研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。PufferFace Robot:フグに着想を得たボディ一体型振動推進型ロボット

PufferFace Robot:フグに着想を得たボディ一体型振動推進型ロボット
【ポイント】
- ソフトロボットの設計:PufferFace Robot(PFR)は、フグに着想を得た振動駆動型のソフトロボットで、やわらかく膨らむ外皮により配管の直径の変化に柔軟に対応して進みます。
- 移動性能及び配管内走行能力:3つの移動モード(振動のみ/膨張・収縮のみ/両者の組み合わせ〈メインモード〉)を備えています。自身の外径の1~1.5倍サイズの配管を通過可能で、本体と同サイズの配管内では最大0.5 BL/s(体長/s)の速度で移動可能です。
- 複雑な配管構造での実走行:90度エルボ、T字コネクタ、高曲率セクションなど、複雑な配管構造での走行能力を実験により検証しました。
- 応用可能性:PFRは複雑で狭隘な小口径の配管における点検作業を目的としています。例えば、石油・ガス配管、化学プラント、上下水道管などが挙げられます。また、有害化学物質や高温などの過酷な環境での探査にも有効で、シンプルな制御でも安定した動作が可能です。
- シミュレーションと実験アプローチ:ABAQUSを用いた簡易的な有限要素解析(FEA)によるシミュレーションを通じて、PFRの走行可能性を評価した結果、実験と高い一致性を確認しました。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域のHo Anh Van教授(IEEE上級会員)が、Linh Viet Nguyen大学院生(博士後期課程)(研究当時)、Khoi Thanh Nguyen大学院生(博士後期課程)らの研究チームを率いて、テキサス大学オースティン校のThe Advanced Robotic Technologies for Surgery Laboratory (ARTS Lab)との共同研究により、複雑な配管内部を自在に前進できる新しいソフトロボット「PufferFace Robot (PFR)」を開発しました。PFRは、フグのように体を膨らませる柔軟な素材と、振動による推進する機構を組み合わせることで、多様な管内形状に対応できる設計となっています。これにより、90度の曲がり角やT字型の分岐、高曲率セクションなど、従来のロボットが苦手としていた区間でも安定した走行を実現しました。本研究では、複雑な計算処理を必要とせず、ロボット本体の構造によって環境への適用を実現する「身体性知能(embodied intelligence)」という考え方も重要視されています。 PFRは、JAISTプレスリリースにて前回紹介した振動駆動型ソフトロボット「Leafbot」(※)の進化形であり、ソフトロボティクス分野の新たな基盤となる可能性を秘めています。 (※)https://www.jaist.ac.jp/whatsnew/press/2025/02/17-1.html |
【研究背景と内容】
柔軟素材を用いたソフトロボットは、その柔軟性と適応性により、従来の硬い素材を用いたロボットでは効果を発揮することが困難な環境でも活躍することができることから、近年大きな注目を集めています。ソフトロボットは、適応的な形態変化を備えており、これは身体知能の一形態として機能し、最小限の計算で環境の変化に応じて反応することが可能です。従来のロボットが複雑な中央制御に依存しているのに対し、適応型ロボットは物理的構造を通じて局所的に調整を行うことで、計算負荷が軽減され、環境応答性が向上します。本研究では、産業、車両、航空宇宙分野で流体やガスの輸送によく使用される配管のような、制約のある可変形状における適応的な移動に焦点を当てました。このような配管は狭く人間が立ち入ることが難しいため、ロボットによる点検のニーズが高まっています。しかし、このような配管は直径、形状、長さが場所によって大きく異なるため、ロボットの設計には大きな課題があります。
これまでにも様々な推進機構(車輪式、歩行式、クローラー式、振動式など)を持つロボットが開発されてきましたが、それらをセンチメートルスケールの配管に適応させるのは困難です。近年の研究では、圧電素子、誘電エラストマー、流体エラストマー、ハイドロゲル、形状記憶合金、電磁アクチュエータなどのスマート素材を用いた生物に着想を得たロボットが開発されています。これらのコンパクトで柔軟な設計は、複雑で狭い配管システムの中を移動するための適応性とエネルギー効率を向上させます。しかし、このような制約のある環境において、機敏で配管のサイズに適応して移動できる信頼性の高い点検ロボットの実現は、依然として課題です。
前述の課題(図1A参照)に対応するため、本研究では新たに「PufferFace Robot (PFR)」という適応型ソフトロボットを開発しました(図1B, D, E参照)。この名称はフグ(pufferfish)から着想を得たことに由来します。PFRは、形態学*1的なスパイクパターンを持つシリコーンゴム製の膨張可能な柔らかい外皮を特徴としており、その設計パラメータは我々の先行研究である「Leafbot」から受け継いだものです。外部の圧縮空気源によって膨張・収縮を操作し、様々な配管形状に適応させることが可能です。PFRの移動メカニズムは、柔らかいスパイクの先端に分布された非対称な摩擦特性に基づいています。その非対称性と振動源を組み合わせることでPFRは前進します。この構成により、PFRの小型構造でも前進移動が可能であると示しました。PFRには3つの移動モードがあります。モード1では、振動モータを作動させて水平な配管を移動します。モード2では、柔らかい外皮の膨張・収縮のみで動作します。モード3は、モード1とモード2を組み合わせたハイブリットモードで、配管内移動における主要なモードです。
図1 (A)配管システムにおける形状が制約された様々な空間の例、 (B)様々な空間に適応可能なPufferFace Robotのコンセプト、 (C)フグから着想を得たPFRの設計コンセプト、(D)PFRの膨張状態、(E)PFRの通常状態 |
PFRの設計の詳細を図2に示します。様々な配管サイズに対応するための形態学的なソフトスキンに加え、PFRには暗所での点検作業を支援するためにLEDと小型カメラが搭載されています。今回、設計したPFRには以下の利点があります。
図2 PFRの詳細な設計図 (A) PFRの構成部品 (B) PFRの前面図および側面図
本研究では、「テラダイナミクス(terradynamics)」の手法を採用し、PFRが配管システムの困難な「地形条件」に対して、どれほど効率的かつ効果的に走行できるかを評価しました。これには、鋭角な曲がり(エルボ継手)、高曲率領域、分岐点、水平から垂直への移行、あらゆる方向での配管サイズの変化、T字分岐での操縦が含まれます。これらのシナリオにおけるPFRの性能を図3に示しています。有限要素解析(FEA)に基づいたシミュレーションプラットフォームであるABAQUSのDynamic Explicitモジュールを使用し、PFRを実環境に配置する前に特定の管状環境における通過可能性を評価しました。すべてのテストケースにおいて、シミュレーションの結果は実験結果とよく一致しました。図3(C),(F),(J)は、ABAQUS環境下でシミュレーションした検討シナリオを示しています。
図3 実験及びシミュレーション解析による配管システム内の重要な領域を走行するPFRの能力評価 (A, B, G) PFRが実環境及びシミュレーション環境(C,J)においてエルボ(曲がり)部分を走行する様子、 (D, E, F) PFRが実験及びシミュレーションの両ケースにおいて、サイズの異なる空間の移行部を通過する様子、(I) 振動モータの回転方向を変えることで、PFRが方向転換能力を発揮する様子 |
本研究では、ハイブリット推進システムを搭載した生物に着想を得たロボット「PufferFace Robot(PFR)」を提案しました。提案した設計では、狭隘な環境への高い適応性、検査中に気体や流体の流れを妨げない中空機構、複雑な配管内でも最小限の制御で移動可能な適応形態といった利点を有しています。さらにPFRは振動駆動型ソフトロボット、特に小規模配管用途に特化した設計の可能性を広げます。この技術革新は、工業点検だけでなく、医療用途、特に大腸検査のような低侵襲手術にも大きな可能性を秘めています。柔らかく適応性のある構造は、複雑で傷つきやすい生物学的環境を安全に移動することを可能にし、従来の内視鏡ツールに代わる、より安全で効率的な選択肢を提供します。今後は、さらなる小型化と移動性能の向上を目指し、より狭く限られた空間でも自在に動けるように改良を進めていく予定です。
【論文情報】
雑誌名 | Science Advances |
論文名 | Adaptable cavities exploration: Bioinspired vibration-propelled PufferFace Robot with morphable body. |
著者 | Linh Viet Nguyen; Hansoul Kim; Khoi Thanh Nguyen; Farshid Alambeigi, and Van Anh Ho |
掲載日 | 2025年4月30日 |
DOI | 10.1126/sciadv.ads3006 |
【用語説明】
生物の体制や構造を研究する学問
令和7年5月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/05/08-1.html“探索・学習・予測”のシナジーを実践する次世代マテリアル設計


“探索・学習・予測”のシナジーを実践する
次世代マテリアル設計
マテリアルズインフォマティクス研究室
Laboratory on Materials Informatics
教授:谷池 俊明(TANIIKE Toshiaki)
E-mail:
[研究分野]
ハイスループット実験、マテリアルズインフォマティクス、計算化学
[キーワード]
固体触媒、重合、ナノコンポジット、分離膜、グラフェン、データ科学
研究を始めるのに必要な知識・能力
私たちの研究はユニークであり、様々な専門の研究者が活躍できる非常に学際的なものです。新しい分野に創意工夫を持って挑戦する志を重視し、元々の専門分野を問わず多様な学生を受け入れています。所属学生の専門は、例えば、化学(触媒・高分子・ナノ材料)、化学・機械工学、データ科学、計算科学などです。
この研究で身につく能力
所属学生は、自身の研究やゼミ活動への参画を通して、1)ハイスループット実験、データ科学、計算化学のいずれか、ないしはこれらを組み合わせて用いる先進的な材料科学研究の実践方法、2)与えられた資源の中で成果を最大化するための研究計画能力、3)国際・学際的な環境でチームワークするスキルなどを習得できます。
【就職先企業・職種】 材料、化学、化学工学、マテリアルズインフォマティクスなどに関する研究開発職
研究内容

ハイスループット実験とマテリアルズインフォマティクスによる材料科学研究
気候変動や少子高齢化など、人類社会や我が国が置かれた避けられない課題に鑑み、谷池研究室では、ハイスループット実験、データサイエンス(マテリアルズインフォマティクス)、シミュレーションを基盤とした、イノベーション志向の物質科学を目指しています。かつてない効率で膨大な材料候補を探索し、社会問題の解決を目指しています。
❶ ハイスループット実験
異なる元素や物質を組み合わせることで得られる材料の数は膨大です。マテリアルサイエンスの目標の一つは、特別に優れた組み合わせやうまい組み合わせ方(プロセス)を発見し、より優れた材料を生み出すことです。私たちの研究室では、高度に自動化・並列化された実験装置を駆使するハイスループット実験を行っています。新しい装置やプロトコルの開発を通して実験のスループットを最大化し、浮いた時間を思考や情報収集に当てる研究スタイルを志向します。
➋ データ科学
ハイスループット実験は材料の合成条件、構造、性能を紐づけた材料ビッグデータを生み出します。効率的な材料探索を行うためには、良い材料を選出するだけでなく、材料性能の良し悪しがどのような因子と相関しているかを見極める構造性能相関を明らかにしていく必要があります。多変量解析や機械学習を駆使し、全てのデータから余すことなく学習することで物質探索を飛躍的に加速します。
➌ コンピュータシミュレーション
コンピュータや計算化学の発展によって、現実的な精度でのシミュレーションが可能になってきました。一方で、コンピュータを使った新しい材料の予測(in-silico設計)にはまだまだ距離があります。最も難しい問題は、複雑な材料を代表するような分子モデルを如何に構築するかです。実験も行う当研究室では、実践的な計算化学を標榜し、計算化学の夢であるin-silico材料設計に取り組んでいます。
ハイスループット実験装置の開発やデータサイエンスのプログラミングに加え、以下5つのテーマに注力しています:触媒・ポリマーインフォマティクス、構造性能相関、MOF やグラフェンなどのナノマテリアル、ポリマーナノコンポジット。
主な研究業績
- L. Takahashi, T. Taniike, K. Takahashi et al., Constructing Catalyst Knowledge Networks from Catalysts Big Data in Oxidative Coupling for Methane for Designing Catalysts, Chemical Science 2021, 12, 12546-12555 (press released, selected as Front Cover).
- T.N. Nguyen, K. Takahashi, T. Taniike et al., High-Throughput Experimentation and Catalyst Informatics for Oxidative Coupling of Methane, ACS Catalysis, 2020, 10, 921-932 (press released).
- G. Takasao, Toru Wada, T. Taniike et al., Machine Learning-Aided Structure Determination for TiCl4-Capped MgCl2 Nanoplate of Heterogeneous Ziegler-Natta Catalyst, ACS Catalysis, 2019, 9, 2599-2609.
使用装置
ピペッティングロボット Andrew+
多目的並列反応装置(研究室開発装置)
自動マイクロ波合成装置
触媒スクリーニング装置(研究室開発装置)
光触媒スクリーニング装置(研究室開発装置)
オペランド化学発光分析装置(研究室開発装置)
化学発光イメージング装置(研究室開発装置)
その場中・遠赤外分光光度計
レーザラマン分光光度計
マイクロプレートリーダー
X線回折装置 (オートサンプラー付)
蛍光X線分析装置 (オートサンプラー付)
研究室の指導方針
私たちの研究室にはコアタイムがありません。実験や研究のスループットを最大化し、ワークライフバランスを自身で設計して下さい。豊富なスタッフ陣があなたの研究をサポートします。チームミーティング(数週間に1回)やコロキウム(月に1回)を通して密な議論や指導を行います。また、国内外の学会への参加も積極的に支援しています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/taniike/
からだの中のコミュニケーションツール・糖鎖に挑む


からだの中のコミュニケーションツール・糖鎖に挑む
分子糖鎖科学研究室 Laboratory on Molecular Glycoscience
准教授:山口 拓実(YAMAGUCHI Takumi)
E-mail:
[研究分野]
糖質科学、有機化学、生体機能関連化学、超分子化学、生物物理学
[キーワード]
糖鎖、分子認識、生命分子科学
研究を始めるのに必要な知識・能力
化学も生物も興味がある、という幅広い好奇心。新しい研究分野を創ることへの意欲。有機化学や物理化学、生化学などを扱いますが、その知識・技術は研究を通して身につけていくことができます。
この研究で身につく能力
当研究室が主な研究対象とする糖鎖は、創薬や医療のターゲットとして大きな注目を集めています。ところが、その取り扱いの難しさから、糖鎖に向き合った研究は多くはありません。既存のやり方にとらわれず、どうしたら問題を解決できるのか?自由な発想と論理的な思考によってプロジェクトを推進する力を身につけます。また、有機合成化学を中心に、分析化学やバイオテクノロジーなどの知識・技術を習得することができます。
【就職先企業・職種】 化学・材料⼯学系企業
研究内容
糖鎖 第3の生命分子鎖
糖鎖は、タンパク質・核酸とならぶ第3の生命鎖ともよばれ、私たちの生命活動の様々な場面で重要な働きをしています。例えば、糖鎖は細胞同士の接着をはじめ、生体内でのコミュニケーションにとって不可欠な役割を担っています。その一方で、糖鎖は、インフルエンザのようなウイルスの感染、がんの転移、さらにアルツハイマー病の発症にも深く関わっていることがわかりつつあります。また、バイオ医薬品の多くには糖鎖が関与しており、糖鎖は医薬品の特性に重要な因子としても注目を集めています。
糖鎖研究について
このように糖鎖は、創薬や医療のターゲットとして脚光をあびています。しかし、糖鎖の重要性が広く認識されてきたにもかかわらず、糖鎖そのものに対する研究はまだまだ発展途上です。例えば、多くのタンパク質のかたち(立体構造)が次々と明らかになってきているのに対し、糖鎖の3次元構造はほとんど未解明であるばかりでなく、アプローチ法すら十分に確立されていません。
糖鎖を知る 糖鎖を使う
私たちは化学的な手法を基盤にした多角的な実験を展開し、糖鎖研究に挑んでいます。糖鎖に構造情報取得のための化学プローブを導入することで、分子分光法による計測と分子シミュレーションを活用した立体構造解析を可能とし、水中で揺らめく糖鎖の姿を描き出すことに成功しました。さらに、細胞表面を覆う糖鎖を模倣したモデル化合物の合成や、糖鎖を応用した細胞機能の制御にも挑戦しています。

図1.糖鎖の3次元構造
化学と生物学の融合 その先を目指して
ライフサイエンス全体でみても、糖鎖をいかに取扱うかは今後の大きな課題となってきています。化学と生物学の融合による糖鎖研究を進展させることを通して、新たなサイエンスの地平を切り拓き、社会に貢献していきたいと考えています。
糖鎖は柔軟な構造をもち、水中で絶えず揺らいでいます。糖鎖と生体分子の相互作用は、とてもダイナミックな過程で進行します。図は、細胞の中でタンパク質の運命決定に関わる糖鎖の化学構造と立体構造モデルです。実験とコンピュータシミュレーションを組み合わせ、その姿を明らかにすることができました。
主な研究業績
- Comprehensive characterization of oligosaccharide conformational ensembles with conformer classification by free-energy landscape via reproductive kernel Hilbert space, T. Watanabe, H. Yagi, S. Yanaka, T. Yamaguchi, K. Kato, Phys. Chem. Chem. Phys., 23, 9753–9760, 2021.
- Experimental and computational characterization of dynamic biomolecular interaction systems involving glycolipid glycans, K. Kato, T. Yamaguchi, M. Yagi-Utsumi, Glycoconj. J. 39, 219–228, 2022.
- NMR analyses of carbohydrate–water and water–water interactions in water/DMSO mixed solvents, highlighting various hydration behaviors of monosaccharides glucose, galactose and mannose, H. Tatsuoka and T. Yamaguchi, Bull. Chem. Soc. Jpn., 96, 168-174, 2023.
使用装置
核磁気共鳴(NMR)スペクトル測定装置
高速液体クロマトグラフィ
質量分析計
大規模計算機
研究室の指導方針
卒業研究の際、自分で合成した分子の完成をはじめて確認したときのドキッとした感覚は今でも覚えています。何かを新しくつくることへの意欲を大切にしたいと思います。また、実験データやアイデアについて研究室の仲間と相談することや、学会で研究成果を発表し議論することなど、研究を通したコミュニケーション能力の向上を重視します。これだけはゆずれない!という自分の幹を太く育てながら、広く科学を学んでいきます。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/t-yamaguchi/
ポリマー1分子の直視熱ゆらぎで駆動する分子マシンの創製


ポリマー1分子の直視
熱ゆらぎで駆動する分子マシンの創製
ナノ高分子化学研究室 Laboratory on Nano-Polymer Chemistry
准教授:篠原 健一(SHINOHARA Ken-ichi)
E-mail:
[研究分野]
高分子化学、分子マシン
[キーワード]
機能性高分子合成、1分子イメージング、人工生命機能、高速AFM
研究を始めるのに必要な知識・能力
機能性高分子の合成研究を希望する学生は、有機化学と高分子化学の基礎的な知識が必要です。また、高分子鎖一本の構造を解析する1分子イメージング研究を希望する学生は、顕微鏡装置のしくみを理解し使いこなす必要がありますので、物理学的なものの考え方が求められます。
この研究で身につく能力
【高分子合成】新しい機能性高分子を合成しますので、有機合成化学的手法や高分子機能設計についての研究能力が鍛えられます。【1分子イメージング】有機溶媒中の高分子鎖一本の構造ダイナミクスを高速AFMイメージングし動態を解析しますので、装置原理や当該解析法のしくみ、また一連の考察をとおして高分子の本質についての理解が深化します。【シミュレーション】スーパーコンピューターを活用して分子動力学(MD)計算による高分子鎖一本のダイナミクスをシミュレーションし、高速AFMイメージングの結果を理解してモデルを構築しますので、コンピューターシミュレーションの基礎と応用が身につきます。【分子マシン創製】多様な高分子鎖の運動機能を探索し分子マシンの創製へ展開しますので、現象の本質を見抜く洞察力、創造力が鍛えられます。
【就職先企業・職種】 化学系企業、半導体関連企業、食品関連企業、化粧品会社、公務員(教員)など
研究内容

Fig. Single Molecular Unidirectional Processive Movement along a Helical Polymer Chain in a Non-aqueous Media
篠原研究室では、ポリマー1分子を研究対象とした基礎研究を進めています。最近の研究で、分子レベルではポリマーにも生物のようなしなやかな動きがあることが実証されました。一方、生物物理学では生体高分子であるタンパク質の機能発現の機構や動作原理が明らかになりつつあります。この概念を合成高分子の設計に適用すれば、刺激や負荷などの環境変化に柔軟に対応して特性を自在に制御できるしなやかな合成高分子~分子マシン~を開発できると考えています。また同時に、1分子イメージング技術の特許化(国際出願)そして共同研究を通じて企業への技術移転を進めています。
【ポリマー1分子の直視】
ポリマーは、非常に優れた特性を持つ有用な物質であり文明を維持するために無くてはならない材料です。しかしながら、ポリマーは一般にその構造が多様で非常に複雑であるために、構造と機能の相関関係を分子レベルで議論することが難しいのです。すなわち、「ポリマーのどの様な構造が、如何なる機能を発揮しているのか?」という本質的な問いに対して、多数分子の平均値を議論する従来の研究手法を踏襲する以上、明確に分子レベルで答えることは難しいという問題があります。これが原因となり、より優れた機能を有する高分子を合成しようとする際に、どの様な分子設計を行えば良いのかが不明確である、という障壁が機能性高分子の構造設計において立ちはだかっています。そこで、高分子鎖一本の構造と機能の実時間・実空間同時観測系が確立されれば、推論や仮定なしに、明確に分子構造と機能との関係を直接議論できるのではないかと考えました。
ポリマー1分子の直接観測で世界に先駆けた研究に挑戦し続けています。例えば、合成高分子鎖一本のらせん構造が形成する高次構造の解明を世界で初めて走査トンネル顕微鏡観測で達成し、米国サイエンス誌の依頼を受け成果の一部が掲載された等の成果を挙げています。また液中でゆらぐπ共役ポリマーの1分子蛍光イメージングと1分子分光に成功しています。さらに高速AFMによるらせん高分子鎖一本の運動を直接観測して、これがブラウン運動であることを解析で証明しました。また超分子ポリマーの研究では、国際学術誌の表紙を飾っています。
【分子マシンの開発】
生体を構成しているタンパク質などの生体高分子にはさまざまな機能があることがわかっていますが、取り出すと高次構造が崩れ機能が失われてしまうため、材料として利用することが難しいという問題がありました。その点、合成高分子は耐久性があり、材料には適しています。もし、しなやかな高次構造を形成し、さまざまな機能をもつ合成高分子を作ることができれば、現在の機械のしくみを根底からくつがえす、画期的な材料を作れると期待しています。篠原研究室では、モータータンパク質など生体分子マシンの構造や機能に学び、これを超える新しい機能を持った合成高分子による分子マシンの実現を目指しています。
主な研究業績
- K. Shinohara, S. Yasuda, G. Kato, M. Fujita, H. Shigekawa: Direct observation of the chiral quaternary structure in a π-conjugated polymer at room temperature, J. Am. Chem. Soc. 123, 3619-3620 (2001); Editors’ Choice, Science 292, 15 (2001).
- K. Shinohara, Y. Makida, T. Oohashi, and R. Hori: Single-Molecule Unidirectional Processive Movement along a Helical Polymer Chain in Non-aqueous Medium, Langmuir, 38 (40), 12173-12178 (2022).
- K. Cheng, K. Shinohara, O. Notoya, M. Teraguchi, T. Kaneko, T. Aoki Synthesis and Direct Observation of Molecules of 2D Polymers: With High Molecular Weights, Large Areas, Small Micropores, Solubility, Membrane Forming Ability, and High Oxygen Permselectivity, Small, 202308050 (2023).
使用装置
高速原子間力顕微鏡(高速AFM)
単一分子蛍光・分光顕微鏡(TIRFM)
高分子鎖構造/蛍光同時観測装置(AFM/TIRFM複合)
スーパーコンピューター(分子動力学計算)
各種機器分析装置(NMR, IR, UV/Vis.等)
研究室の指導方針
研究テーマを学生が教員から与えられたものとして受動的に研究するのではなく、一日も早く自らのものとして研究テーマを捉えることができるよう指導します。具体的には、学生とのコミュニケーションを積極的にとり、学生の能力に応じて可能な限り意思を尊重して自主的に実験を遂行させ、自ら問題を見つけてこれを解決する能力を養わせる方針です。これら一連の過程を繰り返すことにより、研究とは如何なるものなのか等の基本的かつ重要な問の答えが各々学生なりに得られ、ひいては将来の優れた研究者・技術者としての自覚につながるものと期待しています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/shinohara/
原子スケールナノテクノロジーで、革新的エネルギー・環境デバイスを開拓!


原子スケールナノテクノロジーで、
革新的エネルギー・環境デバイスを開拓!
R7年10月以降に入学する学生の受け入れは行いません
水田研究室 MIZUTA Laboratory
教授:水田 博(MIZUTA Hiroshi)
E-mail:
[研究分野]
サイレントボイスセンシング、超高感度センサ、熱制御素子
[キーワード]
グラフェン、ナノ電子機械システム(NEMS)、雷センサ、においセンサ、熱整流デバイス、バレートロニクス、量子デバイス、極限構造作製、第一原理計算
研究を始めるのに必要な知識・能力
水田研究室では物性物理、電気・電子工学、機械工学、化学、コンピュータ、IoT/AIの融合領域研究を行っていますので、これらのどれか1つ(あるいは複数)の基礎を修得していることが必要です。さらに、その専門を広げて行く好奇心旺盛な人が適しています。
この研究で身につく能力
水田研究室では、グラフェンをはじめとする新奇な原子層材料をベースに、NEMS(ナノ電子機械システム)技術と1ナノメートル精度の超微細加工技術を駆使して、超高感度センサデバイス、超低消費電力スイッチ、熱整流素子、バレートロニクスデバイスなどを開発しています。これらの研究を通して、①電子線直接描画や最先端ヘリウムイオンビーム技術による極微デバイス作製技術、②環境制御型・高周波プローブステーションや希釈冷凍機などを用いた極限電気特性測定、③第一原理計算からデバイス・回路シミュレーションに至る設計・解析技術、などを幅広く修得することができます。また、欧州を中心に海外研究機関と緊密に連携し、学生・スタッフが頻繁に交流しているため、研究を進める中で自然に国際的コミュニケーションスキルとリーダーシップ能力を身につけていくことが可能です。
【就職先企業・職種】 ICT企業、製造業、国立研究開発法人
研究内容
水田研究室では、グラフェンや極薄シリコン膜をはじめとする新奇な原子層材料と、原子スケール精度の超微細加工技術を駆使して、超高感度センサ、超低消費電力NEMS(ナノ電子機械システム)スイッチ、バレートロニクス、熱フォノンエンジニアリングなどを開発し、グローバルな環境・エネルギー問題に貢献することを目指しています。
具体的には以下の4テーマを中心に研究を推進しています。

図1.

図2.

図3.
①サイレントボイスセンシングの研究
従来のセンサ技術では検出が難しい自然界や生体の様々な微小信号(サイレントボイス(声なき声))を検出する革新的センサ素子の研究を行っています。落雷の予測を可能とする大気中電界センサ(図1右)や、疾病の予兆検出を目的とした超低濃度の皮膚ガス(におい)センサ(図1左)など、素子の原理探索から試作、測定データ解析技術の研究、さらに実用化研究まで、産業界とも連携して精力的に推進しています。
②超低電圧動作グラフェンNEMSスイッチの研究
グラフェンやhBN膜など異種原子層材料をファンデルワールス積層させたNEMS素子を作製し、その電気・機械的な動作の解明と超低電圧・急峻動作スイッチ(図2)の研究を行っています。シリコンMOSFETの理論限界を超える急峻スイッチング特性と0.5V未満の超低電圧動作を実現しています。
③ナノスケール熱制御技術の研究
最先端技術ヘリウムイオンビームミリング技術を用いて宙吊りグラフェン上に直径10nm以下のナノ孔周期的構造を形成します。特に非対称構造における熱整流素子(図3右)の実現を目指しています。
④原子層材料によるバレートロニクスの研究
バレー自由度を新たな情報担体として利用するバレートロニクスは、従来のエレクトロニクスを超える将来の情報処理技術として期待されています。原子層材料を積層した様々な構造におけるベリー曲率発生(図3左)を理論と実験の両面から探求しています。
主な研究業績
- J. Sun, M. Muruganathan, and H. Mizuta, ‘ Room temperature detection of individual molecular physisorption using suspended bilayer graphene’, Science Advances vol.2, no.4, e1501518 (2016) DOI:10.1126/sciadv.1501518
- A. Kareekunnan, T. Agari, A. M. M. Hammam, T. Kudo, T. Maruyama, H. Mizuta, and M. Muruganathan, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, ACS Omega 6, 34086-34091 (2021) DOI: 10.1021/acsomega.1c05530
- F. Liu, M. Muruganathan, Y. Feng, S. Ogawa, Y. Morita, C. Liu, J. Guo, M. Schmidt and H. Mizuta, ‘Revisiting the Mechanism of Electric Field Sensing in Graphene Devices’, Nano Futures 5(4), 045002 (2021) DOI: https://doi10.1088/2399-1984/ac36b5
使用装置
電子線リソグラフィー、走査型電子顕微鏡、
電界電離ガスイオン源(GFIS)微細加工装置、ヘリウムイオン顕微鏡(産業技術総合研究所)
環境制御型高周波プローバー、マルチガス種対応プローバー、
第一原理・量子輸送シミュレータ
研究室の指導方針
最先端のナノテクノロジーを駆使して、現在のCMOS技術を越える‘More than Moore’ & ‘Beyond CMOS’世代のエマージングテクノロジ開拓を目指しています。「まだ世界で誰も実現したことのない機能のデバイスをこの手で初めて開発してみたい!」という意欲のあるあなた、ぜひ一緒に研究しましょう。また、欧州・アジアを中心に海外研究機関に滞在しての研究活動も積極的に推進していますので、国際的に活躍したい方も大歓迎です。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/mizuta-lab/
ナノとバイオを融合して医療と環境の問題を解決する


ナノとバイオを融合して
医療と環境の問題を解決する
バイオナノ医工学デバイス 研究室
Bio-Nano Medical Device Laboratory
教授:高村 禅(TAKAMURA Yuzuru)
E-mail:
[研究分野]
BioMEMS、微小流体デバイス、分析化学、バイオセンサ
[キーワード]
血液分析チップ、一細胞解析、質量分析チップ、マイクロ元素分析、微細加工プロセス、バイオチップ、マイクロプラズマ
研究を始めるのに必要な知識・能力
私たちが扱う対象は分野融合的要素が強く、従って本研究室では様々なバックグラウンドの学生を受け入れております。生物、化学だけでなく、物理、機械、電子、制御、材料など、個人のバックグラウンドに応じたテーマを設定し、研究を進めます。
この研究で身につく能力
何かを解析するチップの研究が多いので、分析科学の要素は押し並べて身につきます。微量なサンプルを扱うので、微量な生体サンプルのハンドリング技術、生体分子と無機材料の界面の調整技術、微量な蛍光や光信号の観察・計測技術等が身につきます。また、チップを作成するには、フォトリソグラフィー等、マイクロマシンの技術が身につきます。新しい材料を使う場合は、成膜やエッチングの為のプロセス開発を行うこともあります。チップの開発では、流体の動きや熱の伝達をシミュレーションし設計することもあります。修了生は、計測機器メーカへの就職が多いですが、半導体製造機器メーカや、薬品会社へ就職する方もいらっしゃいます。
【就職先企業・職種】 計測機器メーカ、電気、機械、半導体製造機器メーカ、半導体メーカ、薬品関連
研究内容
半導体プロセスを応用して、ウエハ上に小さな流路や反応容器、分析器等を作りこみ、一つのチップの上で、血液検査等に必要な一通りの化学実験を完遂させようという微小流体デバイス、μTAS(micro total analysis systems)やLab on a chipと呼ばれる研究分野が急速に発展しています。これは、病気の診断、創薬、生命現象の解析に応用でき、大きな市場と新しい学術分野を開拓するものとして期待されております。また、いろいろな形状の微小流路内を、流体や大きな分子が流れるときの挙動は、ブラウン運動や界面の影響が支配的で、流体力学でも分子動力学でも扱えない新しい現象を含んでいます。当研究室は、このような新しい現象をベースに、ナノとバイオを融合した次世代のバイオチップ創製を目指した研究を行っています。
主なテーマを次に示します。

図1.作成したバイオチップの例

図2.汎用微小流体チップ案
1)高集積化バイオ化学チップの開発
高機能バイオチップの実現には、チップ内での流体の駆動機構と、高感度な検出器の開発が重要になります。本研究室では、溶液プロセスによるPZTアクチュエータアレイや電気浸透流ポンプをはじめ様々なチップ内での液体駆動機構と、ナノ材料を駆使した新しい検出器の開発を進めています(図1)。これらを用いて、組織中の一細胞を分子レベルで解析可能なチップや、高度な処理をプログラム次第で様々にこなす汎用微小流体チップの開発を目指しています(図2)。
2)高感度バイオセンシング技術の開発
一滴の血液には、体内の様々な状態を反映した多くの情報が含まれております。これらを頻繁に解析することで、重篤な病気の超早期発見や、日々の健康管理、あるいは老化や病気が起きにくい体質になるために食事や運動をガイドする等、様々なことが可能になると考えられております。このためには、非常に微量なバイオマーカを簡易に測定する技術が必要です。私どもは、自己血糖測定器と同じ手間とコストでpg/mLオーダの測定ができるチップや、質量分析チップの開発を行っております。
3)液体電極プラズマを用いたマイクロ元素分析器の開発
中央を細くした微小な流路に液体のサンプルを導入し、高電圧を印加するとプラズマが発生します。このプラズマからの発光を分光することにより、サンプル中の元素の種類と量を簡単・高感度に測定することができます。この原理を用いて、食物、井戸水、土壌工場廃水・廃棄物に含まれている有害な金属(Hg、Cd、Pbなど)などを、オンサイトで測定できるマイクロ元素分析器の開発を行っています。
主な研究業績
- Pulse-heating ionization for protein on-chip mass spectrometry,Kiyotaka Sugiyama, Hiroki Harako, Yoshiaki Ukita, Tatsuya Shimoda, Yuzuru Takamura, Analytical Chemistry, 86, 15, 7593-7597, 05 August 2014.
- Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing, Amara Apilux, Yoshiaki Ukita, Miyuki Chikae, Orawom Chilapakul and Yuzuru Takamura, Lab Chip,13(1), 126-135, January 2013.
- High sensitive elemental analysis for Cd and Pb by liquid electrode plasma atomic emission spectrometry with quartz glass chip and sample flow, Atsushi Kitano, Akiko Iiduka, Tamotsu Yamamoto, Yoshiaki Ukita, Eiichi Tamiya, Yuzuru Takamura, Analytical Chemistry 83(24), 9424-9430, 04 November 2011.
使用装置
クリーンルーム半導体製造装置一式
電気化学測定装置
表面プラズモン共鳴測定装置
イムノクロマトグラフ製造装置
全反射蛍光一分子観察装置
研究室の指導方針
iPS細胞など最近の新しい医療技術の多くは、新しい工学的技術の進歩が発端になっていることをご存知でしょうか。その多くに、高度に発展したナノテクノロジーとバイオテクノロジーの融合技術が使われています。この分野は、まさに今アクティブで、また人類への多くの貢献が期待されている分野でもあるのです。私どもの研究室には、様々なバックグランドと目的を持った学生さんが来ます。私どもは一人ひとりの目的に合わせたゴールを設定し、そこに向かって必要なものを自ら獲得できる様に、サポートとガイドを行うことを主な指導方針としています。
[研究室HP] URL:https://www.jaist.ac.jp/ms/labs/takamura/index.html
パターン形成:分割現象における「対称性の破れ」を実証

![]() ![]() |
北陸先端科学技術大学院大学 科学技術振興機構(JST) |
パターン形成:分割現象における「対称性の破れ」を実証
【ポイント】
- 水の蒸発によって現れるパターン形成「界面分割現象」の新たな特徴を発見
- ポリマー分散液の蒸発界面が複数に分割するとき、「対称性の破れ」が現れることを実証
- 生体組織など自然界に見られる非対称なパターン形成の理解に有用
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域のグエン チキムロク大学院生(博士後期課程)、桶葭興資准教授らは、ポリマーが水に分散した粘性流体から現れる散逸構造[用語解説1]「界面分割現象」において、対称性の破れ[用語解説2]を実証した。これまで、界面[用語解説3]で起こる幾何学変形が、時間とともにどう進んでいくかは、不明な点が多かった。今回、明確な境界条件のもと、確率統計を通した解析を進めた結果、分割時に現れる核の位置に、空間的な「対称性の破れ」が生じることが明らかになった。これは、生体組織など自然界に見られる非対称なパターン形成の理解に有用である。 |
【研究概要】
自然界には様々な幾何学パターンがあり、例えば雪の結晶の形は、気温と水蒸気の量で多様に変化する。また、乾燥環境は水の蒸発を引き起こし、生物であればその成長過程で非対称なパターンをつくる。これまで、この幾何学性や非対称性について、数理的な解釈がなされてきたものの、物理化学的実験に基づいた再現はなされてこなかった。一方、桶葭准教授らの研究グループはこれまでに、ポリマー水分散系の蒸発界面に着目し、散逸構造「界面分割現象」を報告してきた (※1)。これは、ポリマー水溶液などの粘性流体を明確な境界のある有限空間から乾燥環境下におくと、一つの蒸発界面が複数の界面に分割される幾何学化現象である。ここで、空間軸の一つを1ミリメートル程度の隙間にすることで毛管現象[用語解説4]の物理条件が制御された空間となる。さらに、一定温度下で水の蒸発を一方向になるよう設定すると、蒸発界面直下の濃密なポリマーの密度がゆらぎ、複数の特異的位置でポリマーが析出して界面分割する。具体的には、多糖[用語解説5]の水溶液を乾燥環境下におくと、まるで界面から芽が出るようにセンチメートル単位で多糖が析出し界面が複数に分割される。ここでは、ミクロ構造の秩序化と同時に、マクロなパターンが現れることが分かっていた。しかし、非平衡で開放的な蒸発界面から引き起こされる実際の分割現象は、核形成位置の平均的情報は得られるものの、その不確定さのため複数の核形成メカニズムについては未解明な特徴が多かった。
※1. https://www.jaist.ac.jp/whatsnew/press/2023/09/22-1.html
図. 界面分割現象における「対称性の破れ」: A. 空間軸の一つとしてセル幅を大きくしていくと、分割現象の特徴が現れる概念図。界面がゆらぎ、対称性が破れ、そして水中に分散していたポリマーが析出する核を非同期に形成する。B. 同一条件で得られる異なる分割(二分割、もしくは三分割)と、セル幅に対する核形成位置のデータ。C. 対称性の破れを加味した分岐モデル。核1と核2とは、タイミングがずれて発生する(時間的に同期していない)。 |
そこで今回、ポリマー分散液の一つの蒸発界面が、二つ、もしくは三つに分割される空間条件に焦点をあて、その核形成位置を詳細に検討した(図A)。確率統計論を通した界面科学的な解析から、それぞれの分割数に対して、「対称性の破れ」と「非同期性」が現れ、相互に関係し合う特徴であることが分かった。核の位置については平均化による統計評価ではなく、結果に対する場合分けを通し、特徴的な「ずれ」を評価した(図B)。すると、分割点の位置には偏りがあり、セル幅に対して均等に半分、もしくは均等に三分の一に分割するわけではない、という基本原理が明らかになった。実際、二分割される場合、核はセル幅の中心ではなく、中心からずれた位置に形成される傾向となった。この「ずれ」は、セル幅を少しずつ大きくすると顕著に現れ、三分割される場合、2番目の核形成が起こるタイミングや位置に大きく影響し、非同期性として現れた。この「対称性の破れ」と「非同期性」は、時間発展の現象理解に重要である(図C)。
また、この核間隔は、ポリマー水溶液の液相と空気の界面における毛管長が影響する。今回の実証実験では、粘性流体として多糖キトサン[用語解説6] の水分散系を用いており、5~8ミリメートル程度の間隔であった。これまでにいくつかの多糖でも分割現象は実証されており、研究グループは現在、様々な化学種・物質群への拡張や現象の特徴的メカニズムの解明を進めている。これらを通して、自然界にも通ずるパターン形成の普遍的理解が期待される。
本成果は、2025年6月4日に科学雑誌「Advanced Science」誌(WILEY社)のオンライン版で公開された。なお、本研究は、国立研究開発法人科学技術振興機構(JST) 創発的研究支援事業(JPMJFR201G)、日本学術振興会科研費 基盤研究B(JP23K21136)、日本学術振興会科研費 新学術領域研究(JP22H04532)、および公益財団法人旭硝子財団 若手継続グラントの支援のもと行われた。
【今後の展開】
生物を含め自然界には多様な散逸構造が在り、対称性の破れを明確に扱うことは重要である。パターン形成に関する歴史的研究にはチューリングパターン[用語解説7]などがあり、ソフトマテリアルを題材とした研究例も多い。これは、生物における自己組織化の理解や実空間におけるマテリアル設計に重要なテーマと認識されているためでもある。今回のような実検証を通じたパターン形成の理解が進めば、今後、高分子科学、コロイド科学、界面科学、材料科学、流体力学、非平衡科学、生命科学などの分野への進展に留まらない。実時空間と仮想時空間を通した数理科学、シミュレーション、データサイエンスなどとの融合によって、パターン形成の理解と材料設計に有用と期待される。
【論文情報】
掲載誌 | Advanced Science (WILEY) |
題目 | Symmetry breaking in meniscus splitting: Effects of boundary conditions and polymeric membrane growth |
著者 | Thi Kim Loc Nguyen, Taisuke Hatta, Koji Ogura, Yoshiya Tonomura, Kosuke Okeyoshi* |
DOI | 10.1002/advs.202503807 |
掲載日 | 2025年6月4日 |
【用語解説】
令和7年6月4日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/06/04-1.htmlナノマテリアル・デバイス研究領域のHO教授のチームがRoboSoft 2025 Competitionにおいて優勝

ナノマテリアル・デバイス研究領域のHO, Anh Van教授のチームが、8th IEEE-RAS International Conference on Soft Robotics (RoboSoft 2025) Competitionにおいて、Manipulation Challenge 1st placeを獲得しました。
RoboSoft 2025は"Interdisciplinarity and Widening Horizons"をテーマとして、令和7年4月23日~26日にかけて、スイス(ローザンヌ)にて開催されたソフトロボティクスに関する国際会議です。同会議では、研究者、業界の専門家、学生が一堂に会し、最先端の進歩を探求し、様々な分野における知見を共有しました。
同会議と併催で行われたコンペティションは、実際のロボットアプリケーションに焦点を当てたシナリオで構成され、「管内移動」、「デリケートな果物の収穫」、「医療スクリーニングと介入」という3つの具体的な課題が提示されました。HO教授のチームは「デリケートな果物の収穫」の課題に参加し、最も高い得点を獲得しました。
※参考:RoboSoft 2025(Competitions)
■受賞年月日
令和7年4月26日
■研究題目、論文タイトル等
ROSE: A Rotation-Based Soft Gripper Harnessing Morphological Computation for Adaptive and Robust Manipulation
■研究者、著者
Khoi Thanh Nguyen, Nhan Huu Nguyen, and Van Anh Ho
■受賞対象となった研究の内容
このコンペティションでは、ラズベリーのような繊細な果実を収穫する際のソフトロボットグリッパーの有効性を評価します。果実の遮蔽状態の変化、密集、動きによる乱れといった実際の農業現場に見られる課題を再現することで、現実的な収穫条件をシミュレーションしています。
フィールドに即した環境を再現することで、この競技は、実用的な果実収穫において柔軟性(コンプライアンス)と力の制御を効果的に両立できるソフトグリッパーの設計を明らかにします。
この結果は、農業分野におけるソフトロボティクスの重要な役割を強調し、グリッパー技術の現在の進展を示すとともに、自動化かつ繊細な作物収穫システムに対する大きな成長可能性を示唆しています。
提案されている課題は以下の通りです:
・課題1:ロボットが単体のベリーを摘み取る
・課題2:ロボットが密集しているベリーを摘み取る
・課題3:葉に部分的に隠れた単体のベリーを摘み取る
・課題4:葉に部分的に隠れた密集したベリーを摘み取る
・課題5:動いている単体のベリーを摘み取る
当チームのソフトグリッパー「ROSE」は、すべての課題を8分未満で成功裏に完了しました。
■受賞にあたって一言
今回のコンテストは、非常に意義があり、必要な取り組みであると感じました。競技シナリオは、距離制限、葉や枝といった障害物の存在、果実の揺れ、さらには果実の柔らかさまでも再現されており、現実の環境を非常によく模倣していました。そのため、同コンテストは、ベリーの収穫能力を評価するための優れたベンチマークとなります。
また、他のチームの興味深い設計を直接見られる場でもあり、それらの実際の効果を確認できる貴重な機会でもありました。さらに、アイデアを交換したり、将来的な共同研究の可能性について議論したりするための交流の場としても、とても良い機会になりました。
今回、Holabの収穫アームが1位を獲得できたことを非常に嬉しく思っています。この成果により、多くの人に私たちのアームを知ってもらうことができ、JAISTの存在も広く認識されるようになりました。同コンテストを通じて、自分たちの技術の実力を再確認するとともに、現時点での課題も明確になり、今後の改善に向けた大きなヒントを得ることができました。
令和7年5月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/05/20-1.htmlソフトロボットハンドを農業の未来に

ソフトロボットハンドを農業の未来に
【ポイント】
- 柔軟性を持つ素材で作られたスキンが回転運動で変形することにより、大きさの異なる農作物を優しく掴んで収穫する汎用ソフトロボットハンド「ROSEハンド」に対し、有限要素解析ソフト「Abaqus」を用いて、把持動作によるスキンの変形に関する非線形解析を行いました。
- この解析により、把持性能や材料特性、幾何学的なパラメータなど、形態学的特徴の関係性を調査しました。
- 農作物の収穫など挑戦的な活用における「ROSEハンド」の可能性を示唆するデモンストレーションを行いました。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域のHo Anh Van准教授、人間情報学研究領域のNguyen Huu Nhan助教、Nguyen Thanh Khoi大学院生(博士後期課程)らの研究グループは、実環境における様々な種類の農産物を収穫するため、座屈現象を利用した新しいソフトロボットハンドを提案しました。 |
【研究の内容】
近年、産業用ロボットの導入により、ロボットハンドは様々な業界において必要不可欠となっています。特に、農業分野では包装や収穫作業等、幅広く使用されています。農業の発展に伴い、ロボットハンドが対象とする農作物は、それら特有の幾何学的な形状や物理特性に合わせて、多種多様となってきています。その複雑性は、農業特有の技術的要件と相まって、従来のロボットハンドの課題となっています。そのため、形状やサイズ、質感など様々な属性を持つ農作物に適応可能な汎用性の高いロボットハンドの需要が高まっています。
既存の手法において、ロボットハンドは、データに基づくモデルによって生成される複雑な制御や動作計画に依存しています。これには膨大なデータベースと複雑な設計を必要とするため、既存の手法では限界になってきています。そのため、革新的な解決法の開発が急務となっています。以前、我々のグループでは、新たなソフトロボットハンドである「ROSE(ROtation-based Squeezing GrippEr)ハンド」を開発しました(※)。これは農業における実環境下の収穫作業に対し、よりシンプルで効果的な方法を提供するものです。(図1A)。
(※) https://www.jaist.ac.jp/whatsnew/press/2023/07/14-1.html
「ROSEハンド」は、薄く柔らかい弾性体である内側と外側の2枚の層で形成されています。これらの層の間には空間があり、内側の層を回転させることにより層が変形し、「ROSEハンド」本体の内部に「しわ」が生じます。(図1B)。この特有な変形によって、この中央の空間は徐々に収縮し、この空間内にある対象物を優しく掴むことが可能となります。
本研究では、「ROSEハンド」が持つ「掴む」メカニズムを最適化するため、柔らかい素材の複雑な非線形変形をシミュレーションすることができるソフトウェア「Abaqus」を使用しました。非線形性を持つ弾性体は、変形(曲げることや伸びること)しても元に戻る特性を持ちます。その力学的な挙動をモデリングすることは大きな課題となっています。「Abaqus」は、この特性に対処する高度なコンポーネントと制御モジュールを備えており、「ROSEハンド」が持つ複雑性について正確なシミュレーションを行うことができます。
「ROSEハンド」の機能の根幹には、回転動作により発生する「しわ」が生じる「ねじり」の現象があります。「ROSEハンド」の内側の層が外部モータによって「ねじり」の運動を受けると、外側の層と内側の層で「ずれ」が生じます。(図1A)。この「ずれ」は、「ROSEハンド」の縁周辺に不均一な「ひずみ」をもたらし、この「ひずみ」がある点から力が加わると「しわ」の形成に繋がります。この「しわ」によって、「ROSEハンド」の縁が狭まることにより、把持動作が可能となっています。「Abaqus」によるシミュレーションの結果、形態学的な特徴(高さ、直径、厚さ)と把持機能の相関関係が明らかになりました。この発見により、「ROSEハンド」の形状設計を最適化することで、全体的な性能を向上させることができ、これにより改良された「ROSEハンド」で、従来のロボットハンドでは困難であった様々なタスクを検証しました。
本研究では、農業での「ROSEハンド」の実用化が収穫作業における画期的な変化となり得ることを見出しました。農作物のようなデリケートなものを扱うには、従来のロボットハンドでは様々なハードルがありましたが、改良後の「ROSEハンド」は様々な形状や質感に適応可能なため、収穫のような作業に非常に効果的です。
図1. ROSE Design and Wrinkles formation mechanism.
本実験では、「ROSEハンド」でキノコ(図2A)やイチゴ(図2B)のような作物の収穫を行いました。これらのように柔らかい・硬いに関わらず確実に把持することができ、収穫作業の高い成功率を保証することができました。この「ROSEハンド」による収穫機能は、収穫作業の効率を向上させるだけでなく、高齢化に直面している地域での労働力不足にも効果があります。収穫作業を自動化することにより、「ROSEハンド」は農業の持続可能な効率化に貢献し、農業の未来に不可欠なツールとなります。
図2. A) ROSE harvesting mushroom and B) ROSE harvesting strawberry
【今後の展開】
この研究成果がもたらすインパクトは、科学的な研究とその応用の両方から述べることができます。まず、科学的なインパクトは、世界で初めて弾性体の持つ「しわ」の現象を把持機能へ応用したことです。「ROSEハンド」は、通常のロボット設計者が持つ弾性体に現れる「しわ」を引き起こす「たわみ」が望ましくないという一般的な考えを変えることができます。次に、応用面では、「ROSEハンド」の実用性は様々な分野の用途で有望視されています。例えば、「ROSEハンド」の持つ特性により、食品工場などにおける食品のハンドリングや本研究で示した農業の収穫だけでなく、箱詰めのような他の農作業へも利用することが可能です。
本研究では、「ROSEハンド」が農作業の自動化に貢献できることを明らかにしました。また、「ROSEハンド」の活用を他分野に応用することを視野に入れ、日本が直面している労働力不足解消に重要な役割を担うことが期待されます。
本研究成果は、2024年9月23日に、ロボティクス分野の主要ジャーナル「International Journal of Robotics Research」(米国SAGE Publications社)に掲載されました。
【論文情報】
雑誌名 | International Journal of Robotics Research |
論文題目 | Soft yet secure: Exploring membrane buckling for achieving a versatile grasp with a rotation-driven squeezing gripper |
著者 | Khoi Thanh Nguyen, Nhan Huu Nguyen, and Van Anh Ho |
DOI | 10.1177/02783649241272120 |
令和6年9月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/09/26-1.htmlマルチモーダルセンシングを行う触覚センサにより人とロボットの協働をより安全に

マルチモーダルセンシングを行う触覚センサにより
人とロボットの協働をより安全に
【ポイント】
- 柔らかい素材を用いた連続体ロボット用触覚センサの形状復元情報の取得や接触検出を行うDeepLearningモデルを含む統合的なマルチモーダルセンシングプラットフォームを開発しました。
- 知覚情報を用いたロボットアームの動きを決定するアドミタンスベースコントローラにも取り組みました。
- 今後、このプラットフォームに基づいて、柔らかい素材を用いたセンサやロボットへの応用を期待します。
北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域のHo Anh Van准教授、Nguyen Tai Tuan大学院生(博士後期課程)、Luu Khanh Quan大学院生(博士後期課程)及びハノイ工業大学(ベトナム)のNguyen Quang Dinh博士の研究チームは、ソフトロボットのための新しい触覚センシングプラットフォームを開発しました。 |
【研究の内容】
本研究では、柔らかいスキンを持つ柔軟なロボットアーム用に設計した"ConTac"と呼ばれる新たなビジョンベースの触覚センシングシステムを開発しました。このシステムは、ロボットアームの位置推定と触覚検出を行うことが出来ます。また、シミュレーション上のデータで訓練した二つのDeepLearningモデルを使用しており、追加の調整を行うことなく実世界のデータで動作することが可能です。このシステムにおいて、二つの異なるロボットモジュールでテストし、その有効性を確認しました。さらに、形状情報と触覚情報を利用する制御戦略を開発し、ロボットアームが衝突に適切に対応できるようにしました。これらにより、このアプローチは、柔軟性の高いロボットの知覚と制御を大幅に改善できる可能性があることを解明しました。
自然界では象の鼻やタコの足など器用な動きをする体が存在します。本研究チームは、これらの自然構造の原理をロボットへ応用することで、高い堅牢性や安全性を備えた連続体ロボット[1]の開発を目指しています。
連続体ロボットは、ほとんどのタスクで必要となる自由度(DOF)よりも多くの自由度を持ち、剛体ロボットと異なる柔軟性や器用さにより、不測の事態へ対応可能です。特に、障害物や外乱などがある環境下で真価を発揮します。しかし、連続体ロボットのように柔軟性の高いロボットは、動作中に複雑な屈曲やカーブを描くため、形状や動きを正確に把握することが課題です。解析により、これらのロボットの運動学・動力学的問題を解決することは可能ですが、複雑なモデリングが必要となります。
解析とは別のアプローチとして、連続体ロボットに組み込まれた柔軟性を持つセンサを用いる方法があります。このセンサは、ロボットの表面に取り付けたり、覆ったりすることが出来ますが、この方法では多くの低解像度センサを必要とし、システムが大型になってしまうという欠点があります。そのため、ロボットやアクチュエータの端に1つのセンサモジュールを使用し、大型化を避ける効率的な解決策が求められていました。ところが、これまでの研究では、ロボットの姿勢推定に重点が置かれており、ロボットの柔軟性に対応するための接触検出は含まれていませんでした。
この問題に取り組むため、本研究チームは柔らかいスキンを持つロボットアームの形状を推定し、接触を検出できるConTacシステムを開発しました(図1)。このシステムの最終的な目標は、連続体ロボットに実装することですが、本研究では、検証のため柔らかいスキンを持つ多関節ロボットアームを用いて"知覚"に焦点を当て、開発を行いました。このシステムには、連続体ロボットのような屈曲動作が可能な骨格、マーカー付きの柔らかいスキン、スキンの変形を撮影するカメラ、スキンの形状と触覚のセンシングモデル及び接触機構が含まれます。また、キャリブレーションを行うことなく、同じ機構や形態を持つあらゆるロボットに適用することが出来ます。さらに、知覚情報を用いてロボットアームの動きを決定するアドミタンスベースコントローラ[2]を開発しました。
図1:ConTac概要。人間がロボットに触れると、ロボットは衝突を避けるために動きを変える。
本研究チームが開発を行ったConTacは、複雑な調整を必要とせず、様々なロボットアームで使用することを目指しています。これを実現するために、シミュレーションデータのみで学習させたDeepLearningモデルを用いました。これらのモデルは実際のロボットへ適応できるため、時間とリソースを短縮できます(図2)。ConTacシステムを搭載した柔軟なロボットアームは、ロボットが障害物の多い環境をナビゲーションし、人間とロボットが安全に作業することが求められるスマート農業やヘルスケアサービスに適しています。また、その柔らかさと柔軟的な機構は、周囲の環境を感知する能力が組み合わさり、植物や患者などへの安全なインタラクションでもあります。
図2:ConTacフレームワーク。センシングモデルの開発には、シミュレーション環境によるトレーニングデータの収集が用いられる。このシステムを搭載したロボットは、人間とロボットのインタラクションに用いられることが期待されている。
【今後の展開】
将来的に、既存のロボットシステムに簡単に組み込むことができる触覚センサの開発が期待されます。この進歩により、新しいセンシングと制御手法が導入されれば、ロボット本来の設計に変更を加えることなく、人間とロボットの安全な相互作用が促進されます。すべてのロボットが触覚を持つ社会となれば、産業と日常生活などに大きな変革をもたらすこととなります。
本研究成果は、2024年7月15日から19日にかけてオランダのデルフトで開催の、ロボティクス研究会におけるトップカンファレンス「ROBOTICS: SCIENCE AND SYSTEMS」で発表されました。
【論文情報】
論文題目 | ConTac: Continuum-Emulated Soft Skinned Arm with Vision-based Shape Sensing and Contact-aware Manipulation |
発表先 | Robotics: Science and Systems (RSS) |
著者 | Tuan Tai Nguyen, Quan Khanh Luu, Dinh Quang Nguyen, and Van Anh Ho* |
URL | https://enriquecoronadozu.github.io/rssproceedings2024/rss20/p097.pdf |
【用語解説】
令和6年8月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/08/06-1.html革新的ポリマーを用いたタンパク質凝集阻害メカニズムの解明 ―タンパク質医薬品製造の効率化や神経変性疾患治療への応用に期待―

![]() ![]() |
国立大学法人 国立大学法人東京工業大学 |
革新的ポリマーを用いたタンパク質凝集阻害メカニズムの解明
―タンパク質医薬品製造の効率化や神経変性疾患治療への応用に期待―
ポイント
- 双性イオンポリマー(PSPB)によるタンパク質凝集阻害の複雑な分子メカニズムを先駆的に解明した。
- PSPBは、多様なタンパク質の熱凝集に対して高い保護活性を持ち、PSPBとタンパク質の相互作用を実験及びシミュレーションにより包括的かつ詳細に検討した結果、弱く可逆的な結合の重要性を明らかにした。また、PSPBはタンパク質と弱く可逆的に相互作用することで、凝集経路を妨げ、凝集性中間体の形成を阻止することも明らかとなった。
- タンパク質治療薬の安定化と長期保存を実現する可能性を見出した。
- 将来的にはアルツハイマーなどの神経変性疾患の治療への応用も期待される。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の松村和明教授、ラジャンロビン元助教及びZHAO, Dandan研究員(超越バイオメディカルDX研究拠点)は、東京工業大学(学長・益一哉、東京都目黒区)生命理工学院生命理工学系の古田忠臣助教と共同で、双性イオンポリマーによるタンパク質凝集阻害メカニズムの解明に成功した。 本研究グループが合成したスルホベタインポリマーと呼ばれる双性イオン高分子は、タンパク質と弱く可逆的に相互作用し、凝集経路を妨げることで凝集性中間体の形成を阻止し、有害な凝集を防ぐ。この画期的な発見は、タンパク質治療薬を進歩させ、タンパク質のミスフォールディングに関連する様々な症状に対する新規治療法を開発する上で、計り知れない可能性を秘めている。 本成果は、2024年5月30日11時(米国東部標準時間)にCell Press発行「Cell Reports Physical Science」オンライン版に掲載された。 |
【研究の背景】
タンパク質の凝集は、アルツハイマー病、パーキンソン病、ハンチントン病などの神経変性疾患の主な原因とされている。また、タンパク質医薬品の生産と保管中に凝集が発生すると、薬剤の活性と有効性が失われる可能性がある。従来の方法では、これらの凝集を防ぐことは困難であり、効果的な安定化手法の開発が求められていた。
【研究内容】
本研究グループは、双性イオン高分子注1の一種であるスルホベタインポリマー(PSPB)及びその疎水性誘導体がタンパク質凝集を抑制するメカニズムを解明した。(図1)。PSPBはタンパク質と弱く相互作用し、凝集経路を妨げることで凝集性中間体の形成を阻止する。実験により、PSPBがインスリンやリゾチームなどの複数のタンパク質を熱ストレスから効果的に保護することが示された。特に、疎水性残基を導入したPSPBは、タンパク質の凝集抑制効果が著しく向上することが確認された。この効果は分子シールディング効果注2と呼ばれ、保護対象のタンパク質と保護高分子が可逆的な相互作用を示すことにより、物理的に凝集を妨げている様子が分子動力学シミュレーション注3の結果からも確認された。
【主な結果】
- PSPBの合成と特性評価:異なる疎水性モノマー(BuMA、HxMA、OcMA)を組み込んだ種々のスルホベタインポリマー(PSPB)を合成し、その特性を評価した。
- タンパク質の保護効果:インスリン、リゾチーム、乳酸脱水素酵素(LDH)をモデルタンパク質として使用し、PSPBがこれらタンパク質の凝集繊維形成を著しく抑制することを確認。分子量と疎水性が高いPSPBは、特に効果的であることが示された(図2)。
- 分子動力学シミュレーション:PSPBが分子シールドとして機能し、タンパク質分子間の距離を保ち、凝集を防ぐ効果を持つことが確認された(図3)。
- メカニズムの解明:熱分析、分光学的手法などを駆使し、PSPBによる凝集抑制効果の解明に成功した。モデルタンパク質のインスリンを加熱すると、タンパク質の高次構造がほどけるアンフォールディングが起こる。その後、さらに加熱することで凝集性の前駆体が形成され、不可逆な凝集体となる。ここにPSPBが存在することで、アンフォールディングする温度が高温側にシフトし、凝集前駆体の形成が阻害される。冷却時にはPSPBは脱離し、元の高次構造が維持される(図4)。PSPBへの疎水基の導入は、タンパク質の疎水性残基との相互作用を高める効果があり、より凝集前駆体の形成阻害効果を高めていることが示唆される。
【今後の展望】
PSPBによるタンパク質凝集抑制効果の分子メカニズムに迫った研究は初めてであり、このメカニズムにより、PSPBがタンパク質治療薬の安定化と長期保存に貢献できる可能性が示された。
さらに、この研究は新しい診断及び治療法の開発にも応用される可能性があり、将来的には幅広い疾患に対する効果的な治療法の提供が期待される。本研究グループは、今後さらにアミロイドβタンパクの凝集抑制などの研究を進め、アルツハイマー病やパーキンソン病などのタンパク質凝集が原因とされる神経変性疾患の治療や原因解明など、実用化に向けた具体的な応用方法の開発に取り組んでいく予定である。
図1 各種合成した双性イオンポリマー
スルホベタインポリマー(PSPB)にブチルメタクリレート(BuMA)、ヘキシルメタクリレート(HxMA)、オクチルメタクリレート(OcMA)を共重合したポリマーの構造を示す。
図2 インスリン溶液の凝集抑制の様子。i)加熱前、ii)加熱後、iii)PSPB添加後に加熱。
加熱することで凝集により白濁していることが確認される。一方、PSPBを添加することで白濁は抑えられる。
図3 P(SPB-r-BuMA)のモデルとしたスルホベタイン2量体にブチルメタクリレートを結合した化合物(SPB2_BuMA)とインスリンのMDシミュレーションによるスナップショット。インスリン二分子の間にモデル化合物が分子シールドとして可逆的にサンドイッチされ、凝集を妨げている様子が見られた。
図4 凝集抑制メカニズムの模式図。インスリン二量体(天然構造)が加熱により単量体に変性し、さらにアンフォールディングして立体構造が解消される。その際にポリマーがあると、分子シールディング効果により、凝集前駆体の形成を抑制し、繊維状凝集前駆体(prefibrillar aggregates)から繊維凝集体(mature fibrils)の形成を阻害する。
なお、本研究は、科研費基盤研究(B)20H04532、若手研究20K20197、23K17211、学術変革領域研究(A)21H05516、国立研究開発法人科学技術振興機構(JST)研究成果最適展開支援プログラム(A-STEP)JPMJTR20UN、文部科学省ナノテクノロジープラットフォーム事業JPMXP09S21MS1051、JPMXP09S21MS1051b、文部科学省マテリアル先端リサーチインフラ事業JPMXP1222MS1007、ならびに北陸先端科学技術大学院大学超越バイオメディカルDX研究拠点、生体機能・感覚研究センターの支援のもと行われた。
【論文情報】
雑誌名 | Cell Reports Physical Science |
題目 | Molecular mechanism of protein aggregation inhibition with sulfobetaine polymers and their hydrophobic derivatives |
著者 | Robin Rajan, Tadaomi Furuta, Dandan Zhao, Kazuaki Matsumura |
掲載日 | 2024年5月30日11時(米国東部標準時間) |
DOI | 10.1016/j.xcrp.2024.102012 |
【用語説明】
同一分子内に正電荷と負電荷を持つ全体としては中性の高分子で、高い水和性と低い非特異的タンパク質吸着性を持つ。これにより、生体適合性が高く、医療分野やバイオテクノロジー分野で広く研究、応用されている。
Tunaccliffeらの報告によると、ある種の天然変性タンパク質が乾燥時に他のタンパク質の周りに保護相を形成し、物理的に凝集を抑制する効果のことを分子シールディング(molecular shielding)効果として説明している。
Chakrabortee S, et al., Mol. Biosys. 2012, 8, 210-219
分子系の運動を時間的に解析する手法。具体的には、原子や分子の初期位置と速度を設定し、相互作用ポテンシャルを用いてニュートンの運動方程式を解くことで、分子系の時間発展を追跡し、構造変化、相転移、拡散などの現象を解析する。例えば、タンパク質のフォールディング過程や薬物分子の結合動態、材料の熱物性などを詳細に調べることができ、生物学、化学、材料科学に広く応用されている。
令和6年5月31日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/05/31-1.htmlサスティナブルイノベーション研究領域の宮田講師が日本熱電学会の進歩賞を受賞

サスティナブルイノベーション研究領域の宮田全展講師が一般社団法人日本熱電学会の進歩賞を受賞しました。
日本熱電学会では、熱電工学、熱電科学、及び熱電技術、並びに関連分野における発明、発見、研究と開発、並びに同学会の発展に顕著な功績があったと認められる同学会会員に対して、その功績を讃え表彰を行っています。
本研究では、実験とスーパーコンピューターを活用したシミュレーションを協奏的に行うことで、希少元素を含まない新しい硫化物・リン化物熱電材料の創製と、革新的な材料設計指針を確立することに成功しました。それら一連の研究成果が、同学会において、熱電工学、熱電科学、及び熱電技術、関連分野における発見、研究と開発、並びに同学会の発展に顕著な功績であったことが認められ、この度の受賞となりました。
※参考:日本熱電学会
■受賞年月日
令和5年9月25日
■研究題目
実験と第一原理計算による新奇硫化物・リン化物熱電材料のマテリアルデザイン
■研究者、著者
宮田全展
■受賞対象となった研究の内容
本研究では、実験とスーパーコンピューターを駆使したシミュレーション計算により、高い性能(出力因子)を示す新しい硫化物熱電材料を創製し、そのメカニズムを明らかにしました。さらに、JAIST生まれのシミュレーション計算コードOpenMXと、電子輸送計算コードBoltzTraPをつなぐ汎用インターフェースプログラムを開発し、世界に先駆けて800種類を超える硫化物熱電材料の大規模計算を行うことで、熱電性能を最大化する設計指針を確立しました。本研究で開発されたインターフェースプログラムはOpenMXの公式計算オプションとして実装されています。
(OpenMX Ver. 3.9 ユーザーマニュアル)
実験とスーパーコンピューターによる高精度なシミュレーション計算により、新しい高性能熱電材料の候補物質群として、リン化物が高いポテンシャルを持つことを詳細に明らかにし、中でもAg(銀)-P(リン)化合物中のAg原子が特殊な振動をすることで、熱伝導を大きく抑制し、極めて低い格子熱伝導率を示すメカニズムを明らかにしました。そして、リン化物のみならず、広く無機材料について、熱伝導において重要なフォノン(原子振動の伝搬を仮想の粒子の運動として取り扱う概念)において、比熱・音速・緩和時間に相関関係があることを発見し、フォノンの観点から熱電材料の新しい評価指針を確立しました。
株式会社白山、石川県工業試験場を中心とした産官学連携により、Mg(マグネシウム)とSi(シリコン)を主成分とした環境にやさしい熱電材料の高性能化の材料設計指針を、実験とスーパーコンピューターによるシミュレーションより確立し、材料の高性能化に貢献しました。
■受賞にあたって一言
この度は、日本熱電学会の優秀ポスター賞、優秀講演賞に続き、進歩賞を賜りまして誠に光栄でございます。これも本学の小矢野幹夫教授、東大物性研の尾崎泰助教授、石川県工業試験場の豊田丈紫氏、株式会社白山の内田健太郎氏をはじめとした、数えきれないほどの共同研究者の先生方との研究・ディスカッションのお陰でございます。また、本研究は科研費(若手研究JP20K15021)をはじめとした数々の研究助成、本学の大規模計算機KAGAYAKIによって実施されました。この場を借りて、深く感謝御礼申し上げます。今後も学術・社会により一層の貢献ができるよう、研究・教育活動に邁進いたします。
令和5年10月16日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2023/10/16-1.html抗ガン高分子の分子設計指針に新たな光 ~カチオン性と疎水性の相乗効果で高い細胞障害性が発現~

![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 兵庫県公立大学法人兵庫県立大学 |
抗ガン高分子の分子設計指針に新たな光
~カチオン性と疎水性の相乗効果で高い細胞障害性が発現~
ポイント
- 一般的には低分子化合物であることが多い抗ガン剤において、抗ガン効果の高い高分子の分子設計指針を見出した。
- カチオン性高分子に疎水性分子を導入することで抗ガン活性が向上し、高い細胞障害性を発現することが明らかになった。
- 分子動力学シミュレーションなどの手法により、合成高分子とガン細胞の細胞膜の相互作用が抗ガン効果の重要なメカニズムであることを確認し、今後の新規高分子抗ガン剤の分子設計の指針となることが期待される。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市) 物質化学フロンティア研究領域の松村和明教授、ラジャン ロビン助教、サスティナブルイノベーション研究領域の本郷研太准教授、兵庫県立大学大学院工学研究科の遊佐真一准教授らは、精密高分子設計の技術と分子動力学シミュレーションなどの手法を用いて、抗ガン活性の高い高分子化合物の分子設計の指針を見出すことに成功しました。 一般的には、抗ガン剤は、低分子化合物であることが多く、その副作用や水溶性など多くの問題が挙げられます。高分子化合物の抗ガン剤はこれまで研究例があまりなく、また、細胞毒性のあるカチオン性高分子を利用した研究が行われてきました。 本研究では、このカチオン性高分子に疎水性部位を導入することで飛躍的にガン細胞への障害性が向上することを確認し、そのメカニズム解明の一端として、合成高分子とガン細胞の細胞膜への相互作用の向上を分子動力学シミュレーション等で明らかにしました。この研究結果は、今後の新しい高分子抗ガン剤の分子設計の指針となることが期待されます。 本研究成果は、英国王立化学会発刊のJournal of Materials Chemistry Bのオンライン版に1月6日に掲載されました。 |
【研究の背景】
日本人の三大疾病の第一位を占めるガンに対し、治療薬としての抗ガン剤の研究は重要な役割を担っていますが、まだ副作用も大きく、新たな作用機序に基づく効果の高い抗ガン剤の開発が待ち望まれています。
抗ガンペプチドのように、高分子化合物による細胞膜障害を利用した抗ガン剤の研究も行われており、高分子抗ガン剤の研究は、ガンの治療に新しい選択肢を提供するために重要です。
ガン細胞は、細胞膜表面にホスファチジルセリン[用語説明]というマイナスに帯電したリン脂質が発現していることが多いため、正常の細胞に比べて表面電位がマイナスに帯電しているといわれています。そこで、プラスに帯電したカチオン性高分子による細胞膜破壊作用をその機序として抗ガン高分子や抗ガンペプチドの研究が行われてきました。
今回の研究では、合成高分子によるガン細胞への障害性の向上に向けた分子設計の指針を見出しました。
【研究の内容】
研究グループは、4級カチオンを側鎖にもつ高分子(図1)に、ブチルメタクリレートやヘキシルメタクリレート、オクチルメタクリレートなどの疎水性のアルキル鎖を持つモノマーを共重合することで合成した疎水性導入カチオン高分子化合物(図2)が、肝臓ガン細胞や結腸ガン細胞、悪性黒色腫細胞に対して、高い障害性を持つことを明らかにしました(図3)。図3(a)は、カチオン性ポリマー中のブチルメタクリレートのモノマー比が大きくなるほど細胞毒性が高くなり、(b)では、アルキル基の炭素数が大きくなるほど強い細胞毒性を持つことが示されました。つまり、カチオン性基と疎水性基による相乗効果が認められました。
次に、研究グループは、この疎水性部位を導入したカチオン性高分子とガン細胞の細胞膜の相互作用について、パルス磁場勾配核磁気共鳴法(Pulsed-filed gradient Nuclear Magnetic Resonance : PFG-NMR)[用語説明]や分子動力学(MD)シミュレーション[用語説明]など様々な手法を用いて実験と計算の両面から確認しました。
PFG-NMRの測定結果から、疎水性モノマーであるブチルメタクリレートを導入したカチオン性高分子の拡散係数が、細胞膜を模した脂質二重膜と同時に存在するときに小さくなることが確認されました。この結果は、合成高分子が脂質分子と相互作用することで分子の運動性が抑制されていることを示しており、相互作用の向上が示唆される結果となりました。
また、MDシミュレーションでは、疎水性側鎖の導入により10 nsにおけるポリマーとリン脂質膜のコンタクト原子数が、疎水部位の導入前より2倍程度大きな値を示しました(図4)。この相互作用の向上の要因について考察するため、ポリマーの吸着構造の比較を行ったところ、疎水性部位の存在下では、ポリマー主鎖配向が細胞膜の分子配向に対してより平行であることが示されており、ガン細胞の細胞膜への吸着及び膜内へ侵入しやすい主鎖配向を持つことがわかりました(図5)。これにより、ガン細胞の細胞膜構造をより破壊しやすいと考えられます。
以上のことから、「細胞膜障害性」という新たな機序を持つ高分子抗ガン剤の分子設計指針として、カチオン性と疎水性のバランスが重要であることを示しました。
今後はその抗ガン剤高分子にガン細胞選択性などの機能をさらに追求することで新しい抗ガン剤の開発につなげていきます。
本研究は、科研費「学術変革領域研究(A)公募研究(課題番号:21H05516および21H05535)」の支援により実施されました。
本研究成果は、令和5年4月に北陸先端科学技術大学院大学に新設予定の超越バイオメディカルDX研究拠点所属教員らによる先行事例です。
【論文情報】
雑誌名 | Journal of Materials Chemistry B |
題目 | Mechanistic insights and importance of hydrophobicity in cationic polymers for cancer therapy |
著者 | Nishant Kumar, Kenji Oqmhula, Kenta Hongo, Kengo Takagi, Shinichi Yusa, Robin Rajan, Kazuaki Matsumura |
WEB掲載日 | 2023年1月6日(英国時間) |
DOI | 10.1039/D2TB02059A |
図1 合成4級カチオン性高分子 (PAMPTMA)
図2 疎水性付与合成4級カチオン性高分子 (a)ブチルメタクリレート共重合体(PAMPTMA-r-BuMA) (b)ヘキシルメタクリレート共重合体(PAMPTMA-r-HexMA) (c)オクチルメタクリレート共重合体(PAMPTMA-r-OctMA) |
図3 肝ガン細胞(HepG2)に対する抗ガン高分子の細胞毒性試験。縦軸は細胞生存率。
(a)ブチルメタクリレート(BuMA)の導入量の影響。P3:カチオン性高分子(PAMPTMA),
P6:PAMPTMAに対するBuMAの導入モル比5%, P7: 10%, P8: 20%, P9: 30% (b)アルキル基の長さの影響。P7: BuMA 10%, P10: HexMa 10%, P11: OctMa 10%
|
図4 リン脂質膜とポリマーのコンタクト数。
BuMA10%導入ポリマー(赤)の方が10ns時点において2倍程度大きなコンタクト数を示す。
図5 MDシミュレーションにおけるスナップショット。
(a)PAMPTMA (b) PAMPTMA-r-BuMA
(b)ではポリマー主鎖配向が膜の分子配向に対してより平行であり、
細胞膜への吸着及び膜内へ侵入しやすい主鎖配向を持つ |
【用語説明】
細胞膜のアニオン性の細胞内リン脂質成分であり、通常は、細胞膜の内側に主に存在しています。しかし、ガン細胞では細胞膜表面に高頻度に発現しているといわれています。
核磁気共鳴(NMR)技術の一種で、磁場勾配を利用して、物質中の空間的な分布を可視化することができます。また、液体中の分子の拡散移動速度を測定する方法の一つです。
分子レベルで物質の構造や動きを計算するためのコンピュータシミュレーション手法です。原子や分子間の力を計算し、物質の構造や動きを時間発展させることができます。
令和5年1月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2023/01/30-1.htmlモデル動物が群れをつくるメカニズムを解明
![]() |
![]() |
![]() |
モデル動物が群れをつくるメカニズムを解明
滋賀医科大学神経難病研究センターの杉 拓磨助教、西村 正樹教授、九州大学の伊藤 浩史准教授、北陸先端科学技術大学院大学先端科学技術研究科/生命機能工学領域の永井 健講師は、動物集団が群れをつくる際のメカニズムを解明しました。これにより将来的に渋滞時や災害時の群衆の効率的な流動制御や、ロボットの群知能制御などへつながることが期待されます。この研究成果は、平成31年2月18日に英国科学誌「Nature Communications(ネイチャー・コミュニケーションズ)」に掲載されました。
<ポイント>
- 生物学でよく使われる線虫という動物がたくさん集まるとネットワーク状に群れることを発見。
- 線虫の群れと、人、鳥、魚の群れは共通するメカニズムで形成されることを強く示唆。
<概要>
- 半世紀近く世界中で研究されているモデル動物の線虫C. エレガンスが、集団でネットワーク状の群れをつくることを発見。世界で初めてモデル動物の集団行動の実験システムを開発。
- 人、鳥、魚の群れ形成メカニズムの理論的研究で用いられてきた数理モデルをもとに数値シミュレーションを行った。
- その結果、①ぶつかった線虫が移動方向をそろえることと②線虫1個体が弧を描くように動くことが、線虫の不思議なネットワークをつくる鍵であることを明らかにした。
- 渋滞時や災害時の人の集団行動の解析やロボットの群知能の効率的制御につながることが期待できる。
<内容詳細>
【研究背景と経緯】
夕暮れどきに浮かぶ鳥の群れや水族館のイワシの群れなど、大量の動物による組織的な行動は多くの人を魅了します。また駅などの混雑時や渋滞時の人の群衆を効率的に流動させることは重要な問題です。これまで、群れ形成について理論研究が盛んに行われ、様々な群れに共通する形成メカニズムの存在が予言される一方、実験的な証明はほとんどありませんでした。これは、野外の鳥や魚の大規模な群れを実験室に再現することが不可能という、ある意味、当然の理由によるものでした。
土壌に生息する線虫C. エレガンス(図1a)は、モデル動物として半世紀近く研究され、細胞死機構の発見や緑色蛍光タンパク質の動物応用などで数々のノーベル賞の対象となりました。われわれは、線虫の体長はわずか1 mm弱であるため、仮に一度に大量飼育できれば、コンパクトな群れ形成の解析システムを作れるのではないかと考えました。さらにモデル動物としての利点である変異体を用いた解析ができることから、過去の理論的研究で提案されたメカニズムを実験的に検証できると考えました。
滋賀医科大学の杉 拓磨助教、西村 正樹教授、九州大学の伊藤 浩史准教授、北陸先端科学技術大学院大学の永井 健講師は、線虫C. エレガンスを大量飼育する方法を確立し、集団によりネットワーク状に群れをつくることを発見しました(図1)。実験と数理シミュレーションを組み合わせた解析の結果、①隣接する線虫同士が相互作用し移動方向をそろえることと②線虫1個体が弧を描くように動くことがこの群れの形成条件であることを明らかにしました(図2)。このメカニズムは人や鳥、魚の群れ形成の理論的研究から提唱されてきたものと類似していることから、本研究は、群れ形成の根底に共通のメカニズムがあることを実験で強く示唆した初めての例となります。
【研究内容】
線虫の飼育では通常、寒天培地上に塗布した大腸菌を餌として与えますが、この従来法では餌が枯渇すると線虫の増殖は止まってしまい、大量の線虫を得ることはできません。そこで本研究では、技術的ブレークスルーの1つとして、栄養に富む「ドッグフード」を線虫の餌として利用することにより、餌の枯渇なく、大量の線虫C. エレガンスを飼育することが可能になりました。そして驚くべきことに線虫集団はガラス表面(図1b)、プラスチック表面(図1c)、寒天培地表面(図1d)でネットワーク状に群れることを発見しました。この群れ形成の意味は、1個体では乾燥状態で干からびてしまう線虫が集団で群れることにより、表面張力により水を保持し、乾燥への耐性を獲得することにあると考えられます。
次に、1個体レベルと集団レベルの線虫の観察から、図2に記載の①と②が特徴的な線虫の運動であると示されました。この単純な物理的条件は過去の人や鳥、魚の群れの理論的研究から予想されたメカニズムと類似していることから、過去のこれらの研究をもとに数理モデルを作成しました。このモデルはシミュレーションにおいて線虫のネットワーク状の群れを再現しました。
つづいて、実験とシミュレーションで数理モデルのパラメータを変えた場合のそれぞれの結果の整合性を確認し、モデルの正確性を検証しました。まず上述①と②の条件(図2)に焦点をあて、線虫周囲の湿度を変えることにより相互作用の強さを変えることや(図3)、描く弧の大きさが小さい線虫変異体を用いた実験を行いました(図3)。その結果、数理モデルのシミュレーションと実験結果はよく一致しました。さらに神経科学分野の最先端テクノロジーであるオプトジェネティクス(p4参照)を用いた実験結果も再現されました。以上の実験とシミュレーションを用いた検証から、上述2条件(図2)が線虫集団による群れ形成の基本メカニズムであると結論づけました。
【今後の展開】
本研究は、人や鳥、魚などの動物集団の群れ形成に共通するメカニズムの存在を初めて実験的に示しました。今後、まずこの独自のモデル動物を用いた実験システムを用いて、さらに数理モデルの正確性を高める予定です。このようなモデルは、避難時や渋滞時の人の動きの解析につながります。実際、国内においても企業と大学が連携して、魚の群れが協調して行動する仕組みを自動運転技術に応用し、渋滞緩和に活かすための共同研究を実施しています。また、災害時や祭典での群衆の渋滞における圧死を避けるための緊急避難方法の解析は類似のモデルを用いて行われており、今後、本研究により数理モデルによる予測精度が向上すれば、効率的な避難方法の提案などにつながります。人間以外にも羊や魚の群れの効率的な制御を行うことにより、畜産や漁業などにも有用な知見を与えることも期待できます。
また、世界中で盛んなロボット開発では、ロボット単体では困難な作業を集団で行わせるため、群知能と呼ばれるアルゴリズムの開発が進められています。例えば、スイスの会社は超小型群ロボットKilobotを開発し、群制御を通して、がれき中の生存者探索や汚染物質除去などを実現しようとしています。本研究は、これらの研究分野とも密接に関連していくことが期待されます。
【参考図】
【論文情報】
論文名 | C. elegans collectively forms dynamical networks |
著者名 | Takuma Sugi*, Hiroshi Ito*, Masaki Nishimura, Ken H. Nagai* (*は責任著者) |
雑誌名,巻号,DOI | Nature Communications (2019年2月18日 (日本時間) 付 電子版), doi:10.1038/s41467-019-08537-y |
【研究資金情報】
- 科学研究費補助金 基盤研究(B)、若手研究(B)、新学術領域研究
- 科学技術振興機構 戦略的創造研究推進事業「さきがけ」
- 持田記念医学薬学振興財団
【用語説明】
- 線虫C. エレガンス
土壌に生息する非寄生性の線虫で、正式名称はセノハブダイディス・エレガンス。分子遺伝学的な解析の可能なモデル動物の1つ。半世紀近く前にシドニー・ブレナーにより利用され始め、細胞死の発見、RNA干渉の発見、緑色蛍光タンパク質の個体レベルでの応用により2002年と2006年のノーベル医学生理学賞、2008年のノーベル化学賞の対象となった。1998年には多細胞生物で初めて全ゲノム配列の解読が終了した。ヒトの遺伝子数と同程度の約2万個の遺伝子を持ち、それらの中にはヒトの遺伝子と類似したものが40%弱も含まれる。また体が透明なため、体外から体を傷つけずに蛍光観察できる。 - オプトジェネティクス
光遺伝学と呼ばれる、最先端のテクノロジー。光感受性のイオンチャネル分子を標的の神経細胞に発現させ、光刺激によりそのイオンチャネルを活性化させることで標的の神経細胞を活性化できる。線虫の場合、体が透明で光透過性が高いので、体を傷つけずに標的の神経細胞のみを活性化させることができる。本研究では、前進と後進を駆動する神経細胞にイオンチャネル分子を発現し、活性化した。
平成31年2月18日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/02/19-1.html二次元格子をひねって重ねると一次元超格子が出現 ――二次元原子層物質が一次元物性研究の新しいプラットフォームに――

![]() ![]() ![]() ![]() |
東京大学 北陸先端科学技術大学院大学 大阪大学 科学技術振興機構(JST) |
二次元格子をひねって重ねると一次元超格子が出現
―― 二次元原子層物質が一次元物性研究の新しいプラットフォームに ――
【ポイント】
- シート状の原子層二枚を、特定の角度に向きをずらして重ねると、一方向に縞模様を持つ一次元モアレ超格子構造が形成できることを発見しました。
- 従来のモアレ超格子は原子層の構造と類似の二次元の周期性を持ちますが、本研究では、一次元の周期性しか持たない新しいコンセプトのモアレ超格子を提案・実証しました。
- モアレ超格子による原子層の性質の人工制御物性変調や、一次元性ならではの異方性の高い新奇物性研究の新しいプラットフォームになることが期待されます。また、素子応用に向けた研究の発展にも寄与することが期待されます。
二次元原子層WTe2のツイスト積層による一次元モアレ超格子の形成
東京大学 生産技術研究所の張 奕勁 助教と町田 友樹 教授らの研究グループは、北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域の大島 義文 教授および高村 由起子 教授の研究グループ、大阪大学大学院 理学研究科の越野 幹人 教授の研究グループと共同で、原子層物質(注1)の人工ツイスト二層構造(注2)において一次元の周期性を持つモアレ超格子(注3)が実現できることを明らかにしました。 本研究では、二テルル化タングステン(WTe2)の原子層二枚を使用し、それぞれの結晶方位に角度差(ツイスト角)を付けた状態で人工的に重ね合わせた構造(ツイスト二層構造)を作製し、透過型電子線顕微鏡(TEM)を用いて原子の配列パターンを直接観察しました。一般的にツイスト二層構造で出現するモアレ超格子内の原子配列パターンは二次元の周期性を持って変化しますが、本研究では特定のツイスト角において配列パターンの変化が一次元的になる、すなわち周期性が一方向のみになることを世界で初めて示しました(図1)。また、本モアレ超格子が従来のモアレ超格子とは異なる原理で形成されていることを理論的に突き止めました。一次元性による母物質の物性変調に伴う新奇物性探索の新しい舞台になることが期待されます。 |
図1:透過型電子線顕微鏡を用いたツイスト二層WTe2の原子像観察。
(a)WTe2原子層の模式図。a軸方向とb軸方向で周期性が異なる。(b,c)WTe2原子層二枚をツイスト角62度(b)および58度(c)でツイスト積層させた構造。単独の原子層が持つ周期性と異なる一次元的な周期性が出現する。(d) 試料構造および実験の模式図。h-BNは試料の保護層。(e,f)ツイスト角62度(e)および58度(f)で作成したツイスト二層WTe2試料の原子像。白いスケールバーは10 nm(ナノメートル)。(g,h)62度(g)および58度(f)ツイスト試料の電子回折像。緑と茶色の点がそれぞれの原子層の構造の周期性を示す回折スポット。赤枠(e)と青枠(f)で示された回折スポットのペアがモアレ超格子の周期性を表す。どちらの場合も回折スポットのペアが平行に並んでいることから、モアレ超格子が一方向のみに周期性を持っていることがわかる。青いスケールバーは2 nm-1(ナノメートルインバース)。 |
【発表者コメント:張 奕勁助教の「もしかする未来」】
本研究は偶然の発見から始まりました。パワーポイントの上で結晶構造を二つ重ね、片方をぐるぐる回転させていたところ一瞬縞模様が見えたのがきっかけです。モアレ超格子の原子配列を実際に観察し、また、理論的にその起源と一次元性を示すことができました。カーボンナノチューブなどの一次元物質は低次元特有の現象を示しますが、その特性を残したまま大面積化することは困難でした。今回、ナノチューブよりも面積の大きい原子層物質を用いて一次元構造が作製できたので、今後は一次元性を反映した物性の探索を進めていきたいと思います。
【発表内容】
原子層物質の人工ツイスト積層構造技術は、現在の原子層物質を用いた基礎物性研究の中心的な技術の一つです。異なる原子層物質を積層する場合だけでなく、同一の原子層物質を積層する場合であっても、それぞれの結晶方位をずらして積層(ツイスト積層)すると、元の物質の持つ周期性よりも大きな周期性を持つモアレ超格子が出現します。モアレ超格子が出現することで、元の原子層物質の物性を大きく変調し、新奇物性を誘起することが可能になります。例えば、単層グラフェンをツイスト角1.05度でツイスト積層すると、低温で超伝導転移を誘起できることが知られています。一般的に、モアレ超格子の大きさはツイスト角の増加とともに小さくなるため、これまでの研究は低ツイスト角領域(0度付近)を中心に行われてきました。
この度、本研究チームは、原子層物質二テルル化タングステン(WTe2)を用いた研究から、高ツイスト角でもモアレ超格子が出現し、さらに、特定の角度(62度と58度付近の二点)では一次元的なモアレ構造が出現することを発見しました。WTe2の特徴は、結晶構造が異方的、すなわち、結晶方位によって周期の大きさが異なることです(図1a)。代表的な原子層物質であるグラフェンや二セレン化タングステン(WSe2)は等方的(物理的な性質が方向によって異ならないこと)な結晶構造を持っており、高ツイスト角ではモアレ超格子は出現しません。本研究では、透過型電子顕微鏡(TEM)を用いてツイスト二層WTe2の原子配列パターンを直接観察することで高ツイスト角領域における一次元モアレ超格子を実験的に示しました(図1c,d)。また、構造の周期性を示す電子回折パターン(注4)において、モアレ超格子の周期を示す回折スポットのペアが全て平行になるという特徴を観測しました(図1e,f)。
モアレ超格子の周期性は元の原子層の持つ周期性から説明できますが、従来のモデルでは高ツイスト角領域におけるモアレ超格子を説明できません。本研究では従来のモデルを拡張することで、高ツイスト角領域においてモアレ超格子が出現し、さらに、62度と58度付近でモアレ超格子が一次元になる、すなわち、周期性が一方向のみになることを理論的に示すことに成功しました(図2)。加えて、電子回折パターンのシミュレーションから、実験的に観測された回折スポットペアの特徴(図1e,f参照)が一次元性を示す証拠になっていることを理論的に示すことにも成功しました(図3)。また、一次元モアレ超格子の出現はWTe2に特異な現象ではなく、異方的な結晶構造を持つすべての原子層物質で起こりうる普遍的な現象であることも明らかになりました。
一次元的なモアレ超格子を形成することで、従来の二次元的なモアレ超格子で誘起された物性変調とは異なる変調効果が期待されます。従来、カーボンナノチューブなど一次元物質の持つ物性の研究や素子応用には、無数のチューブを配向させた膜の形成という技術的な障壁がありましたが、人工ツイスト積層構造の一次元モアレ超格子ではマイクロメートルスケールで一次元構造が広がるため、基礎研究のみならず素子応用に向けた研究の発展にも寄与することが期待されます。
図2:近似三角格子モデルを用いた一次元モアレ超格子の再現。
(a)WTe2原子層の結晶構造。格子ベクトルa1、a2で囲われた長方形がユニットセル(周期一つ分の構造)。W原子とTe原子を区別せず原子位置に多少の動きを許容すると、格子ベクトルl1、l2で定義された三角格子(灰色点線)で近似できる。近似された格子は正三角形ではなく二等辺三角形になっている。(b)近似三角格子をツイスト積層した場合のモアレ超格子。一次元構造が再現されている。 |
図3:人工ツイスト二層WTe2の電子回折パターンのシミュレーション。
従来の低ツイスト角の場合と本研究における高ツイスト角の場合の比較。ベクトルb1、b2はそれぞれ格子ベクトルa1、a2(図2a参照)の周期を示す逆格子ベクトル。黒点と赤点がそれぞれの原子層に由来する原子回折スポット。黒矢印で示された解析スポットのペアがモアレ超格子の周期性(大きさおよび方向)を決定する。低ツイスト角の場合モアレ超格子の周期は様々な方向を向くため、二次元の超格子となる。一方62度と58度付近ではすべて平行になり一方向にしか周期性が存在しないため、一次元の超格子となる。 |
【発表者・研究者等情報】
張 奕勁 助教
町田 友樹 教授
大島 義文 教授
高村 由起子 教授
越野 幹人 教授
【論文情報】
雑誌名 | ACS Nano |
題名 | Intrinsic One-Dimensional Moiré Superlattice in Large-Angle Twisted Bilayer WTe2 |
著者名 | Xiaohan Yang, Yijin Zhang*, Limi Chen, Kohei Aso, Wataru Yamamori, Rai Moriya, Kenji Watanabe, Takashi Taniguchi, Takao Sasagawa, Naoto Nakatsuji, Mikito Koshino, Yukiko Yamada-Takamura, Yoshifumi Oshima & Tomoki Machida* |
DOI | 10.1021/acsnano.4c17317 |
URL | https://doi.org/10.1021/acsnano.4c17317 |
【研究助成】
本研究は、科学技術振興機構(JST) 戦略的創造研究推進事業 さきがけ「トポロジカル材料科学と革新的機能創出(研究総括:村上 修一)」研究領域における「極性二次元物質とそのヘテロ構造におけるバルク光起電力効果(JPMJPR20L5)」、さきがけ「新原理デバイス創成のためのナノマテリアル(研究総括:岩佐 義宏)」研究領域における「顕微分光による二次元物質デバイスの物性開拓(JPMJPR24H8)」、同 戦略的創造研究推進事業 CREST「原子・分子の自在配列・配向技術と分子システム機能(研究総括:君塚 信夫)」研究領域における「原子層のファンデルワールス自在配列とツイスト角度制御による物性の創発(JPMJCR20B4)」、日本学術振興会 科学研究費助成事業 学術変革領域(A)「2.5次元物質科学:社会変革に向けた物質科学のパラダイムシフト」(課題番号:JP21H05232, JP21H05233, JP21H05234, JP21H05235, JP21H05236)、および文部科学省 マテリアル先端リサーチインフラ事業(課題番号:JPMXP1223JI0033)の支援により実施されました。
【用語解説】
原子層物質とは、原子1個または数個分の厚みしかない層状の物質。原子間力で層間が弱く結合しており、二次元物質とも呼ばれる。層状構造を持つ単結晶から、スコッチテープなどの粘着性のテープを貼り付けて剥がすことで得られる(テープに付着している)、数ナノメートル以下まで薄くした二次元シート状の薄膜として作製する。代表例としてグラフェン、二硫化モリブデンなどが挙げられる。
原子層を二つ用意し、それぞれの結晶方位の間に相対的な角度差をつけて人工的に重ねた構造。
複数の原子層物質を重ねた際に出現する新たな周期構造。元の原子層物質の構造が持つ周期とは異なる周期性を持つ。
物質に電子線を照射した際に観察される干渉パターン。物質の構造の持つ対称性や周期性を反映したパターンが出現する。
令和7年3月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/28-1.html超分子ポリマーの新しい構造解析法の発明

超分子ポリマーの新しい構造解析法の発明
【ポイント】
- 従来不可能であった超分子ポリマーの構造と機能を同時に観察する新たな構造解析法の発明
- 環状分子のシクロデキストリンが包接したポリエチレングリコール鎖の構造解析に成功
- 高速原子間力顕微鏡による超分子ポリマーの両端がエンドキャッピングされた構造の解明
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の堀諒雅大学院生(博士後期課程)、篠原健一准教授は、高速原子間力顕微鏡(高速AFM)を用いた固液界面における一分子イメージングにより、従来不可能であった超分子1ポリマー2の構造解析に成功しました。この成果は、超分子材料のさらなる機能解明に繋がるものであり、将来の分子マシンの開発に一石投じる発見です。 |
【研究背景と内容】
ポリマー分子の構造解析法は、ポリマー材料のさらなる機能化のため必要な技術です。中でも超分子ポリマーは単一分子内に動きを伴うため、そのダイナミクスを解明することが重要となります。
従来の超分子ポリマーの構造解析には、核磁気共鳴分析(NMR)による分光法や顕微鏡法が主に用いられてきました。しかし、これらの手法では構造あるいは機能のいずれかしか確認できず、それらを同時に観察することは困難でした。特に今回観察した分子ネックレス構造3は水中で不安定であり、さらに溶解性が低いことが問題となり、その詳細な構造と機能を観察することが難しいとされてきました。
今回、高速原子間力顕微鏡(高速AFM)を用いたことにより、従来不可能であった超分子ポリマーの構造と機能を同時観察する新たな手法を発明することができました。本手法では、1ミリリットル当たり1マイクログラム未満という低濃度の溶液を用いて超分子ポリマーを基板に固定することで、これまでの問題点を解決しました。
具体的には、シクロデキストリンという環状分子がポリエチレングリコールという長鎖分子に包接した、いわゆる分子ネックレス構造を高速AFMを用いて直接観察し、その分子の構造とダイナミクスを確認することに成功しました(図1)。なお、この分子の構造とダイナミクスは、全原子動力学(全原子MD)シミュレーションによって再現され、実験結果とも整合性が確認されています。本研究成果は、超分子材料の構造特性や機能解明に大きく貢献するものであり、特に分子レベルでの精密な構造制御が求められている次世代の分子マシンの開発に一石を投じる発見です。今後、本手法を応用することで、超分子ポリマーの新たな設計の可能性を拓かれることが期待されます。
図 1 高速AFMで観察された分子ネックレスの構造とそのダイナミクス、および全原子MDシミュレーションを用いたダイナミクスの再現。 |
本研究成果は、高分子化学のトップジャーナルであるアメリカ化学会のMacromolecules誌に掲載されました。なお、本研究は、日本学術振興会 科学研究費助成事業基盤研究(C)「23K04520」、JST次世代研究者挑戦的研究プログラム「JPMJSP2102」の支援を受けたものです。
【論文情報】
掲載誌 | Macromolecules |
論文題目 | Direct Observation of "End-Capping Effect" of a PEG@α-CD Polypseudorotaxane in Aqueous Media |
著者 | Ryoga Hori, and Ken-ichi Shinohara |
掲載日 | 2025年3月4日 |
DOI | https://pubs.acs.org/doi/10.1021/acs.macromol.4c02491 |
【用語説明】
令和7年3月11日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/11-1.html