研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。学生の福田さんがプラスチック成形加工学会第36回年次大会において優秀学生ポスター賞を受賞
学生の福田雄太さん(博士後期課程2年、物質化学フロンティア研究領域、山口政之研究室)が、一般社団法人プラスチック成形加工学会第36回年次大会において、優秀学生ポスター賞を受賞しました。
プラスチック成形加工学会は、プラスチック材料・成形条件・ベストな製品に至る全工程にわたって科学と技術のメスを入れ、プラスチックの新しい可能性を切り開くため、会員相互の情報交換や議論を行う場を提供しています。
同学会第36回年次大会は、『昨日まで見ていた夢、今日の努力に工夫を加え、いつか形を成す』 をスローガンに、令和7年6月18日・19日の2日間、東京都江戸川区のタワーホール船堀にて開催され、成形加工分野の最新技術や研究成果について、活発な議論と情報交換が行われました。
※参考:プラスチック成形加工学会第36回年次大会
■受賞年月日
令和7年6月18日
■研究題目、論文タイトル等
ポリヒドロキシブチレート系共重合体の引張特性
■研究者、著者
*福⽥雄太、Janchai Khunanya、砂川武宜(株式会社カネカ)、⼭⼝政之
■受賞対象となった研究の内容
バイオマスから製造されると共に海洋分解性を示すプラスチックであるポリヒドロキシブチレート系共重合体の力学特性に関する研究内容である。この材料から得られるフィルムは、石油由来の結晶性高分子と同様の力学的性質を示す。そのため既存の石油系プラスチックからの代替が進んでいる。本研究では、一度、変形を与えた後は架橋ゴムのような力学特性を示すことを明らかにした。今後、包装用材料などへの利用が期待できる技術となる。
■受賞にあたって一言
この度は、プラスチック成形加工学会第36回年次大会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている山口政之教授、研究室の皆さんにこの場をお借りして心より御礼を申し上げます。今後もよりいっそう研究活動に邁進していきたいと思います。
令和7年7月10日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/07/10-1.html第1回超越バイオメディカルDX研究拠点エクセレントコアセミナーを開催

6月3日(火)、本学イノベーションプラザ2階 シェアードオープンイノベーションルームにおいて、「令和7年度第1回超越バイオメディカルDX研究拠点エクセレントコアセミナー」を開催しました。
本セミナーでは、本学に新たにクロスアポイメント教員として着任したHak Soo CHOI 教授(ハーバード大学医学部 放射線腫瘍学講座 教授)を講師に迎え、「Bioengineering and Nanomedicine Program for Cancer Theranostics」をテーマに講演いただきました。
冒頭では、寺野稔 学長による開会挨拶が行われ、CHOI教授の着任に対する歓迎の意が述べられるとともに、今後の国際共同研究のさらなる発展に向けた期待が示されました。
CHOI教授の講演では、がんの診断と治療を同時に行う「セラノスティックス」の実現に向けた最先端の研究成果が紹介されました。とりわけ、独自に開発された蛍光イメージング技術と、薬剤の物理化学的特性と生体内動態の関係性に基づいた薬物設計戦略により、組織特異的な近赤外蛍光プローブの開発が進められていることが説明されました。これらの技術は、がん組織の可視化、画像誘導手術、光線治療などへの応用が期待されており、ナノ医療および分子イメージング分野における今後の展開に重要な示唆を与える内容となりました。
本セミナーは、CHOI教授と本学物質化学フロンティア研究領域の栗澤元一 教授との長年にわたる共同研究を背景に開催されたものであり、国際的な研究連携の深化とともに、若手研究者や学生との学術的交流の促進を目的としています。当日は、参加者との活発な質疑応答や意見交換も行われ、充実した議論の場となりました。
今後も本学では、超越バイオメディカルDX研究拠点の中核的活動として、世界トップレベルの研究者との交流を通じた学際的かつ国際的な研究の推進と、次世代研究者の育成に積極的に取り組んでまいります。


セミナーの様子
令和7年6月5日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/06/05-2.htmlパターン形成:分割現象における「対称性の破れ」を実証

![]() ![]() |
北陸先端科学技術大学院大学 科学技術振興機構(JST) |
パターン形成:分割現象における「対称性の破れ」を実証
【ポイント】
- 水の蒸発によって現れるパターン形成「界面分割現象」の新たな特徴を発見
- ポリマー分散液の蒸発界面が複数に分割するとき、「対称性の破れ」が現れることを実証
- 生体組織など自然界に見られる非対称なパターン形成の理解に有用
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域のグエン チキムロク大学院生(博士後期課程)、桶葭興資准教授らは、ポリマーが水に分散した粘性流体から現れる散逸構造[用語解説1]「界面分割現象」において、対称性の破れ[用語解説2]を実証した。これまで、界面[用語解説3]で起こる幾何学変形が、時間とともにどう進んでいくかは、不明な点が多かった。今回、明確な境界条件のもと、確率統計を通した解析を進めた結果、分割時に現れる核の位置に、空間的な「対称性の破れ」が生じることが明らかになった。これは、生体組織など自然界に見られる非対称なパターン形成の理解に有用である。 |
【研究概要】
自然界には様々な幾何学パターンがあり、例えば雪の結晶の形は、気温と水蒸気の量で多様に変化する。また、乾燥環境は水の蒸発を引き起こし、生物であればその成長過程で非対称なパターンをつくる。これまで、この幾何学性や非対称性について、数理的な解釈がなされてきたものの、物理化学的実験に基づいた再現はなされてこなかった。一方、桶葭准教授らの研究グループはこれまでに、ポリマー水分散系の蒸発界面に着目し、散逸構造「界面分割現象」を報告してきた (※1)。これは、ポリマー水溶液などの粘性流体を明確な境界のある有限空間から乾燥環境下におくと、一つの蒸発界面が複数の界面に分割される幾何学化現象である。ここで、空間軸の一つを1ミリメートル程度の隙間にすることで毛管現象[用語解説4]の物理条件が制御された空間となる。さらに、一定温度下で水の蒸発を一方向になるよう設定すると、蒸発界面直下の濃密なポリマーの密度がゆらぎ、複数の特異的位置でポリマーが析出して界面分割する。具体的には、多糖[用語解説5]の水溶液を乾燥環境下におくと、まるで界面から芽が出るようにセンチメートル単位で多糖が析出し界面が複数に分割される。ここでは、ミクロ構造の秩序化と同時に、マクロなパターンが現れることが分かっていた。しかし、非平衡で開放的な蒸発界面から引き起こされる実際の分割現象は、核形成位置の平均的情報は得られるものの、その不確定さのため複数の核形成メカニズムについては未解明な特徴が多かった。
※1. https://www.jaist.ac.jp/whatsnew/press/2023/09/22-1.html
図. 界面分割現象における「対称性の破れ」: A. 空間軸の一つとしてセル幅を大きくしていくと、分割現象の特徴が現れる概念図。界面がゆらぎ、対称性が破れ、そして水中に分散していたポリマーが析出する核を非同期に形成する。B. 同一条件で得られる異なる分割(二分割、もしくは三分割)と、セル幅に対する核形成位置のデータ。C. 対称性の破れを加味した分岐モデル。核1と核2とは、タイミングがずれて発生する(時間的に同期していない)。 |
そこで今回、ポリマー分散液の一つの蒸発界面が、二つ、もしくは三つに分割される空間条件に焦点をあて、その核形成位置を詳細に検討した(図A)。確率統計論を通した界面科学的な解析から、それぞれの分割数に対して、「対称性の破れ」と「非同期性」が現れ、相互に関係し合う特徴であることが分かった。核の位置については平均化による統計評価ではなく、結果に対する場合分けを通し、特徴的な「ずれ」を評価した(図B)。すると、分割点の位置には偏りがあり、セル幅に対して均等に半分、もしくは均等に三分の一に分割するわけではない、という基本原理が明らかになった。実際、二分割される場合、核はセル幅の中心ではなく、中心からずれた位置に形成される傾向となった。この「ずれ」は、セル幅を少しずつ大きくすると顕著に現れ、三分割される場合、2番目の核形成が起こるタイミングや位置に大きく影響し、非同期性として現れた。この「対称性の破れ」と「非同期性」は、時間発展の現象理解に重要である(図C)。
また、この核間隔は、ポリマー水溶液の液相と空気の界面における毛管長が影響する。今回の実証実験では、粘性流体として多糖キトサン[用語解説6] の水分散系を用いており、5~8ミリメートル程度の間隔であった。これまでにいくつかの多糖でも分割現象は実証されており、研究グループは現在、様々な化学種・物質群への拡張や現象の特徴的メカニズムの解明を進めている。これらを通して、自然界にも通ずるパターン形成の普遍的理解が期待される。
本成果は、2025年6月4日に科学雑誌「Advanced Science」誌(WILEY社)のオンライン版で公開された。なお、本研究は、国立研究開発法人科学技術振興機構(JST) 創発的研究支援事業(JPMJFR201G)、日本学術振興会科研費 基盤研究B(JP23K21136)、日本学術振興会科研費 新学術領域研究(JP22H04532)、および公益財団法人旭硝子財団 若手継続グラントの支援のもと行われた。
【今後の展開】
生物を含め自然界には多様な散逸構造が在り、対称性の破れを明確に扱うことは重要である。パターン形成に関する歴史的研究にはチューリングパターン[用語解説7]などがあり、ソフトマテリアルを題材とした研究例も多い。これは、生物における自己組織化の理解や実空間におけるマテリアル設計に重要なテーマと認識されているためでもある。今回のような実検証を通じたパターン形成の理解が進めば、今後、高分子科学、コロイド科学、界面科学、材料科学、流体力学、非平衡科学、生命科学などの分野への進展に留まらない。実時空間と仮想時空間を通した数理科学、シミュレーション、データサイエンスなどとの融合によって、パターン形成の理解と材料設計に有用と期待される。
【論文情報】
掲載誌 | Advanced Science (WILEY) |
題目 | Symmetry breaking in meniscus splitting: Effects of boundary conditions and polymeric membrane growth |
著者 | Thi Kim Loc Nguyen, Taisuke Hatta, Koji Ogura, Yoshiya Tonomura, Kosuke Okeyoshi* |
DOI | 10.1002/advs.202503807 |
掲載日 | 2025年6月4日 |
【用語解説】
令和7年6月4日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/06/04-1.htmlナノ医療・バイオイメージング分野における国際連携を加速 ―ハーバード大教授が北陸先端科学技術大学院大学に本格参画-

ナノ医療・バイオイメージング分野における国際連携を加速
―ハーバード大教授が北陸先端科学技術大学院大学に本格参画-
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)は、2025年4月1日付で、ナノ医療・バイオイメージング分野における世界的な研究者であるChoi, Hak Soo(チェ・ハクスー)教授を、先端科学技術研究科のクロスアポイントメント教員として迎え、本学での研究活動を開始しました。
Choi教授は、ハーバード大学医学部 放射線腫瘍学講座の教授であり、マサチューセッツ総合病院 分子イメージング研究センターの主任研究者として最前線の研究を統括するとともに、Dana-Farber/Harvard Cancer Centerにも所属し、がん研究と診断に関する世界的ネットワークの中核的存在として活躍しています。
韓国・全北大学校を卒業後、2004年に本学にて博士号(材料科学)を取得。その後、ハーバード大学にて研究を推進し、ナノメディシン、イメージング、バイオエンジニアリングを融合したがんの高感度診断・治療技術の開発に取り組んできました。これまでに、Nature Biotechnology、Nature Nanotechnology、Nature Medicine、Nature Communications、Advanced Materials、Science Translational Medicine などの国際トップジャーナルに多数の研究成果が掲載されており、米国国立衛生研究所(NIH)や国防総省(DoD)などからの大型研究助成を獲得しています。
今回の着任は、本学物質化学フロンティア研究領域の栗澤元一教授との長年にわたる共同研究を背景に実現したものであり、今後は、本学の「超越バイオメディカルDX研究拠点」との連携を軸に、研究成果の社会実装、若手研究者や学生との国際交流を通じて、グローバルトップの研究基盤の構築・強化に大きく貢献することが期待されています。
【セミナーのご案内】
このたび、Choi教授の本学参画を記念し、以下のとおり「超越バイオメディカルDX研究拠点エクセレントコアセミナー」を開催します。当日は、Choi教授より、これまでの研究成果および今後の取組みについて講演いただきます。つきましては、当日の取材・報道をお願いします。
講 演 者:CHOI, Hak Soo, Ph.D
北陸先端科学技術大学院大学 先端科学技術研究科 教授 Professor, Department of Radiology, Harvard Medical School Faculty, Cancer Research Institute, Dana-Farber/Harvard Cancer Center Director, Bioengineering and Nanomedicine Program, Mass General Hospital テーマ:「Bioengineering and Nanomedicine Program for Cancer Theranostics」
(バイオ工学とナノメディシンによるがんセラノスティックス*) 日 時:令和7年6月3日(火)10:30~12:00
場 所:北陸先端科学技術大学院大学(JAIST) イノベーションプラザ2F
シェアードオープンイノベーションルーム 申込方法:以下申込先までメールにて事前にお申込みください。
[申込先] 北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点 教授 栗澤元一 E-mail:kurisawa ![]() |
*セラノスティックス...診断と治療を一体化した新しい医療技術
◆クロスアポイントメント制度とは】
研究者等が複数の大学や公的研究機関、民間企業等と雇用契約を結び、それぞれの組織で業務を行うことを可能とする制度です。本制度により、研究者等は所属の枠にとらわれることなく、複数の場で専門性を活かして活躍できるようになります。本制度の導入により、研究機関間の垣根を超えた知の交流や技術の橋渡しが加速されることが期待されており、研究の質やスピードの向上にも大きく貢献すると考えられます。
今回、本学が本制度を通じて、海外の研究機関に所属する研究者を迎えたことは、本学にとって初の取り組みです。今後は、この制度を活用して、国内外の優れた研究者とのネットワークを一層広げ、世界の先端科学技術研究のハブとしての機能強化を目指します。
令和7年5月29日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/05/29-1.htmlUKM Career Fair(マレーシア)に出展参加しました

5月20日(火)~21(水)の2日間、マレーシア国民大学(UKM)にて開催された「UKM Career Fair」に、人間情報学研究領域の白井清昭教授と物質化学フロンティア研究領域の長尾祐樹教授が参加し、ブースを出展しました。
本イベントは、現地マレーシアの学生と企業との「ジョブマッチング」を目的とした大規模なキャリアフェアで、ピッチコンテストやキャリアデザイン講演など、多数の関連イベントも同時開催されました。本学は、大学機関として唯一出展し、特に本学が重点的に推進する「JUMPプログラム(JAIST partner University Master connection Program)」への学生リクルートを主な目的として広報活動を行いました。JUMPプログラムは、海外の協定校に在籍する優秀な学生に対し、日本の大学院での高度な教育・研究機会を提供するもので、学部教育と大学院教育をつなぐ国際的かつ戦略的な人材育成プログラムです。また、協定校との教育・研究面での連携を深化させる役割も担っています。
ブースには2日間で約120名の学生が訪れ、特にマテリアルサイエンス分野を専攻する学生が半数を占めました。情報分野の学生も多く来訪し、研究内容、入試制度、奨学金、日本での生活などについて具体的な質問が多数寄せられ、本学及びJUMPプログラムへの関心の高さがうかがえました。
今回の出展にあたり、UKMの教員の皆様には現地での準備や運営面で多大なご支援をいただきました。この場を借りて、心より御礼申し上げます。今後はUKMとの教育・研究における連携や共同プロジェクトの展開にも期待が高まります。
本学は今後もJUMPプログラムを中心に国際連携を一層強化し、世界中から優秀な学生を受け入れるとともに、グローバルな研究・教育環境のさらなる充実を目指します。


令和7年5月27日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/05/27-2.html令和7年度TeSH GAPファンドプログラム『ステップ1』に本学から5名が採択されました
令和7年度TeSH GAPファンドプログラム『ステップ1』の採択者が決定し、本学からは以下5件の研究開発課題が採択されました。
テック分野 | |
人間情報学研究領域 鵜木 祐史 教授 |
音声なりすまし対策のための深層情報ハイディング法/検出法の開発 |
物質化学フロンティア研究領域 西村 俊 准教授 |
小規模で効率的な反応評価システムが担う触媒インフォマティクスの事業展開 |
物質化学フロンティア研究領域 上田 純平 准教授 |
傷も付かない半永久高輝度透明蓄光セラで究極の低環境負荷光材料を実現! |
環境分野 | |
バイオ機能医工学研究領域 廣瀬 大亮 講師 |
酸化物薄膜トランジスタ型センサとAIの融合技術による"誰でもできる"食品のかんたんスマート品質チェックシステムの提供 |
加藤 裕介 博士後期課程学生 | 革新的凍結保存技術による豚精液の凍結保存事業 |
(参考)TeSH HP>R7年度 TeSH GAPファンドプログラム『ステップ1』採択者
TeSHは、2024年2月にJSTの"大学発新産業創出基金事業(2023-2027)スタートアップ・エコシステム共創プログラム"の"地域プラットフォーム"の一つに選ばれました。TeSHが支援するGAPファンドは、基礎研究の成果をビジネスとしての可能性を評価できる段階まで引き上げる「ステップ1」と、概念実証からスタートアップ組成までを支援する「ステップ2」からなります。
令和7年5月27日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/05/27-1.html偶然も計画できる時代へ―触媒探索を効率化する新規AI技術を開発

![]() ![]() |
北陸先端科学技術大学院大学 北海道大学 |
偶然も計画できる時代へ―触媒探索を効率化する新規AI技術を開発
【ポイント】
- 確信度・不確実性・意外性の指標をもとに、知識・探索・予期せぬ発見を調和させた革新的な探索手法
- 36,540通りの高次組成空間から、わずか260回の実験で未報告の高性能触媒90件を短期間に発見
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の中野渡 淳 研究員(研究当時)、谷池 俊明 教授、共創インテリジェンス研究領域のダム ヒョウ チ 教授は、北海道大学大学院理学研究院の髙橋 啓介 教授と共同で、既存知識の活用・未知領域の探索[注1]・予期せぬ発見をバランスよく取り入れた、革新的なデータ駆動型触媒探索アルゴリズムを開発しました。 現在のマテリアルズインフォマティクス(MI)による材料開発では、活用と探索の両立を図る適応的サンプリング手法、特にベイズ最適化[注2]は、近年大きな注目を集めています。これらの手法は、従来よりも少ない実験数で目的物性を持つ材料を発見できることが示されており、その潮流は、触媒開発分野にも急速に波及しています。しかし、これまでの手法は、数種類の元素から成る組成最適化に限定されています。こうした小規模な最適化は熟練研究者であれば対処可能なため、MIに本当に期待されているのは、性能が保証された既知系の改良ではなく、広大な探索空間から現状の限界を打ち破るような、新たな傾向やルールを示す触媒候補を発掘することです。 本研究では、大規模な探索空間にも適用可能な新たなAI技術を開発しました。本技術は、触媒性能予測における確信度と不確実性を定量化する機能に加え、モデルの予測から大きく乖離した高性能触媒候補を特定する機能を備えています。メタン酸化カップリング[注3]に関する触媒探索の実証において、260種類の触媒をハイスループット実験で評価し、水準以上の性能を示す未報告の高性能触媒を90件発見しました。 本研究成果は、2025年5月8日(米国時間)に米国の科学誌「ACS Catalysis」のオンライン版に掲載されました。 |
【研究の背景及び経緯】
不均一系触媒は、複雑に相互作用する複数の触媒成分と、全貌が未解明であることが多い多段階にわたる素反応が絡み合う超複雑系であり、その開発は長らく研究者の経験と試行錯誤に依存してきました。しかし近年、材料開発を加速するマテリアルズインフォマティクス(MI)の急速な進展により、既存データを活用しつつ未知領域を効率的に探索する適応的サンプリング(例:ベイズ最適化)が注目されています。しかしながら、これらの手法による探索は数種類の元素の組成最適化にとどまり、広大な組成空間の中からブレークスルーをもたらすような新奇な触媒候補を発掘することは依然として困難です。加えて、触媒研究ではしばしば、研究者の予測を超える"予期せぬ発見(セレンディピティ)"が重要な知見につながりますが、従来のAI技術ではこのような偶発的発見を捉える仕組みが備わっていませんでした。
【研究の内容】
本研究では、探索・活用・予期せぬ発見の三要素を調和した触媒探索を行う、新しいAI技術を開発しました(図1)。本技術は、触媒推薦システムと触媒セレンディピターシステムの二つの学習アルゴリズムからなっています。証拠理論に基づく触媒推薦システムは、元素の置換による性能変化を「証拠」として収集し、証拠が乏しい組合せには高い"不確実性"を、証拠が豊富にある組合せには高い"確信度"を割り当てることで、探索と活用を数値的にバランスします。触媒セレンディピターシステムは、推薦システムが見落としやすい"意外な高性能触媒"を拾い上げるメタ学習モデル[注4]です。推薦システムなどの予測結果を統合し、過去に観測された「傾向から外れた高性能触媒の予測パターン」を学習します(図2)。これによりセレンディピティの発生を50%の精度で言い当てることができます。
開発技術をメタン酸化カップリングに関する触媒探索に適用し、合計260触媒を実験的に評価しました。その結果、水準以上(触媒なしでのフリーラジカル反応よりも十分高いエタン・エチレン収率を示す)を満たす90例の未報告触媒を発見しました。
図1 本研究のイメージ。ハイスループット実験データを基に学習したAIによって探索・活用・予期せぬ発見をバランスした触媒推薦を行います。推薦された触媒はハイスループット実験によって評価されるという再帰的なループによって、AIは高性能触媒の推薦効率を上げていきます。 |
図2 触媒セレンディピターシステムの概念図。セレンディピターは、性格や特性の異なる複数の学習モデルの予測結果を統合し、予期せぬ発見を予測するメタ学習モデルです。各学習モデルを、データの傾向を掴み始めた研究者に例えると、セレンディピターはそれら研究者同士が議論し、最終的な結論を導き出す会議の場のような役割を果たします。 |
【今後の展開】
現在、開発した技術は二値分類問題に特化していますが、今後は連続値の物性予測への拡張を検討しています。また、本技術は組成の自由度が高い電池材料や光学材料への適用も可能であり、これらの材料シーズ発掘を一層加速させることが期待されます。
【用語解説】
AI技術を用いた材料探索においては、①過去の実験データから得られた"当たりやすい"領域を重点的に試す「活用(exploitation)」、②まだデータが少なく未知であるが、将来的に新たな発見につながる可能性がある領域を試す「探索(exploration)」の二つの要素をいかに両立させるかが重要な課題です。本研究では、これらに加えて、触媒化学の発見における重要な駆動力の一つである"予期せぬ発見(セレンディピティ)"を三つ目の要素として同時に定量化し、実験計画に反映できる点が最大の特徴となっています。
ベイズ最適化は、目的関数(本研究では触媒性能)を直接評価するコストが高い場合に用いられる統計的な最適化手法です。①既存の実験データから性能の分布を近似する確率モデル(サロゲートモデル)と、②そのモデルが示す期待値や不確実性を基に「次に測定すべき点」を数式的に選ぶ獲得関数(acquisition function)から構成されます。実験を繰り返すたびにモデルを更新し、少ない試行回数で高性能材料に到達できることが特徴です。
メタン酸化カップリングとは、天然ガスやバイオガスの主成分であるメタンを、酸化反応によりワンステップで様々な化合物やポリマーの原料となるエチレン(およびエタン)に転換する触媒反応です。既存の転換技術と比べてはるかに効率的である一方で、選択的かつ高活性にエチレンを生成する触媒の開発は依然として難航しています。
メタ学習(meta-learning)は、「学習の方法を学習する」手法であり、複数の機械学習モデルやタスクで得られた知見を上位レイヤーで再利用することで、新しいタスクに対しても少ないデータで高い性能を発揮できるようにする枠組みです。本研究では、異なる推薦システムや分類器が出力する"予測確信度"や"食い違い"を入力として取り込み、これらの下位モデルの性格差を統合して、「モデルが見落としがちな意外な高性能触媒」を判別する"セレンディピター"を構築しました。下位モデルの経験を集約することで、個々のモデルだけでは検出しにくいパターンを学習し、セレンディピティの発生確率を大幅に高めています。
【論文情報】
雑誌名 | ACS Catalysis |
論文タイトル | "A Data-Science Approach to Experimental Catalyst Discovery: Integrating Exploration, Exploitation, and Serendipity" (探索・活用・予期せぬ発見を統合した触媒発見のためのデータ科学的アプローチ) |
著者 | Sunao Nakanowatari, Keisuke Takahashi, Hieu Chi Dam*, Toshiaki Taniike* |
DOI | 10.1021/acscatal.5c00100 |
掲載日 | 2025年5月8日(米国時間) |
令和7年5月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/05/26-1.htmlナノマテリアル・デバイス研究領域のHO教授のチームがRoboSoft 2025 Competitionにおいて優勝

ナノマテリアル・デバイス研究領域のHO, Anh Van教授のチームが、8th IEEE-RAS International Conference on Soft Robotics (RoboSoft 2025) Competitionにおいて、Manipulation Challenge 1st placeを獲得しました。
RoboSoft 2025は"Interdisciplinarity and Widening Horizons"をテーマとして、令和7年4月23日~26日にかけて、スイス(ローザンヌ)にて開催されたソフトロボティクスに関する国際会議です。同会議では、研究者、業界の専門家、学生が一堂に会し、最先端の進歩を探求し、様々な分野における知見を共有しました。
同会議と併催で行われたコンペティションは、実際のロボットアプリケーションに焦点を当てたシナリオで構成され、「管内移動」、「デリケートな果物の収穫」、「医療スクリーニングと介入」という3つの具体的な課題が提示されました。HO教授のチームは「デリケートな果物の収穫」の課題に参加し、最も高い得点を獲得しました。
※参考:RoboSoft 2025(Competitions)
■受賞年月日
令和7年4月26日
■研究題目、論文タイトル等
ROSE: A Rotation-Based Soft Gripper Harnessing Morphological Computation for Adaptive and Robust Manipulation
■研究者、著者
Khoi Thanh Nguyen, Nhan Huu Nguyen, and Van Anh Ho
■受賞対象となった研究の内容
このコンペティションでは、ラズベリーのような繊細な果実を収穫する際のソフトロボットグリッパーの有効性を評価します。果実の遮蔽状態の変化、密集、動きによる乱れといった実際の農業現場に見られる課題を再現することで、現実的な収穫条件をシミュレーションしています。
フィールドに即した環境を再現することで、この競技は、実用的な果実収穫において柔軟性(コンプライアンス)と力の制御を効果的に両立できるソフトグリッパーの設計を明らかにします。
この結果は、農業分野におけるソフトロボティクスの重要な役割を強調し、グリッパー技術の現在の進展を示すとともに、自動化かつ繊細な作物収穫システムに対する大きな成長可能性を示唆しています。
提案されている課題は以下の通りです:
・課題1:ロボットが単体のベリーを摘み取る
・課題2:ロボットが密集しているベリーを摘み取る
・課題3:葉に部分的に隠れた単体のベリーを摘み取る
・課題4:葉に部分的に隠れた密集したベリーを摘み取る
・課題5:動いている単体のベリーを摘み取る
当チームのソフトグリッパー「ROSE」は、すべての課題を8分未満で成功裏に完了しました。
■受賞にあたって一言
今回のコンテストは、非常に意義があり、必要な取り組みであると感じました。競技シナリオは、距離制限、葉や枝といった障害物の存在、果実の揺れ、さらには果実の柔らかさまでも再現されており、現実の環境を非常によく模倣していました。そのため、同コンテストは、ベリーの収穫能力を評価するための優れたベンチマークとなります。
また、他のチームの興味深い設計を直接見られる場でもあり、それらの実際の効果を確認できる貴重な機会でもありました。さらに、アイデアを交換したり、将来的な共同研究の可能性について議論したりするための交流の場としても、とても良い機会になりました。
今回、Holabの収穫アームが1位を獲得できたことを非常に嬉しく思っています。この成果により、多くの人に私たちのアームを知ってもらうことができ、JAISTの存在も広く認識されるようになりました。同コンテストを通じて、自分たちの技術の実力を再確認するとともに、現時点での課題も明確になり、今後の改善に向けた大きなヒントを得ることができました。
令和7年5月20日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/05/20-1.html光強度と反応温度を制御するだけで、光触媒反応の律速過程を判別可能な新手法を開発

光強度と反応温度を制御するだけで、
光触媒反応の律速過程を判別可能な新手法を開発
【ポイント】
- プロセス分離の難しい光触媒反応において、「励起キャリアの表面への供給」か「表面での酸化還元反応」のどちらが律速となっているかを簡便に判別できる手法を確立
- 光照射強度と反応温度を系統的に変化させることで、光触媒表面に過剰な励起キャリアが存在し始める"しきい値"を捉え、律速段階を見極めることに成功
- ナノ粒子化や結晶性向上など、今後の光触媒材料設計における具体的な指針を提示
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の張葉平特任助教(日本学術振興会特別研究員-PD)、谷池俊明教授らの研究グループは、光触媒反応における反応速度を決定づける律速プロセスを、光強度と反応温度を制御するだけで簡便に特定する方法を開発しました。光触媒反応は光の吸収から励起キャリアの拡散、そして表面での酸化還元反応まで複数のステップを経るため、どの段階が律速しているのかを従来は見極めにくいという課題がありました。本研究では、表面での励起キャリアが不足または余剰となる状態を温度変化から読み解く新たな指標を導入し、これにより「励起キャリアの表面への供給」と「表面での酸化還元反応」のどちらが支配的かを判別できることを示しました。今回の成果は、光触媒の性能向上や仮説検証の精度向上に加え、高効率な太陽光利用技術の開発にも波及効果が期待されます。 |
【研究の背景】
光触媒は、太陽光を活用し、水の分解による水素生成や二酸化炭素の還元、環境浄化など、多岐にわたる反応系への応用が期待されており、持続可能な社会の実現に向けた重要な技術として注目されています。しかし、光の吸収、励起キャリア(電子や正孔)の生成・拡散・表面での酸化還元反応といった複数のプロセスが絡み合うため、どの段階が律速しているかを明確にするのは容易ではなく、結果として効率的な材料改良が進みにくいという課題がありました。
【研究の詳細】
本研究では、光触媒反応を「励起キャリアの表面への供給」と「表面における酸化還元反応」の2つの過程に分け、どちらが律速となっているかを見極めるための簡便な手法を提案しました。具体的には、両過程の速度差は、表面における励起キャリアの過不足として現れ、それが光強度と反応温度を変化させた際の温度依存性として抽出されます(図1)。この考え方は、表面反応の方が温度変化に敏感であるという既知の性質を活用したもので、ある光強度以上になると温度によって反応速度が変化し始める「しきい値(オンセット強度)」が重要な指標となります。この指標を用いることで、律速過程を明確に記述できると考えました。
図1 光強度と反応温度の制御によって律速過程を特定する手法の概念図。反応速度に温度依存性が現れる光強度条件は、表面での励起キャリアの再結合が反応に転じる転換点に対応しており、励起キャリアの供給速度が表面反応速度を上回り始める"オンセット強度"として機能します。 |
この考えの実証に際して、代表的な光触媒である酸化チタン(TiO2)と酸化亜鉛(ZnO)を用い、メチレンブルーの分解反応をモデル反応として検証しました。反応温度を10˚Cと40 ˚Cに設定し、光強度を広範囲で制御しながら反応速度を測定した結果、TiO2では高い光強度で温度依存性が現れ、ZnOではより低い光強度から温度依存性が認められました。この結果から、相対的にTiO2はキャリア供給が律速し、ZnOは表面反応が律速すると判定され、材料ごとの律速特性の違いを明確に捉えることができました。このような判別は、材料選定や改良方針の誤りを防ぐ手がかりとなります。
さらに、酸化チタンの焼成温度を変化させた材料シリーズで同様の検討をしたところ、類似した材料においてはオンセット強度に顕著な違いが見られなかったものの、オンセット強度を超える強い光強度条件において性能と温度依存性を比較した結果、ナノサイズ化に伴ってキャリア供給が向上し、温度依存性も大きくなる傾向が確認されました。逆に、高温焼成によって粒子が大きくなった試料ではキャリア供給効率が低下し、温度変化に対する反応の応答も鈍くなりました。このことから、単なる結晶性の向上よりも、ナノ粒子化による表面へのアクセス性の向上がキャリア供給において重要であることが示唆されました。
従来のキャリア供給・移動・反応の解析には、レーザーを用いた瞬時分光法などの特殊装置や複雑な条件設定が必要でしたが、本研究で提案した手法は、一般的な光源と温度制御だけで実施可能であり、日常的な材料スクリーニングにも応用しやすい点が大きな特徴です。また、光強度の設定範囲が実使用条件に近いため、実際の性能と乖離の少ない律速過程の判定を行うことが可能です。
【今後の展望】
本手法は、光触媒の性能向上を目指した材料開発において、律速段階を簡便に特定できる有用な手段と考えられます。今後は、他の反応系や材料系への適用範囲を広げるとともに、ハイスループット実験への展開を通じて、より効率的かつ再現性のある材料評価を可能にしたいと考えています。特に、キャリア供給が律速か、あるいは表面反応が律速かを判断することは、材料改良の方向性を明確にする際に効果を発揮し、多くの光触媒研究の仮説検証に貢献できると期待されます。
【研究資金】
本研究は、日本学術振興会科研費 特別研究員奨励費(24KJ1201)、科学技術振興機構(JST) 次世代研究者挑戦的研究プログラム(JPMJSP2102)、リバネス研究費京セラ賞の支援を受けて実施されました。
【論文情報】
雑誌名 | Journal of Materials Chemistry A |
論文名 | Identifying Rate-Limiting Steps in Photocatalysis: A Temperature- and Light Intensity-Dependent Diagnostic of Charge Supply vs. Charge Transfer |
著者 | Yohei Cho, Kyo Yanagiyama, Poulami Mukherjee, Panitha Phulkerd, Krishnamoorthy Sathiyan, Emi Sawade, Toru Wada, and Toshiaki Taniike |
掲載日 | 2025年5月2日 |
DOI | 10.1039/D5TA00415B |
令和7年5月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/05/12-1.htmlPufferFace Robot:フグに着想を得たボディ一体型振動推進型ロボット

PufferFace Robot:フグに着想を得たボディ一体型振動推進型ロボット
【ポイント】
- ソフトロボットの設計:PufferFace Robot(PFR)は、フグに着想を得た振動駆動型のソフトロボットで、やわらかく膨らむ外皮により配管の直径の変化に柔軟に対応して進みます。
- 移動性能及び配管内走行能力:3つの移動モード(振動のみ/膨張・収縮のみ/両者の組み合わせ〈メインモード〉)を備えています。自身の外径の1~1.5倍サイズの配管を通過可能で、本体と同サイズの配管内では最大0.5 BL/s(体長/s)の速度で移動可能です。
- 複雑な配管構造での実走行:90度エルボ、T字コネクタ、高曲率セクションなど、複雑な配管構造での走行能力を実験により検証しました。
- 応用可能性:PFRは複雑で狭隘な小口径の配管における点検作業を目的としています。例えば、石油・ガス配管、化学プラント、上下水道管などが挙げられます。また、有害化学物質や高温などの過酷な環境での探査にも有効で、シンプルな制御でも安定した動作が可能です。
- シミュレーションと実験アプローチ:ABAQUSを用いた簡易的な有限要素解析(FEA)によるシミュレーションを通じて、PFRの走行可能性を評価した結果、実験と高い一致性を確認しました。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域のHo Anh Van教授(IEEE上級会員)が、Linh Viet Nguyen大学院生(博士後期課程)(研究当時)、Khoi Thanh Nguyen大学院生(博士後期課程)らの研究チームを率いて、テキサス大学オースティン校のThe Advanced Robotic Technologies for Surgery Laboratory (ARTS Lab)との共同研究により、複雑な配管内部を自在に前進できる新しいソフトロボット「PufferFace Robot (PFR)」を開発しました。PFRは、フグのように体を膨らませる柔軟な素材と、振動による推進する機構を組み合わせることで、多様な管内形状に対応できる設計となっています。これにより、90度の曲がり角やT字型の分岐、高曲率セクションなど、従来のロボットが苦手としていた区間でも安定した走行を実現しました。本研究では、複雑な計算処理を必要とせず、ロボット本体の構造によって環境への適用を実現する「身体性知能(embodied intelligence)」という考え方も重要視されています。 PFRは、JAISTプレスリリースにて前回紹介した振動駆動型ソフトロボット「Leafbot」(※)の進化形であり、ソフトロボティクス分野の新たな基盤となる可能性を秘めています。 (※)https://www.jaist.ac.jp/whatsnew/press/2025/02/17-1.html |
【研究背景と内容】
柔軟素材を用いたソフトロボットは、その柔軟性と適応性により、従来の硬い素材を用いたロボットでは効果を発揮することが困難な環境でも活躍することができることから、近年大きな注目を集めています。ソフトロボットは、適応的な形態変化を備えており、これは身体知能の一形態として機能し、最小限の計算で環境の変化に応じて反応することが可能です。従来のロボットが複雑な中央制御に依存しているのに対し、適応型ロボットは物理的構造を通じて局所的に調整を行うことで、計算負荷が軽減され、環境応答性が向上します。本研究では、産業、車両、航空宇宙分野で流体やガスの輸送によく使用される配管のような、制約のある可変形状における適応的な移動に焦点を当てました。このような配管は狭く人間が立ち入ることが難しいため、ロボットによる点検のニーズが高まっています。しかし、このような配管は直径、形状、長さが場所によって大きく異なるため、ロボットの設計には大きな課題があります。
これまでにも様々な推進機構(車輪式、歩行式、クローラー式、振動式など)を持つロボットが開発されてきましたが、それらをセンチメートルスケールの配管に適応させるのは困難です。近年の研究では、圧電素子、誘電エラストマー、流体エラストマー、ハイドロゲル、形状記憶合金、電磁アクチュエータなどのスマート素材を用いた生物に着想を得たロボットが開発されています。これらのコンパクトで柔軟な設計は、複雑で狭い配管システムの中を移動するための適応性とエネルギー効率を向上させます。しかし、このような制約のある環境において、機敏で配管のサイズに適応して移動できる信頼性の高い点検ロボットの実現は、依然として課題です。
前述の課題(図1A参照)に対応するため、本研究では新たに「PufferFace Robot (PFR)」という適応型ソフトロボットを開発しました(図1B, D, E参照)。この名称はフグ(pufferfish)から着想を得たことに由来します。PFRは、形態学*1的なスパイクパターンを持つシリコーンゴム製の膨張可能な柔らかい外皮を特徴としており、その設計パラメータは我々の先行研究である「Leafbot」から受け継いだものです。外部の圧縮空気源によって膨張・収縮を操作し、様々な配管形状に適応させることが可能です。PFRの移動メカニズムは、柔らかいスパイクの先端に分布された非対称な摩擦特性に基づいています。その非対称性と振動源を組み合わせることでPFRは前進します。この構成により、PFRの小型構造でも前進移動が可能であると示しました。PFRには3つの移動モードがあります。モード1では、振動モータを作動させて水平な配管を移動します。モード2では、柔らかい外皮の膨張・収縮のみで動作します。モード3は、モード1とモード2を組み合わせたハイブリットモードで、配管内移動における主要なモードです。
図1 (A)配管システムにおける形状が制約された様々な空間の例、 (B)様々な空間に適応可能なPufferFace Robotのコンセプト、 (C)フグから着想を得たPFRの設計コンセプト、(D)PFRの膨張状態、(E)PFRの通常状態 |
PFRの設計の詳細を図2に示します。様々な配管サイズに対応するための形態学的なソフトスキンに加え、PFRには暗所での点検作業を支援するためにLEDと小型カメラが搭載されています。今回、設計したPFRには以下の利点があります。
図2 PFRの詳細な設計図 (A) PFRの構成部品 (B) PFRの前面図および側面図
本研究では、「テラダイナミクス(terradynamics)」の手法を採用し、PFRが配管システムの困難な「地形条件」に対して、どれほど効率的かつ効果的に走行できるかを評価しました。これには、鋭角な曲がり(エルボ継手)、高曲率領域、分岐点、水平から垂直への移行、あらゆる方向での配管サイズの変化、T字分岐での操縦が含まれます。これらのシナリオにおけるPFRの性能を図3に示しています。有限要素解析(FEA)に基づいたシミュレーションプラットフォームであるABAQUSのDynamic Explicitモジュールを使用し、PFRを実環境に配置する前に特定の管状環境における通過可能性を評価しました。すべてのテストケースにおいて、シミュレーションの結果は実験結果とよく一致しました。図3(C),(F),(J)は、ABAQUS環境下でシミュレーションした検討シナリオを示しています。
図3 実験及びシミュレーション解析による配管システム内の重要な領域を走行するPFRの能力評価 (A, B, G) PFRが実環境及びシミュレーション環境(C,J)においてエルボ(曲がり)部分を走行する様子、 (D, E, F) PFRが実験及びシミュレーションの両ケースにおいて、サイズの異なる空間の移行部を通過する様子、(I) 振動モータの回転方向を変えることで、PFRが方向転換能力を発揮する様子 |
本研究では、ハイブリット推進システムを搭載した生物に着想を得たロボット「PufferFace Robot(PFR)」を提案しました。提案した設計では、狭隘な環境への高い適応性、検査中に気体や流体の流れを妨げない中空機構、複雑な配管内でも最小限の制御で移動可能な適応形態といった利点を有しています。さらにPFRは振動駆動型ソフトロボット、特に小規模配管用途に特化した設計の可能性を広げます。この技術革新は、工業点検だけでなく、医療用途、特に大腸検査のような低侵襲手術にも大きな可能性を秘めています。柔らかく適応性のある構造は、複雑で傷つきやすい生物学的環境を安全に移動することを可能にし、従来の内視鏡ツールに代わる、より安全で効率的な選択肢を提供します。今後は、さらなる小型化と移動性能の向上を目指し、より狭く限られた空間でも自在に動けるように改良を進めていく予定です。
【論文情報】
雑誌名 | Science Advances |
論文名 | Adaptable cavities exploration: Bioinspired vibration-propelled PufferFace Robot with morphable body. |
著者 | Linh Viet Nguyen; Hansoul Kim; Khoi Thanh Nguyen; Farshid Alambeigi, and Van Anh Ho |
掲載日 | 2025年4月30日 |
DOI | 10.1126/sciadv.ads3006 |
【用語説明】
生物の体制や構造を研究する学問
令和7年5月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/05/08-1.html物質化学フロンティア研究領域の都教授らの論文がSmall Science誌の表紙に採択
物質化学フロンティア研究領域の都 英次郎教授らの「磁石と光で機能制御可能なナノ粒子の開発に成功!-高性能がん診断・治療に向けて-」に係る論文が、生物・化学系のトップジャーナルSmall Science誌の表紙に採択されました。本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、大学発新産業創出基金事業スタートアップ・エコシステム共創プログラム(JPMJSF2318)ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Small Science, Volume 5, No. 5
掲載日:2025年5月4日
■著者
Yun Qi, Eijiro Miyako*
■論文タイトル
Multifunctional Magnetic Ionic Liquid-Carbon Nanohorn Complexes for Targeted Cancer Theranostics
■論文概要
本研究では、カーボンナノホーン表面に磁性イオン液体、近赤外蛍光色素(インドシアニングリーン)、分散剤(ポリエチレングリコール-リン脂質複合体)を被覆したナノ粒子の作製に成功しました。得られたナノ粒子は、ナノ粒子特有のEPR効果のみならず、磁性イオン液体に由来する磁場駆動の腫瘍標的能によって、大腸がんを移植したマウス体内の腫瘍内に効果的に集積し、磁性イオン液体に由来する抗がん作用に加え、生体透過性の高い近赤外レーザー光により、インドシアニングリーンに由来するがん患部の可視化とカーボンナノホーンに由来する光熱変換による多次元的な治療が可能であることを実証しました。さらに、マウスを用いた生体適合性試験などを行い、いずれの検査からもナノ粒子が生体に与える影響は極めて少ないことがわかりました。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待されます。
表紙詳細:https://onlinelibrary.wiley.com/doi/10.1002/smsc.202570019
論文詳細:https://onlinelibrary.wiley.com/doi/full/10.1002/smsc.202400640
プレスリリース詳細:https://www.jaist.ac.jp/whatsnew/press/2025/03/06-1.html
令和7年5月8日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/05/08-2.html学生の松本さんと石須さんがSI2024において優秀講演賞を受賞

学生の松本創大さん(令和7年3月博士前期課程修了、ナノマテリアル・デバイス研究領域、HO研究室)と石須滉大さん(令和7年3月博士前期課程修了、ナノマテリアル・デバイス研究領域、HO研究室)が、第25回計測自動制御学会システムインテグレーション部門講演会(SI2024)において、優秀講演賞を受賞しました。
SI2024は、「サステナブルな社会を目指すシステムインテグレーション」をテーマに、SI部門設立25周年の記念大会として、令和6年12月18日~20日にかけて、岩手県のアイーナいわて県民情報交流センターにて開催されました。
優秀講演賞は、SI部門講演会において発表された全ての発表を対象として審査が行われ、講演会実行委員会によって選出されるものです。
※参考:SI2024
■受賞年月日
令和7年2月17日
【松本創大さん】
■研究題目、論文タイトル等
口径変化が可能な吸着型ソフトロボットハンド
■研究者、著者
松本創大、HO, Anh Van
■受賞対象となった研究の内容
松ぼっくりの形状から着想を得た、吸着口を可変できるソフトロボットハンドを開発した。把持したい物体の形状、重さ、大きさに対して適切な口径を変化させることができるロボットハンドを開発し、吸着力実験と把持実験を通してロボットハンドとしての性能を評価した。
■受賞にあたって一言
自分の研究が評価されて、光栄です。今後ソフトロボットが社会実装されるための1手段になってくれることを願います。
【石須滉大さん】
■研究題目、論文タイトル等
深い接触を許容するビジョンベース触覚センサを用いた回転物体における初期滑り検知
■研究者、著者
石須滉大、Luu Quan、HO, Anh Van
■受賞対象となった研究の内容
ロボットの物体把持のために初期滑り検知が必要。視覚ベース触覚センサを使ってこれまでよりも簡単な方法で初期滑りの特徴を検知した。
■受賞にあたって一言
まずは、本研究を支えてくださったLuu QuanさんとHo, Anh Van教授に深く感謝申し上げます。本研究がソフトロボット学の発展に貢献できれば光栄です。


令和7年5月7日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/05/07-1.htmlナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発 ― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―

ナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発
― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―
【ポイント】
- 高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発
- 欠陥を多く含むメタチタン酸ナノ粒子の三次元結晶構造の決定に成功
- 多様な結晶構造をとり得る金属オキシ水酸化物ナノ粒子の構造解明に役立つと期待
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市) ナノマテリアル・デバイス研究領域の麻生浩平講師、大島義文教授、宮田全展講師 (研究当時)、同大学ナノマテリアルテクノロジーセンターの東嶺孝一技術専門員、日本製鉄株式会社 技術開発本部の神尾浩史主幹研究員らの研究グループは、高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発しました。これにより、従来のX線回折法(XRD)*1などでは困難だった、欠陥を多く含むメタチタン酸ナノ粒子の結晶構造を決定することに成功しました。メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました。酸素と金属で構成される金属酸化物や、さらに水素が加わった金属オキシ水酸化物は、多様な結晶構造をとり、それに応じて多彩な物性を発現することが知られています。格子相関解析は、このような材料の構造解明に弾みをつける新たな手法であり、多彩な物性の理解に貢献すると期待されます。 本研究成果は、2025年4月28日 (英国標準時間)に科学雑誌「Communications Chemistry」誌のオンライン版で公開されました。 |
【研究の背景及び概要】
酸素と金属で構成される金属酸化物ナノ粒子や、水素が加わった金属オキシ水酸化物ナノ粒子は、現代社会に欠かせない触媒、エネルギー変換、吸着材として注目されています。これらのナノ粒子は、組成が同じでも異なる構造をとり、異なる物性を示します。つまり、物性を真に理解する上で、合成されたナノ粒子の形状や構造の解明は欠かせません。典型的な構造解析として、X線回折法やラマン分光法*2があります。しかし、サイズが数ナノメートル (nm, 十億分の一メートル) 程度のナノ粒子の場合、ピークが明瞭でないため解析が困難です。また、今回の研究対象とした、金属オキシ水酸化物のひとつであるメタチタン酸は、欠陥を多く含むため構造解析がより困難となっていました。一方、透過電子顕微鏡 (TEM)*3や走査TEM (STEM)*4は、原子配列を可視化できますが、得られる情報は投影した二次元像です。
そこで、三次元の結晶構造を明らかにするため、多数のメタチタン酸ナノ粒子のTEM像を異なる様々な方位から取得しました。様々な方位から多数の像を得るのは、生物分野で利用される単粒子解析と類似していますが、本研究では異なる解析手法を採用しています。単粒子解析では、対象物の形状が均一であると仮定し、多数の像を観察方位ごとに分類して足し合わせることで、像の質を高めます。しかし、メタチタン酸ナノ粒子の場合、形状が均一ではないため、従来の方法をそのまま応用することはできませんでした。そこで、今回開発した手法では、像の足し合わせではなく、周期性や格子定数に敏感な結晶格子の間隔や異なる格子間の角度に着目しました。本手法は、間隔や角度の相関を統計的に解析することで、結晶構造の特徴を抽出しようとした点に新規性があります。
メタチタン酸ナノ粒子は、TEM試料用の支持膜上にランダムな方位を向いて分散するので、様々な方位からの粒子の原子分解能TEM像が得られます (図1a)。得られたTEM像から、画像処理によって個々のナノ粒子を検出し (図1b)、そのナノ粒子にガウス関数のマスクをかけて高速フーリエ変換 (FFT) パターンを得ました(図1c)。FFTパターンで観察されるスポットは、ナノ粒子の結晶格子の周期を反映します。異なるスポットの配置から、格子の間隔や角度の相関 (格子相関) が分かります。この処理を、500枚のTEM像で撮影された1300個のナノ粒子に対して行うことで、メタチタン酸ナノ粒子がもつ特徴的な格子相関を統計的に得ることが出来ました (図1d)。異なる観察方位に対する格子相関を組み合わせて解析することで、構造に関する三次元情報が得られます。
解析の結果、メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました(図1e)。この構造は、密度汎関数理論による計算*5でも安定であることが確認されました(図1f)。また、原子の個数や原子番号をより直接的に反映する環状暗視野STEM像*6(図1g)とも整合しており、提案する構造は妥当であると判断しました。
本研究で開発した格子相関解析は、従来と比べて1/20から1/500程度の低い電子線照射量で、三次元的な結晶構造の解明を可能とします。今後は、電子線に敏感なため解析が困難だった、金属オキシ水酸化物ナノ粒子や有機物を含むナノ材料への展開が期待されます。新規材料探索は理論計算による研究が多いなかで、本手法は解析の自動化が可能であり、実験による新たなアプローチを提示できると考えています。これにより、より適切な材料設計や高性能デバイスの開発に弾みがつくと期待されます。
図1 (a) HRTEM像。暗いコントラストで示されるメタチタン酸ナノ粒子が見られる。(b) 画像処理によって粒子領域を検出した図。粒子ごとに色分けして塗りつぶしている。(c) b中の中央下、白い丸とバツでマークされた粒子のFFT図形。(d)格子相関マップの一例。ここでは(004)面と(110)面、(002)面と(110)面の組み合わせがスポットとして現れている。(e)解析から提案された結晶模型。(f)結晶模型について計算した環状暗視野STEM像。(g)メタチタン酸ナノ粒子の環状暗視野STEM像。 |
【論文情報】
雑誌名 | Communications Chemistry |
論文名 | Three-dimensional atomic-scale characterization of titanium oxyhydroxide nanoparticles by data-driven lattice correlation analysis |
著者 | Kohei Aso, Koichi Higashimine, Masanobu Miyata,Hiroshi Kamio,and Yoshifumi Oshima |
掲載日 | 2025年4月28日 |
DOI | doi.org/10.1038/s42004-025-01513-2 |
【用語説明】
物質の平均的な結晶構造を調べる代表的な技術。X線を試料に照射してプロファイルを取得し、回折ピークの配置を解析することで試料の平均的な結晶構造が得られる。
物質にレーザー光を照射し、散乱された光の波長変化(ラマン散乱)を解析することで、物質の化学結合や結晶構造を得る手法。
電子線を試料に透過させ、得られた投影像から結晶構造を観察する手法。電子線を使うことを除いて、原理的には一般的な光学顕微鏡と同様。
0.1 nm程度に絞った電子線を試料上で走査し、試料各点からの信号によって結像する手法。
原子や分子の電子状態を理論に基づき計算する手法。ここでは、結晶構造のサイズ(格子定数)や原子位置をわずかに変化させながら計算を繰り返し、構造の安定性を評価した。
STEMのうち、前方散乱された電子をマッピングした像。原子番号や厚みの違いをより直接的に反映した像が得られる。
令和7年4月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/04/30-1.html物質化学フロンティア研究領域の都教授らの論文がAdvanced Science誌の最も閲覧された論文の上位10%にランクインされました

物質化学フロンティア研究領域の都 英次郎教授らの「阿吽の呼吸で癌を倒す! -灯台下暗し:最強の薬は腫瘍の中に隠されていた-」に係る論文が、生物・化学系トップジャーナルAdvanced Science誌の最も閲覧された論文の上位10%にランクインしました。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、公益財団法人発酵研究所、公益財団法人上原記念生命科学財団、ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Advanced Science
■著者
Yamato Goto, Seigo Iwata, Mikako Miyahara, Eijiro Miyako*
■論文タイトル
Discovery of intratumoral oncolytic bacteria toward targeted anticancer theranostics
■論文概要
本研究では、マウス生体内の大腸癌由来腫瘍組織から主に3種類の細菌の単離・同定に成功し、これらの細菌にA-gyo(阿形;Proteus mirabilis)、UN-gyo(吽形;Rhodopseudomonas palustris)、そしてAUN(阿吽;A-gyoとUN-gyoから成る複合細菌)とそれぞれ命名しました。これらの細菌を、大腸癌を皮下移植した担癌モデルマウスの尾静脈に投与したところ、低酸素状態の腫瘍環境内で高選択的に集積・生育・増殖が可能で、かつ高い抗腫瘍効果を示すことを発見しました。とりわけ、AUNは、単回投与にも関わらず、A-gyoとUN-gyoの協奏作用により細胞障害性の免疫細胞を効果的に賦活化し、大腸癌、肉腫(サルコーマ)、転移性肺癌、薬物耐性乳腺癌といった様々な癌種に対して強力な抗腫瘍活性を示すことが明らかとなりました。また、AUNは、生体透過性の高い近赤外光によって標的とする腫瘍内で近赤外蛍光を発現することが分かりました。さらに、マウスを用いた生体適合性試験(血液学的検査、組織学的検査、細菌コロニーアッセイなど)を行った結果、いずれの検査からもAUNそのものが生体に与える影響は極めて少ないことが分かりました。これらの成果は、今回発見した細菌を用いた癌の診断・治療法の基礎に成り得るだけでなく、細菌学や腫瘍微生物学などの研究領域への新しい概念の創出として貢献することを期待させるものだと考えられます。
論文詳細:https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202301679
プレスリリース詳細:https://www.jaist.ac.jp/whatsnew/press/2023/05/08-1.html
令和7年4月17日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/04/17-2.html物質化学フロンティア研究領域の谷池俊明教授の研究課題が科学技術振興機構(JST)未来社会創造事業に採択
物質化学フロンティア研究領域の谷池俊明教授が代表を務める研究開発課題「材料探索を価値の探索へと変革する超広域反応探索基盤の開発」が、科学技術振興機構(JST)未来社会創造事業(探索加速型)の令和7年度新規本格研究課題(重点公募テーマ「革新的な知や製品を創出する共通基盤システム・装置の実現」)に採択されました。
「未来社会創造事業」は、科学技術により「社会・産業が望む新たな価値」を実現する研究開発プログラムです。経済・社会的にインパクトのある目標を定め、基礎研究段階から実用化が可能かどうか見極められる段階(概念実証:POC)に至るまでの研究開発を実施します。
探索加速型とは、研究開発を探索研究から本格研究へと段階的に進めるもので、谷池教授の研究開発課題は、探索研究を経て、本格研究課題に採択されました。
*詳しくは、JSTホームページをご覧ください。
研究者名:物質化学フロンティア研究領域 谷池 俊明教授
研究課題名:材料探索を価値の探索へと変革する超広域反応探索基盤の開発
研究概要:化学反応を効率的に誘導する触媒は、現代の物質文明を支えるマテリアルです。触媒技術の革新なくしてカー
ボンニュートラル社会の達成はありえません。一方、触媒分野における従来の技術革新は、試行錯誤とその中
で生じる予期せぬ発見によって実現されてきました。本研究開発では、広大な探索空間に探索の網を張る反応
探索基盤を構築し、未知の化学反応と触媒の効率的な発見を目指します。
令和7年3月28日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/03/28-1.html二次元格子をひねって重ねると一次元超格子が出現 ――二次元原子層物質が一次元物性研究の新しいプラットフォームに――

![]() ![]() ![]() ![]() |
東京大学 北陸先端科学技術大学院大学 大阪大学 科学技術振興機構(JST) |
二次元格子をひねって重ねると一次元超格子が出現
―― 二次元原子層物質が一次元物性研究の新しいプラットフォームに ――
【ポイント】
- シート状の原子層二枚を、特定の角度に向きをずらして重ねると、一方向に縞模様を持つ一次元モアレ超格子構造が形成できることを発見しました。
- 従来のモアレ超格子は原子層の構造と類似の二次元の周期性を持ちますが、本研究では、一次元の周期性しか持たない新しいコンセプトのモアレ超格子を提案・実証しました。
- モアレ超格子による原子層の性質の人工制御物性変調や、一次元性ならではの異方性の高い新奇物性研究の新しいプラットフォームになることが期待されます。また、素子応用に向けた研究の発展にも寄与することが期待されます。
二次元原子層WTe2のツイスト積層による一次元モアレ超格子の形成
東京大学 生産技術研究所の張 奕勁 助教と町田 友樹 教授らの研究グループは、北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域の大島 義文 教授および高村 由起子 教授の研究グループ、大阪大学大学院 理学研究科の越野 幹人 教授の研究グループと共同で、原子層物質(注1)の人工ツイスト二層構造(注2)において一次元の周期性を持つモアレ超格子(注3)が実現できることを明らかにしました。 本研究では、二テルル化タングステン(WTe2)の原子層二枚を使用し、それぞれの結晶方位に角度差(ツイスト角)を付けた状態で人工的に重ね合わせた構造(ツイスト二層構造)を作製し、透過型電子線顕微鏡(TEM)を用いて原子の配列パターンを直接観察しました。一般的にツイスト二層構造で出現するモアレ超格子内の原子配列パターンは二次元の周期性を持って変化しますが、本研究では特定のツイスト角において配列パターンの変化が一次元的になる、すなわち周期性が一方向のみになることを世界で初めて示しました(図1)。また、本モアレ超格子が従来のモアレ超格子とは異なる原理で形成されていることを理論的に突き止めました。一次元性による母物質の物性変調に伴う新奇物性探索の新しい舞台になることが期待されます。 |
図1:透過型電子線顕微鏡を用いたツイスト二層WTe2の原子像観察。
(a)WTe2原子層の模式図。a軸方向とb軸方向で周期性が異なる。(b,c)WTe2原子層二枚をツイスト角62度(b)および58度(c)でツイスト積層させた構造。単独の原子層が持つ周期性と異なる一次元的な周期性が出現する。(d) 試料構造および実験の模式図。h-BNは試料の保護層。(e,f)ツイスト角62度(e)および58度(f)で作成したツイスト二層WTe2試料の原子像。白いスケールバーは10 nm(ナノメートル)。(g,h)62度(g)および58度(f)ツイスト試料の電子回折像。緑と茶色の点がそれぞれの原子層の構造の周期性を示す回折スポット。赤枠(e)と青枠(f)で示された回折スポットのペアがモアレ超格子の周期性を表す。どちらの場合も回折スポットのペアが平行に並んでいることから、モアレ超格子が一方向のみに周期性を持っていることがわかる。青いスケールバーは2 nm-1(ナノメートルインバース)。 |
【発表者コメント:張 奕勁助教の「もしかする未来」】
本研究は偶然の発見から始まりました。パワーポイントの上で結晶構造を二つ重ね、片方をぐるぐる回転させていたところ一瞬縞模様が見えたのがきっかけです。モアレ超格子の原子配列を実際に観察し、また、理論的にその起源と一次元性を示すことができました。カーボンナノチューブなどの一次元物質は低次元特有の現象を示しますが、その特性を残したまま大面積化することは困難でした。今回、ナノチューブよりも面積の大きい原子層物質を用いて一次元構造が作製できたので、今後は一次元性を反映した物性の探索を進めていきたいと思います。
【発表内容】
原子層物質の人工ツイスト積層構造技術は、現在の原子層物質を用いた基礎物性研究の中心的な技術の一つです。異なる原子層物質を積層する場合だけでなく、同一の原子層物質を積層する場合であっても、それぞれの結晶方位をずらして積層(ツイスト積層)すると、元の物質の持つ周期性よりも大きな周期性を持つモアレ超格子が出現します。モアレ超格子が出現することで、元の原子層物質の物性を大きく変調し、新奇物性を誘起することが可能になります。例えば、単層グラフェンをツイスト角1.05度でツイスト積層すると、低温で超伝導転移を誘起できることが知られています。一般的に、モアレ超格子の大きさはツイスト角の増加とともに小さくなるため、これまでの研究は低ツイスト角領域(0度付近)を中心に行われてきました。
この度、本研究チームは、原子層物質二テルル化タングステン(WTe2)を用いた研究から、高ツイスト角でもモアレ超格子が出現し、さらに、特定の角度(62度と58度付近の二点)では一次元的なモアレ構造が出現することを発見しました。WTe2の特徴は、結晶構造が異方的、すなわち、結晶方位によって周期の大きさが異なることです(図1a)。代表的な原子層物質であるグラフェンや二セレン化タングステン(WSe2)は等方的(物理的な性質が方向によって異ならないこと)な結晶構造を持っており、高ツイスト角ではモアレ超格子は出現しません。本研究では、透過型電子顕微鏡(TEM)を用いてツイスト二層WTe2の原子配列パターンを直接観察することで高ツイスト角領域における一次元モアレ超格子を実験的に示しました(図1c,d)。また、構造の周期性を示す電子回折パターン(注4)において、モアレ超格子の周期を示す回折スポットのペアが全て平行になるという特徴を観測しました(図1e,f)。
モアレ超格子の周期性は元の原子層の持つ周期性から説明できますが、従来のモデルでは高ツイスト角領域におけるモアレ超格子を説明できません。本研究では従来のモデルを拡張することで、高ツイスト角領域においてモアレ超格子が出現し、さらに、62度と58度付近でモアレ超格子が一次元になる、すなわち、周期性が一方向のみになることを理論的に示すことに成功しました(図2)。加えて、電子回折パターンのシミュレーションから、実験的に観測された回折スポットペアの特徴(図1e,f参照)が一次元性を示す証拠になっていることを理論的に示すことにも成功しました(図3)。また、一次元モアレ超格子の出現はWTe2に特異な現象ではなく、異方的な結晶構造を持つすべての原子層物質で起こりうる普遍的な現象であることも明らかになりました。
一次元的なモアレ超格子を形成することで、従来の二次元的なモアレ超格子で誘起された物性変調とは異なる変調効果が期待されます。従来、カーボンナノチューブなど一次元物質の持つ物性の研究や素子応用には、無数のチューブを配向させた膜の形成という技術的な障壁がありましたが、人工ツイスト積層構造の一次元モアレ超格子ではマイクロメートルスケールで一次元構造が広がるため、基礎研究のみならず素子応用に向けた研究の発展にも寄与することが期待されます。
図2:近似三角格子モデルを用いた一次元モアレ超格子の再現。
(a)WTe2原子層の結晶構造。格子ベクトルa1、a2で囲われた長方形がユニットセル(周期一つ分の構造)。W原子とTe原子を区別せず原子位置に多少の動きを許容すると、格子ベクトルl1、l2で定義された三角格子(灰色点線)で近似できる。近似された格子は正三角形ではなく二等辺三角形になっている。(b)近似三角格子をツイスト積層した場合のモアレ超格子。一次元構造が再現されている。 |
図3:人工ツイスト二層WTe2の電子回折パターンのシミュレーション。
従来の低ツイスト角の場合と本研究における高ツイスト角の場合の比較。ベクトルb1、b2はそれぞれ格子ベクトルa1、a2(図2a参照)の周期を示す逆格子ベクトル。黒点と赤点がそれぞれの原子層に由来する原子回折スポット。黒矢印で示された解析スポットのペアがモアレ超格子の周期性(大きさおよび方向)を決定する。低ツイスト角の場合モアレ超格子の周期は様々な方向を向くため、二次元の超格子となる。一方62度と58度付近ではすべて平行になり一方向にしか周期性が存在しないため、一次元の超格子となる。 |
【発表者・研究者等情報】
張 奕勁 助教
町田 友樹 教授
大島 義文 教授
高村 由起子 教授
越野 幹人 教授
【論文情報】
雑誌名 | ACS Nano |
題名 | Intrinsic One-Dimensional Moiré Superlattice in Large-Angle Twisted Bilayer WTe2 |
著者名 | Xiaohan Yang, Yijin Zhang*, Limi Chen, Kohei Aso, Wataru Yamamori, Rai Moriya, Kenji Watanabe, Takashi Taniguchi, Takao Sasagawa, Naoto Nakatsuji, Mikito Koshino, Yukiko Yamada-Takamura, Yoshifumi Oshima & Tomoki Machida* |
DOI | 10.1021/acsnano.4c17317 |
URL | https://doi.org/10.1021/acsnano.4c17317 |
【研究助成】
本研究は、科学技術振興機構(JST) 戦略的創造研究推進事業 さきがけ「トポロジカル材料科学と革新的機能創出(研究総括:村上 修一)」研究領域における「極性二次元物質とそのヘテロ構造におけるバルク光起電力効果(JPMJPR20L5)」、さきがけ「新原理デバイス創成のためのナノマテリアル(研究総括:岩佐 義宏)」研究領域における「顕微分光による二次元物質デバイスの物性開拓(JPMJPR24H8)」、同 戦略的創造研究推進事業 CREST「原子・分子の自在配列・配向技術と分子システム機能(研究総括:君塚 信夫)」研究領域における「原子層のファンデルワールス自在配列とツイスト角度制御による物性の創発(JPMJCR20B4)」、日本学術振興会 科学研究費助成事業 学術変革領域(A)「2.5次元物質科学:社会変革に向けた物質科学のパラダイムシフト」(課題番号:JP21H05232, JP21H05233, JP21H05234, JP21H05235, JP21H05236)、および文部科学省 マテリアル先端リサーチインフラ事業(課題番号:JPMXP1223JI0033)の支援により実施されました。
【用語解説】
原子層物質とは、原子1個または数個分の厚みしかない層状の物質。原子間力で層間が弱く結合しており、二次元物質とも呼ばれる。層状構造を持つ単結晶から、スコッチテープなどの粘着性のテープを貼り付けて剥がすことで得られる(テープに付着している)、数ナノメートル以下まで薄くした二次元シート状の薄膜として作製する。代表例としてグラフェン、二硫化モリブデンなどが挙げられる。
原子層を二つ用意し、それぞれの結晶方位の間に相対的な角度差をつけて人工的に重ねた構造。
複数の原子層物質を重ねた際に出現する新たな周期構造。元の原子層物質の構造が持つ周期とは異なる周期性を持つ。
物質に電子線を照射した際に観察される干渉パターン。物質の構造の持つ対称性や周期性を反映したパターンが出現する。
令和7年3月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/28-1.html