研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。パターン形成:分割現象における「対称性の破れ」を実証

![]() ![]() |
北陸先端科学技術大学院大学 科学技術振興機構(JST) |
パターン形成:分割現象における「対称性の破れ」を実証
【ポイント】
- 水の蒸発によって現れるパターン形成「界面分割現象」の新たな特徴を発見
- ポリマー分散液の蒸発界面が複数に分割するとき、「対称性の破れ」が現れることを実証
- 生体組織など自然界に見られる非対称なパターン形成の理解に有用
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域のグエン チキムロク大学院生(博士後期課程)、桶葭興資准教授らは、ポリマーが水に分散した粘性流体から現れる散逸構造[用語解説1]「界面分割現象」において、対称性の破れ[用語解説2]を実証した。これまで、界面[用語解説3]で起こる幾何学変形が、時間とともにどう進んでいくかは、不明な点が多かった。今回、明確な境界条件のもと、確率統計を通した解析を進めた結果、分割時に現れる核の位置に、空間的な「対称性の破れ」が生じることが明らかになった。これは、生体組織など自然界に見られる非対称なパターン形成の理解に有用である。 |
【研究概要】
自然界には様々な幾何学パターンがあり、例えば雪の結晶の形は、気温と水蒸気の量で多様に変化する。また、乾燥環境は水の蒸発を引き起こし、生物であればその成長過程で非対称なパターンをつくる。これまで、この幾何学性や非対称性について、数理的な解釈がなされてきたものの、物理化学的実験に基づいた再現はなされてこなかった。一方、桶葭准教授らの研究グループはこれまでに、ポリマー水分散系の蒸発界面に着目し、散逸構造「界面分割現象」を報告してきた (※1)。これは、ポリマー水溶液などの粘性流体を明確な境界のある有限空間から乾燥環境下におくと、一つの蒸発界面が複数の界面に分割される幾何学化現象である。ここで、空間軸の一つを1ミリメートル程度の隙間にすることで毛管現象[用語解説4]の物理条件が制御された空間となる。さらに、一定温度下で水の蒸発を一方向になるよう設定すると、蒸発界面直下の濃密なポリマーの密度がゆらぎ、複数の特異的位置でポリマーが析出して界面分割する。具体的には、多糖[用語解説5]の水溶液を乾燥環境下におくと、まるで界面から芽が出るようにセンチメートル単位で多糖が析出し界面が複数に分割される。ここでは、ミクロ構造の秩序化と同時に、マクロなパターンが現れることが分かっていた。しかし、非平衡で開放的な蒸発界面から引き起こされる実際の分割現象は、核形成位置の平均的情報は得られるものの、その不確定さのため複数の核形成メカニズムについては未解明な特徴が多かった。
※1. https://www.jaist.ac.jp/whatsnew/press/2023/09/22-1.html
図. 界面分割現象における「対称性の破れ」: A. 空間軸の一つとしてセル幅を大きくしていくと、分割現象の特徴が現れる概念図。界面がゆらぎ、対称性が破れ、そして水中に分散していたポリマーが析出する核を非同期に形成する。B. 同一条件で得られる異なる分割(二分割、もしくは三分割)と、セル幅に対する核形成位置のデータ。C. 対称性の破れを加味した分岐モデル。核1と核2とは、タイミングがずれて発生する(時間的に同期していない)。 |
そこで今回、ポリマー分散液の一つの蒸発界面が、二つ、もしくは三つに分割される空間条件に焦点をあて、その核形成位置を詳細に検討した(図A)。確率統計論を通した界面科学的な解析から、それぞれの分割数に対して、「対称性の破れ」と「非同期性」が現れ、相互に関係し合う特徴であることが分かった。核の位置については平均化による統計評価ではなく、結果に対する場合分けを通し、特徴的な「ずれ」を評価した(図B)。すると、分割点の位置には偏りがあり、セル幅に対して均等に半分、もしくは均等に三分の一に分割するわけではない、という基本原理が明らかになった。実際、二分割される場合、核はセル幅の中心ではなく、中心からずれた位置に形成される傾向となった。この「ずれ」は、セル幅を少しずつ大きくすると顕著に現れ、三分割される場合、2番目の核形成が起こるタイミングや位置に大きく影響し、非同期性として現れた。この「対称性の破れ」と「非同期性」は、時間発展の現象理解に重要である(図C)。
また、この核間隔は、ポリマー水溶液の液相と空気の界面における毛管長が影響する。今回の実証実験では、粘性流体として多糖キトサン[用語解説6] の水分散系を用いており、5~8ミリメートル程度の間隔であった。これまでにいくつかの多糖でも分割現象は実証されており、研究グループは現在、様々な化学種・物質群への拡張や現象の特徴的メカニズムの解明を進めている。これらを通して、自然界にも通ずるパターン形成の普遍的理解が期待される。
本成果は、2025年6月4日に科学雑誌「Advanced Science」誌(WILEY社)のオンライン版で公開された。なお、本研究は、国立研究開発法人科学技術振興機構(JST) 創発的研究支援事業(JPMJFR201G)、日本学術振興会科研費 基盤研究B(JP23K21136)、日本学術振興会科研費 新学術領域研究(JP22H04532)、および公益財団法人旭硝子財団 若手継続グラントの支援のもと行われた。
【今後の展開】
生物を含め自然界には多様な散逸構造が在り、対称性の破れを明確に扱うことは重要である。パターン形成に関する歴史的研究にはチューリングパターン[用語解説7]などがあり、ソフトマテリアルを題材とした研究例も多い。これは、生物における自己組織化の理解や実空間におけるマテリアル設計に重要なテーマと認識されているためでもある。今回のような実検証を通じたパターン形成の理解が進めば、今後、高分子科学、コロイド科学、界面科学、材料科学、流体力学、非平衡科学、生命科学などの分野への進展に留まらない。実時空間と仮想時空間を通した数理科学、シミュレーション、データサイエンスなどとの融合によって、パターン形成の理解と材料設計に有用と期待される。
【論文情報】
掲載誌 | Advanced Science (WILEY) |
題目 | Symmetry breaking in meniscus splitting: Effects of boundary conditions and polymeric membrane growth |
著者 | Thi Kim Loc Nguyen, Taisuke Hatta, Koji Ogura, Yoshiya Tonomura, Kosuke Okeyoshi* |
DOI | 10.1002/advs.202503807 |
掲載日 | 2025年6月4日 |
【用語解説】
令和7年6月4日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/06/04-1.html次世代プロトン電池へ期待 ―多孔質MXene(マキシン)フィルムが高容量・高速充電を実現―

次世代プロトン電池へ期待
―多孔質MXene(マキシン)フィルムが高容量・高速充電を実現―
ポイント
- 次世代電池「プロトン電池」の鍵となる多孔質MXene (マキシン)フィルムを開発
- 素材の穴の量(細孔密度)を調整することで、従来を大きく上回る電池容量と充電性能を実現
- 長寿命でエコな電池づくりに前進、持続可能なエネルギー社会に貢献
北陸先端科学技術大学院大学 物質化学フロンティア研究領域のLinh Chi T. Cao大学院生(博士後期課程)、青木健太郎助教、長尾祐樹教授らは、タイ・タマサート大学シリントン国際工学部(SIIT)およびタイ・国立電子コンピューター技術研究センター (NECTEC)と共同で、再生可能エネルギーの普及や電気自動車の進化に伴い需要が高まる高性能エネルギー貯蔵デバイスの実現に向け、次世代型プロトン電池*1の鍵となる多孔質MXene*2,3アノード(陽極)の開発に成功しました。 本研究で開発された多孔質MXeneフィルムは、MXeneを用いた先行研究の中で最高の性能を発揮し、高容量と超高速充電を両立できることが示されました。この成果は、環境負荷の低い、持続可能な電池技術の発展に大きく貢献すると期待されます。 |
【背景】
現代社会では、電気自動車の普及や携帯端末の進化に伴い、効率の良いエネルギー貯蔵システムの重要性が高まっています。長く市場を牽引してきたリチウムイオン電池は、リチウム資源の限界、環境への影響、安全性といった課題を抱えており、資源の乏しい日本が持続可能な発展を遂げるためには、多様なエネルギー資源の活用と高効率な変換技術の確立が不可欠です。
そこで注目されているのが、プロトンと呼ばれる水素原子(H+)を電荷キャリアとして利用するプロトン電池(図1)です。プロトン電池は、水素イオンを使って電気をやりとりする電池で、材料が豊富でエコ、かつ素早く充電できる可能性を秘めており、次世代エネルギー貯蔵の有力候補として注目されています。二次元のナノ材料であるMXeneは、その優れた電気伝導性や高い表面積から、プロトン電池の有望なアノード候補です。しかし、従来のMXeneを薄膜状にしたMXeneフィルムは、MXeneのシート間の相互作用が強く、反応が起こる場所が減少したり、プロトンの輸送が阻害されたりといった課題を抱え、その性能を十分に引き出せていませんでした。
図1 本研究のプロトン電池の模式図
【成果】
本研究では、MXeneアノードの性能向上を目指し、ある物質を鋳型(テンプレート)として利用してその鋳型を犠牲にすることで目的とする物質構造を形成する合成手法である「犠牲テンプレート法」を用いて、細孔密度を系統的に調整した多孔質MXene(P-MX)フィルムを開発しました(図2)。特に、ポリ乳酸(PLA)とMXeneの比率が1:8の条件で合成された「1:8P-MX」アノードは、1 A g−1で104.8 mAh g−1という高容量を達成し、2000サイクル後も96.7%の容量維持率を維持しました(図3)。これは、これまでに報告されたMXeneアノードの中で最高の性能です(図4)。これは、電池を繰り返し使う中で、電解液が素材のすき間にしみ込みやすくなり、さらにプロトンが出入りすることで、素材同士がくっついてしまうのを防ぎ、性能の低下を抑えることができ、反応が起こる場所の増加に繋がったためと考えられます。
さらに、1:8P-MXアノードと銅鉄プルシアンブルー類似体*4(CuPBA)カソード(陰極)を組み合わせた「フルセル」プロトン電池を構築しました。この「フルセル」は、1 mol L−1 H2SO4電解液中で、1 A g−1(17 C)で57.9 mAh g−1、そして10 A g−1(188 C)という高速充電レート*5においても53.3 mAh g−1という高い容量を保持しました。二次電池(充電可能な電池)の充放電におけるエネルギー効率を表す指標である「クーロン効率」は200サイクル後も97%と安定して高い値を示しましたが、容量維持率は65.4%に低下しました。これは、主にCuPBAカソードの電解液中での溶解・分解に起因すると特定され、今後の課題となります。これらの結果は、MXeneアノードにおける細孔設計が、容量とレート性能の両方を向上させる上で極めて重要であることを示しています。
図2 多孔質MXene(P-MX)フィルムの走査電子顕微鏡観察
図3 1:8P-MXフィルムのサイクル特性:電流密度1 A g-1、
電位範囲 −0.7~0.2 Vにおける容量(左軸)および容量保持率(右軸)
図4 本研究におけるMXeneベースのアノード性能と文献との比較
【社会への還元として期待できる内容、今後の展望】
本研究の成果は、最適化された細孔設計を持つMXeneアノードが、高容量で高速充電が可能な次世代プロトン電池の実現に大きく貢献することを示しています。特に、高濃度酸性電解液や追加の活性材料を用いずに、MXeneのみで高性能を実現した点は、環境への影響を低減し、より持続可能なエネルギー貯蔵システムを開発する上で重要な進歩です。今後は、フルセル電池の長期安定性をさらに向上させるため、CuPBAカソードの電解液中での安定性改善に焦点を当てた研究を進めていきます。これにより、1:8P-MXアノードの優れた性能を最大限に引き出し、プロトン電池の実用化を目指します。
本研究は、国立研究開発法人科学技術振興機構(JST)戦略的創造研究推進事業CREST(グラント番号 JPMJCR21B3)による財政的支援を受けて実施されました。
【論文情報】
掲載誌 | Chemical Engineering Journal |
論文タイトル | Porosity-controlled MXene anodes for enhanced rate and long cycle life performance in aqueous proton batteries |
著者 | Linh Chi T. Cao*, Kentaro Aoki, Shu-Han Hsu, Sakoolkan Boonruang, Yuki Nagao*(筆頭著者も責任著者) |
掲載日 | 2025年7月15日 |
DOI | 10.1016/j.cej.2025.165882 |
【用語説明】
プロトン(水素イオン、H+)を電荷キャリアとして利用する二次電池の一種です。資源の豊富さや高速な電荷移動が特徴です。
二次元遷移金属炭化物の一種で、高い電気伝導性と表面積を持つ有望な新素材です。
微細な穴(細孔)を多数導入したMXene材料で、電解液の浸透性やイオン輸送経路を改善し、電池性能を向上させます。
プロトン電池のカソード材料として研究される化合物群です。
電池の充電および放電速度を示す指標です。1Cは定格容量を1時間で充放電する速度を意味します。
令和7年7月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/07/17-1.htmlナノ医療・バイオイメージング分野における国際連携を加速 ―ハーバード大教授が北陸先端科学技術大学院大学に本格参画-

ナノ医療・バイオイメージング分野における国際連携を加速
―ハーバード大教授が北陸先端科学技術大学院大学に本格参画-
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)は、2025年4月1日付で、ナノ医療・バイオイメージング分野における世界的な研究者であるChoi, Hak Soo(チェ・ハクスー)教授を、先端科学技術研究科のクロスアポイントメント教員として迎え、本学での研究活動を開始しました。
Choi教授は、ハーバード大学医学部 放射線腫瘍学講座の教授であり、マサチューセッツ総合病院 分子イメージング研究センターの主任研究者として最前線の研究を統括するとともに、Dana-Farber/Harvard Cancer Centerにも所属し、がん研究と診断に関する世界的ネットワークの中核的存在として活躍しています。
韓国・全北大学校を卒業後、2004年に本学にて博士号(材料科学)を取得。その後、ハーバード大学にて研究を推進し、ナノメディシン、イメージング、バイオエンジニアリングを融合したがんの高感度診断・治療技術の開発に取り組んできました。これまでに、Nature Biotechnology、Nature Nanotechnology、Nature Medicine、Nature Communications、Advanced Materials、Science Translational Medicine などの国際トップジャーナルに多数の研究成果が掲載されており、米国国立衛生研究所(NIH)や国防総省(DoD)などからの大型研究助成を獲得しています。
今回の着任は、本学物質化学フロンティア研究領域の栗澤元一教授との長年にわたる共同研究を背景に実現したものであり、今後は、本学の「超越バイオメディカルDX研究拠点」との連携を軸に、研究成果の社会実装、若手研究者や学生との国際交流を通じて、グローバルトップの研究基盤の構築・強化に大きく貢献することが期待されています。
【セミナーのご案内】
このたび、Choi教授の本学参画を記念し、以下のとおり「超越バイオメディカルDX研究拠点エクセレントコアセミナー」を開催します。当日は、Choi教授より、これまでの研究成果および今後の取組みについて講演いただきます。つきましては、当日の取材・報道をお願いします。
講 演 者:CHOI, Hak Soo, Ph.D
北陸先端科学技術大学院大学 先端科学技術研究科 教授 Professor, Department of Radiology, Harvard Medical School Faculty, Cancer Research Institute, Dana-Farber/Harvard Cancer Center Director, Bioengineering and Nanomedicine Program, Mass General Hospital テーマ:「Bioengineering and Nanomedicine Program for Cancer Theranostics」
(バイオ工学とナノメディシンによるがんセラノスティックス*) 日 時:令和7年6月3日(火)10:30~12:00
場 所:北陸先端科学技術大学院大学(JAIST) イノベーションプラザ2F
シェアードオープンイノベーションルーム 申込方法:以下申込先までメールにて事前にお申込みください。
[申込先] 北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点 教授 栗澤元一 E-mail:kurisawa ![]() |
*セラノスティックス...診断と治療を一体化した新しい医療技術
◆クロスアポイントメント制度とは】
研究者等が複数の大学や公的研究機関、民間企業等と雇用契約を結び、それぞれの組織で業務を行うことを可能とする制度です。本制度により、研究者等は所属の枠にとらわれることなく、複数の場で専門性を活かして活躍できるようになります。本制度の導入により、研究機関間の垣根を超えた知の交流や技術の橋渡しが加速されることが期待されており、研究の質やスピードの向上にも大きく貢献すると考えられます。
今回、本学が本制度を通じて、海外の研究機関に所属する研究者を迎えたことは、本学にとって初の取り組みです。今後は、この制度を活用して、国内外の優れた研究者とのネットワークを一層広げ、世界の先端科学技術研究のハブとしての機能強化を目指します。
令和7年5月29日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/05/29-1.html偶然も計画できる時代へ―触媒探索を効率化する新規AI技術を開発

![]() ![]() |
北陸先端科学技術大学院大学 北海道大学 |
偶然も計画できる時代へ―触媒探索を効率化する新規AI技術を開発
【ポイント】
- 確信度・不確実性・意外性の指標をもとに、知識・探索・予期せぬ発見を調和させた革新的な探索手法
- 36,540通りの高次組成空間から、わずか260回の実験で未報告の高性能触媒90件を短期間に発見
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の中野渡 淳 研究員(研究当時)、谷池 俊明 教授、共創インテリジェンス研究領域のダム ヒョウ チ 教授は、北海道大学大学院理学研究院の髙橋 啓介 教授と共同で、既存知識の活用・未知領域の探索[注1]・予期せぬ発見をバランスよく取り入れた、革新的なデータ駆動型触媒探索アルゴリズムを開発しました。 現在のマテリアルズインフォマティクス(MI)による材料開発では、活用と探索の両立を図る適応的サンプリング手法、特にベイズ最適化[注2]は、近年大きな注目を集めています。これらの手法は、従来よりも少ない実験数で目的物性を持つ材料を発見できることが示されており、その潮流は、触媒開発分野にも急速に波及しています。しかし、これまでの手法は、数種類の元素から成る組成最適化に限定されています。こうした小規模な最適化は熟練研究者であれば対処可能なため、MIに本当に期待されているのは、性能が保証された既知系の改良ではなく、広大な探索空間から現状の限界を打ち破るような、新たな傾向やルールを示す触媒候補を発掘することです。 本研究では、大規模な探索空間にも適用可能な新たなAI技術を開発しました。本技術は、触媒性能予測における確信度と不確実性を定量化する機能に加え、モデルの予測から大きく乖離した高性能触媒候補を特定する機能を備えています。メタン酸化カップリング[注3]に関する触媒探索の実証において、260種類の触媒をハイスループット実験で評価し、水準以上の性能を示す未報告の高性能触媒を90件発見しました。 本研究成果は、2025年5月8日(米国時間)に米国の科学誌「ACS Catalysis」のオンライン版に掲載されました。 |
【研究の背景及び経緯】
不均一系触媒は、複雑に相互作用する複数の触媒成分と、全貌が未解明であることが多い多段階にわたる素反応が絡み合う超複雑系であり、その開発は長らく研究者の経験と試行錯誤に依存してきました。しかし近年、材料開発を加速するマテリアルズインフォマティクス(MI)の急速な進展により、既存データを活用しつつ未知領域を効率的に探索する適応的サンプリング(例:ベイズ最適化)が注目されています。しかしながら、これらの手法による探索は数種類の元素の組成最適化にとどまり、広大な組成空間の中からブレークスルーをもたらすような新奇な触媒候補を発掘することは依然として困難です。加えて、触媒研究ではしばしば、研究者の予測を超える"予期せぬ発見(セレンディピティ)"が重要な知見につながりますが、従来のAI技術ではこのような偶発的発見を捉える仕組みが備わっていませんでした。
【研究の内容】
本研究では、探索・活用・予期せぬ発見の三要素を調和した触媒探索を行う、新しいAI技術を開発しました(図1)。本技術は、触媒推薦システムと触媒セレンディピターシステムの二つの学習アルゴリズムからなっています。証拠理論に基づく触媒推薦システムは、元素の置換による性能変化を「証拠」として収集し、証拠が乏しい組合せには高い"不確実性"を、証拠が豊富にある組合せには高い"確信度"を割り当てることで、探索と活用を数値的にバランスします。触媒セレンディピターシステムは、推薦システムが見落としやすい"意外な高性能触媒"を拾い上げるメタ学習モデル[注4]です。推薦システムなどの予測結果を統合し、過去に観測された「傾向から外れた高性能触媒の予測パターン」を学習します(図2)。これによりセレンディピティの発生を50%の精度で言い当てることができます。
開発技術をメタン酸化カップリングに関する触媒探索に適用し、合計260触媒を実験的に評価しました。その結果、水準以上(触媒なしでのフリーラジカル反応よりも十分高いエタン・エチレン収率を示す)を満たす90例の未報告触媒を発見しました。
図1 本研究のイメージ。ハイスループット実験データを基に学習したAIによって探索・活用・予期せぬ発見をバランスした触媒推薦を行います。推薦された触媒はハイスループット実験によって評価されるという再帰的なループによって、AIは高性能触媒の推薦効率を上げていきます。 |
図2 触媒セレンディピターシステムの概念図。セレンディピターは、性格や特性の異なる複数の学習モデルの予測結果を統合し、予期せぬ発見を予測するメタ学習モデルです。各学習モデルを、データの傾向を掴み始めた研究者に例えると、セレンディピターはそれら研究者同士が議論し、最終的な結論を導き出す会議の場のような役割を果たします。 |
【今後の展開】
現在、開発した技術は二値分類問題に特化していますが、今後は連続値の物性予測への拡張を検討しています。また、本技術は組成の自由度が高い電池材料や光学材料への適用も可能であり、これらの材料シーズ発掘を一層加速させることが期待されます。
【用語解説】
AI技術を用いた材料探索においては、①過去の実験データから得られた"当たりやすい"領域を重点的に試す「活用(exploitation)」、②まだデータが少なく未知であるが、将来的に新たな発見につながる可能性がある領域を試す「探索(exploration)」の二つの要素をいかに両立させるかが重要な課題です。本研究では、これらに加えて、触媒化学の発見における重要な駆動力の一つである"予期せぬ発見(セレンディピティ)"を三つ目の要素として同時に定量化し、実験計画に反映できる点が最大の特徴となっています。
ベイズ最適化は、目的関数(本研究では触媒性能)を直接評価するコストが高い場合に用いられる統計的な最適化手法です。①既存の実験データから性能の分布を近似する確率モデル(サロゲートモデル)と、②そのモデルが示す期待値や不確実性を基に「次に測定すべき点」を数式的に選ぶ獲得関数(acquisition function)から構成されます。実験を繰り返すたびにモデルを更新し、少ない試行回数で高性能材料に到達できることが特徴です。
メタン酸化カップリングとは、天然ガスやバイオガスの主成分であるメタンを、酸化反応によりワンステップで様々な化合物やポリマーの原料となるエチレン(およびエタン)に転換する触媒反応です。既存の転換技術と比べてはるかに効率的である一方で、選択的かつ高活性にエチレンを生成する触媒の開発は依然として難航しています。
メタ学習(meta-learning)は、「学習の方法を学習する」手法であり、複数の機械学習モデルやタスクで得られた知見を上位レイヤーで再利用することで、新しいタスクに対しても少ないデータで高い性能を発揮できるようにする枠組みです。本研究では、異なる推薦システムや分類器が出力する"予測確信度"や"食い違い"を入力として取り込み、これらの下位モデルの性格差を統合して、「モデルが見落としがちな意外な高性能触媒」を判別する"セレンディピター"を構築しました。下位モデルの経験を集約することで、個々のモデルだけでは検出しにくいパターンを学習し、セレンディピティの発生確率を大幅に高めています。
【論文情報】
雑誌名 | ACS Catalysis |
論文タイトル | "A Data-Science Approach to Experimental Catalyst Discovery: Integrating Exploration, Exploitation, and Serendipity" (探索・活用・予期せぬ発見を統合した触媒発見のためのデータ科学的アプローチ) |
著者 | Sunao Nakanowatari, Keisuke Takahashi, Hieu Chi Dam*, Toshiaki Taniike* |
DOI | 10.1021/acscatal.5c00100 |
掲載日 | 2025年5月8日(米国時間) |
令和7年5月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/05/26-1.html光強度と反応温度を制御するだけで、光触媒反応の律速過程を判別可能な新手法を開発

光強度と反応温度を制御するだけで、
光触媒反応の律速過程を判別可能な新手法を開発
【ポイント】
- プロセス分離の難しい光触媒反応において、「励起キャリアの表面への供給」か「表面での酸化還元反応」のどちらが律速となっているかを簡便に判別できる手法を確立
- 光照射強度と反応温度を系統的に変化させることで、光触媒表面に過剰な励起キャリアが存在し始める"しきい値"を捉え、律速段階を見極めることに成功
- ナノ粒子化や結晶性向上など、今後の光触媒材料設計における具体的な指針を提示
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の張葉平特任助教(日本学術振興会特別研究員-PD)、谷池俊明教授らの研究グループは、光触媒反応における反応速度を決定づける律速プロセスを、光強度と反応温度を制御するだけで簡便に特定する方法を開発しました。光触媒反応は光の吸収から励起キャリアの拡散、そして表面での酸化還元反応まで複数のステップを経るため、どの段階が律速しているのかを従来は見極めにくいという課題がありました。本研究では、表面での励起キャリアが不足または余剰となる状態を温度変化から読み解く新たな指標を導入し、これにより「励起キャリアの表面への供給」と「表面での酸化還元反応」のどちらが支配的かを判別できることを示しました。今回の成果は、光触媒の性能向上や仮説検証の精度向上に加え、高効率な太陽光利用技術の開発にも波及効果が期待されます。 |
【研究の背景】
光触媒は、太陽光を活用し、水の分解による水素生成や二酸化炭素の還元、環境浄化など、多岐にわたる反応系への応用が期待されており、持続可能な社会の実現に向けた重要な技術として注目されています。しかし、光の吸収、励起キャリア(電子や正孔)の生成・拡散・表面での酸化還元反応といった複数のプロセスが絡み合うため、どの段階が律速しているかを明確にするのは容易ではなく、結果として効率的な材料改良が進みにくいという課題がありました。
【研究の詳細】
本研究では、光触媒反応を「励起キャリアの表面への供給」と「表面における酸化還元反応」の2つの過程に分け、どちらが律速となっているかを見極めるための簡便な手法を提案しました。具体的には、両過程の速度差は、表面における励起キャリアの過不足として現れ、それが光強度と反応温度を変化させた際の温度依存性として抽出されます(図1)。この考え方は、表面反応の方が温度変化に敏感であるという既知の性質を活用したもので、ある光強度以上になると温度によって反応速度が変化し始める「しきい値(オンセット強度)」が重要な指標となります。この指標を用いることで、律速過程を明確に記述できると考えました。
図1 光強度と反応温度の制御によって律速過程を特定する手法の概念図。反応速度に温度依存性が現れる光強度条件は、表面での励起キャリアの再結合が反応に転じる転換点に対応しており、励起キャリアの供給速度が表面反応速度を上回り始める"オンセット強度"として機能します。 |
この考えの実証に際して、代表的な光触媒である酸化チタン(TiO2)と酸化亜鉛(ZnO)を用い、メチレンブルーの分解反応をモデル反応として検証しました。反応温度を10˚Cと40 ˚Cに設定し、光強度を広範囲で制御しながら反応速度を測定した結果、TiO2では高い光強度で温度依存性が現れ、ZnOではより低い光強度から温度依存性が認められました。この結果から、相対的にTiO2はキャリア供給が律速し、ZnOは表面反応が律速すると判定され、材料ごとの律速特性の違いを明確に捉えることができました。このような判別は、材料選定や改良方針の誤りを防ぐ手がかりとなります。
さらに、酸化チタンの焼成温度を変化させた材料シリーズで同様の検討をしたところ、類似した材料においてはオンセット強度に顕著な違いが見られなかったものの、オンセット強度を超える強い光強度条件において性能と温度依存性を比較した結果、ナノサイズ化に伴ってキャリア供給が向上し、温度依存性も大きくなる傾向が確認されました。逆に、高温焼成によって粒子が大きくなった試料ではキャリア供給効率が低下し、温度変化に対する反応の応答も鈍くなりました。このことから、単なる結晶性の向上よりも、ナノ粒子化による表面へのアクセス性の向上がキャリア供給において重要であることが示唆されました。
従来のキャリア供給・移動・反応の解析には、レーザーを用いた瞬時分光法などの特殊装置や複雑な条件設定が必要でしたが、本研究で提案した手法は、一般的な光源と温度制御だけで実施可能であり、日常的な材料スクリーニングにも応用しやすい点が大きな特徴です。また、光強度の設定範囲が実使用条件に近いため、実際の性能と乖離の少ない律速過程の判定を行うことが可能です。
【今後の展望】
本手法は、光触媒の性能向上を目指した材料開発において、律速段階を簡便に特定できる有用な手段と考えられます。今後は、他の反応系や材料系への適用範囲を広げるとともに、ハイスループット実験への展開を通じて、より効率的かつ再現性のある材料評価を可能にしたいと考えています。特に、キャリア供給が律速か、あるいは表面反応が律速かを判断することは、材料改良の方向性を明確にする際に効果を発揮し、多くの光触媒研究の仮説検証に貢献できると期待されます。
【研究資金】
本研究は、日本学術振興会科研費 特別研究員奨励費(24KJ1201)、科学技術振興機構(JST) 次世代研究者挑戦的研究プログラム(JPMJSP2102)、リバネス研究費京セラ賞の支援を受けて実施されました。
【論文情報】
雑誌名 | Journal of Materials Chemistry A |
論文名 | Identifying Rate-Limiting Steps in Photocatalysis: A Temperature- and Light Intensity-Dependent Diagnostic of Charge Supply vs. Charge Transfer |
著者 | Yohei Cho, Kyo Yanagiyama, Poulami Mukherjee, Panitha Phulkerd, Krishnamoorthy Sathiyan, Emi Sawade, Toru Wada, and Toshiaki Taniike |
掲載日 | 2025年5月2日 |
DOI | 10.1039/D5TA00415B |
令和7年5月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/05/12-1.htmlPufferFace Robot:フグに着想を得たボディ一体型振動推進型ロボット

PufferFace Robot:フグに着想を得たボディ一体型振動推進型ロボット
【ポイント】
- ソフトロボットの設計:PufferFace Robot(PFR)は、フグに着想を得た振動駆動型のソフトロボットで、やわらかく膨らむ外皮により配管の直径の変化に柔軟に対応して進みます。
- 移動性能及び配管内走行能力:3つの移動モード(振動のみ/膨張・収縮のみ/両者の組み合わせ〈メインモード〉)を備えています。自身の外径の1~1.5倍サイズの配管を通過可能で、本体と同サイズの配管内では最大0.5 BL/s(体長/s)の速度で移動可能です。
- 複雑な配管構造での実走行:90度エルボ、T字コネクタ、高曲率セクションなど、複雑な配管構造での走行能力を実験により検証しました。
- 応用可能性:PFRは複雑で狭隘な小口径の配管における点検作業を目的としています。例えば、石油・ガス配管、化学プラント、上下水道管などが挙げられます。また、有害化学物質や高温などの過酷な環境での探査にも有効で、シンプルな制御でも安定した動作が可能です。
- シミュレーションと実験アプローチ:ABAQUSを用いた簡易的な有限要素解析(FEA)によるシミュレーションを通じて、PFRの走行可能性を評価した結果、実験と高い一致性を確認しました。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域のHo Anh Van教授(IEEE上級会員)が、Linh Viet Nguyen大学院生(博士後期課程)(研究当時)、Khoi Thanh Nguyen大学院生(博士後期課程)らの研究チームを率いて、テキサス大学オースティン校のThe Advanced Robotic Technologies for Surgery Laboratory (ARTS Lab)との共同研究により、複雑な配管内部を自在に前進できる新しいソフトロボット「PufferFace Robot (PFR)」を開発しました。PFRは、フグのように体を膨らませる柔軟な素材と、振動による推進する機構を組み合わせることで、多様な管内形状に対応できる設計となっています。これにより、90度の曲がり角やT字型の分岐、高曲率セクションなど、従来のロボットが苦手としていた区間でも安定した走行を実現しました。本研究では、複雑な計算処理を必要とせず、ロボット本体の構造によって環境への適用を実現する「身体性知能(embodied intelligence)」という考え方も重要視されています。 PFRは、JAISTプレスリリースにて前回紹介した振動駆動型ソフトロボット「Leafbot」(※)の進化形であり、ソフトロボティクス分野の新たな基盤となる可能性を秘めています。 (※)https://www.jaist.ac.jp/whatsnew/press/2025/02/17-1.html |
【研究背景と内容】
柔軟素材を用いたソフトロボットは、その柔軟性と適応性により、従来の硬い素材を用いたロボットでは効果を発揮することが困難な環境でも活躍することができることから、近年大きな注目を集めています。ソフトロボットは、適応的な形態変化を備えており、これは身体知能の一形態として機能し、最小限の計算で環境の変化に応じて反応することが可能です。従来のロボットが複雑な中央制御に依存しているのに対し、適応型ロボットは物理的構造を通じて局所的に調整を行うことで、計算負荷が軽減され、環境応答性が向上します。本研究では、産業、車両、航空宇宙分野で流体やガスの輸送によく使用される配管のような、制約のある可変形状における適応的な移動に焦点を当てました。このような配管は狭く人間が立ち入ることが難しいため、ロボットによる点検のニーズが高まっています。しかし、このような配管は直径、形状、長さが場所によって大きく異なるため、ロボットの設計には大きな課題があります。
これまでにも様々な推進機構(車輪式、歩行式、クローラー式、振動式など)を持つロボットが開発されてきましたが、それらをセンチメートルスケールの配管に適応させるのは困難です。近年の研究では、圧電素子、誘電エラストマー、流体エラストマー、ハイドロゲル、形状記憶合金、電磁アクチュエータなどのスマート素材を用いた生物に着想を得たロボットが開発されています。これらのコンパクトで柔軟な設計は、複雑で狭い配管システムの中を移動するための適応性とエネルギー効率を向上させます。しかし、このような制約のある環境において、機敏で配管のサイズに適応して移動できる信頼性の高い点検ロボットの実現は、依然として課題です。
前述の課題(図1A参照)に対応するため、本研究では新たに「PufferFace Robot (PFR)」という適応型ソフトロボットを開発しました(図1B, D, E参照)。この名称はフグ(pufferfish)から着想を得たことに由来します。PFRは、形態学*1的なスパイクパターンを持つシリコーンゴム製の膨張可能な柔らかい外皮を特徴としており、その設計パラメータは我々の先行研究である「Leafbot」から受け継いだものです。外部の圧縮空気源によって膨張・収縮を操作し、様々な配管形状に適応させることが可能です。PFRの移動メカニズムは、柔らかいスパイクの先端に分布された非対称な摩擦特性に基づいています。その非対称性と振動源を組み合わせることでPFRは前進します。この構成により、PFRの小型構造でも前進移動が可能であると示しました。PFRには3つの移動モードがあります。モード1では、振動モータを作動させて水平な配管を移動します。モード2では、柔らかい外皮の膨張・収縮のみで動作します。モード3は、モード1とモード2を組み合わせたハイブリットモードで、配管内移動における主要なモードです。
図1 (A)配管システムにおける形状が制約された様々な空間の例、 (B)様々な空間に適応可能なPufferFace Robotのコンセプト、 (C)フグから着想を得たPFRの設計コンセプト、(D)PFRの膨張状態、(E)PFRの通常状態 |
PFRの設計の詳細を図2に示します。様々な配管サイズに対応するための形態学的なソフトスキンに加え、PFRには暗所での点検作業を支援するためにLEDと小型カメラが搭載されています。今回、設計したPFRには以下の利点があります。
図2 PFRの詳細な設計図 (A) PFRの構成部品 (B) PFRの前面図および側面図
本研究では、「テラダイナミクス(terradynamics)」の手法を採用し、PFRが配管システムの困難な「地形条件」に対して、どれほど効率的かつ効果的に走行できるかを評価しました。これには、鋭角な曲がり(エルボ継手)、高曲率領域、分岐点、水平から垂直への移行、あらゆる方向での配管サイズの変化、T字分岐での操縦が含まれます。これらのシナリオにおけるPFRの性能を図3に示しています。有限要素解析(FEA)に基づいたシミュレーションプラットフォームであるABAQUSのDynamic Explicitモジュールを使用し、PFRを実環境に配置する前に特定の管状環境における通過可能性を評価しました。すべてのテストケースにおいて、シミュレーションの結果は実験結果とよく一致しました。図3(C),(F),(J)は、ABAQUS環境下でシミュレーションした検討シナリオを示しています。
図3 実験及びシミュレーション解析による配管システム内の重要な領域を走行するPFRの能力評価 (A, B, G) PFRが実環境及びシミュレーション環境(C,J)においてエルボ(曲がり)部分を走行する様子、 (D, E, F) PFRが実験及びシミュレーションの両ケースにおいて、サイズの異なる空間の移行部を通過する様子、(I) 振動モータの回転方向を変えることで、PFRが方向転換能力を発揮する様子 |
本研究では、ハイブリット推進システムを搭載した生物に着想を得たロボット「PufferFace Robot(PFR)」を提案しました。提案した設計では、狭隘な環境への高い適応性、検査中に気体や流体の流れを妨げない中空機構、複雑な配管内でも最小限の制御で移動可能な適応形態といった利点を有しています。さらにPFRは振動駆動型ソフトロボット、特に小規模配管用途に特化した設計の可能性を広げます。この技術革新は、工業点検だけでなく、医療用途、特に大腸検査のような低侵襲手術にも大きな可能性を秘めています。柔らかく適応性のある構造は、複雑で傷つきやすい生物学的環境を安全に移動することを可能にし、従来の内視鏡ツールに代わる、より安全で効率的な選択肢を提供します。今後は、さらなる小型化と移動性能の向上を目指し、より狭く限られた空間でも自在に動けるように改良を進めていく予定です。
【論文情報】
雑誌名 | Science Advances |
論文名 | Adaptable cavities exploration: Bioinspired vibration-propelled PufferFace Robot with morphable body. |
著者 | Linh Viet Nguyen; Hansoul Kim; Khoi Thanh Nguyen; Farshid Alambeigi, and Van Anh Ho |
掲載日 | 2025年4月30日 |
DOI | 10.1126/sciadv.ads3006 |
【用語説明】
生物の体制や構造を研究する学問
令和7年5月8日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/05/08-1.htmlナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発 ― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―

ナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発
― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―
【ポイント】
- 高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発
- 欠陥を多く含むメタチタン酸ナノ粒子の三次元結晶構造の決定に成功
- 多様な結晶構造をとり得る金属オキシ水酸化物ナノ粒子の構造解明に役立つと期待
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市) ナノマテリアル・デバイス研究領域の麻生浩平講師、大島義文教授、宮田全展講師 (研究当時)、同大学ナノマテリアルテクノロジーセンターの東嶺孝一技術専門員、日本製鉄株式会社 技術開発本部の神尾浩史主幹研究員らの研究グループは、高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発しました。これにより、従来のX線回折法(XRD)*1などでは困難だった、欠陥を多く含むメタチタン酸ナノ粒子の結晶構造を決定することに成功しました。メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました。酸素と金属で構成される金属酸化物や、さらに水素が加わった金属オキシ水酸化物は、多様な結晶構造をとり、それに応じて多彩な物性を発現することが知られています。格子相関解析は、このような材料の構造解明に弾みをつける新たな手法であり、多彩な物性の理解に貢献すると期待されます。 本研究成果は、2025年4月28日 (英国標準時間)に科学雑誌「Communications Chemistry」誌のオンライン版で公開されました。 |
【研究の背景及び概要】
酸素と金属で構成される金属酸化物ナノ粒子や、水素が加わった金属オキシ水酸化物ナノ粒子は、現代社会に欠かせない触媒、エネルギー変換、吸着材として注目されています。これらのナノ粒子は、組成が同じでも異なる構造をとり、異なる物性を示します。つまり、物性を真に理解する上で、合成されたナノ粒子の形状や構造の解明は欠かせません。典型的な構造解析として、X線回折法やラマン分光法*2があります。しかし、サイズが数ナノメートル (nm, 十億分の一メートル) 程度のナノ粒子の場合、ピークが明瞭でないため解析が困難です。また、今回の研究対象とした、金属オキシ水酸化物のひとつであるメタチタン酸は、欠陥を多く含むため構造解析がより困難となっていました。一方、透過電子顕微鏡 (TEM)*3や走査TEM (STEM)*4は、原子配列を可視化できますが、得られる情報は投影した二次元像です。
そこで、三次元の結晶構造を明らかにするため、多数のメタチタン酸ナノ粒子のTEM像を異なる様々な方位から取得しました。様々な方位から多数の像を得るのは、生物分野で利用される単粒子解析と類似していますが、本研究では異なる解析手法を採用しています。単粒子解析では、対象物の形状が均一であると仮定し、多数の像を観察方位ごとに分類して足し合わせることで、像の質を高めます。しかし、メタチタン酸ナノ粒子の場合、形状が均一ではないため、従来の方法をそのまま応用することはできませんでした。そこで、今回開発した手法では、像の足し合わせではなく、周期性や格子定数に敏感な結晶格子の間隔や異なる格子間の角度に着目しました。本手法は、間隔や角度の相関を統計的に解析することで、結晶構造の特徴を抽出しようとした点に新規性があります。
メタチタン酸ナノ粒子は、TEM試料用の支持膜上にランダムな方位を向いて分散するので、様々な方位からの粒子の原子分解能TEM像が得られます (図1a)。得られたTEM像から、画像処理によって個々のナノ粒子を検出し (図1b)、そのナノ粒子にガウス関数のマスクをかけて高速フーリエ変換 (FFT) パターンを得ました(図1c)。FFTパターンで観察されるスポットは、ナノ粒子の結晶格子の周期を反映します。異なるスポットの配置から、格子の間隔や角度の相関 (格子相関) が分かります。この処理を、500枚のTEM像で撮影された1300個のナノ粒子に対して行うことで、メタチタン酸ナノ粒子がもつ特徴的な格子相関を統計的に得ることが出来ました (図1d)。異なる観察方位に対する格子相関を組み合わせて解析することで、構造に関する三次元情報が得られます。
解析の結果、メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました(図1e)。この構造は、密度汎関数理論による計算*5でも安定であることが確認されました(図1f)。また、原子の個数や原子番号をより直接的に反映する環状暗視野STEM像*6(図1g)とも整合しており、提案する構造は妥当であると判断しました。
本研究で開発した格子相関解析は、従来と比べて1/20から1/500程度の低い電子線照射量で、三次元的な結晶構造の解明を可能とします。今後は、電子線に敏感なため解析が困難だった、金属オキシ水酸化物ナノ粒子や有機物を含むナノ材料への展開が期待されます。新規材料探索は理論計算による研究が多いなかで、本手法は解析の自動化が可能であり、実験による新たなアプローチを提示できると考えています。これにより、より適切な材料設計や高性能デバイスの開発に弾みがつくと期待されます。
図1 (a) HRTEM像。暗いコントラストで示されるメタチタン酸ナノ粒子が見られる。(b) 画像処理によって粒子領域を検出した図。粒子ごとに色分けして塗りつぶしている。(c) b中の中央下、白い丸とバツでマークされた粒子のFFT図形。(d)格子相関マップの一例。ここでは(004)面と(110)面、(002)面と(110)面の組み合わせがスポットとして現れている。(e)解析から提案された結晶模型。(f)結晶模型について計算した環状暗視野STEM像。(g)メタチタン酸ナノ粒子の環状暗視野STEM像。 |
【論文情報】
雑誌名 | Communications Chemistry |
論文名 | Three-dimensional atomic-scale characterization of titanium oxyhydroxide nanoparticles by data-driven lattice correlation analysis |
著者 | Kohei Aso, Koichi Higashimine, Masanobu Miyata,Hiroshi Kamio,and Yoshifumi Oshima |
掲載日 | 2025年4月28日 |
DOI | doi.org/10.1038/s42004-025-01513-2 |
【用語説明】
物質の平均的な結晶構造を調べる代表的な技術。X線を試料に照射してプロファイルを取得し、回折ピークの配置を解析することで試料の平均的な結晶構造が得られる。
物質にレーザー光を照射し、散乱された光の波長変化(ラマン散乱)を解析することで、物質の化学結合や結晶構造を得る手法。
電子線を試料に透過させ、得られた投影像から結晶構造を観察する手法。電子線を使うことを除いて、原理的には一般的な光学顕微鏡と同様。
0.1 nm程度に絞った電子線を試料上で走査し、試料各点からの信号によって結像する手法。
原子や分子の電子状態を理論に基づき計算する手法。ここでは、結晶構造のサイズ(格子定数)や原子位置をわずかに変化させながら計算を繰り返し、構造の安定性を評価した。
STEMのうち、前方散乱された電子をマッピングした像。原子番号や厚みの違いをより直接的に反映した像が得られる。
令和7年4月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/04/30-1.html二次元格子をひねって重ねると一次元超格子が出現 ――二次元原子層物質が一次元物性研究の新しいプラットフォームに――

![]() ![]() ![]() ![]() |
東京大学 北陸先端科学技術大学院大学 大阪大学 科学技術振興機構(JST) |
二次元格子をひねって重ねると一次元超格子が出現
―― 二次元原子層物質が一次元物性研究の新しいプラットフォームに ――
【ポイント】
- シート状の原子層二枚を、特定の角度に向きをずらして重ねると、一方向に縞模様を持つ一次元モアレ超格子構造が形成できることを発見しました。
- 従来のモアレ超格子は原子層の構造と類似の二次元の周期性を持ちますが、本研究では、一次元の周期性しか持たない新しいコンセプトのモアレ超格子を提案・実証しました。
- モアレ超格子による原子層の性質の人工制御物性変調や、一次元性ならではの異方性の高い新奇物性研究の新しいプラットフォームになることが期待されます。また、素子応用に向けた研究の発展にも寄与することが期待されます。
二次元原子層WTe2のツイスト積層による一次元モアレ超格子の形成
東京大学 生産技術研究所の張 奕勁 助教と町田 友樹 教授らの研究グループは、北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域の大島 義文 教授および高村 由起子 教授の研究グループ、大阪大学大学院 理学研究科の越野 幹人 教授の研究グループと共同で、原子層物質(注1)の人工ツイスト二層構造(注2)において一次元の周期性を持つモアレ超格子(注3)が実現できることを明らかにしました。 本研究では、二テルル化タングステン(WTe2)の原子層二枚を使用し、それぞれの結晶方位に角度差(ツイスト角)を付けた状態で人工的に重ね合わせた構造(ツイスト二層構造)を作製し、透過型電子線顕微鏡(TEM)を用いて原子の配列パターンを直接観察しました。一般的にツイスト二層構造で出現するモアレ超格子内の原子配列パターンは二次元の周期性を持って変化しますが、本研究では特定のツイスト角において配列パターンの変化が一次元的になる、すなわち周期性が一方向のみになることを世界で初めて示しました(図1)。また、本モアレ超格子が従来のモアレ超格子とは異なる原理で形成されていることを理論的に突き止めました。一次元性による母物質の物性変調に伴う新奇物性探索の新しい舞台になることが期待されます。 |
図1:透過型電子線顕微鏡を用いたツイスト二層WTe2の原子像観察。
(a)WTe2原子層の模式図。a軸方向とb軸方向で周期性が異なる。(b,c)WTe2原子層二枚をツイスト角62度(b)および58度(c)でツイスト積層させた構造。単独の原子層が持つ周期性と異なる一次元的な周期性が出現する。(d) 試料構造および実験の模式図。h-BNは試料の保護層。(e,f)ツイスト角62度(e)および58度(f)で作成したツイスト二層WTe2試料の原子像。白いスケールバーは10 nm(ナノメートル)。(g,h)62度(g)および58度(f)ツイスト試料の電子回折像。緑と茶色の点がそれぞれの原子層の構造の周期性を示す回折スポット。赤枠(e)と青枠(f)で示された回折スポットのペアがモアレ超格子の周期性を表す。どちらの場合も回折スポットのペアが平行に並んでいることから、モアレ超格子が一方向のみに周期性を持っていることがわかる。青いスケールバーは2 nm-1(ナノメートルインバース)。 |
【発表者コメント:張 奕勁助教の「もしかする未来」】
本研究は偶然の発見から始まりました。パワーポイントの上で結晶構造を二つ重ね、片方をぐるぐる回転させていたところ一瞬縞模様が見えたのがきっかけです。モアレ超格子の原子配列を実際に観察し、また、理論的にその起源と一次元性を示すことができました。カーボンナノチューブなどの一次元物質は低次元特有の現象を示しますが、その特性を残したまま大面積化することは困難でした。今回、ナノチューブよりも面積の大きい原子層物質を用いて一次元構造が作製できたので、今後は一次元性を反映した物性の探索を進めていきたいと思います。
【発表内容】
原子層物質の人工ツイスト積層構造技術は、現在の原子層物質を用いた基礎物性研究の中心的な技術の一つです。異なる原子層物質を積層する場合だけでなく、同一の原子層物質を積層する場合であっても、それぞれの結晶方位をずらして積層(ツイスト積層)すると、元の物質の持つ周期性よりも大きな周期性を持つモアレ超格子が出現します。モアレ超格子が出現することで、元の原子層物質の物性を大きく変調し、新奇物性を誘起することが可能になります。例えば、単層グラフェンをツイスト角1.05度でツイスト積層すると、低温で超伝導転移を誘起できることが知られています。一般的に、モアレ超格子の大きさはツイスト角の増加とともに小さくなるため、これまでの研究は低ツイスト角領域(0度付近)を中心に行われてきました。
この度、本研究チームは、原子層物質二テルル化タングステン(WTe2)を用いた研究から、高ツイスト角でもモアレ超格子が出現し、さらに、特定の角度(62度と58度付近の二点)では一次元的なモアレ構造が出現することを発見しました。WTe2の特徴は、結晶構造が異方的、すなわち、結晶方位によって周期の大きさが異なることです(図1a)。代表的な原子層物質であるグラフェンや二セレン化タングステン(WSe2)は等方的(物理的な性質が方向によって異ならないこと)な結晶構造を持っており、高ツイスト角ではモアレ超格子は出現しません。本研究では、透過型電子顕微鏡(TEM)を用いてツイスト二層WTe2の原子配列パターンを直接観察することで高ツイスト角領域における一次元モアレ超格子を実験的に示しました(図1c,d)。また、構造の周期性を示す電子回折パターン(注4)において、モアレ超格子の周期を示す回折スポットのペアが全て平行になるという特徴を観測しました(図1e,f)。
モアレ超格子の周期性は元の原子層の持つ周期性から説明できますが、従来のモデルでは高ツイスト角領域におけるモアレ超格子を説明できません。本研究では従来のモデルを拡張することで、高ツイスト角領域においてモアレ超格子が出現し、さらに、62度と58度付近でモアレ超格子が一次元になる、すなわち、周期性が一方向のみになることを理論的に示すことに成功しました(図2)。加えて、電子回折パターンのシミュレーションから、実験的に観測された回折スポットペアの特徴(図1e,f参照)が一次元性を示す証拠になっていることを理論的に示すことにも成功しました(図3)。また、一次元モアレ超格子の出現はWTe2に特異な現象ではなく、異方的な結晶構造を持つすべての原子層物質で起こりうる普遍的な現象であることも明らかになりました。
一次元的なモアレ超格子を形成することで、従来の二次元的なモアレ超格子で誘起された物性変調とは異なる変調効果が期待されます。従来、カーボンナノチューブなど一次元物質の持つ物性の研究や素子応用には、無数のチューブを配向させた膜の形成という技術的な障壁がありましたが、人工ツイスト積層構造の一次元モアレ超格子ではマイクロメートルスケールで一次元構造が広がるため、基礎研究のみならず素子応用に向けた研究の発展にも寄与することが期待されます。
図2:近似三角格子モデルを用いた一次元モアレ超格子の再現。
(a)WTe2原子層の結晶構造。格子ベクトルa1、a2で囲われた長方形がユニットセル(周期一つ分の構造)。W原子とTe原子を区別せず原子位置に多少の動きを許容すると、格子ベクトルl1、l2で定義された三角格子(灰色点線)で近似できる。近似された格子は正三角形ではなく二等辺三角形になっている。(b)近似三角格子をツイスト積層した場合のモアレ超格子。一次元構造が再現されている。 |
図3:人工ツイスト二層WTe2の電子回折パターンのシミュレーション。
従来の低ツイスト角の場合と本研究における高ツイスト角の場合の比較。ベクトルb1、b2はそれぞれ格子ベクトルa1、a2(図2a参照)の周期を示す逆格子ベクトル。黒点と赤点がそれぞれの原子層に由来する原子回折スポット。黒矢印で示された解析スポットのペアがモアレ超格子の周期性(大きさおよび方向)を決定する。低ツイスト角の場合モアレ超格子の周期は様々な方向を向くため、二次元の超格子となる。一方62度と58度付近ではすべて平行になり一方向にしか周期性が存在しないため、一次元の超格子となる。 |
【発表者・研究者等情報】
張 奕勁 助教
町田 友樹 教授
大島 義文 教授
高村 由起子 教授
越野 幹人 教授
【論文情報】
雑誌名 | ACS Nano |
題名 | Intrinsic One-Dimensional Moiré Superlattice in Large-Angle Twisted Bilayer WTe2 |
著者名 | Xiaohan Yang, Yijin Zhang*, Limi Chen, Kohei Aso, Wataru Yamamori, Rai Moriya, Kenji Watanabe, Takashi Taniguchi, Takao Sasagawa, Naoto Nakatsuji, Mikito Koshino, Yukiko Yamada-Takamura, Yoshifumi Oshima & Tomoki Machida* |
DOI | 10.1021/acsnano.4c17317 |
URL | https://doi.org/10.1021/acsnano.4c17317 |
【研究助成】
本研究は、科学技術振興機構(JST) 戦略的創造研究推進事業 さきがけ「トポロジカル材料科学と革新的機能創出(研究総括:村上 修一)」研究領域における「極性二次元物質とそのヘテロ構造におけるバルク光起電力効果(JPMJPR20L5)」、さきがけ「新原理デバイス創成のためのナノマテリアル(研究総括:岩佐 義宏)」研究領域における「顕微分光による二次元物質デバイスの物性開拓(JPMJPR24H8)」、同 戦略的創造研究推進事業 CREST「原子・分子の自在配列・配向技術と分子システム機能(研究総括:君塚 信夫)」研究領域における「原子層のファンデルワールス自在配列とツイスト角度制御による物性の創発(JPMJCR20B4)」、日本学術振興会 科学研究費助成事業 学術変革領域(A)「2.5次元物質科学:社会変革に向けた物質科学のパラダイムシフト」(課題番号:JP21H05232, JP21H05233, JP21H05234, JP21H05235, JP21H05236)、および文部科学省 マテリアル先端リサーチインフラ事業(課題番号:JPMXP1223JI0033)の支援により実施されました。
【用語解説】
原子層物質とは、原子1個または数個分の厚みしかない層状の物質。原子間力で層間が弱く結合しており、二次元物質とも呼ばれる。層状構造を持つ単結晶から、スコッチテープなどの粘着性のテープを貼り付けて剥がすことで得られる(テープに付着している)、数ナノメートル以下まで薄くした二次元シート状の薄膜として作製する。代表例としてグラフェン、二硫化モリブデンなどが挙げられる。
原子層を二つ用意し、それぞれの結晶方位の間に相対的な角度差をつけて人工的に重ねた構造。
複数の原子層物質を重ねた際に出現する新たな周期構造。元の原子層物質の構造が持つ周期とは異なる周期性を持つ。
物質に電子線を照射した際に観察される干渉パターン。物質の構造の持つ対称性や周期性を反映したパターンが出現する。
令和7年3月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/28-1.html細菌成分をコーティングした酸化グラフェンナノ複合体の創出! -多機能性を発現可能ながん光免疫療法の実現に向けて-

細菌成分をコーティングした酸化グラフェンナノ複合体の創出!
-多機能性を発現可能ながん光免疫療法の実現に向けて-
【ポイント】
- 細菌成分と酸化グラフェンから成るナノ複合体の作製に成功
- 当該ナノ複合体のEPR効果により標的とする腫瘍内に効果的に集積し、マウスに移植したがんの可視化と、免疫賦活化、抗がん作用、光熱変換によるがん治療が可能であることを実証
- 当該ナノ粒子と近赤外光を組み合わせた新たながん診断・治療技術の創出に期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)物質化学フロンティア研究領域の都 英次郎教授らは、酸化グラフェン*1表面に細菌成分、近赤外蛍光色素(インドシアニングリーン*2)、抗がん剤(カンプトテシン*3)を被覆したナノ複合体の作製に成功した(図1)。得られたナノ複合体は、ナノ複合体特有のEPR効果*4に由来する腫瘍標的能によって、大腸がんを移植したマウス体内の腫瘍内に効果的に集積し、細菌成分による免疫賦活化とカンプトテシンに由来する抗がん作用に加え、生体透過性の高い近赤外レーザー光*5により、インドシアニングリーンに由来するがん患部の可視化と酸化グラフェンに由来する光熱変換による多次元的な治療が可能であることを実証した。さらに、マウスを用いた生体適合性試験などを行い、いずれの検査からもナノ複合体が生体に与える影響は極めて少ないことがわかった。当該ナノ複合体と近赤外レーザー光を組み合わせた新たながん光免疫治療技術の創出が期待される。 |
【研究背景と内容】
ナノ炭素材料の一つである酸化グラフェン(GO)は、優れた物理化学的特性を有することが知られており、とりわけ素材開発の分野で注目を集めている。都教授は、ナノ炭素材料が生体透過性の高い波長領域(650~1100 nm)のレーザー光により容易に発熱する特性(光発熱特性)を活用したがん診断・治療技術の開発を推進している(※1、※2、※3、※4)。
(※1) https://www.jaist.ac.jp/whatsnew/press/2020/04/23-1.html
(※2) https://www.jaist.ac.jp/whatsnew/press/2020/08/17_2.html
(※3) https://www.jaist.ac.jp/whatsnew/press/2024/08/22-1.html
(※4) https://www.jaist.ac.jp/whatsnew/press/2025/03/06-1.html
一方、腫瘍組織内に細菌が存在していることは古くから知られており、近年の研究では、腫瘍の種類ごとに独自の細菌叢が保有されていることが分かっている。また、このような腫瘍内細菌叢が抗癌剤の補助あるいは阻害の要因になっていることも明らかになっている。しかし、腫瘍内から直接細菌を取り出し、細菌そのものを癌の治療薬として活用する研究は皆無であった。このような経緯の中、都研究室では、マウス生体内の腫瘍組織から数多くの細菌の単離・同定に成功しており、これらの細菌を活用したがん診断・治療技術の開発を進めている(※5)。
(※5) https://www.jaist.ac.jp/whatsnew/press/2023/05/08-1.html
本研究では、光発熱素材であるGOと超音波照射によりホモジナイズ*6した腫瘍内細菌(Cutibacterium acnes)成分を複合化した新規ナノ複合体を開発し、がん診断・治療技術への可能性を調査した(図1)。より具体的には、C. acnes(CA)成分、近赤外蛍光色素[インドシアニングリーン(ICG)]、抗がん剤[カンプトテシン(CPT)]を被覆したGO(ICG-CPT-CA-GO複合体)をがん患部に同時に送り込むことで、CAに由来する免疫賦活化作用とCPTに由来する抗がん作用に加え、生体透過性の高い近赤外レーザー光を用いることで、ICGに由来する近赤外蛍光特性を用いた患部の可視化やGOに由来する光熱変換を利用した、新たながんの診断や治療法の開発に成功した。また、ICG-CPT-CA-GO複合体をマウスの静脈から投与し、生体適合性を組織学的検査、血液検査、体重測定により評価したが、いずれの項目でもICG-CPT-CA-GO複合体が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発したICG-CPT-CA-GO複合体が、革新的がん診断・治療法の基礎に成り得ることを示すだけでなく、ナノテクノロジーや光学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、2025年3月21日に炭素系材料の国際専門トップジャーナル「Carbon」誌(Elsevier発行)のオンライン版に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、大学発新産業創出基金事業スタートアップ・エコシステム共創プログラム(JPMJSF2318)ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
図1. 様々な機能性分子を被覆したナノ複合体の作製(超音波処理するだけで簡便に作製可能)。
【論文情報】
掲載誌 | Carbon |
論文題目 | Hybrid Nanoarchitectonics with Bacterial Component-Integrated Graphene Oxide for Cancer Photothermo-Chemo-Immunotherapy |
著者 | Soudamini Sai Vimala Veera Chintalapati, Eijiro Miyako* |
掲載日 | 2025年3月21日にオンライン版に掲載 |
DOI | 10.1016/j.carbon.2025.120252 |
【用語説明】
酸化グラフェンとは、黒鉛を酸化させることにより得られ、厚さはおよそ 1 nmのシート状の素材。高い表面積を有し、表面に存在する酸素官能基により親水性や電気絶縁性を示す。
肝機能検査に用いられる緑色色素のこと。近赤外レーザー光を照射すると近赤外蛍光と熱を発することができる。
植物のカンレンボク Camptotheca acuminata に含まれるアルカロイドの一種。抗がん作用を示す。
100nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみ、がん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
均質化すること。特に、生物の細胞や組織などを人工的に破砕、均質化することをさす。眼鏡の洗浄に利用される超音波照射装置が均質化に良く利用される。
令和7年3月27日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/27-1.htmlLiNMC電極を高安定化するホウ素系電解液の開発
LiNMC電極を高安定化するホウ素系電解液の開発
ポイント
- リチウムイオン二次電池の汎用電解液にメシチルジメトキシボラン(MDMB)を加えた3成分系電解液は非常に高いリチウムイオン輸率を示した(エチレンカーボネート(EC):ジエチレンカーボネート(DEC):メシチルジメトキシボラン(MDMB)=1:1:1(v/v/v))。
- ホウ素を含む電解液の使用により正極上にホウ素を含む安定性の高い正極電解質界面(CEI)が形成され、正極の大幅な安定化につながった。
- XPS測定により正極電解質界面(CEI)へのホウ素導入が確認された。ホウ素導入の結果、電荷移動界面抵抗の顕著な低減及び電極反応の活性化エネルギーの低下につながった。
- 電解液中のホウ素成分は系内のHFをB-F結合形成によりトラップしており、これも正極の安定化の要因となっている。
- エチレンカーボネート:ジエチレンカーボネート:メシチルジメトキシボラン=1:1:1(v/v/v)系では溶媒層(solvation sheath)とリチウムイオンとの相互作用がMDMBを含有しない系よりも弱まっていることがMaterials Studioを用いた計算により示唆され、アニオントラップ効果と相まってリチウムイオン輸率を向上させていると考えられる。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の松見紀佳教授、Liu Zhaohan大学院生(博士後期課程)、Amarshi Patra研究員は、LiNMC正極を安定化できるホウ素系電解液の開発に成功した。 |
【研究背景と内容】
リチウムイオン二次電池1においては、高エネルギー密度の向上を目的として高電圧化が可能なLiNMC系正極が活発に研究されている。LiNMCを安定化させるための様々な添加剤が検討されているが、本研究では電解液設計によりLiNMC系正極を安定化させるアプローチを試み、その有効性を見出した。LiNMCの安定化の手法として、ホウ素系添加剤を活用する試みはこれまで国外グループにおいて検討されていたものの、LiBOBを添加剤とした系では電解液中のHF(フッ酸)の捕捉において有効性が認められたものの、正極電解質界面(CEI)へのホウ素導入は認められていなかった。本研究においては、添加剤と比較して大幅に多い分量の電解液成分として液状のホウ素化合物(MDMB)を用い、HF捕捉のみならず、顕著なCEIへのホウ素導入及び界面抵抗の低減、電極反応の活性化エネルギー低下、それらの結果としての正極の安定性の大幅な向上につながった。
本研究では、エチレンカーボネート:ジエチレンカーボネート:メシチルジメトキシボラン=1:1:0(v/v/v)系(110)、1:1:1(v/v/v)系(111)、1:1:2(v/v/v)系(112)のそれぞれを電解液とした系について検討を行った。
Materials Studioによる計算の結果(図1)、各系におけるリチウムイオンと溶媒層との相互作用のエネルギーは110系においてEint=-156.67 kJ/mol、111系において-147.97 kJ/mol、112系において-149.97 kJ/molとそれぞれ算出された。MDMBを電解液成分として含む系においてはEC/DEC系と比較してリチウムイオンと溶媒層との相互作用が弱まっていることが示唆された。したがって、MDMB含有系においては脱溶媒和の活性化エネルギーの顕著な低下が期待される。
各電解液のリチウムイオン輸率を測定したところ(図1)、MDMBを含む系においては、EC/DEC (110)の0.41に対して0.93 (111)、0.86(112)と大幅に高い値を示し、ホウ素によるアニオントラップ効果に加えて前述のリチウムイオン―溶媒層相互作用の低下が影響を与えていると考えられる。
それぞれの電解液系を用いてLiNMC111を用いて正極型ハーフセルを構築した。サイクリックボルタモグラム2を図2に示す。EC/DEC系(110)においては掃引速度が向上すると電極反応の過電圧が上昇するが、MDMBを含む電解液(111)においては顕著な変化は見られず、高いリチウムイオン輸率により系内の電荷の分極が抑制されている効果によると考えられる。各充放電レートにおける充放電特性を検討したところ、111系電解液において最も優れた特性が観測された(図2)。また、電池セルのインピーダンス測定及びスペクトルの等価回路フィッティングにより、電荷移動界面抵抗の温度依存性に基づいた電荷移動プロセスの活性化エネルギーを算出したところ、111系において最も低い活性化エネルギー(30.5 kJ/mol)を観測した(図2)。結果として、長期サイクル試験においても111系が最も優れた放電容量を示すに至った(図3)。
充放電後の正極のXPS測定を行ったところ、MDMBを含んだ電解液を用いた系においてはいずれもB1sスペクトルにおいて192.5 eV(B-O)、194.0 eV(B-F)のピークが観測され、正極電解質界面(CEI)がホウ素化されていることが確認された(図4)。B-F結合の形成は、導入されたホウ素がHFを捕捉したことを示唆している。電極界面におけるB-Oの導入は、ホウ素―アニオン相互作用により界面における塩解離を促す役割が想定され、電荷移動界面抵抗の低減に寄与していると考えられる。
以上のように、MDMBを電解液成分とすることにより、従来のLiBOB添加剤を用いた正極の安定化手法と比較すると、直接的にCEIにホウ素導入が可能である点において優位性が顕著であり、今後一般化可能な正極安定化プロトコルとしての展開が期待できる。
本成果は、ACS Applied Energy Materials(米国化学会)オンライン版に2025年3月3日(英国時間)に掲載された。
【今後の展開】
本電解液系においてはHFの捕捉、リチウムイオン輸率の向上、界面抵抗の低減、電極反応の活性化エネルギーの低下などの多様なメカニズムにより正極が安定化されている。
今後は、企業との共同研究を通して将来的な社会実装を目指す。
本電解液系と既存の正極安定化剤などとの相乗効果も期待され、更なる研究展開の端緒となると考えられる。
図1 (a) 電解液系110, 111, 112のリチウムイオン輸率 (b) 30-60 ℃ における各系のイオン伝導度の温度依存性(c) 298Kにおける電解質系のモデル(リチウムイオンあり、上段;リチウムイオンなし、下段)
図2 2.8V-4.2 Vにおける各電解液(110,111, 112)を用いた正極型ハーフセル3のサイクリックボルタモグラム (a) 0.1 and (b) 0.2 mV s−1. (c) レート特性の検討結果(d) 異なる電解液系のEa (電荷移動の活性化エネルギー)の比較
図3 各電解液系110系、111系及び112系における長期充放電サイクル特性(正極型ハーフセル、0.5C)
図4 各電解液系111及び112における充放電後の各正極のXPS(B1s)スペクトル
【論文情報】
雑誌名 | ACS Applied Energy Materials |
題目 | A boron-containing ternary electrolyte for excellent Li-ion transference and stabilization of LiNMC based cells |
著者 | Zhaohan Liu, Amarshi Patra and Noriyoshi Matsumi* |
掲載日 | 2025年3月3日 |
DOI | https://doi.org/10.1021/acsaem.4c02806 |
【用語説明】
電解質中のリチウムイオンが電気伝導を担う二次電池。従来型のニッケル水素型二次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
電気化学分野における汎用的な測定手法である、電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法(サイクリックボルタンメトリー)により、得られるプロファイルのこと。
リチウムイオン二次電池の場合には、正極/電解質/Liの構成からなる半電池を意味する。
令和7年3月21日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/21-1.html超分子ポリマーの新しい構造解析法の発明

超分子ポリマーの新しい構造解析法の発明
【ポイント】
- 従来不可能であった超分子ポリマーの構造と機能を同時に観察する新たな構造解析法の発明
- 環状分子のシクロデキストリンが包接したポリエチレングリコール鎖の構造解析に成功
- 高速原子間力顕微鏡による超分子ポリマーの両端がエンドキャッピングされた構造の解明
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の堀諒雅大学院生(博士後期課程)、篠原健一准教授は、高速原子間力顕微鏡(高速AFM)を用いた固液界面における一分子イメージングにより、従来不可能であった超分子1ポリマー2の構造解析に成功しました。この成果は、超分子材料のさらなる機能解明に繋がるものであり、将来の分子マシンの開発に一石投じる発見です。 |
【研究背景と内容】
ポリマー分子の構造解析法は、ポリマー材料のさらなる機能化のため必要な技術です。中でも超分子ポリマーは単一分子内に動きを伴うため、そのダイナミクスを解明することが重要となります。
従来の超分子ポリマーの構造解析には、核磁気共鳴分析(NMR)による分光法や顕微鏡法が主に用いられてきました。しかし、これらの手法では構造あるいは機能のいずれかしか確認できず、それらを同時に観察することは困難でした。特に今回観察した分子ネックレス構造3は水中で不安定であり、さらに溶解性が低いことが問題となり、その詳細な構造と機能を観察することが難しいとされてきました。
今回、高速原子間力顕微鏡(高速AFM)を用いたことにより、従来不可能であった超分子ポリマーの構造と機能を同時観察する新たな手法を発明することができました。本手法では、1ミリリットル当たり1マイクログラム未満という低濃度の溶液を用いて超分子ポリマーを基板に固定することで、これまでの問題点を解決しました。
具体的には、シクロデキストリンという環状分子がポリエチレングリコールという長鎖分子に包接した、いわゆる分子ネックレス構造を高速AFMを用いて直接観察し、その分子の構造とダイナミクスを確認することに成功しました(図1)。なお、この分子の構造とダイナミクスは、全原子動力学(全原子MD)シミュレーションによって再現され、実験結果とも整合性が確認されています。本研究成果は、超分子材料の構造特性や機能解明に大きく貢献するものであり、特に分子レベルでの精密な構造制御が求められている次世代の分子マシンの開発に一石を投じる発見です。今後、本手法を応用することで、超分子ポリマーの新たな設計の可能性を拓かれることが期待されます。
図 1 高速AFMで観察された分子ネックレスの構造とそのダイナミクス、および全原子MDシミュレーションを用いたダイナミクスの再現。 |
本研究成果は、高分子化学のトップジャーナルであるアメリカ化学会のMacromolecules誌に掲載されました。なお、本研究は、日本学術振興会 科学研究費助成事業基盤研究(C)「23K04520」、JST次世代研究者挑戦的研究プログラム「JPMJSP2102」の支援を受けたものです。
【論文情報】
掲載誌 | Macromolecules |
論文題目 | Direct Observation of "End-Capping Effect" of a PEG@α-CD Polypseudorotaxane in Aqueous Media |
著者 | Ryoga Hori, and Ken-ichi Shinohara |
掲載日 | 2025年3月4日 |
DOI | https://pubs.acs.org/doi/10.1021/acs.macromol.4c02491 |
【用語説明】
令和7年3月11日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/11-1.html磁石と光で機能制御可能なナノ粒子の開発に成功! -高性能がん診断・治療に向けて-

磁石と光で機能制御可能なナノ粒子の開発に成功!
-高性能がん診断・治療に向けて-
【ポイント】
- 磁性イオン液体とカーボンナノホーンから成る複合体の作製に成功
- 当該ナノ粒子の磁場応答性とEPR効果により標的とする腫瘍内に効果的に集積し、マウスに移植したがんの可視化と、抗がん作用、光熱変換によるがん治療が可能であることを実証
- 当該ナノ粒子と近赤外光を組み合わせた新たながん診断・治療技術の創出に期待
北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)物質化学フロンティア研究領域の都 英次郎教授らは、カーボンナノホーン*1表面に磁性イオン液体*2、近赤外蛍光色素(インドシアニングリーン*3)、分散剤(ポリエチレングリコール-リン脂質複合体*4)を被覆したナノ粒子の作製に成功した(図1)。得られたナノ粒子は、ナノ粒子特有のEPR効果*5のみならず、磁性イオン液体に由来する磁場駆動の腫瘍標的能によって、大腸がんを移植したマウス体内の腫瘍内に効果的に集積し、磁性イオン液体に由来する抗がん作用に加え、生体透過性の高い近赤外レーザー光*6により、インドシアニングリーンに由来するがん患部の可視化とカーボンナノホーンに由来する光熱変換による多次元的な治療が可能であることを実証した。さらに、マウスを用いた生体適合性試験などを行い、いずれの検査からもナノ粒子が生体に与える影響は極めて少ないことがわかった。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待される。 |
【研究背景と内容】
がんは世界における死亡の主な原因の1つである。世界保健機関 (WHO) によると、2020年には約1,000万人のがん患者が亡くなっている。とりわけ先進国の人口の高齢化と生活習慣の要因により、症例数は引き続き増加すると予想されている。科学、技術、社会の発展が大きく進歩したにもかかわらず、従来の抗がん剤の特異性の低さ、重篤な副作用、転移性疾患に対する有効性の限界などが相まって、がんは依然として重要かつ世界的な健康課題となっている。従って、より効果的かつ安心・安全な先進がん診断・治療技術の開発は急務である。
イオン液体は、低融点、低揮発性、高イオン濃度、高イオン伝導性などの特長を持つ室温で液体として存在する塩であり、コンデンサ用電解液や帯電防止剤、CO2吸収剤などの様々な産業用途に応用されており、とりわけ環境・エネルギー分野で注目されている。また、近年イオン液体に抗がん作用があることが見出されており、上記の分野のみならず医療分野への応用展開も期待されている。
そもそもイオン液体という物質は、陽イオン分子と陰イオン分子という極めてシンプルな2種類の構成要素で成り立っている。つまり、陽イオン側と陰イオン側の両方に多様な可能性があることから、両者の組み合わせとなるイオン液体には、膨大な種類が存在しうることになる。そのためイオン液体は「デザイナー溶媒」と呼ばれている。例えば、陽イオンが1-ブチル-3-メチルイミダゾリウム、陰イオンが塩化鉄であるイオン液体([Bmin][FeCl4])は、ネオジム磁石程度の磁場に応答する「磁性イオン液体」として知られている。磁石に反応する流体としては、この磁性イオン液体の他に、磁性流体という粉末磁石を懸濁させた油などが知られている。しかし、従来の磁性流体は、固体と液体に分離してしまいやすく不安定であった。磁性イオン液体は極めて安定であり、揮発せず、燃えないなどのイオン液体特有の性質を保持している。このため磁性イオン液体は、固体磁石にはできなかった液体磁石の新しい用途に向けて応用が期待されている。しかし、このような磁性イオン液体の高い潜在能力に反して、これまで報告されている磁性イオン液体の応用例は、化学物質の抽出や分離に限られていた。
一方、ナノ炭素材料の一つであるカーボンナノホーン(CNH)は、高い生体適合性と優れた物理化学的特性を有することが知られており、とりわけバイオメディカル分野で大きな注目を集めている。都教授は、CNHが生体透過性の高い波長領域(650~1100 nm)のレーザー光により容易に発熱する特性(光発熱特性)を世界に先駆けて発見し、当該光発熱特性を活用したがん診断・治療技術の開発を推進している(※1)。また、都研究室では、革新的がん診断・治療技術に向けてCNHのさらなる高性能化・高機能化に取り組んでいる(※2)。
(※1) https://www.jaist.ac.jp/whatsnew/press/2020/08/17_2.html
(※2) https://www.jaist.ac.jp/whatsnew/press/2024/08/22-1.html
本研究では、磁性イオン液体([Bmin][FeCl4])と光発熱素材(CNH)を複合化した新規ナノ粒子を開発し、がん診断・治療技術への可能性を調査した。より具体的には、[Bmin][FeCl4]、近赤外蛍光色素(インドシアニングリーン)、分散剤(ポリエチレングリコール-リン脂質複合体)を被覆したCNH([Bmin][FeCl4]‒PEG‒ICG‒CNH複合体)をがん患部に同時に送り込むことで、[Bmin][FeCl4]に由来する磁場応答性と抗がん作用に加え、生体透過性の高い近赤外レーザー光を用いることで、インドシアニングリーンに由来する近赤外蛍光特性を用いた患部の可視化やCNHに由来する光熱変換を利用した、新たながんの診断や治療の実現を目指した。
当該目標を達成するために、今回開発した技術では、簡便な超音波照射によって[Bmin][FeCl4]、近赤外蛍光色素(インドシアニングリーン)、ポリエチレングリコール-リン脂質複合体をCNH表面に吸着させることで、CNHを水溶液中に分散できるようにした(図1)。この方法で作製した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体は、7日以上の粒径安定性を有していること、細胞に対し高い膜浸透性を有し抗がん作用を発現すること、近赤外レーザー光照射により発熱が起こることが確認できたため、がん患部の可視化と治療効果について試験を行った。
大腸がんを移植して約10日後のマウスに、当該[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体を尾静脈から投与し、医療用バンデージを使って患部に小型のネオジウム磁石を24時間張り付けた後に740~790 nmの近赤外光を当てたところ、がん患部が蛍光を発している画像が得られた(図2A)。また、当該ナノ粒子が、ネオジウム磁石を用いない場合や磁性イオン液体を被覆していないナノ粒子(PEG‒ICG‒CNH複合体)に比較して、がん組織に効果的に取り込まれていることが分かった(図2A)。そこで、当該ナノ粒子([Bmin][FeCl4]‒PEG‒ICG‒CNH複合体 + 磁場)が集積した患部に対して808 nmの近赤外レーザー光を照射したところ、[Bmin][FeCl4]に由来する抗がん作用に加え、CNHの光熱変換による効果で5日後には、がんを完全に消失させることが判明した(図2B)。
一方、腫瘍内における薬効メカニズムを組織学的評価により調査したところ、とりわけ磁場印可とレーザー照射した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体においてがん細胞組織の顕著な破壊が起こることが明らかとなった。
さらに、[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体をマウスの静脈から投与し、生体適合性を組織学的検査、血液検査、体重測定により評価したが、いずれの項目でも[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体が、革新的がん診断・治療法の基礎に成り得ることを示すだけでなく、ナノテクノロジーや光学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、2025年3月3日に生物・化学系のトップジャーナル「Small Science」誌(Wiley発行)のオンライン版に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、大学発新産業創出基金事業スタートアップ・エコシステム共創プログラム(JPMJSF2318)ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
図1.様々な機能性分子を被覆したナノ粒子の作製と本研究の概念。
CNH: カーボンナノホーン、ICG: インドシアニングリーン、[Bmim][FeCl4]: 磁性イオン液体、
DSPE‒PEG2000‒NH2: ポリエチレングリコール-リン脂質複合体。
図2. ナノ粒子をがん患部に集積・可視化(A)し、光照射によりがんを治療(B)
(赤色の囲いは腫瘍の位置、赤色の矢印は消失した腫瘍の位置をそれぞれ示している)。
【論文情報】
掲載誌 | Small Science |
論文題目 | Multifunctional magnetic ionic liquid-carbon nanohorn complexes for targeted cancer theranostics |
著者 | Yun Qi, Eijiro Miyako* |
掲載日 | 2025年3月3日にオンライン版に掲載 |
DOI | 10.1002/smsc.202400640 |
【用語説明】
飯島澄男博士らのグループが1998年に発見したカーボンナノチューブの一種。直径は2~5 nm、長さ40~50 nmで不規則な形状を持つ。数千本が寄り集まって直径100 nm程度の球形集合体を形成している。とりわけ、薬品の輸送用担体として期待されており、バイオメディカル分野で注目を集めている。
磁気力によってイオンが移動する液体。
肝機能検査に用いられる緑色色素のこと。近赤外レーザー光を照射すると近赤外蛍光と熱を発することができる。
ポリエチレングリコールとリンを含有する脂質(脂肪)が結合した化学物質。脂溶性の薬剤を可溶化させる効果があり、ドラッグデリバリーシステムによく利用される化合物の一つ。
100nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみ、がん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
令和7年3月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/06-1.html光電極の反応メカニズムを解明 ~光の強度変化で見えた新たな課題と可能性~
![]() ![]() ![]() ![]() |
国立大学法人北陸先端科学技術大学院大学 東京都公立大学法人 東京都立大学 国立大学法人東京科学大学 Swansea University |
光電極の反応メカニズムを解明
~光の強度変化で見えた新たな課題と可能性~
【ポイント】
- 周波数データの先進的解析により、水分解反応中の電子の動きを時間領域で可視化
- 電子と正孔の再結合過程を3種に分類し、電場と光の強さで変化するメカニズムを解明
- 反応のボトルネックとなる遅い反応過程を発見し、水分解反応の効率低下要因を特定
光電気化学的な水分解は、クリーンな水素を生成する有望な技術ですが、その効率は電子と正孔の再結合1によって大きく制限されています。この課題を克服するためには、電荷の分離と移動の特性を詳細に分析し、再結合のメカニズムを明確にすることが不可欠です。 今回、北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)張葉平特別研究員(日本学術振興会特別研究員PD)、東京都立大学(学長・大橋隆哉、東京都八王子市)都市環境科学研究科天野史章教授、Dr. Surya Pratap Singh、東京科学大学(旧・東京工業大学、理事長・大竹尚登、東京都目黒区)物質理工学院材料系宮内雅浩教授、山口晃助教、Dr. Yue Yang、Imperial College London (United Kingdom) Prof. Salvador Eslava、Ms. Mengya Yang、Dr. Junyi Cui、Prof. James R Durrant (Swansea University, United Kingdomと兼務)、Dr. Daniele Benettiの共同研究チームは、「光強度変調光電流分光法(IMPS)2」と「緩和時間分布(DRT)解析3」を組み合わせた新たな分析手法を適用し、光電極の動作環境下でのその場観察を行いました。その結果、これまで一つの現象として捉えられていた電子と正孔の再結合が、実は異なる3つの過程に分かれていることを明らかにしました。さらに、反応速度が遅い領域に未知の"サテライトピーク4"が存在することを発見し、これが電子移動や反応のボトルネックとなる可能性を示しました。本研究の成果は、光触媒や光電極材料の効率的な設計につながるものであり、2025年2月22日付けで「Journal of the American Chemical Society」誌に掲載されました。 |
【研究の背景】
光触媒は、太陽光というクリーンで無尽蔵なエネルギーを利用して水素を生成する技術として注目されています。しかし、実用化に向けた大きな課題のひとつが、「電子と正孔の再結合」です。これは、光によって励起された電子が、化学反応に利用される前に元の状態に戻ってしまう現象で、エネルギー変換の効率を大きく低下させます。従来の研究では、この再結合がどのように起こるのかを詳細に分析することが難しく、単純化したモデルで説明されることがほとんどでした。そこで、研究チームは、再結合過程には複数のメカニズムが混在する可能性があると考え、周波数ごとの電流の応答を時間ごとの変化として"見える化"する解析手法を適用することで、光照射下での電子や正孔の動的な過程を捉えその詳細を明らかにしました。
【研究の詳細】
本研究では、光触媒として広く研究されている酸化チタン(TiO2)を光電極の材料に用いて、水分解反応の動作環境における電子の動きを詳細に分析しました。まず、「光強度変調光電流分光法(IMPS)」を用いて、光の強さを周期的に変化させた際の電流の応答を測定し、光触媒内でどのようなプロセスが起こっているかを周波数ごとに測定しました。次に、「緩和時間分布(DRT)解析」を適用し、得られたデータを時間領域に変換することで、これまで1つのプロセスと考えられていた再結合過程が、実際には複数のプロセスに分かれていることを"見える化"することに成功しました。異なる光強度でIMPSを測定した結果、次の3つの異なる電位領域が存在することがわかりました。
(1) 高電位領域:光強度に依存せず、安定した電流応答を示す
(2) 中電位領域:光強度に強く影響される再結合プロセスが支配的
(3) 低電位領域:逆電子移動(BER)が発生し、光電流が抑制される
図 本研究で明らかにした、3つの電位領域における光触媒プロセスの緩和時間分布、およびそれに対応する半導体電極のバンド曲がり5モデル。電位領域ごとのバンド構造をもとに、異なる3種の再結合プロセス(OPR、EHR、BER)を分類することに成功した。 |
さらに、これらのメカニズムを半導体電極におけるバンド曲がりモデルと対応付けることで、これまで一括りにされていた「バルク再結合」を「過剰な光侵入による再結合(OPR)」と「過剰な正孔による再結合(EHR)」いう2種類に分類し、それぞれの特徴を明らかにしました。また、これまで観測されていなかった遅い反応過程が"サテライトピーク"として高電位領域に現れることを確認しました。このピークは光強度や反応条件によって変化し、特に表面の正孔密度によって再結合経路と競合する可能性が示唆されました。
【今後の展望】
本研究の成果により、光電気化学的な水分解反応のボトルネックとなる反応過程をより正確に特定できるようになりました。これにより、光触媒や半導体電極のさらなる高効率化に向けた新たな材料設計の指針が示されます。今後は、異なる材料や反応環境での適用を進めることで、実用化に向けた最適な設計戦略を提案していく予定です。光触媒および光電気化学的な水分解の性能向上により、水素エネルギーの普及が加速し、カーボンニュートラル社会の実現に貢献することが期待されます。
【論文情報】
掲載誌 | Journal of the American Chemical Society |
論文題目 | Analysis of TiO2 Photoanode Process Using Intensity Modulated Photocurrent Spectroscopy and Distribution of Relaxation Times |
著者 | Yohei Cho, Mengya Yang, Junyi Cui, Yue Yang, Surya Pratap Singh, Salvador Eslava, Daniele Benetti, James R Durrant, Akira Yamaguchi, Masahiro Miyauchi, and Fumiaki Amano |
掲載日 | 2025年2月22日 |
DOI | https://doi.org/10.1021/jacs.4c17345 |
【研究資金】
本研究は、日本学術振興会 科学研究費助成事業「JP20H02525, JP21J21388, JP22KJ1272, JP23K26735, JP23K17953, JP24KJ1201, JP24H00463」、東京都立大学、東京工業大学物質・情報卓越教育院、英国工学・物理科学研究会議(EPSRC, Grant EP/S030727/1)、Imperial College Londonからの支援を受けたものです。
【受賞】
本研究は、光エネルギーの化学変換と太陽光エネルギーの有効利用、および人工光合成をテーマとする国際会議でOral Presentation Awardを受賞しています。
【用語説明】
光触媒や半導体電極が光を吸収すると電子と正孔(電子の抜けた穴)が生成される。これらの電荷が化学反応に利用される前に再び結びついて消失してしまう現象。再結合が起こると、エネルギーが熱や光として失われ、反応効率が低下するため、光触媒や半導体電極の性能を向上させるには、再結合を抑える必要がある。
光の強度をわずかに変化させ、そのときの周期的な電流応答を周波数ごとに測定することで、半導体電極内部の電子の動きを解析する手法。動作環境下の光電極をそのまま観察できる「オペランド分光法」の一種。一定の電位を保ったまま測定できるため、半導体内部の電場変動による測定誤差が少なく、光強度や電位の影響を精度よく観察できる。
周波数領域のデータを時間領域に変換することで、どの時間スケールで反応や再結合が起こっているかを特定する解析手法。事前に複雑な数理モデルを使う必要がなく、複数の反応過程を分離して評価できる。それぞれの反応過程がどのくらいの時間で進行するかを示す時定数を「緩和時間」と呼ぶ。
DRT解析の結果として、主な反応プロセスであるメインピークとは別に観測された新たなピーク。今回の研究では、IMPSの解析で初めてサテライトピークの存在を明確に捉え、それが再結合と競合する要因になりうることを明らかにした。
半導体電極の表面付近において、電荷の分布によってエネルギーバンド(電子が存在できるエネルギー準位の範囲)が曲がる現象。これは、外部から電場が加わったり、半導体が電解質と接触したりすることで生じる。バンド曲がりの状態によって、電子や正孔がどのように移動し、化学反応に寄与するかが決まる。本研究では、電位によってバンド曲がりを精密に制御することで、各状態に対応する再結合プロセスを明らかにした。
令和7年2月25日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/02/25-1.htmlLeafbot:振動機構によって駆動される一体型移動ソフトロボット

Leafbot:振動機構によって駆動される一体型移動ソフトロボット
【ポイント】
- ロボット設計: Leafbotと名付けた機構とボディ一体型(モノリシック*1)シート状ロボットは、シリコン製の本体に振動で駆動する運動機構を組み込み開発されました。
- ロコモーションと地形のナビゲーション: Leafbotは、その形態学的な設計により、平坦や斜面、起伏のある地形や障害物がある複雑な地形での効率的な横断(ロコモーション)を可能としました。
- 最高速度: 高周波による振動にて、Leafbotの最高速度は、平坦な道を最高速度5 BL/s(体長毎秒)を達成しました。
- テラダイナミクスの解析: 本研究では、事前に定義した条件下でLeafbotの地形横断能力を評価しました。またLeafbotに組み込まれる運動機構を3パターン設計し、性能比較を行いました。
- 実験による分析:ロコモーションダイナミクスを解析するため、数学モデルを開発し、実験を行いその検証を行いました。
- 本研究の応用: Leafbotは人間が直感的に操作しやすいため、配管などの狭所や複雑な地形を持つ環境下での検査作業の容易化が期待されます。
北陸先端科学技術大学院大学(学長:寺野稔、石川県能美市)ナノマテリアル・デバイス研究領域のHo Anh Van教授が、NGUYEN, Linh Viet大学院生(博士後期課程)、NGUYEN, Khoi Thanh 大学院生(博士後期課程)らの研究チームを率い、柔軟素材を用いた機構とボディ一体型のシート状ソフトロボット「Leafbot」を開発しました。Leafbotは足やボディと一体化し、振動により駆動する画期的な機構を持ちます。これにより効率的な移動と地形ナビゲーションを実現しました。また、本研究により、Leafbotは、斜面や険しい路面を含む複雑な地形を横断する能力が示され、配管など狭所で複雑な環境下での応用の可能性があり、ソフトロボティクスの進歩に大きく貢献することが期待されます。 |
【研究の背景と内容】
柔軟素材を用いたソフトロボットは、その柔軟性と適応性により、硬さを持つ剛体ロボットでは適応が困難な環境への適応を可能とするため、大きく注目されています。ソフトロボットにはこのような利点があるにも関わらず、移動ソフトロボットの分野では、複雑な地形での効率的な移動の実現が未だ根強い課題として挙げられます。現在の移動ソフトロボットの設計は、振動を利用した機構を持つ移動ソフトロボットが得意な平坦な地形での移動に重点を置く傾向が見られます。しかし、それらは、斜面や障害物が存在する道、凹凸のある不規則な地形での移動には限界があります。このような限界は、実世界の条件下で、一体として機能する材料特性や動的設計、ロコモーション戦略(ロボットの運動・移動の計画)を統合することの難しさの起因となっています。
Leafbot(図1)は、複雑な地形での効率的なロコモーションという重要な課題に取り組んだ移動ソフトロボットの分野における画期的な成果です。Leafbotの特徴は、柔軟性・耐久性・適応性を兼ね備えたシリコンゴム製のシート型のソフトボディです。このロボットの核となる機構は、移動を行う環境とダイナミクス(動力学)な動きに相互作用する振動により駆動する機構です。
図1: (A)リーフボットのコンセプト、(B)Leafbotの設計
Leafbotの足は、曲率と弾力性を追求した形状をしており、凹凸のある地形と相互作用を最適化するだけでなく、非対称な摩擦力を利用して前進するための推進力を得ることができます。この足の設計は、多様な地形への適応性を持つだけでなく、限定された条件下で急斜面を乗り越えることを可能としています。
本研究チームは、手足の数が異なる3つのパターンのLeafbot(Leafbotの手足の数により3、5、9とナンバリング)を開発し、その動作検証を行いました。その結果、手足の数が多いほど摩擦が増加し、地形への適応性が向上しました。その一方で、手足の数が少なければ、より高速の移動が可能となることが示されました。Leafbotは、平坦な地形(道)において、最高速度5 BL/s(体長/秒)を達成します。さらに、このロボットは半円形の障害物のある道や険しい地形、斜面を移動する際にも卓越した性能を発揮しました。これはLeafbotが困難な環境下に適していることを証明しています。加えて、この研究では、Leafbotにロコモーションダイナミクスを解析する数値モデルを設計し、様々な条件下でのパフォーマンスを理解するための枠組みを提供します。
図2: Leafbot-X5は環境の凹凸をナビゲートし、2次元空間で操縦できる
Leafbotは、移動ソフトロボットが持つ行動能力を平坦な地形から拡大することで、この分野に新たな基準を打ち立てます。この技術は、工業検査や狭所の捜索救助活動、整地されていない農地の監視などへの用途で予想されます。さらに、Leafbotの柔軟でフレキシブルな構造は、平らな場所であれば起伏のある地形でも移動することが可能です。この機能は、2次元空間での操縦性を持たせるため、より多くの動力源(振動源)を搭載することで実現しました。また、改良型Leafbot-X5は、形態学的な手足も同様に、Leafbotが環境の凹凸に適応することを可能にしました(図2)。将来的には、より優れたエネルギー効率を実現するため、設計を改良し、また自律的なナビゲーションのために感覚システムを組み込み、多様な環境で耐久性・性能の担保・向上させるために新素材を追求する予定です。
【論文情報】
掲載誌 | IEEE Transactions on Robotics (T-RO) |
論文題目 | Terradynamics of Monolithic Soft Robot Driven by Vibration Mechanism |
著者 | Linh Viet Nguyen; Khoi Thanh Nguyen; and Van Anh Ho |
掲載日 | 2025年1月24日 |
DOI | 10.1109/TRO.2025.3532499 |
【用語説明】
モノリシックとは、Leafbotのように、ロボットのボディに繋ぎ目がなく一体であり、耐久性・柔軟性・適応性が高められていることを指します。
令和7年2月17日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/02/17-1.htmlなぜ実用熱電材料の熱伝導率は低いのか?レーザーラマン散乱分光が出した答えは? ~実用熱電モジュールの性能向上に大きく期待~

なぜ実用熱電材料の熱伝導率は低いのか?レーザーラマン散乱分光が出した答えは?
~実用熱電モジュールの性能向上に大きく期待~
【ポイント】
- レーザーラマン散乱分光法を応用した格子振動の解析手法を、熱電材料の熱伝導率評価に適用しました。
- 実用熱電材料(ビスマス-テルル-セレン系材料)において、4次以上の高次の非調和振動はほとんど存在しないことを実証しました。
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)サスティナブルイノベーション研究領域のLiu Ruian大学院生(博士後期課程)、小矢野 幹夫教授は、レーザーラマン散乱分光法を実用熱電材料(ビスマス-テルル-セレン系材料)に適用し、4次以上の高次の非調和格子振動がほとんど存在しないことを実証しました。この成果は、なぜ実用熱電材料の熱伝導率は低いのかという問いに対して答えを与えるだけでなく、よりよい熱電材料、すなわち低い熱伝導率をもつ材料を開発するにはどうすればよいかという指針を与えるものです。 |
【研究背景と内容】
熱電変換技術は、固体素子(以下、「熱電素子」という。)のみを使って、熱エネルギーから電気エネルギーを取り出したり、電気によって熱の流れを制御する技術です。熱電変換技術のうち、熱電素子に直流電流を流すと素子の両端でそれぞれ吸発熱がおこるペルチェ効果と、素子に温度差をつけると電圧が発生するゼーベック効果があります(図1)。特に、ペルチェ効果は、インターネットや先進AI技術を支える光通信用レーザーダイオードの温度制御に使用されており、私たちの豊かな生活を陰で支えている必要不可欠なものです。
図1 一対のp型およびn型の熱電素子を組み合わせたπ型熱電モジュールの概念図。熱電モジュールに直流電流を流すと上下電極で吸発熱が起こり(左図)、温度差をつけると逆に電圧が発生する(右図)。 |
このように産業応用されている熱電素子の心臓部にはビスマス-テルル-セレン系の材料が使われています。この材料は、同じような結晶構造を持つビスマス-アンチモン-テルル系材料と組み合わせて熱電素子が製造されます。このビスマス-テルル-セレン系の熱電材料は、熱を伝えにくいという性質(低い熱伝導率*1)が特徴で、優れた熱電性能を持っています。電気の良導体であるにもかかわらず、窓ガラスのような絶縁体と同等の熱伝導率(約 1 W/mK)を示します。
低い熱伝導率の原因として、これまで格子振動の非調和項が熱の流れを阻害していることが効いているのではないかと考えられてきましたが、よくわかっていませんでした。本研究は、レーザーラマン散乱分光法をビスマス-テルル-セレン系材料に適用して、格子振動の高次の項がどのようになっているかを確かめた画期的なものです。
レーザーラマン散乱分光法は、試料に単色レーザー光を照射して、散乱してきた光(ラマン散乱光)と入射レーザー光のエネルギー差から、物質中の格子振動のエネルギーを測定する手法です。さらに散乱光ピークのピーク幅を解析することにより、格子振動の緩和時間(格子振動がどれくらいの速さで励起されて減衰するか)に関する情報が得られます。得られた振動エネルギーを、計算機でシミュレーションした結果と比較することにより、どの振動パターンがどのようなエネルギーを持っているかを推測することも可能です。
私たちは図2に示す温度可変ラマン散乱分光器を用いて、ビスマス-テルル-セレン系材料のラマン散乱スペクトルを広い温度範囲で測定し、その変化を詳細に解析しました。スペクトルは図3に示すように3本のピーク(一つ一つが格子振動のエネルギーに対応します)からなっており、その半値幅を温度に対してプロットすると、温度の上昇とともにほとんど直線的に増加しています(図4)。この温度変化をBalkanskiモデル*4を使って解析すると、「格子振動には非調和成分が存在するが、それは3次までの振動であり、4次以上の非調和振動*2*3は存在しない」ということが明らかになりました。4次の非調和振動は近似的には大きな振幅をもった格子振動に対応するため、この結果は、「大振動振幅が熱の流れを阻害することは、ビスマス-テルル-セレン系材料の低熱伝導率の原因ではない」ということを示しており、むしろ構成元素が重元素であることが主な理由であることを明確に表しています。
図2 レーザーラマン散乱分光実験の様子。温度可変チェンバー内のアルミ基板上に設置された試料に、光学窓を通してレーザー光を照射する。散乱されたラマン光は顕微鏡の接眼レンズを通して分光器で分光される。 |
図3 実測された熱電材料Bi2Te3のラマンスペクトルの一例。特徴的な3本のピーク(A1gおよびEgモード)が観測される。黒点が測定値、赤線はフィッテイング曲線である。 |
図4 ラマンピークの半値幅の温度依存性の一例。温度の上昇とともに、ほとんど直線的に半値幅が広くなっていることが分かる。4次の非調和項が含まれる場合は、この振る舞いが下凸の曲線となる。 |
これらの情報は、なぜ実用熱電材料の熱伝導率は低いのかという問いに対して答えを与えるだけでなく、よりよい熱電材料、すなわち低い熱伝導率をもつ材料を開発するにはどうすればよいかという指針を与えるものです。さらにレーザーラマン散乱分光法が物質の熱の伝わり方を解析する一つの有効な手法として提示されたため、今後、他の材料の熱測定にも同様の手法が応用されることが期待されます。
本成果は、2024年11月25日に科学雑誌「Physical Review B」に掲載されました。なお、本研究は、科学研究費助成事業基盤研究(C)20K05343の支援のもと行われたものです。
【論文情報】
掲載誌 | Physical Review B 110, 174310(2024) |
論文題目 | Investigation of phonon anharmonicity in Se-doped Bi2Te3 via temperature-dependent Raman spectroscopy |
著者 | Ruian Liu, and Mikio Koyano |
掲載日 | 2024年11月25日 |
DOI | 10.1103/PhysRevB.110.174310 |
【用語説明】
熱の伝わりやすさを示す指標。固体の場合、単位温度差を付けた場合に単位時間内に流れる、単位長さ単位断面積当たりの熱量で定義される(単位: W/mK)。一般に熱伝導率が高い物質(金属等)は熱をよく伝え、電気を流さない絶縁体は熱を伝えにくい。熱電変換材料の場合は、高い伝導率と低い伝導率という相反する物性が要求される。
物質中では原子の熱振動を通じて熱エネルギーが高温側から低温側に伝わっていく。このときの状態は、原子がバネで規則的につながれたモデルで記述することができる。フックの法則に従う理想的なバネで構成されていれば、原子が振動したとき、この連成振動系の固有振動のみが安定なエネルギーを持つ。この振動状態を調和振動と呼ぶ。
調和振動のみでは固体の熱膨張が説明できないため、実際の固体物質を構成しているバネは非線形バネである。非線形バネは、調和振動に加えて3次や4次の高次の非調和項を持っている(図5)。3次の項は振動の平衡位置のずれ、4次の項は大振幅振動に近似的に対応する。非調和項が存在すると音波同士の衝突が可能となるため、より減衰が速くなり熱エネルギーの伝播が阻害される。
音波とのアナロジーで考えると、調和振動は基準音(純音)に、非調和項は倍音に対応する。
物質の振動特性を解析するための理論モデルで、特にラマン散乱分光法のデータを解析する際に用いる。このモデルが提唱する半値幅の温度依存性を用いることにより、格子振動の非調和項を次数ごとに分離することができる。
図5 格子振動の調和項(調和振動)と非調和項の概念図。
令和7年1月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/01/06-1.html量子グレードの高品質・高輝度蛍光ナノ粉末ダイヤモンド ~ナノダイヤモンド量子センサの性能向上で超高感度の測定が可能に~

![]() ![]() |
岡山大学 量子科学技術研究開発機構 北陸先端科学技術大学院大学 筑波大学 |
量子グレードの高品質・高輝度蛍光ナノ粉末ダイヤモンド
~ナノダイヤモンド量子センサの性能向上で超高感度の測定が可能に~
【ポイント】
- 明るい蛍光イメージングとナノ量子計測法が利用可能な品質等級(量子グレード)を実現しました。
- 従来の蛍光ナノ粉末ダイヤモンド※1に比べて量子特性が10倍以上、温度感度が2桁向上しました。
- ナノダイヤモンド量子センサの性能を大幅に向上させた画期的な成果です。
- 細胞内やナノ電子デバイスの温度や磁場を超高感度で測定可能になることが期待されます。
岡山大学学術研究院環境生命自然科学学域(理)の藤原正澄研究教授、押味佳裕日本学術振興会特別研究員、同大大学院環境生命自然科学研究科の中島大夢大学院生、大学院自然科学研究科のマンディッチサラ大学院生、小林陽奈非常勤研究員(当時)は、住友電気工業株式会社の西林良樹主幹、寺本三記主席、辻拡和研究員、量子科学技術研究開発機構量子生命科学研究所の石綿整主任研究員、北陸先端科学技術大学院大学ナノマテリアル・デバイス研究領域の安東秀准教授、筑波大学システム情報系の鹿野豊教授らとの共同研究により、従来の10倍以上の優れた量子特性(量子コヒーレンス※2)を持つ高輝度の蛍光ナノ粉末ダイヤモンドを世界で初めて報告しました。この蛍光ナノ粉末ダイヤモンドは、住友電気工業株式会社との協力によって実現されたもので、高い蛍光輝度で蛍光イメージングが可能で、高品質な量子センサ特性を有しており、温度量子測定においても1桁以上の感度向上が確認されました。 本研究成果は、2024年12月16日に「ACS Nano」のオンライン先行版に掲載されました。蛍光ナノ粉末ダイヤモンドを用いた量子センシング※3技術は、近年注目を集めている超高感度ナノセンシング技術です。しかし、これまで高い蛍光輝度と様々な量子計測法を行うのに要求される品質等級(量子グレード)の両立は困難とされてきました。本研究により、ナノダイヤモンド量子センサの性能が大幅に向上され、細胞内やナノ電子デバイスの温度や磁場を超高感度で測定できると期待されます。 |
【現状】
蛍光ナノ粉末ダイヤモンドを用いた量子センシングは、ナノスケールでの温度、磁場、化学環境の変化を高感度に計測できる技術として、生命科学やナノテクノロジー分野で大きな注目を集めています。この技術は、細胞内の微小領域やデバイス内部の構造を精密に計測できることから、将来的には癌の超早期診断や極微量ウイルスの検出などの医療分野や、リチウムイオンバッテリーの状態モニタリングなどのスマートデバイス分野での応用が期待されています。しかし、量子センシングの性能は蛍光ナノ粉末ダイヤモンドの電子スピン特性に大きく依存しており、このスピン特性の向上が技術の成否を左右します。特に、従来の蛍光ナノダイヤモンドでは、蛍光強度とスピン特性の両立が難しく、測定感度が劣化するという課題がありました。
【研究成果の内容】
本研究では、蛍光ナノ粉末ダイヤモンド中のスピン不純物(孤立窒素原子や天然炭素に含まれる約1%の13C同位体)を大幅に減少させ、スピン純度を飛躍的に向上させることに成功しました。また、窒素空孔欠陥中心(NV中心)※4を高効率で生成するためのダイヤモンド成長法およびナノ粒子粉砕法を最適化し、含有されているNV中心が約1 ppm、孤立窒素が約30 ppm、13C同位体が0.01%以下に制御され、平均粒径277 nmの大きさを有するナノ粉末ダイヤモンドを作製しました。その結果、光検出磁気共鳴※5信号(ODMR)が著しく改善され、従来の蛍光ナノ粉末ダイヤモンドと比較して量子コヒーレンス時間が10倍以上延長されました。(図1)
図1:細胞内の量子グレード蛍光ナノ粉末ダイヤモンドとそのスピン特性
さらに、これらの蛍光ナノ粉末ダイヤモンドを細胞内に導入し、従来の蛍光ナノ粉末ダイヤモンドに比べてより高感度にODMR信号が検出できることを実証しました。また、バルク結晶のみで実現されていた量子計測法の1つである、超高感度温度測定法「サーマルエコー」も観測することに成功しました。これにより、従来のナノダイヤモンド温度量子センシングに比べて1桁以上感度が向上することを確認しました(図2)。ナノダイヤモンド量子センサの実用に道を開く画期的な成果です。
図2:サーマルエコー法による超高感度温度測定と従来に比べた測定感度の向上
【社会的な意義】
本研究は、生命科学やナノテクノロジー分野におけるナノスケールセンシング技術の大きな進展をもたらす可能性を秘めています。蛍光ナノ粉末ダイヤモンドは、優れた光安定性と生体適合性を持ち、既に一部で商用化が始まっている有望な蛍光イメージング材料です。ナノダイヤモンド量子センサの応用が進展すれば、癌などの超早期診断や極微量ウイルス検出といった新しい診断技術の開発が期待されます。また、ナノメートルからマイクロメートルの微小領域で温度や磁場を検出する技術は、リチウムイオンバッテリー内部の状態モニタリングなど、スマートデバイスの革新的な性能向上にも貢献すると期待されています。本研究を通じて量子センシング技術が進展することで、蛍光ナノ粉末ダイヤモンドのバイオ医療やスマート電子技術分野での幅広い商用化が期待されます。
【論文情報】
論文名 | Bright quantum-grade fluorescent nanodiamonds |
邦題名 | 「高輝度量子グレード蛍光ナノ粉末ダイヤモンド」 |
掲載紙 | ACS Nano |
著者 | Keisuke Oshimi, Hitoshi Ishiwata, Hiromu Nakashima, Sara Mandić, Hina Kobayashi, Minori Teramoto, Hirokazu Tsuji, Yoshiki Nishibayashi, Yutaka Shikano, Toshu An, Masazumi Fujiwara |
DOI | 10.1021/acsnano.4c03424 |
URL | https://doi.org/10.1021/acsnano.4c03424 |
【研究資金】
- 独立行政法人日本学術振興会「科学研究費助成事業」
‣基盤A・24H00406,研究代表:藤原正澄
‣基盤A・20H00335,研究代表:藤原正澄
‣国際共同研究強化(A)・20KK0317,研究代表:藤原正澄
‣特別研究員奨励費・23KJ1607,研究代表:押味佳裕 - 国立研究開発法人科学技術振興機構
「先端国際共同研究推進事業(ASPIRE)次世代のためのASPIRE」
(JPMJAP2339,研究代表:鹿野豊(筑波大学) - 国立研究開発法人 新エネルギー・産業技術総合開発機構
「官民による若手研究者発掘支援事業」
(JPNP20004,研究代表:藤原正澄) - 国立研究開発法人日本医療研究開発機構「ムーンショット型研究開発事業」
(JP23zf0127004,研究代表:村上正晃(北海道大学)) - 国立研究開発法人科学技術振興機構 未来社会創造事業 「共通基盤」領域 本格研究
(JPMJMI21G1,研究代表:飯田琢也(大阪公立大学)) - 国立研究開発法人科学技術振興機構 戦略的創造研究推進事業さきがけ
(JPMJPR20M4,研究代表:鹿野豊(筑波大学)) - 国立研究開発法人科学技術振興機構 科学技術イノベーション創出に向けた大学フェローシップ創設事業
(JPMJFS2128, 研究代表:押味佳裕(岡山大学))
(JPMJFS2126, 研究代表:マンディッチサラ(岡山大学)) - 公益財団法人 山陽放送学術文化・スポーツ振興財団「研究助成」(研究代表:藤原正澄)
- 公益財団法人 旭硝子財団「研究助成」(研究代表:藤原正澄)
- 文部科学省「ナノテクノロジープラットフォーム」(JPMXP09F21OS0055)
- 国立研究開発法人科学技術振興機構 創発的研究支援事業
(JPMJFR224K,研究代表:石綿整(QST)) - 公益財団法人 村田学術振興・教育財団「研究助成」(研究代表:石綿整(QST))
【補足・用語説明】
ダイヤモンド中に存在する窒素欠陥中心によって赤い発光を示す、ナノメートルサイズのダイヤモンド粉末粒子。褪色がなく安定した蛍光を半永久的に示す蛍光材料。生体毒性も低く、バイオイメージングなどに利用されている。
量子力学において量子状態が外部からの影響を受けずに一貫性を保ちながら情報を保持できる性質。温度測定の場合、ダイヤモンド窒素欠陥中心の電子スピン状態が温度情報を感じることのできる時間であり、コヒーレンスが失われると温度測定の精度が低下する。
量子力学の原理に基づいてさまざまな物理量を超高感度に計測することができる。特に蛍光ナノ粉末ダイヤモンドでは、窒素欠陥中心が有する電子スピン状態を、量子力学の原理に基づいて操作・検出することで、さまざまな物理量(磁気・温度・電気)を超高感度に計測することができる。
ダイヤモンドの炭素格子中に含まれる結晶欠陥の1つ。窒素原子と隣接する空孔から構成され、緑色の光を吸収して赤い蛍光を示す。この蛍光は、光検出磁気共鳴を示し※5、これが磁場や温度によって影響されるため、蛍光を通したセンシングが可能。超高感度計測が可能な量子センサとして注目され、生体内での温度や磁場の計測、量子情報技術などで注目されている。
光検出を通して電子スピンとマイクロ波の共鳴を観測する手法。蛍光ナノ粉末ダイヤモンドの場合、2.87 GHz付近のマイクロ波を照射すると、電子スピン共鳴が生じ、それが蛍光輝度の減少に表れる。
令和6年12月23日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/12/23-1.html