研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。高分子化合物による細胞の凍結保護効果の機序を解明-再生組織などの長期保存技術の開発に貢献-
|
北陸先端科学技術大学院大学 理化学研究所 |
高分子化合物による細胞の凍結保護効果の機序を解明
-再生組織などの長期保存技術の開発に貢献-
ポイント
- 高分子化合物による細胞の凍結保護効果の機序の一端を解明。
- 細胞凍結保護効果を説明するため初めて固体NMRの手法を応用し、細胞の脱水制御に伴う細胞内氷晶抑制効果を説明した。
- この手法を利用することで、新しい効果的な凍結保護物質の分子設計が可能となり、再生医療分野などへの応用が期待できる。
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)先端科学技術研究科物質化学領域 松村和明教授、ラジャン・ロビン助教、理化学研究所放射光科学研究センターNMR先端応用・外部共用チーム 林文晶上級研究員、長島敏雄上級研究員らの研究グループは、高分子化合物による細胞の凍結過程における保護作用機序を明らかにした。 本研究成果は、細胞への毒性や分化への影響が低い凍結保護高分子の設計指針を明らかとすることで、再生医療分野で必要とされる幹細胞や再生組織などの効率的な凍結保存技術の開発に貢献することが期待できる。 本研究成果は、Springer Nature発行の科学雑誌「Communications Materials」誌に2021年2月9日オンライン版で公開された。なお、本研究は日本学術振興会科研費、キヤノン財団、文部科学省大学連携バイオバックアッププロジェクト、文部科学省先端研究施設共用促進事業の支援を受けて行われた。 |
【研究の背景】
医学生物学研究に必要な細胞は、細胞バンクなどから凍結状態で入手できる。細胞の凍結保存技術自体は1950年代に確立されており、おもにジメチルスルホキシド(DMSO)[*注1]が保護物質として細胞懸濁液に添加され、液体窒素温度にて凍結保存されている。一般的な樹立細胞などは既存の保存技術で問題なく保存可能な細胞が多いが、受精卵などの生殖細胞、ES細胞やiPS細胞[*注2]などの特殊な幹細胞などの中には凍結保存が困難なものが多く、効率的な保存技術の開発が望まれている。また、汎用保護剤であるDMSOは毒性があり、分化[*注3]への影響もあることから再生医療分野では代替の物質の開発が望まれているが、この半世紀ほどは新しい凍結保護物質の報告はほとんど見られなかった。高分子系の保護物質は細胞膜を容易には透過しないため、細胞への毒性や分化への影響を低くすることが可能である一方、細胞外から凍結保護を行うということから開発は困難とされてきた。2009年に松村らが両性電解質高分子[*注4]による凍結保護作用を発表し[1]、その後、多くの細胞種で凍結保護効果が確認されてきた。また、急速に凍結することで細胞内外の水の結晶化を抑制するガラス化保存技術[*注5]にも両性電解質高分子が利用され、受精卵や胚[2]や軟骨細胞シート[3]、スフェロイド[*注6] [4]などの保存に成功した。また、高分子化合物による凍結保護物質の報告は世界中で近年になって非常に多く行われており、多くの分野での応用が期待されている。しかしながら、その具体的なメカニズムはわかっていない。
【研究成果と手法】
これまでDMSOなどの低分子による細胞膜透過性の凍結保護物質については、細胞内の水の結晶化を抑制することが主な機序として報告されてきている。しかし、高分子凍結保護剤の細胞外からの保護作用の機序は詳細にはわかっておらず、最近の論文では細胞外の氷の結晶(氷晶)の成長抑制作用と説明されている。確かに氷晶は物理的に細胞を破壊するため、その抑制が重要であることは間違いがないが、一方で、細胞内に大きな氷晶が形成されることは、細胞内小器官の破壊を伴う致命的なダメージを与えるとされているため、細胞内氷晶の形成が抑制されていることが考えられる。細胞内氷晶の形成については、一般的には顕微鏡などで観察されるが、凍結時の細胞内の現象を正確に捉えることが難しいため、はっきりしたことは分からない状況であった。
研究グループらは、両性電解質高分子溶液の凍結保護の分子メカニズムを調べるため、固体NMR[*注7]の手法を初めて応用し、凍結保護という複雑かつ多面的な現象の特徴を塩や水、高分子の運動と状態からの視点で解き明かすことに成功した。
両性電解質高分子であるカルボキシル基導入ポリリジン(PLL-(0.65) (図1))溶液、比較対象として、凍結保護効果の高いDMSO溶液、凍結保護効果のあまり見られないアルブミン(BSA)溶液、ポリエチレングリコール(PEG)溶液、保護効果のない生理的食塩水について、0℃から-41℃までの水分子および塩(イオン)の運動性を固体NMR測定により評価した。その結果、低温時の水の運動性がPLL-(0.65)溶液において他の溶液に比べ顕著に抑制され粘性が上昇することがわかった(図2)。凍結条件下では、この粘性の高いポリマー溶液が細胞の周辺を取り囲むことにより、細胞内への氷晶の侵入による細胞内氷晶形成を抑制していることが示唆される。また、PLL-(0.65)溶液中では高分子鎖にNaイオンがトラップされ、低温域でのNaイオンの運動性が低下していることも確認された(図3)。これにより、浸透圧に寄与するNaイオンの濃度がPLL(0.65)溶液において低下し、急激な脱水を抑制し、温和な条件でかつ十分に細胞内を脱水できる最適条件を達成していることが細胞内氷晶の形成の抑制を示唆する結果となった。これらの機序を図4に模式図として表す。低温時に高分子が塩や水を包含した会合体を形成し、それらの運動性が低下することで温和な条件でかつ十分に脱水が起こると共に、細胞外溶液の粘性の上昇に伴う細胞外氷晶の成長も抑えられ、結果的に細胞内氷晶の形成が抑制されることが細胞の凍結保護を可能としていることが考えられる。この機序は細胞内に浸透する既存の凍結保護剤と異なることから、新たな機序に基づく凍結保護剤の開発につながる研究成果である。
【今後の展開】
固体NMR測定により高分子や塩、水の分子運動の観点から細胞凍結保護高分子の新規機序について考察することが可能となった。この手法により効果の高い凍結保護剤の設計指針が得られることが期待される。また、細胞だけでなく、再生組織などの2次元3次元の生体組織などの効率的な保存法、保存剤の開発に役立つことが期待できる。
図1 本研究で使用した両性電解質高分子であるカルボキシル化ポリリジンの構造。PLL-(0.65)は、コハク酸付加部位(m)が65%であるものを示す。 |
図2 1H NMRの水のピーク幅の温度依存性。PLL-(0.65)に顕著な広幅化が見られ、低温での粘性の急上昇が確認された。 |
![]() 図3 a) 23Na NMRのピーク面積から、各溶液中の凍結下、氷と共存する溶液状態にあるNaイオンの量を評価した。凍結下のPLL-(0.65)溶液において、溶液として振舞うNaイオンの量が低下した。b)Naイオン量から系中のNaCl濃度を計算した結果。PLL-(0.65)溶液中のNaCl濃度は温度低下と共に速やかに上昇し、低温下で緩やかに下降する。これは速やかかつ適度な細胞の脱水による細胞内氷晶形成の抑制を示唆している。 |
![]() 図4 PLL-(0.65)溶液による細胞の凍結保護効果の模式図。低温凍結下、1) 高分子が高い粘性を持つ会合体(マトリックス)を形成することで、細胞外からの氷核の流入を阻止し、2) 塩や水をマトリクス内にトラップすることにより、凍結後の脱水を温和な条件で制御するという2つの効果で細胞内の氷晶形成を抑制している。また、マトリックス形成による粘度上昇は、氷晶が細胞膜を刺激する事による細胞内氷晶形成も抑制していることが示唆された。 |
【参考文献】
[1] Matsumura K, Hyon SH, Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30, 4842-4849 (2009)
[2] Kawasaki Y, Kohaya N, Shibao Y, Suyama A, Kageyama A, Fujiwara K, Kamoshita M, Matsumura K, Hyon S-H, Ito J, Kashiwazaki N. Carboxylated ε-poly-L-lysine, a cryoprotective agent, is an effective partner of ethylene glycol for the vitrification of embryos at various preimplantation stages. Cryobiology, 97, 245-249 (2020)
[3] Hayashi A, Maehara M, Uchikura A, Matsunari H, MatsumuraK, Hyon SH, Sato M, Nagashima H. Development of an efficient vitrification method for chondrocyte sheets for clinical application. Regenerative Therapy, 14, 215-221 (2020)
[4] Matsumura K, Hatakeyama S, Naka T, Ueda H, Rajan R, Tanaka D, Hyon SH. Molecular design of polyampholytes for vitrification-induced preservation of three-dimensional cell constructs without using liquid nitrogen. Biomacromolecules, 21, 3017-3025 (2020)
【用語解説】
注1 ジメチルスルホキシド(DMSO)
分子式C2H6SOの有機溶媒の一種。実験室レベルから工業的規模に至るまで広く溶媒として使用される他、10%程度の溶液は細胞の凍結保存として使用されている。
注2 ES細胞やiPS細胞
多能性幹細胞の一種。ES細胞は胚性幹細胞、iPS細胞は人工多能性幹細胞の略である。生体外にて、理論上ほぼすべての組織に分化する分化多能性を保ちつつ、ほぼ無限に増殖させることができるため、有力な万能細胞の一つとして再生医療への応用が期待されている。現在はDMSOを使用した保存液で保存されているが、DMSOの分化への影響が危惧される。
注3 分化
多細胞生物において、個々の細胞が構造機能的に変化すること。
注4 両性電解質高分子
一分子中にプラスとマイナスの電荷を共にもつ高分子化合物。
注5 ガラス化保存技術
受精卵などの保存によく用いられている超低温保存の一つ。凍結時においても氷の結晶を形成しにくい溶質濃度の高いガラス化液を用い、保存した細胞が氷による物理的傷害を受けにくい。
注6 スフェロイド
三次元的な細胞のコロニーで、再生医療の組織形成のビルディングブロックとして期待されている。
注7 固体NMR
固体NMRとは固体試料を観測対象とした核磁気共鳴 (NMR) 分光法で、方向依存的な異方性相互作用の存在のため共鳴線の線幅が広いのが特徴である。通常、共鳴線の先鋭化のため、試料を静磁場に対してマジック角(54.7°)傾けて、超高速で回転(MAS:Magic Angle Spinning)させて測定を行う。本研究では、温度制御装置を備え付けた固体MAS検出器により、プロトンとナトリウムの核磁気共鳴スペクトルを測定し、低温時の水やNaイオン、高分子の運動性について議論した。
【論文情報】
| 掲載誌 | Communications Materials(Springer Nature) |
| 論文題目 | Molecular mechanisms of cell cryopreservation with polyampholytes studied by solid-state NMR |
| 著者 | Kazuaki Matsumura, Fumiaki Hayashi, Toshio Nagashima, Robin Rajan,Suong-Hyu Hyon |
| 掲載日 | 2021年2月9日10時(英国時間)にオンライン版に掲載 |
| DOI | 10.1038/s43246-021-00118-1 |
令和3年2月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/02/post_588.html学生の森田さんが2020年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞
学生の森田 裕貴さん(博士前期課程2年、環境・エネルギー領域、金子研究室)が2020年度日本化学会北陸地区講演会と研究発表会において優秀ポスター賞を受賞しました。
日本化学会北陸地区講演会と研究発表会は、幅広い分野における化学を基軸として研究を展開する研究者らの学術交流として、毎年、秋に、金沢大学、福井大学、富山大学、本学のいずれかの大学にて開催されています。この学会は著名な研究者による特別講演のほか、ポスター発表があり、例年200~300名の研究者が参加しています。
このうち、ポスター発表では、特に優れた発表を行った学生に対しポスター賞が授与されます。
本年は、コロナ禍の影響でオンライン開催でしたが、ディスプレイ越しでも活発な研究ディスカッションが行われました。
■受賞年月日
令和2年11月26日
■発表題目
側鎖にクラウンエーテルを有するバイオベースポリイミドの合成
■発表者名
森田裕貴、高田健司、金子達雄
■研究概要
これまでに報告された微生物産生物質、4-アミノ桂皮酸を原料としたバイオベースポリイミドは非常に高い熱力学物性を示したが、側鎖への化学修飾による機能化が困難であった。本研究ではモノマーである4-アミノ桂皮酸光二量体への化学修飾を検討し、一例として側鎖にクラウンエーテルを導入したバイオベースポリイミドの合成および物性評価、機能化を行った。その結果、バイオベースポリイミド側鎖への化学修飾の反応条件を見出した。本研究の達成により、新規機能性材料としてのバイオベースポリイミドの応用範囲を拡大することが可能となった。
■受賞にあたって一言
この度は、2020年度北陸地区講演会と研究発表会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、厳格かつ熱心にご指導を頂きました金子達雄教授、高田健司特任助教にこの場をお借りして心より御礼を申し上げます。さらに、多くのご助言をいただきました研究室のメンバーおよびスタッフの方々に深く感謝いたします。

令和2年12月14日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/12/14-1.html学生の瀧本さんがマテリアルライフ学会第24回春季研究発表会において研究奨励賞を受賞
学生の瀧本 健さん(博士後期課程1年(発表時は本学博士前期課程2年)、物質化学領域・谷池研究室)がマテリアルライフ学会第24回春季研究発表会において研究奨励賞を受賞しました。
マテリアルライフ学会は、有機、無機、金属からなる素材およびそれらを加工して得られる各種材料と構成物・製品並びにバイオマテリアル、古文化財などの耐久性、寿命予測と制御についての科学および技術の進歩をはかり、学術、文化と産業の発展に資することを目的とした学会です。
研究奨励賞は、その中でも耐久性、寿命予測と制御についての科学および技術の進歩に資することを目的に、優れた発表を行った発表者に授与されるものです。
■受賞年月日
令和2年2月21日
■研究タイトル
マイクロプレート法と遺伝的アルゴリズムを用いたポリスチレンの光安定化
■発表者名
瀧本 健
■研究概要
高分子材料の長寿命化において、配合した安定化剤を材料に添加する手段が有効ですが、配合の最適化は光劣化試験のスループットと配合の組合せ爆発によって困難とされてきました。そこで本研究では、新規プロトコル(マイクロプレート法)を考案することで莫大なサンプル量の実験を並列・自動化し、遺伝的アルゴリズムと併用して配合探索を行うことでスループットの大幅な改善に成功しました。また、安定化剤の組み合わせ効果を解析することで相乗効果が高い組合せを含むことが配合性能において最も重要であることを明らかにしました。
■受賞にあたって一言
このような名誉ある賞をいただくことができ、大変嬉しく思います。本研究において熱心なご指導をいただきました谷池教授をはじめ、多くのご助言をいただきました研究室の皆様にこの場をお借りして心より御礼を申し上げます。
令和2年10月28日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/10/28-1.html北陸先端大を運営会場として国際学会「SSDM2020」をオンライン開催
9月27日(日)~9月30日(水)にかけて、2020 International Conference on Solid State Devices and Materials (SSDM2020)が北陸先端大を運営会場としてオンライン開催されました。
SSDMは、日本の半導体産業にも多大な貢献のある同分野におけるアジア地域最大の国際学会です。固体素子・材料の科学と技術を幅広くカバーしており、日本で開催されている国際会議の中で最も伝統のあるものの一つでもあります。
SSDM2020は、当初、北陸地区では初めてとなる富山県での開催を予定していましたが、新型コロナウィルスの影響により、オンラインでの実施に変更となりました。
今回、事前登録者だけでも700名を超える参加者が集まり、情報通信技術(ITC)分野や、太陽光発電・バッテリーなどのエネルギーイノベーション・ライフイノベーションの応用分野などのさまざまな分野から研究者や技術者が参加し、開催期間中340件を超える研究発表が行われました。
オンライン開催であったSSDM2020は、指揮・統括を行う拠点であるバックオフィスを、共催機関である北陸先端大に設置し、実行委員長である水田教授(環境・エネルギー領域)、赤堀准教授(応用物理学領域)らを中心に、北陸先端大及び金沢大学の教員、学生が一丸となり、最大で10セッションがパラレルで進行する、大規模な国際学会の運営にあたりました。
バックオフィスで実際に運営にあたった近隣大学の学生らは、通常の学会運営とは異なるトラブルに見舞われることもありましたが、他大学の教員や留学生から研究発表とは違った刺激を受け、積極的に運営に取組んでいるようでした。
また、富山大学、富山県立大学や川崎市の株式会社東芝にもサテライトオフィスを設置し、学会運営やトラブル等への対応を行いました。
次回のSSDM2021は、2021年9月6日から9日の日程で、札幌コンベンションセンター(北海道札幌市)で開催予定です。


バックオフィスで運営にあたる教員や学生の様子
令和2年10月2日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/10/02-2.html世界初 キヌアからブラッダー細胞形成遺伝子を発見

世界初 キヌアからブラッダー細胞形成遺伝子を発見
石川県立大学 森 正之准教授、今村 智弘特任講師、古賀 博則客員教授、高木 宏樹准教授、北陸先端科学技術大学院大学先端科学技術研究科、生命機能工学領域の大木 進野教授らは、(公財)岩手生物工学研究センターなどの機関と共同で、塩生植物キヌア(Chenopodium quinoa)からブラッター細胞の形成に関わる遺伝子を発見しました。 本研究成果は、「Communications Biology」で公開されました。
<ポイント>
- キヌアからブラッダー細胞形成に関わる新規WD40タンパク質をコードするREBC遺伝子を発見
- REBC遺伝子は、ブラッダー細胞形成のみならず葉緑体形成にも関与していることを発見
- ブラッダー細胞の茎頂保護機能を発見
<発表論文>
| 論文タイトル | A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa |
| 論文著者 | Tomohiro Imamura, Yasuo Yasui, Hironori Koga, Hiroki Takagi, Akira Abe, Kanako Nishizawa, Nobuyuki Mizuno, Shinya Ohki, Hiroharu Mizukoshi, and Masashi Mori |
| 雑誌 | Communications Biology (DOI: 10.1038/s42003-020-01249-w) |
<研究の背景>
国連大学の報告によると、世界の灌漑地の約1/5が塩害にさらされています。その被害は、年間およそ273億USドルの経済損失を引き起していることが報告されており、今後さらに広がることが予想されています。一方、世界の人口は、2050年までに97億人に達することが予想されております。そのため、この人口の爆発的な増加に耐えうる食糧生産は、早急に解決すべき大きな課題となっております。しかし、主要穀物である小麦やイネなどは、塩に弱いで植物であり、これらの主要穀物に対する塩害は、食糧生産において大きな問題となります。キヌアは、非常に高い耐乾燥性と耐塩性を併せ持ち、他の植物では生育困難な厳しい環境で生育できる塩生擬似穀物です。さらに、キヌアの種子は、必須アミノ酸・ミネラル・植物繊維を豊富に含み高い栄養価を持つことから、国際連合食糧農業機関(FAO)では、世界の食糧問題解決の切り札になり得るスーパーフードとして注目されています。
キヌアを含めたアカザ属植物は、植物体の表面に球状の表皮細胞(ブラッダー細胞)を形成します(図1)。ブラッダー細胞は、通常細胞の1000倍以上の大きさがあり、細胞内に高濃度の塩を蓄積することが知られています。このブラッダー細胞の性質は、キヌアの高い塩耐性の一因と考えられています。独自の形態と機能を持つブラッダー細胞ですが、その形成メカニズムは全く分かっていませんでした。
本研究では、塩生植物のキヌアに形成されるブラッダー細胞の形成機構を明らかにするために、ブラッダー細胞の形成に関わる遺伝子の単離を試みました。その結果、EMS処理の変異原処理により、ブラッダー細胞が著しく減少したrebc変異体を獲得し、次世代シークエンサーを用いた解析により、ブラッダー細胞形成に関わるrebc変異体の原因遺伝子(REBC)の単離に成功しました。その単離したREBC遺伝子は、ブラッダー細胞を形成しない植物には存在しないことが明らかとなりました。このことから、ブラッダー細胞の形成機構は、同じ植物の表皮細胞であるトライコームの形成機構とは異なることが示唆されました。さらに、rebc変異体はブラッダー細胞の形成のみならず葉緑体の形成にも影響を及ぼしていることが明らかとなりました。また、rebc変異体を用いた環境ストレス実験により、ブラッダー細胞は、塩を蓄積するだけでなく、その細胞を密集させることにより茎頂などの組織を環境ストレスから保護していることが明らかとなりました。
<研究の内容>
1.ブラッダー細胞が減少した変異体の作出
ブラッター細胞の形成に関わる遺伝子を単離するために、約8000粒のキヌア種子ついて、EMSを用いた変異原処理を実施しました。その結果、大部分のブラッダー細胞が欠失した変異体を得ることができました(図2)。この変異体を reduced epidermal bladder cells (REBC)変異体と命名しました。rebc変異体の分離比を確認しましたところ、野生型とrebc変異の割合が3:1に分離しました。興味深いことに、キヌアは異質4倍体の植物にもかかわらず、rebcの形質は、一遺伝子支配の劣勢形質であることがわかりました。
2.環境ストレス試験
キヌアは、ブラッダー細胞に塩を高濃度に蓄積することにより、高塩環境においても正常に生育できることが知られています。そこで、大部分のブラッダーが欠失したrebc変異体について、塩ストレス実験を実施しました。その結果、rebc変異体は、野生型に比べて高濃度の塩条件において生育が阻害されていることがわかりました。さらに、別の環境ストレスとして、茎頂に風を当て続けたところ、野生型では問題なく生育したのですが、rebc変異体では風によって茎頂にダメージを受けていることが明らかとなりました(図3)。これらの実験からブラッダー細胞は、塩を蓄積する機能のほかに、茎頂などの特定の組織に密集して存在することにより、風などの環境ストレスから組織を保護していることが新たに明らかとなりました。
3.rebc変異体の原因遺伝子の特定
rebc変異体の原因遺伝子を明らかにするために、次世代シークエンサーを用いたin silico subtraction 法を利用して変異箇所の特定を試みました。その結果、rebc変異体は、新規なWD40ドメインタンパク質遺伝子の変異が原因であることを明らかにし、その遺伝子をREDUCED EPIDERMAL BLADDER CELLS (REBC)遺伝子と名付けました(図4)。他植物の表皮細胞であるトライコームでは、その形成に関与する遺伝子が同定されており、その中でWD40ドメインタンパク質としてTTG1遺伝子が重要な役割をしています。REBCとTTG1を比較したところ、これらのタンパク質は、別の機能を持つタンパク質であることが示唆されました(図5)。またトライコームを形成する植物体には、REBC遺伝子のオルソログが存在しませんでした。これらの結果より、ブラッダー細胞の形成は、トライコームとは異なる機構の存在が示唆されました。
4.rebc変異体における葉緑体形成
rebc変異体について、網羅的な発現解析を実施したところ、発現が変動した遺伝子の多くが葉緑体局在タンパク質をコードする遺伝子でありました。さらに、クロロフィル含量を測定したところ、rebc変異体のクロロフィル含量が有意に低下していることが明らかとなりました。そこで、rebc変異体の葉緑体の形態について、電子顕微鏡を用いて観察しました。その結果、rebc変異体の葉緑体は、内部構造の約1/3が欠失していることが明らかとなりました(図6)。さらに、ブラッダー細胞の葉緑体を観察した結果、rebc変異体のブラッダー細胞の中の葉緑体は、野生型に比べクロロフィルの自家蛍光の強度が低下し、さらにブラッダー細胞あたりの葉緑体数が減少していることが明らかとなりました。以上の結果より、rebc変異体は、ブラッダー細胞の形成のみならず、葉緑体の形成にも影響を及ぼしていることが明らかになりました。
<今後の展望>
本研究成果によって、キヌアのブラッダー細胞形成に関する分子メカニズムの一端を明らかにすることができました。今後、ブラッダー細胞の形成に関する分子メカニズムの全容が明らかになることが期待できます。さらに、ブラッダー細胞形成の知見を利用することによって、キヌアの塩耐性機構を組み入れた新たなコンセプトの環境ストレス耐性作物を作出することが期待できます。

図1 キヌアのブラッダー細胞 (a)キヌア植物体、(b)キヌアの葉(裏側)、(c)キヌアの葉(拡大)、
(d-f) キヌアブラッダー細胞 BC:ブラッダー細胞、SC: 柄細胞

図2 rebc変異体について (a-c)キヌア芽生え (d-f)キヌア芽生え(茎頂付近)
(a, d)野生型、(b, e)rebc1変異体、(c, f)rebc2変異体

図3 風ストレス処理による影響 (a)野生型、(b)rebc1変異体、(c)rebc2変異体
・rebc変異体は風ストレスによって、茎頂が枯死している。

図4 REBC遺伝子の単離 (a) REBC遺伝子の概略図 赤矢印はrebc変異体の変異箇所
(b)rebc1×rebc2交配後代(F1)の解析
・rebc1×rebc2交配個体も、rebc変異の形質を示したことから、REBCが原因遺伝子であることが明らかとなった。

図5 (a) REBCとTTG1との比較(系統樹解析)、(b) アラビドプシスttg1変異体を用いた相補実験
上段:ベクターコントロール、中段:REBC過剰発現体、下段:AtTTG1過剰発現体
・REBCタンパク質は、TTG1タンパク質とは別のグループに属し、TTG1の機能を相補することができない。

図6 rebc変異体の葉緑体について (a-c) 走査型電子顕微鏡像 (b-f)透過型電子顕微鏡像
(a, d)野生型、(b, e)rebc1変異体、(c, f)rebc2変異体
・rebc変異体では、葉緑体の膜構造1/3が欠失している。
<用語説明>
- キヌア
ヒユ科アカザ亜科アカザ属の植物。南米アンデス原産の穀物で必須アミノ酸・ミネラル・植物繊維を豊富に含み高い栄養価を持ち、さらに、環境適応能力が高く、非常に高い耐乾燥性と耐塩性を合わせ持ち、国際連合食糧農業機関(FAO)は、世界の食糧問題解決の切り札になり得る作物として注目している。近年、我々のグループとその他のグループによってキヌアゲノムが解読され、キヌアが持つ環境ストレス耐性および高栄養価についての遺伝子研究が進められている。 - 擬似穀物
米や麦などのイネ科(禾穀類)や、大豆や小豆などのマメ科(菽穀類)ではないが、見た目がイネ科の穀物に類似した食べられる種子を形成する植物(ソバ、キヌア、アマランサスなど)を指す。 - in silico subtraction法
次世代シークエンサーのシークエンスデータを用いて、サンプル間の塩基配列の違い(多型、変異箇所)を特定する方法。異質倍数体の植物(キヌアは異質4倍体)でも検出が可能。本研究では、親から分離した後代について、野生型形質を示す個体群と、rebc変異形質を示す個体群を、それぞれまとめてゲノムを抽出し、次世代シークエンサーによって、それぞれの形質を示す個体群のシークエンスリードを獲得。その後、二形質間のシークエンスリードを比較することにより、形質を支配する遺伝子を特定した。
令和2年9月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/09/17-1.htmlイノベーション・ジャパン2020~大学見本市Onlineに本学が出展
9月28日(月)~11月30日(月)の期間、国内最大規模の産学マッチングイベントである「イノベーション・ジャパン2020~大学見本市Online」がオンライン開催されます。
本学からは大学等シーズ展示に以下の3件を出展します。
| 一般公開期間 | 2020年9月28日(月) ~11月30日(月) |
| 公式サイト | https://ij2020online.jst.go.jp/ ※閲覧無料・参加登録あり |
| 大学等 シーズ展示 |
生命機能工学領域 藤本 健造 教授 「高速遺伝子解析に向けた光化学的DNA/RNA操作法の開発」 【番 号】176 【出展分野】ライフサイエンス |
| 知能ロボティクス領域 HO ANH VAN 准教授 「周辺環境との接触を許容するドローン用変形可能なプロペラ」 【番 号】340 【出展分野】装置・デバイス |
|
| 環境・エネルギー領域 大平 圭介 教授 「シリコン系次世代薄膜形成技術および瞬間熱処理技術」 【番 号】381 【出展分野】低炭素・エネルギー |
詳細はこちらをご覧ください。
・イノベーション・ジャパン2020公式サイト
・イノベーション・ジャパン2020出展者一覧
環境・エネルギー領域の金子研究室学生のKulisara Budpudさんらの論文がSmall誌 (WILEY) の表紙に採択
環境・エネルギー領域の金子研究室博士後期課程学生ブッドプッド クリサラさん、桶葭 興資准教授、岡島 麻衣子研究員、金子 達雄教授らの「多糖膜が超らせん構造によって湿度変化に瞬間応答-ナノスケールから再組織化-」に係る論文がSmall誌 (WILEY) の表紙に採択されました。
■掲載誌
Small, volume 16, issue 29 (2020) 掲載日:2020年7月23日
■著者
Kulisara Budpud, Kosuke Okeyoshi*, Maiko K Okajima, Tatsuo Kaneko*
■論文タイトル
Vapor‐Sensitive Materials from Polysaccharide Fibers with Self‐Assembling Twisted Microstructures
■論文概要
本研究では、シアノバクテリア由来の多糖サクランを用いて、水中で自ら形成するマイクロファイバーが乾燥時に2次元蛇行構造、3次元らせん構造など高秩序化することを見出すとともに、さらにこの構造を利用して、水蒸気をミリ秒レベルで瞬間感知して屈曲運動を示すフィルムの作製に成功しました。天然由来の代表物質でもある多糖をナノメートルスケールから再組織化材料としたこととしても意義深く、光合成産物の多糖を先端材料化する試みは、持続可能な社会の構築のための重要なステップとなります。
論文詳細:
https://doi.org/10.1002/smll.202001993
https://doi.org/10.1002/smll.202070159
プレスリリース本文:
https://www.jaist.ac.jp/whatsnew/press/2020/06/11-1.html

令和2年7月29日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/07/29_5.html物質化学領域の都准教授らの論文がAdvanced Intelligent Systems 誌の表紙に採択
物質化学領域の都 英次郎准教授、谷池 俊明准教授、西村 俊准教授らの「昆虫機能を模倣したミリメータースケールのロボット(ミリボット)」に係る論文が、Advanced Intelligent Systems誌の表紙に採択されました。なお、本研究成果は日本学術振興会科研費[基盤研究A、国際共同研究加速基金(国際共同研究強化)]の支援のもと行われたものです。
■掲載誌
Advanced Intelligent Systems
■著者
Sheethal Reghu, Hui You, Kalaivani Seenivasan, Shun Nishimura, Toshiaki Taniike, Eijiro Miyako*
■論文タイトル
Design and control of bioinspired millibots
■論文概要
本研究は、マグネタイト、ゼオライト イミダゾリウム フレームワーク-8(ZIF-8)、ポリテトラフルオロエチレン(PTFE)から成る機能性ナノコンポジットを開発し、光や磁場といった外部刺激によって機能制御可能なミリメータースケールのロボット(ミリボット)を作製しました。本ミリボットは、昆虫の様々な動きや機能からインスピレーションを得ており、例えば、アメンボのように水面上をスイスイと動くなど、多彩な性能を発揮します。
論文詳細:https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202000059

令和2年7月22日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/07/22-1.html物質化学領域の都准教授らの論文がAngewandte Chemie International Edition誌の表紙に採択
物質化学領域の都 英次郎准教授らの論文がAngewandte Chemie International Edition誌の表紙に採択されました。なお、本研究成果は日本学術振興会科研費[基盤研究A、基盤研究B、国際共同研究加速基金(国際共同研究強化)]、フランス国立研究機構、グラフェンフラッグシップ、スペイン財務省、バレンシア州自治政府の支援のもと、フランス国立科学研究センターと行われた共同研究によるものです。

■掲載誌
Angewandte Chemie International Edition
■著者
Matteo Andrea Lucherelli, Yue Yu, Giacomo Reina, Gonzalo Abellán, Eijiro Miyako*, Alberto Bianco*
■論文タイトル
Rational chemical multifunctionalization of graphene interface enhances targeting cancer therapy
■論文概要
本研究は、三種類の機能性分子(近赤外蛍光プローブ、抗ガン剤、腫瘍マーカー認識分子)をグラフェン表面上に一度に化学修飾できること、そしてその合理的な分子設計に基づいた効果的なガン分子標的治療技術への応用の可能性を示した。なお、本研究成果は、JAISTホームページからプレスリリースしている。
論文詳細:
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201916112
表紙詳細:
https://doi.org/10.1002/anie.202007535
プレスリリース:
https://www.jaist.ac.jp/whatsnew/press/2020/04/23-1.html
令和2年6月25日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/06/25-1.html物質化学領域の都准教授らの研究成果がAdvanced Science Newsで紹介
物質化学領域の都 英次郎准教授、谷池 俊明准教授、西村 俊准教授らの「昆虫機能を模倣したミリメータースケールのロボット(ミリボット)」に係る研究成果が、Advanced Intelligent Systems 誌(Wiley社)に掲載され、Advanced Science Newsにてハイライトされました。なお、本研究成果は日本学術振興会科研費[基盤研究A、国際共同研究加速基金(国際共同研究強化)]の支援のもと行われたものです。
■掲載誌
Advanced Intelligent Systems
■著者
Sheethal Reghu, Hui You, Kalaivani Seenivasan, Shun Nishimura, Toshiaki Taniike, Eijiro Miyako*
■論文タイトル
Design and control of bioinspired millibots
■論文概要
本研究は、マグネタイト、ゼオライト イミダゾリウム フレームワーク-8(ZIF-8)、ポリテトラフルオロエチレン(PTFE)から成る機能性ナノコンポジットを開発し、光や磁場といった外部刺激によって機能制御可能なミリメータースケールのロボット(ミリボット)を作製しました。本ミリボットは、昆虫の様々な動きや機能からインスピレーションを得ており、例えば、アメンボのように水面上をスイスイと動くなど、多彩な性能を発揮します。
論文詳細:
https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202000059
Advanced Science News詳細:
https://www.advancedsciencenews.com/millibots-act-as-artificial-insects/
令和2年6月12日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/06/12_3.html学生の米澤さんの論文がWiley社刊行Surface and Interface Analysis誌でTOP DOWNLOADED PAPER(2018-2019)の1つに選出
学生の米澤 隆宏さん(2020年3月博士後期課程修了、応用物理学領域、高村研究室)による、国際学術誌Surface and Interface Analysisに掲載された論文 "Atomistic study of GaSe/Ge(111) interface formed through van der Waals epitaxy" が、2018年1月~2019年12月の間に同誌に掲載された論文の中で、オンライン掲載後12ヶ月のダウンロード数において上位10%を記録したため、掲載直後に最も多く読まれた、immediate impactのある論文の1つとして認められました。
■選出された論文のタイトル
Atomistic study of GaSe/Ge(111) interface formed through van der Waals epitaxy
■著者
Takahiro Yonezawa, Tatsuya Murakami, Koichi Higashimine, Antoine Fleurence, Yoshifumi Oshima, and Yukiko Yamada-Takamura
■対象となった研究の内容
光デバイスや電子デバイス、スピントロニクスデバイス等への応用が期待される半導体層状物質のGaSeは従来、Se原子が三角柱型に配置された単位層構造のみを有すると考えられてきました。それに対して本研究では、分子線エピタキシー法によるGe基板上へのGaSe薄膜成長時に、従来報告例のない反三角柱型のSe原子配置をもつ単位層が基板との界面に局所形成されることを断面走査透過電子顕微鏡観察により明らかにしました。
■選出にあたっての一言
本研究の遂行にあたり熱心にご指導くださった応用物理学領域の高村由起子先生、大島義文先生、アントワーヌ・フロランス先生に心より感謝いたします。また、多くの技術的なご指導をしてくださったナノマテリアルテクノロジーセンターの村上達也様、東嶺孝一様にも深く感謝いたします。今後、この新たなGaSe相の生成機構や通常のGaSe相との構造の違いに起因した特異物性が解明されることにより、本成果がGaSe薄膜の、ひいては層状物質薄膜全体の成長技術の進展と応用可能性の拡大につながることを期待します。

令和2年5月25日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/05/25-1.html"三種の神器"を備えた多機能性グラフェンの開発 -ガン分子標的治療技術を目指して-

国立大学法人北陸先端科学技術大学院大学
フランス国立科学研究センター
"三種の神器"を備えた多機能性グラフェンの開発
-ガン分子標的治療技術を目指して-
ポイント
- 三種類の機能性分子(近赤外蛍光プローブ、抗ガン剤、腫瘍マーカー認識分子)をグラフェン表面上に一度に化学修飾することに成功
- 多機能性グラフェンの合理的な分子設計によって選択的かつ効果的なガン細胞死を誘導することに成功
|
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)、先端科学技術研究科物質化学領域の都 英次郎准教授らはフランス国立科学研究センター(所長、アントワーヌ・プチ、フランス・パリ)のアルベルト・ビアンコ博士ら(同センター、細胞分子生物学研究所、フランス・ストラスブール)と共同で、多機能性グラフェン*1を活用した新しいガン分子標的治療技術の開発に成功した(図1)。
本研究は、グラフェンに様々な機能性分子を一度に化学修飾できること、そしてその合理的な分子設計に基づいた効果的なガン分子標的治療技術への応用の可能性を示した。今後は、この技術を応用して、マウスやラット等の実験動物の体内における抗ガン作用を詳細に調べていく予定である。 本成果は、2020年4月21日にWiley-VCH発行「Angewandte Chemie International Edition」のオンライン版に掲載された。なお、本研究は、日本学術振興会科研費[基盤研究A、基盤研究B、国際共同研究加速基金(国際共同研究強化)]、フランス国立研究機構、グラフェンフラッグシップ、スペイン財務省、バレンシア州自治政府の支援を受けて行われた。 |
図1. 多機能性グラフェンの分子構造
【論文情報】
| 掲載誌 | Angewandte Chemie International Edition (Wiley-VCH) |
| 論文題目 | Rational chemical multifunctionalization of graphene interface enhances targeting cancer therapy |
| 著者 | Matteo Andrea Lucherelli, Yue Yu, Giacomo Reina, Gonzalo Abellán, Eijiro Miyako*, Alberto Bianco* |
| 掲載日 | 2020年4月21日にオンライン版に掲載 |
| DOI | 10.1002/anie.201916112 |
【用語説明】
*1 グラフェン
炭素原子だけで構成される二次元シート状のナノ炭素材料。厚さが炭素一個分に相当し、炭素原子が蜂の巣のような六角形に連結した構造を持つ。優れた電気伝導性、熱伝導性、機械的強度、化学的安定性などを持っており、幅広い分野での応用が期待されている。
*2 インドシアニングリーン(ICG)
医療診断で使用されるシアニン色素の一種である。生体透過性の高い近赤外波長領域の光が利用できるため生体深部の診断や治療に有用と考えられている。
*3 葉酸
葉酸はビタミンB群の一種。ガンマーカー認識素子として葉酸受容体を標的にしたドラッグデリバリーシステムが開発され、ガンの診断や治療に応用されつつある。
*4 ドキソルビシン(Dox)
抗ガン剤の一種である。腫瘍細胞の核内の遺伝子に結合することで、DNAやRNAを合成する酵素の働きを阻害することで抗腫瘍効果を示す。
令和2年4月23日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2020/04/23-1.html宮竹小学校の児童が来学 -本学がより身近になりました-
2月4日(火)、能美市立宮竹小学校の3年生24名がJAISTギャラリーや附属図書館の見学を行いました。実際に触って解いて遊ぶことができるパズルの数々や本棚に並ぶ多くの図書に興味津々な様子でした。
また、2月18日(火)に同校の4年生16名が理科特別授業を受けました。
特別授業では、ナノマテリアルテクノロジーセンターの赤堀准教授(応用物理学領域)及び木村技術専門職員が講師となり、液体窒素を用いた様々な科学実験を行いました。
液体窒素によって、花やスーパーボール、乾電池などの身近な物が化学反応を起こす光景に、子供たちは目を輝かせて見入っていました。
今回の企画は、科学技術の世界に触れるまたとない機会となりました。

3年生がパズルを体験(JAISTギャラリー)

液体窒素を用いた科学実験を行う4年生
令和2年2月20日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2020/02/20-1.html物質化学領域の松見教授がFiMPART2019においてPadmashri Dr. Baldev Raj FiMPART Distinguished Researcher Awardを受賞
2019年12月15日~18日に、インドのアーメダバードで開催されたFiMPART (Frontier in Materials, Processing, Application, Research and Technology)2019において、松見 紀佳教授(物質化学領域)がPadmashri Dr. Baldev Raj FiMPART Distinguished Researcher Awardを受賞しました。
FiMPARTは、材料研究の様々な分野について議論する場を提供し、それらの分野における技術革新を目的に開催されます。FiMPART2019は、2015年のハイデラバード(インド)、2017年のボルドー(フランス)に続いて3回目の開催となり、アーメダバード市長の開会挨拶のもと、百数十名が参加しました。
今回、インドの物理学者で一昨年逝去し、インド首相が追悼の意を表したPadmashri Dr. Baldev Rajの名を付した賞が設けられ、運営委員会メンバーからの6名の候補者の推薦をもとに協議が行われ、受賞者が選出されました。
■受賞年月日
令和元年12月17日
■受賞にあたっての一言
この度、このような賞を頂き大変光栄と存じます。近年の研究成果はこれまでに本研究室に関わったスタッフや学生諸氏の貢献が大きく、この場を借りて御礼申し上げます。また、JST未来社会創造事業による研究助成にも併せて感謝の意を表します。今後さらに良い成果を生み出せるようチームとして努力を続ける所存です。

令和2年1月10日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2020/01/10-1.html知能ロボティクス領域のHO准教授が2019年IEEE名古屋支部若手奨励賞を受賞
知能ロボティクス領域のHO, Anh Van准教授が2019年IEEE名古屋支部若手奨励賞を受賞しました。
IEEE (Institute of Electrical and Electronics Engineers)は、アメリカ合衆国に本部を置く工学を専門とする世界最大の学会であり、現在160ヵ国以上に、40万人を超える会員がいます。 IEEEには約300の支部があり、IEEE名古屋支部はその一つで、東海地区(愛知、岐阜、三重、静岡)および北陸地区(福井、石川、富山)に在住する IEEE 会員によって構成され、現在約1,400名の会員がいます。
IEEE名古屋支部若手奨励賞(IEEE Nagoya Section Young Researcher Award)は、IEEE名古屋支部所属の35歳以下の若手支部会員を対象として、IEEE発行の雑誌に採録された実績やIEEEの活動に貢献した業績などを評価し、授与されるものです。
■受賞年月日
令和元年12月14日
■受賞にあたっての一言
この度、IEEE名古屋支部若手奨励賞を受賞し、大変光栄に思います。日頃から、研究に協力いただいているSoft Haptics研究室のメンバーやその他関係者に感謝を申し上げます。

令和元年12月24日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/12/24-1.html学生の熊倉さんが2019年度第68回高分子学会北陸支部研究発表会において優秀研究賞を受賞
学生の熊倉 拓哉さん (博士前期課程 2 年、環境・エネルギー領域、金子達雄研究室) が2019年度第68回高分子学会北陸支部研究発表会において優秀研究賞を受賞しました。
高分子学会北陸支部では、北陸地域を中心に幅広い分野における高分子科学を基軸として研究を展開する研究者・学生らの学術交流として、毎年、研究発表会を開催しています。
優秀研究賞は、高分子学会北陸支部研究発表会の「高分子化学部門」と「高分子構造・高分子物理部門」、「高分子機能部門」のそれぞれにおいて、優秀な研究発表を行った学生に授与されます。
今回、第68回高分子学会北陸支部研究発表会は、11月30日~12月1日にかけて石川県金沢市で開催されました。
■受賞年月日
令和元年11月30日
■発表者名
熊倉拓哉、高田健司、金子達雄
■発表題目
2,5-ビス(アミノメチル)フランを用いたバイオベースポリウレアの合成と熱応答性の評価
■研究概要
本研究では、実際に微生物生産されたバイオ由来 2,5-ビス(アミノメチル)フランを原料として、熱により自己修復性を示すポリウレアゲルの合成法を確立した。主鎖に反応性を有するフランが配置されたポリウレアは、ビスマレイミド類と共存させることで Diels-Alder 反応を起こしゲル化する。このゲルは加熱することで溶融し、冷却することで固化する熱可塑的な挙動を示すことを明らかにした。さらに、ゲルを切断した後、切断面を張り合わせ加温することで接着するという自己修復能力も見出した。以上の成果は、新たなバイオベースポリマー材料を開発しただけでなく、高機能樹脂への展開も可能であるなど、バイオベースポリマーの汎用性を拡大するものである。
■受賞にあたって一言
この度は、第68回高分子学会北陸支部研究発表会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている金子達雄教授、桶葭興資講師、高田健司特任助教、Kumar Amit特任助教にこの場をお借りして心より御礼を申し上げます。さらに、多くのご助言をいただきました研究室のメンバー、およびバイオモノマー原料を提供していただいた株式会社日本触媒さまに深く感謝いたします。

令和元年12月13日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2019/12/13-1.html


