と呼ばれる複合欠陥を用いたセンサーは、まだまだ発展途上の技術ですが、高空間分解能・高感度が要求される細胞内計測やデバイス評価装置のセンサーへの応用など、新しい可能性が期待されています。
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬くフェムト秒超短パルスレーザー注3)を用い、NV中心を導入したダイヤモンドの電気光学(EO)効果注4)を実時間分解計測することで、ダイヤモンドの格子振動ダイナミックスを動的に高感度に検出することに成功しています参考文献 a)。このことは、ダイヤモンドが超高速応答するEO結晶になり、電場検出の探針(プローブ)となり得ることを示すものです。
これまでもダイヤモンドを原子間力顕微鏡(AFM)注5)と組み合わせた電場センシングの試みはなされていましたが、局所ダイナミックスを動的に評価できる手法はほとんどありませんでした。特に時間分解能に関しては、発光測定に基づく従来の手法ではナノ秒程度が限界であり、ピコ秒以下の超高速時間分解能に関しては、全く開拓されていませんでした。
【研究内容と成果】
本研究では、量子光学(フェムト秒超短パルスレーザーを用いたダイヤモンドのEO効果)と走査プローブ顕微鏡(SPM)の一種である原子間力顕微鏡(AFM)技術を融合することで、光の回折限界を超える空間分解能に加えて、今までの検出限界を超える超高速時間分解能で局所的な電場計測を実現することを目指しました(図1)。
極めて不純物が少ない高品質のダイヤモンド結晶の表面近傍(深さ40nm)に、密度を制御したNV中心を導入し、そのダイヤモンド結晶をレーザーカットおよび集束イオンビーム(FIB)技術注6)を駆使することで、先端径が500 nm以下のダイヤモンドNVプローブに加工することに成功しました。このダイヤモンドNVプローブを、フェムト秒超短レーザーを組み込むことが可能な、ピエゾ抵抗効果注7)に基づく自己センシング方式注8)のAFMのカンチレバーに取り付けました(図2)。
このシステムを用いて、まずガリウムヒ素(GaAs)半導体基板の表面電場を調べました。フェムト秒超短パルスレーザーの出力光をビームスプリッタで約10対1に分岐し、強い方を励起のためのポンプ光、弱い方を探索のためのプローブ光とします。電子が電流を運ぶn型GaAs試料は高強度のポンプ光で励起され、プローブ光はダイヤモンドNVプローブに入射されます(図3a)。まず、ダイヤモンドNVプローブの有無による時間分解EO信号の検出感度を確認するため、ダイヤモンドNVプローブを用いないマクロ計測により時間分解EO信号を計測したところ、励起直後(Time delay=時間遅延0 ps)に立ち上がり、数ps(ps=1兆分の1秒)以内に緩和しポンプ光を当てる前に戻る信号が得られました(図3b)。またNVセンターを導入したダイヤモンドNVプローブを通じて、n型GaAsの表面電場を検出することに成功しました(図3c)。ダイヤモンドNVプローブの導入によりEO信号の大きさは約1/42に減少しましたが、局所計測に成功したと言えます。
さらに二次元層状物質注9)であるセレン化タングステン(WSe2)単結晶をシリコン基板上に転写した試料を用いて実験を行いました。このWSe2試料では、場所によって結晶の厚さが異なっていますが、光学顕微鏡で銀白色のバルク(Bulk)結晶(厚さが10原子層以上の結晶)を見つけ、このバルク結晶と接する紫色の単層(1 ML)部分との界面に着目しました(図4a)。この厚さの異なる界面を用いて、局所的な表面電場の計測を行ったところ、単層部分とバルク部分のキャリア特性を反映した表面電場信号を、500 nm以下かつ100 fs以下の時空間分解能でセンシングすることに成功しました(図4a,b)。また時間分解EO信号の減衰を指数関数を用いてフィッティング(モデル化)したところ、単層部分では約200フェムト秒で緩和する成分のみが観測されました。一方、バルク部分では、この成分に加えて、約2psで緩和する遅い成分の寄与があることが分かりました(図4c)。このことは、単層部分では電場は基板との相互作用などで高速に緩和するのみなのに対し、バルク部分では、表面電場と結合したキャリアのバンド内緩和やバレー間緩和注10)が寄与していることを示しています。n型GaAsの時間分解EO信号による電場検出感度を見積もると、約100 V/cm/
(Hzは周波数)となりました。これは発光測定に基づく従来の手法で得られたマイクロ秒時間領域でのDC(直流)電場センシングと同等の検出感度を達成したことになります。最近のマイクロ秒時間領域でのAC(交流)電場センシングに関する検出感度には2桁及びませんが、本手法ではDC(直流)電場センシングと同等の検出感度で500 nm以下かつ、100フェムト秒というマイクロ秒を遙かに凌ぐ高い時空間分解能が得られることが示されたと言えます。
【今後の展開】
今回開拓した時空間極限センシング技術は、例えば炭化ケイ素(SiC)などのパワー半導体材料や燃料電池材料内での局所電場検知、トポロジカル絶縁体における局所電場検知など、基礎物理・化学のための基盤技術となることが期待されます。また、NV中心を含むダイヤモンドNVプローブはスピンや温度の変化にも感度があるため、本研究のアプローチは、電場の検出に加え、磁場や温度を検出するためのセンシング技術としても展開可能であると言えます。例えばレーザー医療や分子レベルでの細胞の計測や制御を通じて、癌の治療をはじめとする量子生命科学の分野にも波及しうる革新的な展開が期待されます。
【参考図】

| 図1 本研究で行なった実験の概要図 ダイヤモンドNVプローブを用いた超高速ポンプ・プローブ電場センシング測定の概略図。試料上の各指定点においてAFMプローブを垂直に接近・後退させる「ピンポイントモード」で測定を行った。また試料はピエゾスキャナーを用いてx-y方向に走査される。 |

| 図2 本研究で作製したダイヤモンドNVプローブ概要図 (a) FIBで作製したダイヤモンドNVプローブ(探針)の走査型イオン顕微鏡像。マイクロメートルサイズに加工されたダイヤモンド結晶の一部が探針となっている。(b) ダイヤモンドNVプローブの探針部分のフォトルミネッセンス画像。赤色の部分から探針の直径が500 nm以下であることが分かる。(c)カンチレバーに取り付けたダイヤモンドNVプローブの光学顕微鏡像。カンチレバーは自己センシング方式用の回路部分の上部に位置しており、その先端に探針部分を含むダイヤモンドNVプローブが取り付けられている。 |

| 図3 ダイヤモンドNVプローブを用いたn型GaAs表面の電場センシング (a)ダイヤモンドNVプローブ先端近傍の表面バンド曲げと接触モードの配置図。表面状態はフェルミエネルギー(EF)を示すベル形状の破線で表され、下側のバンドは電子(-)で占有されている。VBは価電子帯、CBは伝導帯を示す。(b)ダイヤモンドNVプローブを用いないマクロ計測によるn型GaAsウェハーからの時間分解電気光学信号。(c)ダイヤモンドNVプローブを用いたn型GaAsからの局所的時間分解電気光学信号。(b)のマクロ計測の場合に比べてEO信号の大きさは約1/42になっているが、検出感度が十分であることが確認された。 |

| 図4 WSe2のEO信号の時空間測定 (a) ダイヤモンドNVプローブを用いた60 µm ×60 µm領域のトポグラフ画像。色の薄い部分がバルク(Bulk)結晶である。左上の挿入図は光学顕微鏡像であり、銀白色の部分はバルク(Bulk)結晶である。 局所計測では、単層(1ML)領域(P4)からバルク(Bulk)領域(P11)までを500 nmステップで計測する。(b)ダイヤモンドNVプローブを用いて得られた局所的な時間分解電気光学信号。P4からP11に行くに従い、単層(1ML)からバルク(Bulk)領域を測定している。図(b)の黒実線は、単一指数関数(単層=1ML領域のデータについて)または二重指数関数(バルク領域のデータについて)を用いたフィッティング(モデル化)を示す。(c) P4からP11の異なる位置における500 nmステップで得られた時間分解電気光学信号へのフィッティングにより得られた緩和時間定数。エラーバーは標準偏差を示す。 |
【用語解説】
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」はダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NV中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒(1000兆分の1秒)以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
物質に電場を加えると、電場の強度に応じて物質の屈折率が変化する効果のこと。
先端が鋭い探針で試料の表面を走査し、探針と表面との間に働く微少な力を測定して表面構造を原子スケールの高分解能で観察することができる顕微鏡のこと。AFM探針は、バネのようにしなるカンチレバーの先端に取り付けられており、コンタクトモードでは、この探針と試料表面を微小な力で接触させ、カンチレバーのたわみ量が一定になるように探針・試料間距離をフィードバック制御しながらX―Y方向(水平方向)に走査することで、表面形状を画像化できる。
イオンビーム(荷電しているイオンを高電界で加速したもの)を細く絞ったものである。物質の微細加工、蒸着、観察などの用途に用いられる。
半導体材料などに機械的なひずみ(力による変形)を与えたとき、材料の電気抵抗が変化する効果のこと。
通常のAFMでは、レーザー光をカンチレバー背面に照射し、反射したレーザービームの位置変化を位置センサーで計測することで、カンチレバーのたわみ量(表面構造によりたわんだ量)を読み取る。カンチレバーのたわみ信号を光で読み取ることから、これを光てこ方式と呼ぶ。一方、自己センシング方式のAFMでは、光てこ方式のようにレーザーと一センサーを必要とせず、ピエゾ抵抗効果などのカンチレバー自身の物理量の変化からカンチレバーのたわみ量を読み取ることができる。
共有結合が二次元方向だけに伸びている結晶のこと。原子一層レベルの二次元原子層が、ファンデルワールス力で積層して三次元結晶を形成している。炭素の二次元原子層であるグラフェンが積層したグラファイト、近年盛んに研究されるようになった遷移金属カルコゲナイドなどがある。本研究で調べたセレン化タングステン(WSe2)も遷移金属カルコゲナイドである。
半導体などにおいて、バレーとは電子バンドの極小点を指す。異なるバレー間にキャリアが散乱(遷移)することでエネルギーを失う緩和過程をバレー間緩和と呼ぶ。
【研究資金】
本研究は、科研費による研究プロジェクト(25H00849, 22J11423, 22KJ0409, 23K22422, 24K01286, 24H00416, 23H00264)、および国立研究開発法人 科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)(JPMJCR1875)の一環として実施されました。
【参考文献】
a) T. Ichikawa, J. Guo, P. Fons, D. Prananto, T. An, and M. Hase, 2024, Cooperative dynamic polaronic picture of diamond color centers. Nature Communications. 15, 7174 (10.1038/s41467-024-51366-x).
【掲載論文】
| 題名 | An ultrafast diamond nonlinear photonic sensor. (超高速ダイヤモンド非線形光センサー) |
| 著者名 | D. Sato, J. Guo, T. Ichikawa, D. Prananto, T. An, P. Fons, S. Yoshida, H. Shigekawa, and M. Hase |
| 掲載誌 | Nature Communications |
| 掲載日 | 2025年9月25日 |
| DOI | 10.1038/s41467-025-63936-8 |
令和7年9月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/09/26-1.html学生の松本さんと石須さんがSI2024において優秀講演賞を受賞
学生の松本創大さん(令和7年3月博士前期課程修了、ナノマテリアル・デバイス研究領域、HO研究室)と石須滉大さん(令和7年3月博士前期課程修了、ナノマテリアル・デバイス研究領域、HO研究室)が、第25回計測自動制御学会システムインテグレーション部門講演会(SI2024)において、優秀講演賞を受賞しました。
SI2024は、「サステナブルな社会を目指すシステムインテグレーション」をテーマに、SI部門設立25周年の記念大会として、令和6年12月18日~20日にかけて、岩手県のアイーナいわて県民情報交流センターにて開催されました。
優秀講演賞は、SI部門講演会において発表された全ての発表を対象として審査が行われ、講演会実行委員会によって選出されるものです。
※参考:SI2024
■受賞年月日
令和7年2月17日
【松本創大さん】
■研究題目、論文タイトル等
口径変化が可能な吸着型ソフトロボットハンド
■研究者、著者
松本創大、HO, Anh Van
■受賞対象となった研究の内容
松ぼっくりの形状から着想を得た、吸着口を可変できるソフトロボットハンドを開発した。把持したい物体の形状、重さ、大きさに対して適切な口径を変化させることができるロボットハンドを開発し、吸着力実験と把持実験を通してロボットハンドとしての性能を評価した。
■受賞にあたって一言
自分の研究が評価されて、光栄です。今後ソフトロボットが社会実装されるための1手段になってくれることを願います。
【石須滉大さん】
■研究題目、論文タイトル等
深い接触を許容するビジョンベース触覚センサを用いた回転物体における初期滑り検知
■研究者、著者
石須滉大、Luu Quan、HO, Anh Van
■受賞対象となった研究の内容
ロボットの物体把持のために初期滑り検知が必要。視覚ベース触覚センサを使ってこれまでよりも簡単な方法で初期滑りの特徴を検知した。
■受賞にあたって一言
まずは、本研究を支えてくださったLuu QuanさんとHo, Anh Van教授に深く感謝申し上げます。本研究がソフトロボット学の発展に貢献できれば光栄です。


令和7年5月7日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/05/07-1.htmlダイヤモンド結晶中の色中心から飛び出す準粒子を発見
![]() ![]() ![]() ![]() |
| 国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 慶應義塾大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド結晶中の色中心から飛び出す準粒子を発見
電子と結晶格子の振動をまとめて一つの粒子とみなしたものをポーラロン準粒子と呼びます。色中心と呼ばれる不純物を導入したダイヤモンド結晶に超短パルスレーザー光を照射し、その反射率の変化を精密測定した結果、ポーラロンが色中心の周りに飛び出して協力しあうことを発見しました。
| ダイヤモンドの結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがあります。この窒素と空孔が対になったNitrogen- Vacancy(NV)中心はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となります。NV中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性を高空間分解能・高感度なセンサー機能として利用することが期待されています。NV中心の周りの結晶格子の歪み(ひずみ)により、NV中心の電子のエネルギー準位が分裂することが分かっていますが、電子と格子歪みの相互作用メカニズムなど詳細については、ほとんど解明されていませんでした。 本研究では、純度の高いダイヤモンド結晶の表面近傍に、密度を制御したNV中心を極めて薄いシート(ナノシート)状に導入しました。そのシートにパルスレーザーを照射し、ダイヤモンドの格子振動の様子を調べた結果、NV中心の密度が比較的低いにもかかわらず、格子振動の振幅が約13倍に増強されることが分かりました。そこで、量子力学に基づく計算手法(第一原理計算)でNV中心の周りの電荷状態を計算したところ、正負の電荷が偏った状態になっていることが分かりました。 電子と結晶格子の振動をまとめて一つの粒子とみなしたものをポーラロン準粒子と呼び、これにはいくつかのタイプがあります。ダイヤモンドでは、約70年前にフレーリッヒが提案したタイプは形成されないと考えられていましたが、今回の解析結果は、フレーリッヒ型のポーラロンがNV中心から飛び出してナノシート全体に広がっていることを示しています。本研究成果は、ポーラロンを利用したNV中心に基づく量子センシング技術の新たな戦略への道筋を開くものです。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明 教授
市川 卓人 大学院生(当時)
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀 准教授
慶應義塾大学 電気情報工学科
ポール フォンス 教授
【研究の背景】
ダイヤモンドは炭素原子のみからなる結晶で、高い硬度や熱伝導率を持っています。その特性を生かし、研磨材や放熱材料などさまざまな分野で応用されています。
そして、最近注目されているのが量子センサー注1)としての働きです。ダイヤモンド中の不純物には窒素やホウ素などさまざまなものがあります。その中でも、不純物原子で置換された点欠陥注2)に電子や正孔が捕捉され発光を伴う種類のものは、ダイヤモンドを着色させるため「色中心」と呼ばれ、量子準位の変化で温度や電場を読み取る量子センサーとして用いられています。量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心注3)と呼ばれる複合欠陥を用いたセンサーは、高空間分解能・高感度を必要とする細胞内計測やデバイス評価装置のセンサーへの応用が期待されています。
NV中心の周りの炭素原子の格子にはヤーン・テラー効果注4)により歪みが生じていることが分かっており、この格子歪みに伴いNV中心の電子状態が分裂し、NV中心からの発光強度などに影響を与えることが知られています。しかし、その格子歪みに関しては、ポーラロン注5)の存在が示唆されるものの、電子と格子振動の相互作用の観点からは十分な解明がなされていませんでした。
【研究内容と成果】
本研究では、極めて不純物が少ない高品質のダイヤモンド結晶に窒素イオン(14N+)を4種類の線量(ドーズ)で注入することで、NV中心の密度を制御しながら表面近傍40ナノメートルの深さに導入し、そのナノシートにおける炭素原子の集団運動(格子振動:フォノン注6))の様子を調べました。
フェムト秒(1000兆分の1秒、fs)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注7)を、NV中心を導入した高純度ダイヤモンド単結晶に照射し、ポンプ・プローブ分光法注8)によりダイヤモンド試料表面における反射率の変化を精密に計測しました。その結果、ポンプパルス照射直後(時間ゼロ)に見られる超高速に応答する電気・光学効果注9)の信号に加え、結晶中に発生した40テラヘルツ(1012 Hz)の極めて高い周波数を持つ位相がそろった格子振動を検出することに成功しました(図1)。さらにNV中心の密度を変化させて計測を行ったところ、14N+ドーズ量が1x1012/cm2のときに、格子振動の振幅(波形の縦軸方向の幅)が約13倍にも増強されることが分かりました(図2)。
通常の固体結晶では、格子欠陥を導入すると欠陥による格子振動の減衰が大きくなるため、格子振動の振幅は小さくなることが知られており、約13倍もの増強は固体物理学の範疇では説明できません。そこで第一原理計算注10)を用いて、NV中心の周りの電荷状態を計算したところ、正負の電荷が偏った状態になっていることが分かりました。これは、NV中心の周りに分極が発生しており、ヤーン・テラー効果によるポーラロンとは全く異なるフレーリッヒ型ポーラロン注11)がNV中心の周りに存在していることを示唆しています。また、約13倍もの格子振動の増強は、フレーリッヒ型ポーラロンがNV中心近傍から飛び出してナノシート全体に広がり、互いに協力し合っていることを示しています(図3)。一方、さらにドーズ量が増加すると、今度は欠陥による減衰により格子振動の振幅が小さくなることも分かりました(図2)。よって、ドーズ量が1x1012/cm2の時に増強と減衰がつり合い、最も協力現象が起こりやすいことが示されました。
【今後の展開】
本研究グループではこれまで、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)が発現することを報告しました。SHGは結晶にレーザー光を照射した際に、そのレーザー周波数の2倍の周波数の光が発生する現象です。今回の成果は、これらの先行研究に基づいたものです。
今回明らかにした物理的メカニズムは、レーザーパルスの強い電場下で起こるNV中心近傍のフレーリッヒ相互作用による協力的ポーラロンの生成と、それによるダイヤモンド格子振動の増強を示唆しています。また、今回観測したダイヤモンドの格子振動は、固体材料の中で最も高い周波数を持っています。つまり、これらの結果は、40テラヘルツという極めて高い周波数の格子歪み場による電子と格子振動の相互作用(ポーラロン準粒子)を利用したNV中心に基づく量子センシング技術の開発に向けた新たな戦略への道筋を開くものと言えます。
【参考図】

図1 本研究で行なった実験の概要図
NV中心なし、およびNV中心ありのダイヤモンド試料で得られた時間分解反射率信号。挿入図はNV中心の局所構造(楕円)およびポンプ・プローブ分光法の概要を示している。挿入図中の紫色の球が窒素(Nitrogen)を、点線で描かれた円が空孔(Vacancy)を示す。ポンプパルスを照射したのち、プローブパルスを照射するまでの時間を遅延時間(単位はfs)と呼ぶ。

図2 実験で得られた位相がそろった格子振動信号のドーズ依存性
NV中心なし、および4種類の窒素イオン(14N+)のドーズ量におけるダイヤモンド試料の時間分解反射率変化信号。黒線は、位相がそろった格子振動の信号を減衰型の正弦波(sin関数)によりフィットした結果である。ドーズ量が1x1012 N+cm-2の時に、位相がそろった格子振動の振幅がNV中心なしの場合と比較して約13倍に増強されていることが分かった。

図3 NVダイヤモンドにおける協力的ポーラロニック描像の模式図
図中のτは、パルスレーザー(ポンプパルス)照射後の経過時間(単位はfs)を表す。(a) 励起前のNVダイヤモンドの電荷状態を示す。NV中心は負に帯電したNV-状態(赤色の電荷分布)と電荷が中和されたNV0状態(緑色の電荷分布)が混在し、それぞれは局在している。挿入図はイオン化ポテンシャルINVを示し、rはイオン半径である。 (b) 光励起により、NV中心はポンプ電場Epumpによってイオン化される。 (c) 光励起直後、電荷は強く非局在化され、NV中心間の距離にわたって広がり、非線形分極PNLを形成する。 (d) 非線形分極PNLによりコヒーレントな(位相のそろった)格子振動が駆動される。
【用語解説】
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
結晶格子中に原子1個程度で存在する格子欠陥を指す。原子の抜け穴である空孔や不純物原子で置換された置換型欠陥などがある。
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」は、ダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NV中心には、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
固体中において、電子的に縮退した基底状態を持つ場合、結晶格子は変形する(歪ませる)ことによりエネルギーが低く安定な状態になる。このような効果をヤーン・テラー効果という。1937年にイギリスのハーマン・アーサー・ヤーンとハンガリーのエドワード・テラーにより提唱された。
結晶中の格子振動と電子が相互作用すると、結合して相互作用の衣を着た素励起である準粒子、すなわちポーラロンが生成される。ポーラロンの存在は1933年にロシアの物理学者レフ・ダヴィドヴィッチ・ランダウによって提案された。フレーリッヒが提案したタイプのポーラロン注11)はこれまで極性をもつ半導体や誘電体など(分極を有する材料)で報告されているが、ダイヤモンドは極性材料ではないため、フレーリッヒ型ポーラロンは観測されていなかった。
原子の集団振動を格子振動と呼ぶ。格子振動を量子化したものをフォノンと呼ぶ。
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
強い励起パルス(ポンプパルス)により試料を励起し、時間遅延をおいて弱い探索パルス(プローブパルス)を照射し、プローブ光による反射率変化などから試料内部に励起された物質の応答を計測する手法のこと。
物質に電場を印可すると、その強度に応じて屈折率が変化する効果のこと。
「もっとも基本的な原理に基づく計算」という意味で、量子力学の基本法則に基づいた電子状態理論を用いて電子状態を解く計算手法である。物質の光学特性などの物性を求めることができる。
電子と縦波光学フォノンの間の相互作用をフレーリッヒ相互作用と呼ぶ。1954年にドイツの物理学者ヘルベルト・フレーリッヒにより提唱された。この相互作用により生じたポーラロンがフレーリッヒ型ポーラロンである。
【研究資金】
本研究は、科研費による研究プロジェクト(22H01151, 22J11423, 22KJ0409, 23K22422, 24K01286)、および科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)(JPMJCR1875)の一環として実施されました。
【掲載論文】
| 題名 | Cooperative dynamic polaronic picture of diamond color centers. (ダイヤモンド色中心の協力的な動的ポーラロニック描像) |
| 著者名 | T. Ichikawa, J. Guo, P. Fons, D. Prananto, T. An, and M. Hase |
| 掲載誌 | Nature Communications |
| 掲載日 | 2024年8月30日 |
| DOI | 10.1038/s41467-024-51366-x |
令和6年9月2日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/09/02-1.htmlユネスコ無形文化遺産「金沢金箔」の薄さと輝きを生む謎を解明 ―伝統工芸と材料科学が出会う、新たな発見―
![]() |
北陸先端科学技術大学院大学 大阪大学 |
ユネスコ無形文化遺産「金沢金箔」の薄さと輝きを生む謎を解明
―伝統工芸と材料科学が出会う、新たな発見―
【ポイント】
- 金沢金箔は、打ち延ばす工程によって箔全体を立方晶{001}集合組織(結晶粒の結晶方位が特定の方位に集中している状態)に配向させていることを解明。
- 金箔の上下に和紙を挟んで叩くことで温度上昇を防ぎ、再結晶化や回復を阻止。
- 通常は働かない{110}すべり系(原子の層がずれて動く仕組み)が特別に活性化し、箔全体の均一な薄さと輝きを実現。
| 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域のXU, Yuanzhe大学院生(博士後期課程)、麻生浩平講師、村田英幸教授、大島義文教授、大阪大学 超高圧電子顕微鏡センターの市川聡特任教授(常勤)の研究グループは、最新の電子顕微鏡技術により、ユネスコ無形文化遺産に登録されている金沢金箔の箔打ち工程で「再結晶や回復を防ぐ工夫」や「特殊な滑り面の働き」を確認することに成功し、金沢金箔の薄さと輝きを保つ仕組みを世界で初めて解明しました。この成果は、金沢金箔の保存・継承に貢献するだけでなく、将来的にナノ材料や高機能薄膜の開発にもつながる可能性があります。 本研究成果は、2025年9月26日 (英国標準時間)に科学雑誌「npj Heritage Science」誌のオンライン版で公開されました。 |
【研究概要】
金沢金箔(図1(a))は、寺社仏閣や伝統工芸品を飾るだけでなく、文化財の修復に不可欠な素材です。その特徴は「世界で最も薄い金属箔」(わずか100ナノメートル=髪の毛の約1/1000)という極薄性と、変わらない光沢にあります。この魅力から、ユネスコ無形文化遺産に登録されました。これまでの研究では、金沢金箔が安定した{001}集合組織を形成することは知られていましたが、その過程は不明でした。通常の金属では、箔打ちにより{110}集合組織が発達しますが、同時に再結晶や回復が起き、面内の結晶方位はランダムになると考えられていました。したがって、なぜ金沢金箔が均一で安定した{001}集合組織を示すのかは長年の謎でした。この謎を解き明かすことは、伝統工芸の継承と材料科学の進展の双方にとって重要な課題です。本研究では、最先端の技術である、電子後方散乱回折(EBSD)*1と世界最高加速電圧の超高電圧透過電子顕微鏡(UHVEM)*2 (加速電圧 2MV)を用いて、無加工で系統的に金沢金箔の分析を行いました。その結果、従来の金属学では予想されなかった「非八面体すべり系」という特殊な変形が室温の槌打ち工程で活性化し、金箔の結晶配向を整えることを明らかにしました。
本研究では、製造の中間段階にあたる「金澄(約1 μm)」と最終段階の「金箔(約100 nm)」を対象とし、電子後方散乱回折(EBSD)*1および超高電圧透過電子顕微鏡(UHVEM)*2を用いて局所的な結晶性の調査を行いました。その結果、金澄は、面内の結晶方位はランダムな{110}集合組織となっていましたが、転位密度が高く、再結晶が起きていないことがわかりました。一方、最終段階の金箔は、面内の結晶配向も高い{001}集合組織となっていました(図1(b))。ただし、転位密度は著しく増加しており、回復や再結晶が生じていないことを示唆していました。加えて、{110}面に平行な多数のすべり帯があり、その多くが直交していることを観察しました(図1(c))。この事実は、非八面体的な{110}-<110>すべり系が活性化していることを示唆しています。通常の面心立方晶(FCC)金属では、このような非八面体のすべり系が動くことはなく、金箔が特殊な変形状態にあることがわかりました。
以上の結果から考察を行い、金沢金箔は従来のFCC金属とは異なる変形メカニズムによって特異な集合組織を形成することが分かりました。具体的には、熱間圧延や焼鈍処理を施した金属材料と異なり、金沢金箔は再結晶や回復を伴わずに加工が進行しています。そのため、箔打ち過程において転位が絡み合うため、通常活性化する{111}-<110>すべり系が抑制されます。また、膜厚が転位ループのサイズに近い200 nm程度になると、転位ループの一部が表面を突き抜けるため、薄膜全体を貫通するらせん転位が多数残存します。これらのらせん転位は動きやすいため、交差すべりが生じやすくなります。この交差すべりが進化した結果、非八面体的な{110}-<110>すべり系が活性化します。この{110}-<110>すべり系は、箔打ち方向に対し、結晶方位を[110]から[001]へ徐々に回転させることができます。なお、加工時に金箔の上下に和紙を挟んで叩くことで、表面摩擦を低減するとともに温度上昇を防いでいました。つまり、この温度制御によって再結晶や回復が抑制され、上述したような特殊な変形が実現したと説明できます。
本研究の成果は、金沢金箔という無形文化遺産の科学的理解を深め、伝統技術の保存・継承に確かな裏付けを与えるものです。これにより、文化財修復における信頼性の向上や、安定供給に向けた技術支援が可能になります。さらに、極薄金属膜における特殊な変形メカニズムの知見は、構造敏感な次世代のナノ材料や高機能薄膜デバイスの開発にも応用が期待されます。具体的には、電子材料、センサー、装飾材など、従来にない性能やデザイン性を備えた新しい製品の創出につながる可能性があります。

| 図1 (a) 金沢金箔の写真。(b)金沢金箔の電子後方散乱回折(EBSD)から得た方位マップ。色は、箔打ち方向に対する結晶方位を示します(赤は、[001]方位)。(c) 最終段階の金沢金箔のTEM像。黒い帯に対応する[110]方位に沿ったすべり帯は、お互いに直交しています。 |
【論文情報】
| 雑誌名 | npj Heritage Science |
| 論文名 | Deformation mechanism behind the unique texture of Kanazawa gold leaf |
| 著者 | Yuanzhe Xu, Satoshi Ichikawa, Kohei Aso, Hideyuki Murata, and Yoshifumi Oshima |
| 掲載日 | 2025年9月26日 |
| DOI | 10.1038/s40494-025-02055-5 |
【用語説明】
材料表面で後方に散乱した電子回折の菊池パターンを解析し、ナノメートルの分解能で結晶方位、組織、転位密度のマップを得ることができます。
通常の透過電子顕微鏡の加速電圧が100-200 kVであるのに対し、超高電圧透過電子顕微鏡の加速電圧は、2MVと一桁大きい。そのため、入射電子の透過能が高く、厚い試料の内部構造を観察することができます。本研究の金箔、金澄を観察用に薄片加工することなくそのまま観察することができます。
令和7年10月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/10/07-1.html人と安全に協働できる"ソフトロボットリンク"を開発 触れてわかる、近づいて感じる-近接覚と触覚のハイブリッドセンシング技術「ProTac」
人と安全に協働できる"ソフトロボットリンク"を開発
触れてわかる、近づいて感じる-近接覚と触覚のハイブリッドセンシング技術「ProTac」
【ポイント】
- 透明・不透明を切り替えられるソフトスキンと視覚センサーを用い、近接センシングとスキン変形の解析による触覚センシングを備えたマルチモーダルソフトセンシング技術「ProTac」を開発
- 市販ロボットアームにも取り付け可能
- 従来の剛体リンクでは困難とされる、接触の多い環境下での動作制御が可能
- 農業や介護など、人とロボットが協働する作業への応用に期待
- AI駆動型センシングフュージョン技術
| 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域のクアン・ハン・ルウ研究員、ホ・アン・ヴァン教授らの研究チームは、透明・不透明を電圧により切り替えられるソフト素材と視覚センシング技術を融合し、近接・触覚の両モードを切り替えて検知できるマルチモーダルソフトセンシング技術「ProTac」を世界で初めて開発しました。ProTacを用いたソフトロボットリンクは、周囲の物体を検知する近接センシングとマーカー画像の変化から触覚情報を読み取る触覚センシングを一台で切り替えて行うことができ、人との接触が多い環境で安全に動作制御が可能です。なお、本研究成果は、2025年7月28日にIEEE Transactions on Robotics(T-RO)に掲載されました。 |
【研究概要】
近年、人と同じ空間で安全かつ柔軟に作業できるロボットのニーズが高まっています。これに応えるため、私たちの研究チームは、ソフト機能材料と画像や映像から情報を取得・解析する技術である視覚センシング技術を融合した新しいマルチモーダルソフトセンシング技術「ProTac」(図1)を開発しました。
ProTacは、電圧をかけることで透明・不透明を切り替えられるポリマーディスパースド液晶(PDLC)フィルム注1)と内蔵カメラを組み合わせています。透明時には視界を活用して周囲の物体の近接を検知し、不透明時にはマーカー画像の変化から触覚情報の取得を実現します。また、最新の深層学習ベースの視覚アルゴリズムを用いることで、安定したリアルタイムセンシングが可能です。

図1:ProTacのイメージ図
この技術を用いたソフトロボットリンクは、市販のロボットアームやカスタム製作されたソフトロボットにも取り付け可能で、障害物検知に基づく速度調整や接触時の反射動作など、多様な制御戦略を実現します。ProTacを備えたソフト多機能センシングアームは、人とロボットが密に連携する場面や、従来の剛体リンクでは困難な動作制御において高い性能を示しました。
今後は、この技術を手足や胴体などロボットの各部位に応用し、高機能なマルチモーダルスキンを備えたヒューマノイドロボットの実現が期待されます。また、農業、家庭サービス、介護分野など、幅広い分野での応用も見込まれます。
【研究資金】
本研究は、日本学術振興会 科学研究費補助金 特別研究員奨励費(24KJ1203)、国立研究開発法人 科学技術振興機構(JST)さきがけ(JPMJPR2038)による財政的支援を受けて実施されました。
【論文情報】
| 掲載誌 | IEEE Transactions on Robotics |
| 論文タイトル | Vision-based Proximity and Tactile Sensing for Robot Arms: Design, Perception, and Control |
| 著者 | Quan Khanh Luu, Dinh Quang Nguyen, Nhan Huu Nguyen, Nam Phuong Dam, Van Anh Ho |
| 掲載日 | 2025年7月28日 |
| DOI | 10.1109/TRO.2025.3593087 |
【用語説明】
電圧により透明・不透明を切り替えられる液晶材料。柔軟であり、ディスプレイやスマートウィンドウなどの光の透過を制御する用途に使用される。
令和7年8月22日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/08/22-1.html令和7年度TeSH GAPファンドプログラム『ステップ1』に本学から5名が採択されました
令和7年度TeSH GAPファンドプログラム『ステップ1』の採択者が決定し、本学からは以下5件の研究開発課題が採択されました。
| テック分野 | |
| 人間情報学研究領域 鵜木 祐史 教授 |
音声なりすまし対策のための深層情報ハイディング法/検出法の開発 |
| 物質化学フロンティア研究領域 西村 俊 准教授 |
小規模で効率的な反応評価システムが担う触媒インフォマティクスの事業展開 |
| 物質化学フロンティア研究領域 上田 純平 准教授 |
傷も付かない半永久高輝度透明蓄光セラで究極の低環境負荷光材料を実現! |
| 環境分野 | |
| バイオ機能医工学研究領域 廣瀬 大亮 講師 |
酸化物薄膜トランジスタ型センサとAIの融合技術による"誰でもできる"食品のかんたんスマート品質チェックシステムの提供 |
| 加藤 裕介 博士後期課程学生 | 革新的凍結保存技術による豚精液の凍結保存事業 |
(参考)TeSH HP>R7年度 TeSH GAPファンドプログラム『ステップ1』採択者
TeSHは、2024年2月にJSTの"大学発新産業創出基金事業(2023-2027)スタートアップ・エコシステム共創プログラム"の"地域プラットフォーム"の一つに選ばれました。TeSHが支援するGAPファンドは、基礎研究の成果をビジネスとしての可能性を評価できる段階まで引き上げる「ステップ1」と、概念実証からスタートアップ組成までを支援する「ステップ2」からなります。
令和7年5月27日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/05/27-1.htmlMoS2ナノリボンのエッジが示す特異な力学特性の観測に成功
MoS2ナノリボンのエッジが示す特異な力学特性の観測に成功
ポイント
- 雷、加速度、ガス、臭気などの環境電磁界を計測するセンサーの開発に必要な要素技術として、機械共振器がある。
- ナノスケールの超薄型機械共振器として期待されている、単層2硫化モリブデン(MoS2)・ナノリボンのヤング率測定に成功した。
- リボン幅が3nm以下になると、ヤング率がリボン幅に反比例して増加する特異な性質を発見した。
- リボンのエッジ部分における原子配列の座屈がエッジの強度を高める要因であることを、計算科学手法を用いて解明した。
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域の大島義文教授は、サスティナブルイノベーション研究領域の前園涼教授、本郷研太准教授、鄭州大学物理学院の刘春萌講師、張家奇講師らと、独自に開発した顕微メカニクス計測法を用いて、リボン状になった単層2硫化モリブデン(MoS2)膜の力学性質を調べ、リボンのエッジ部分の強度が、リボンの内部より高いことを明らかにした。 単層MoS2ナノリボンは、ナノスケールの超薄型機械共振器への応用が期待されているが、その力学性質の解明が課題となっている。ナノリボンの力学性質について、そのエッジ部分の影響が予想されており、第一原理計算による予測値は報告されているが、明確な結論が得られていない。本研究では、世界唯一の手法である「顕微メカニクス計測法」を用いて、単層MoS2ナノリボンの原子配列を観察しながら、そのばね定数を測定することに成功した。解析の結果、エッジがアームチェア構造である単層MoS2ナノリボンのリボン幅が3nm以下になると、ヤング率が増加することを発見した。リボン幅の減少とともにエッジ構造の物性への寄与が大きくなるため、この結果は、エッジ強度が内部に比べて高いことを示す。 このエッジ構造を第一原理計算で調べたところ、エッジにおいてモリブデン(Mo)原子が座屈しており、硫黄(S)原子へ電荷が移動していることが示唆された。このことから、両原子間に働くクーロン引力の増加が、エッジ強度を高めることに寄与したと説明できる。 |
【研究の背景】
シリコンをベースとした半導体デバイスを凌駕する新奇ナノデバイスの開発、あるいは、加速度、ガス、雷などの環境電磁場を測定するセンサーの開発が精力的に行われている。このような開発に必要な要素技術として、機械共振器[*1]がある。従来、高い剛性を持ち、かつ、高品位な結晶が得られることから水晶が機械共振器として用いられてきたが、近年、ナノスケールの超薄型機械共振器が求められており、その有力候補として単層2硫化モリブデン(MoS2)のナノリボン(ナノメートルサイズの幅に切り出した帯状物質)が挙げられている。しかし、単層MoS2ナノリボンの力学性質は、明らかになっていない。その理由として、物質の力学特性を理解するためには、力学的応答を測定すると同時に材料の結晶構造や形状を観察する必要があるが、そのような観察手法が確立されていないことが挙げられる。
従来手法では、原子配列を直接観察できる透過型電子顕微鏡(TEM)にシリコン製カンチレバーを組み込んだ装置を用いて、カンチレバーの曲がりから測定対象材料に加えた力を求め、それによって生じた変位をTEM像で得ることで、ヤング率(変形しやすさ)を推量している。しかし、この測定法は、個体差があるカンチレバーのばね定数を正確に知る必要があり、かつ、サブオングストローム(1オングストローム(1メートルの100億分の1)より短い長さのスケール)の精度で変位を求める必要があるため、定量性が十分でないと指摘されている。
【研究の内容】
大島教授らの研究グループは、2021年、TEMホルダーに細長い水晶振動子(長辺振動水晶振動子(LER)[*2])を組み込んで、原子スケール物質の原子配列とその機械的強度の関係を明らかにする「顕微メカニクス計測法」[*3]を世界で初めて開発した。この手法では、水晶振動子の共振周波数が、物質との接触による相互作用を感じることで変化する性質を利用する。共振周波数の変化量は物質の等価バネ定数に対応しており、その変化量を精密計測すればナノスケール/原子スケールの物質の力学特性を精緻に解析できる。水晶振動子の振動振幅は27 pm(水素原子半径の約半分)と微小なため、TEMの原子像がぼやけることはない。この手法は、上述した従来手法の問題点を克服するものであり、結果として高精度測定を実現した。
本研究では、この顕微メカニクス計測法を用いて、単層MoS2ナノリボンの力学性質を測定した。特に、アームチェア構造のエッジを持つMoS2ナノリボンに着眼し、そのヤング率の幅依存性について調べた。
具体的には、単層MoS2ナノリボンは、MoS2多層膜の端にタングステン(W)チップを接触させ、最外層のMoS2層を剥離することで作製した(図1)。図2に示す2枚は、それぞれ、同じ単層MoS2ナノリボンを断面から観察したTEM像(2-1)と平面から観察したTEM像(2-2)であり、単層MoS2ナノリボンが、MoS2多層膜とWチップ間に担持した状態にあることが確認できる(図3のイラストを参照)。また、エッジ構造は、平面から観察したTEM像のフーリエパターンから判定でき、アームチェア構造であることが分かった。この平面から観察したTEM像から、ナノリボンの幅と長さを測定し、それに対応する等価ばね定数をLERの周波数変化量から求めることで、このナノリボンのヤング率を得た。図3右側のグラフは、異なるリボン幅に対するヤング率をプロットした結果である。
同グラフから、リボン幅が3 nm以上では、ヤング率は166 GPa前後でほぼ一定であり、一方、リボン幅が2.4 nmから1.1 nmに減少すると、ヤング率は179 GPaから215 GPaに増加することがわかった。リボン幅の減少とともに物性へのエッジ構造の寄与が大きくなることを考慮すると、この結果は、エッジ強度が内部に比べて高いことを示す。
さらに、このアームチェア構造を第一原理計算で調べ、アームチェア・エッジにおいてモリブデン(Mo)原子が座屈し、硫黄(S)原子へ電荷が移動しているという結果を得た。このことから、両原子間に働くクーロン引力が増加することによりエッジ強度が高くなったと説明できた。
本研究成果は、2023年9月11日に科学雑誌「Advanced Science」誌のオンライン版で公開された。
【今後の展望】
現在、雷、加速度、ガス、臭気などの環境電磁界を計測するセンサーの開発が精力的に行われている。このようなセンサーの開発に必要な要素技術の一つが機械振動子である。本研究の成果は、ナノスケールの超薄型機械的共振器の設計を可能にする。近い将来、これを用いたナノセンサーがスマートフォンや腕時計などに組み込まれ、個人がスマートフォンで環境をモニタリングしたり、匂いや味などの情報を数値としてとらえ、自由に伝えることができる可能性がある。

|
図1.MoS2多層膜の端にタングステン(W)チップを接触し、最外層の単層MoS2膜を剥離する過程を示したイラスト
図2.同じ単層MoS2ナノリボンを断面から観察したTEM像(2-1)と平面から観察したTEM像(2-2)
図3.(左)単層MoS2ナノリボンが、MoS2多層膜とWチップ間に担持した状態を示すイラスト、
(右)アームチェアエッジの単層MoS2ナノリボンに対するヤング率のリボン幅依存性を示すグラフ |
【論文情報】
| 掲載誌 | Advanced Science(Wiley社発行) |
| 論文題目 | Stiffer Bonding of Armchair Edge in Single‐Layer Molybdenum Disulfide Nanoribbons |
| 著者 | Chunmeng Liu, Kenta Hongo, Ryo Maezono, Jiaqi Zhang*, Yoshifumi Oshima* |
| 掲載日 | 2023年9月11日 |
| DOI | 10.1002/advs.202303477 |
【用語説明】
[*1] 機械共振器
材料には、ヤング率、その形状(縦、横、長さ)、質量によって決まる固有振動があり、これを共振周波数と呼ぶ。この共振周波数は、他の材料と接触したり、あるいは、ガス吸着などによる質量変化に応じてシフトする。そのため、この変化から、接触した材料の等価ばね定数や吸着したガスの質量を評価できる。このような評価法を周波数変調法という。本研究でも、周波数変調法によって、単層MoS2ナノリボンのばね定数を算出している。
[*2] 長辺振動水晶振動子(LER)
長辺振動水晶振動子(LER)は、細長い振動子(長さ約3 mm、幅約0.1 mm)を長辺方向に伸縮振動させることで、周波数変調法の原理で金属ナノ接点などの等価バネ定数(変位に対する力の傾き)を検出できる。特徴は、高い剛性(1×105 N/m )と高い共振周波数(1×106 Hz )である。特に、前者は、化学結合の剛性(等価バネ定数)測定に適しているだけでなく、小さい振幅による検出を可能とすることから、金属ナノ接点を壊すことなく弾性的な性質を得ることができ、さらには、原子分解能TEM 像も同時に得られる点で大きな利点をもつ。
[*3] 【参考】「世界初! 個々の原子間の結合強度の測定に成功―強くて伸びる白金原子の鎖状物質―」(2021年4月30日 JAISTからプレスリリース)
https://www.jaist.ac.jp/whatsnew/press/2021/04/30-1.html
令和5年9月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/09/19-1.html協調ロボットの未来:広範囲触覚・近接センシングの簡易な実現に成功
協調ロボットの未来:広範囲触覚・近接センシングの簡易な実現に成功
ポイント
- 周囲の環境や人に対する安全な動作を実現するための近接覚と、利用者に対して安心感を提供する触覚、2つの感覚を備えたセンシングロボットアームの開発に成功した。
- 広範囲なセンシング機能を備えていながら、複雑な配線がなく、シンプルかつ耐久性の高い設計を実現した。
- センシング装置におけるデジタルツインを構築することによって、データ駆動型のセンシング機能を備えることができ、Sim2Real[用語説明]の効果を高めることにも成功した。
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)人間情報学研究領域のホ アン ヴァン(Ho Anh Van)准教授は、視覚による触覚・近接検知装置を備えたロボットアームの開発に成功した。これにより、ロボットと人間とのインターフェースに関して、人工知能(AI)を活かした人間とCyber-Physical System (CPS) [用語説明]環境における、新たな価値を創出する研究につながることが期待される。 |
【研究の背景と目的】
これまでの産業用ロボットの考え方では、人間とロボットは作業領域が明確に分離されており、ロボットは人間の安全半径内に立ち入ることが許されなかった。これは、第一義的には人間を危険から守るためだが、一方で、産業用ロボットの安全性に関する技術・研究の発展を阻害していた側面がある。安全性の確保は、最低限のセンシング技術と簡易なフェイルセーフ機能で十分とされ、研究開発のリソースは、より製品の競争力を高めるためのロボットの高速化・高精度化に注ぎ込まれてきた。しかしながら、近年の我が国における労働力不足や長引くコロナ禍による新しい生活様式の中で、これまで人間の手で行ってきた作業をロボットで代替しようとする動きが急速に高まってきている。さらに、全ての人が健康的な生活を送ることができる社会を目指すSDGsの大きな流れが加わり、現在ロボット技術に人間との調和、つまりロボットが人間と共存し、さらに人間とコラボレーションすることが強く求められている。
例えば、ロボットが人間をサポートする技術として、アームで人間を支える介護ロボットでは、介護サービスの提供を受ける人間が安心感を得られる触覚センシングの活用が検討されている。触覚は、人間同士の触れ合いにおいては愛情や信頼、思いやりを伝える重要な感覚である。しかし、ロボットの触覚技術は長年研究されてきているが、視覚技術の研究と比較すると未だ応用例は極めて少ない。また、同時に周囲の人間や環境に対する安全性を確保するためには、ロボットが周辺状況を高い精度で検知する必要があるが、特に外付けのカメラを利用する場合に、アームや利用者によって遮蔽される領域が多く、アームの近接領域の検出が困難となっている。
このような問題点に鑑み、今回、利用者が安心感を得られる接触と、安全な動作を実現する近接の両方の感覚を兼ね備えたロボットアームの技術を提案した。本研究において実現される近触覚・接覚のセンシング技術では、人間を含む周囲の環境を認識し、自立的な判断行動が可能となるロボットアームを開発することで、衝突回避等の安全性だけではなく、接触が許容される状況の判断および接触を通じた安心感の提供といった機能を有する、人工知能(AI)を搭載した協働ロボットの実現を目指す(図1)。

図1:本研究の位置付け
【研究の内容】
本研究では、低コストかつシンプルな構造を有する柔軟な触覚装置と、人間との接触を即時に検知することで、人間の行動を推定しながら人間と調和するロボットを実現した。このロボットは、人間の皮膚を模した柔軟なスキン上の複数の接触点へ加えられた力を、ロボットアームの両端に設置されたカメラが、スキンの変形の状態をリアルタイムで測定する技術によって実現した。さらに、透明なシリコンゴムと薄い柔軟な高分子分散液晶(PDLC)フィルムを組み合わせることで、柔軟なスキンの透明性をアクティブに切り替えることが可能となった(図2)。利用するPDLCフィルムは、外部から小さな電圧を印加することにより、透明/不透明を切り替えることができる。この透明/不透明の切り替えでは、近接覚と触覚の二つのモードを備え、またそのモードをシームレスに切り替えることができる。

図2:設計概念
(図2)
(右)近接覚モード(PDLCが透明):スキン内部の2台のカメラは、スキン近傍の外部オブジェクトを検知できる。
(左)触覚モード(PDLCが不透明):これまでの研究成果と同様、2台のカメラが接触または相互作用下でのスキンの歪みを検知し、触覚または力のセンシングが可能となる。
本研究で使用したロボットアームは、柔軟なスキンの内側に格子状のマーカーを備え、スキン内部に2台の小型カメラを配置している。スキンの透明性の能動的な切替えにより、近接覚と広範囲の触覚をセンシングする独創性の高い手法である。圧力センサを用いずカメラによるマーカーの変位から外力を算出することから、配線の複雑さやオクルージョン (光学遮蔽)などをほぼ完全に無くすことに成功しており、高いセンシング精度と耐久性を実現した。さらに、各モジュールの内圧を変えることでスキンの柔らかさを調整し、スキンに触れた人間に対する触感についても、制御可能である。さらに、深層学習を通じて多様な近接・接触動作・状況を予め学習させることで、人間と調和し、人間との複雑な近接・接触を実現する潜在的に高い適応性を持つと期待される。
図3:各動作モード
<参考動画>
動作ビデオ1:https://youtu.be/NN2u8YBLITY
動作ビデオ2:https://youtu.be/m8QzvDx_vpc
今日、ロボットは、いわゆる物理的な人間とロボットの相互作用(pHRI;physical Human-Robot Interaction)シナリオのように、安全半径の外で動作しつつ、人間と同じワークスペースを共有し(共存)、さらには人間と相互作用(コラボレーション)する必要がある。pHRIでは、ロボットは衝突の可能性を回避するだけでなく、避けられない物理的接触と意図的な物理的接触の両方を安全かつ信頼できる方法で対応することが期待されている。これを達成するために、深度カメラと力/トルクセンサーの組み合わせが提案されているが 、これは、外部カメラを使用するために、先述した視覚の遮蔽の問題を有している。近年、マルチモーダル知覚(触覚、近接など)を備えた大規模センサースキンが開発されたが、センサーネットワークのデータ取得と処理が複雑であるため、微調整が困難であり、衝突等の突発的な事故への応答が遅くなる可能性がある。
本研究は、ロボットの周りの多様な近接や接触動作・状況などをたった2台のカメラで検知することが可能なシンプルな構造をしており、信頼性を持つpHRIの実装方法となり得る。また、Sim2Realのプロセスで、実物の特性を再現できるデジタルツインにおいて、必要なデータ収集や学習などをシミュレーション環境で実施し、学習の結果を、実物に反映させることができ、今後の研究・開発の時間を大幅に縮小することも期待される。
本研究成果は、2023年2月28日にIEEE(米国電気電子学会)が発行する学術雑誌「IEEE Transactions on Robotics」のオンライン版に掲載された。また、2023年4月3日から7日までシンガポールで開催の、国際会議IEEE-RAS International Conference on Soft Robotics (RoboSoft 2023)で発表された。
なお、本研究は、国立研究開発法人科学技術振興機構(JST)・戦略的創造研究推進事業さきがけ「IoTが拓く未来」研究領域(JPMJPR2038)の支援を受け行った。
【今後の展開】
本研究によって、今後の展開が期待される製品・サービスとして、次の二つが挙げられる。一つ目は、利用者がより多くの事を自分自身でできるように支援し、さらに利用者に加え、周りの状況も考慮したロボットアームを備えた車椅子への活用である。二つ目に、サービスの提供を受ける利用者に安心感や大事にされているという感覚、思いやりなどを伝えることができる介護ロボットである。将来的に、これらの製品が介護保険等の給付対象として認可されることで普及促進へと繋がることが期待される。
【論文情報等】
| (1) | |
| 題目 | Simulation, Learning, and Application of Vision-Based Tactile Sensing at Large Scale |
| 雑誌名 | IEEE Transactions on Robotics |
| 著者 | Quan Khanh Luu, Nhan Huu Nguyen, and Van Anh Ho |
| 掲載日 | 2023年2月28日 |
| DOI | 10.1109/TRO.2023.3245983 |
| (2) | |
| 題目 | Soft Robotic Link with Controllable Transparency for Vision-based Tactile and Proximity Sensing |
| 国際会議名 | the 6th IEEE-RAS International Conference on Soft Robotics (RoboSoft 2023) |
| 著者 | Quan Luu, Dinh Nguyen, Nhan Huu Nguyen, anh Van Anh Ho |
| 発表日 | 2023年4月6日 |
【用語解説】
コンピュータ内のシミュレーション等で学習したモデルを現実世界に用いるという強化学習の手法。
実世界(フィジカル)におけるデータを収集し、サイバー世界でデジタル技術などを用いて分析・知識化を行い、それをフィジカル側にフィードバックすることで、産業の活性化や社会問題の解決を図っていく仕組み。
令和5年4月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/04/12-1.htmlダイヤモンド中に10兆分の1秒で瞬く磁化を観測 ~超高速時間分解磁気センシング実現に期待~
![]() |
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 国立研究開発法人科学技術振興機構(JST) |
ダイヤモンド中に10兆分の1秒で瞬く磁化を観測
~超高速時間分解磁気センシング実現に期待~
| 磁石や電流が発する磁気の大きさと向きを検出するデバイスや装置を磁気センサーと呼びます。現在では、生体中における微弱な磁気から電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの応用分野が広がりつつあります。磁気センサーの中で最も高感度を誇るのが、超伝導量子干渉素子(SQUID)で、1 nT(ナノテスラ、ナノは10億分の1)以下まで検出可能です。また、ダイヤモンドの点欠陥である窒素−空孔(NV)センターと走査型プローブ顕微鏡(SPM)技術を組み合わせることで、数十nm(ナノメートル)の空間分解能を持つ量子センシングが可能になると期待されています。 このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきましたが、時間分解能はマイクロ秒(マイクロは100万分の1)の範囲にとどまっています。このため、磁場を高い時間分解能で測定できる新しい磁気センシング技術の開発が望まれていました。 本研究では、表面近傍にNVセンターを導入したダイヤモンド単結晶に超短光パルスを照射し、それにより10兆分の1秒で瞬く結晶中の磁化を検出することに成功しました。検出感度を見積もると、約35 mT(ミリテスラ、ミリは1000分の1)となりました。また、計測の時間分解能は、超短光パルスにより磁化を発生させたことにより、約100フェムト秒(フェムトは1000兆分の1)となりました。 本研究成果により、NVセンターでは従来困難だった高速に時間変化する磁気のセンシングも可能であることが示され、高い時間分解能と空間分解能を兼ね備えた新たな磁気センシングの開拓につながることが期待されます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域
安 東秀准教授
【研究の背景】
磁石や電流が発する磁気の大きさと向きを検出するのが磁気センサーです。現在では、生体中における微弱な磁気から、電子デバイス中の3次元磁気イメージングに至るまで、磁気センサーの研究開発が進んでいます。磁気センサーには、比較的簡便なトンネル磁気抵抗素子注1)によるものや、超伝導体のリングを貫く磁束の変化を電流で読み取る超伝導量子干渉素子(SQUID)注2)などがあります。その中でも最高感度を誇るのがSQUIDで、1 nT(ナノテスラ)以下の磁場をも検出できるほどです。しかし、超伝導体を用いるSQUIDは電気回路や極低温などの高度な取扱いを要します。このため、近年では、ダイヤモンドの点欠陥である窒素−空孔(NV)センター注3)を用いた磁気センサーの開発が進んでいます。特に、負に帯電したNVスピン状態を利用した全光読み出しシステムが、室温でも動作する量子磁力計として注目されています。また、NVセンターの利用と、走査型プローブ顕微鏡(SPM)注4)技術を組み合わせることで、数十nmの空間分解能注5)で量子センシング注6)を行うことが可能になります。
このように、従来の磁気センシング技術は感度や空間分解能に注目して開発されてきました。その一方で、時間分解能注7)はマイクロ秒の範囲にとどまっています。このため、磁場をより高い時間分解能で測定できる新しい量子センシング技術の開発が望まれていました。
そうした中、NVセンターを高濃度に含むダイヤモンド単結晶膜において、入射された連続発振レーザーの直線偏光が回転することが分かり、ダイヤモンドにおける磁気光学効果が実証されました。NVセンターに関連する集団的な電子スピンが磁化として機能することが示唆されていますが、この手法では時間分解能を高めることができません。他方、逆磁気光学効果、すなわち光パルスで磁気を作り出すという光磁気効果に対するダイヤモンドNVセンターの研究については、行われてきませんでした。しかし、この光磁気効果を開拓することは、ダイヤモンドの非線形フォトニクスの新しい機能性を追求する上で非常に重要です。また、ダイヤモンドNVセンターのスピンを用いた非接触かつ室温動作の量子センシング技術を、高い時間分解能という観点でさらに発展させるためにも、光磁気効果の開拓が必要だと考えられます。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬く超短パルスレーザー注8)を円偏光にして、NVセンターを導入した高純度ダイヤモンド単結晶に照射し、結晶中に発生した超高速で生成・消滅する磁化を検出することに成功しました。
実験ではまず、波長800nmの近赤外パルスレーザー光をλ/4波長板により円偏光に変換し、NVセンターを導入した高純度ダイヤモンド単結晶に励起光として照射しました。その結果、磁気光学効果の逆過程(光磁気効果)である逆ファラデー効果注9)により、ダイヤモンド中に磁化を発生できることを見いだしました(参考図1挿入図)。この磁化が生じている極短時間の間に直線偏光のプローブ光を照射すると、磁化の大きさに比例してプローブ光の偏光ベクトルが回転します。これを磁気光学カー回転と呼びます。磁気光学カー回転の時間変化はポンプープローブ分光法で測定しました(図1)。測定の結果、逆ファラデー効果で生じるダイヤモンド中の磁化は、約100フェムト秒の応答として誘起されることが確かめられました(図2左)。NVセンターを導入していないダイヤモンドでも磁化は発生しますが、導入すると、発生する磁化が増幅されることも明らかになりました(図2右)。
次に、励起レーザーの偏光状態を直線偏光から右回り円偏光、そして直線偏光に戻り、次に左回り円偏光と逐次変化させることで、波長板の角度とカー回転角(θ )の関係を調べました。すると、NVセンターを導入する前の高純度ダイヤモンド単結晶では、逆ファラデー効果を示すsin 2θ 成分および非線形屈折率変化である光カー効果を示す sin 4θ 成分のみが観測されました。一方、NVセンターを導入したダイヤモンドでは、それらの成分に加えて、新規にsin 6θ の成分を持つことが明らかになりました(図3a)。さらに、励起光強度を変化させながら各成分を解析したところ、sin 2θ 成分およびsin 4θ 成分は励起光強度に対して一乗で増加しますが(図3b,c)、新規のsin 6θ の成分の大きさは励起光強度に対して二乗で変化することが分かりました(図3d)。これらのことから、 sin 6θ の成分は、NVセンターが有するスピンが駆動力となり、ダイヤモンド結晶中に発生した非線形な磁化(逆コットン・ムートン効果注10))であることが示唆されました。また、この付加的で非線形な磁化により、図2で観測された磁化の増幅が説明できました。この非線形な磁化による磁場検出感度を見積もると、約35 mT(ミリテスラ)となりました。SQUIDの検出感度には及びませんが、本手法では約100フェムト秒という高い時間分解能が得られることが示されたといえます。
【今後の展開】
本研究チームは、今回観測に成功した光磁気効果を用いた量子センシング技術をさらに高感度化し、ダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングに深化させることを目指して研究を進めていきます。今後は、ダイヤモンドNVセンターが駆動力となった逆コットン・ムートン効果を磁気センシングに応用することで、先端材料の局所磁場やスピン流を高空間・高時間分解能で測定することが可能となります。さらに、パワーデバイス、トポロジカル材料・回路、ナノバイオ材料など実際のデバイスの動作条件下で、例えば磁壁のダイナミクスや磁化反転などデバイス中に生じるダイナミックな変化を、フェムト秒の時間分解能で観察できることになり、先端デバイスの高速化や高性能化への貢献が期待されます。
【参考図】

| 図1 本研究に用いた実験手法 パルスレーザーから出たフェムト秒レーザー光はビームスプリッタでポンプ光とプローブ光に分割され、それぞれ波長板と偏光子を通過した後、ポンプ光は光学遅延回路を経由した後レンズで試料に照射される。プローブ光も同様に試料に照射された後、偏光ビームスプリッタにより分割されて二つの検出器で光電流に変換される。その後、電流増幅された後、デジタルオシロスコープで信号積算される。右上の挿入図は、逆ファラデー効果の模式図を示し、右回り(σ+)または左回り(σ-)の円偏光励起パルスによりダイヤモンド結晶中に上向き(H+)または下向きの磁化(H-)が生じる。なおデジタルオシロスコープでは、下向きの磁化が観測されている。 |

| 図2 高純度ダイヤモンド(NVなし)およびNVセンターを導入したダイヤモンド(NVあり)における時間分解カー回転測定の結果。赤色および青色の実線はそれぞれ、右回り円偏光、左回り円偏光により励起した実験結果を示す。 |

| 図3 NVセンターを導入したダイヤモンドにおけるカー回転の解析結果 (a) 下図(青丸)はカー回転角の波長板の角度(θ )に対するプロットである。黒い実線はCsin 2θ + Lsin 4θ による最小二乗回帰曲線(フィット)を示す。上図(赤丸)は下図の最小二乗回帰の残差を示す。太い実線はFsin 6θ による最小二乗回帰曲線(フィット)を示す。また最上部は偏光状態の変化(直線偏光→右回り円偏光→直線偏光→左回り円偏光→直線偏光)を表す。(b) Csin 2θ の振幅Cを励起フルエンスに対してプロットした図。 (c) Lsin 4θ の振幅Lを励起フルエンスに対してプロットした図。(d) Fsin 6θ の振幅Fを励起フルエンスに対してプロットした図。(b)と(c)の実線は一次関数によるフィットを示し、(d) の実線は二次関数によるフィットを示す。 |
【用語解説】
注1)トンネル磁気抵抗素子
2枚の磁性体の間に非常に薄い絶縁体を挟んだ構造(磁性体/絶縁体/磁性体)からなる素子。磁性体は金属であり、電圧を加えると、薄いポテンシャル障壁を通り抜けるという量子力学的なトンネル効果により絶縁体を介したトンネル電流が流れる。各磁性体の磁化の向きが平行な場合と反平行な場合で、素子の電気抵抗が大きく変化する。これをトンネル磁気抵抗効果という。よって、この効果を原理とした素子をトンネル磁気抵抗素子と呼ぶ。
注2)超伝導量子干渉素子(QUID)
超伝導体のリングにジョセフソン接合(二つの超伝導体間にトンネル効果によって超伝導電流が流れるようにした接合のこと)を含む素子を、超伝導量子干渉素子(SQUID)と呼ぶ。リングを貫く磁束が変化すると、ジョセフソン接合を流れるトンネル電流が変化するため、高感度の磁気センサーとして用いられる。
注3)窒素−空孔(NV)センター
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)センター」はダイヤモンドの着色にも寄与し、色中心と呼ばれる格子欠陥となる。NVセンターには、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。
注4)走査型プローブ顕微鏡(SPM)
微小な探針(プローブ)で試料表面をなぞることにより、試料の凹凸を観察する顕微鏡の総称である。細胞やデバイスなどにおいて、分子や原子などナノメートルの構造を観察するのに用いられる。代表的なものに原子間力顕微鏡(AFM)などがある。
注5)空間分解能
近い距離にある2つの物体を区別できる最小の距離である。この距離が小さいほど空間分解能が高く、微細な画像データの測定が可能になる。
注6)量子センシング
量子化したエネルギー準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
注7)時間分解能
観測するデータに識別可能な変化を生じさせる最小の時間変化量である。最小時間変化量が小さいほど時間分解能が高く、高速で変化する画像などのデータ識別が可能となる。
注8)超短パルスレーザー
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注9)逆ファラデー効果
ファラデー効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは平行である。逆ファラデー効果はこれとは逆に、円偏光したレーザー光を物質に入射することで、入射した方向に平行に磁化が生じる現象のことをいう。磁性体に限らず、あらゆる物質で生じる非線形光学過程である。
注10)逆コットン・ムートン効果
コットン・ムートン効果は磁気光学効果の一種で、磁性体などに直線偏光が入射し透過する際に、光の偏光面が回転する現象のことをいう。その際、入射光の伝播方向と物質内の磁化の向きは垂直である。逆コットン・ムートン効果は、逆に、磁界が印可された物質に直線偏光のレーザー光を入射した際に、入射した方向に垂直に磁化が生じる現象であり、磁性体などで生じる高次の非線形光学過程である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング(JPMJCR1875)」(研究代表者:長谷 宗明)、および独立行政法人 日本学術振興会 科学研究費補助金「サブサイクル時間分解走査トンネル顕微鏡法の開発と応用」(研究代表者:重川 秀実)による支援を受けて実施されました。
【掲載論文】
| 題 目 | Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals. (ダイヤモンド結晶中の窒素空孔センターが誘起する超高速光磁気効果) |
| 著者名 | Ryosuke Sakurai, Yuta Kainuma, Toshu An, Hidemi Shigekawa, and Muneaki Hase |
| 掲載誌 | APL Photonics |
| 掲載日 | 2022年6月15日(現地時間) |
| DOI | 10.1063/5.0081507 |
令和4年6月16日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/06/16-1.html













